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Multistage Complex Contagions
In Random Multiplex Networks

Yong Zhuang

Abstract—Complex contagion models have been devel-
oped to understand a wide range of social phenomena, such
as adoption of cultural fads, the diffusion of belief, norms,
and innovations in social networks, and the rise of collec-
tive action to join a riot. Most existing works focus on con-
tagions where individuals’ states are represented by binary
variables, and propagation takes place over a single iso-
lated network. However, characterization of an individual’s
standing on a given matter as a binary state might be overly
simplistic as most of our opinions, feelings, and percep-
tions vary over more than two states. Also, most real-world
contagions take place over multiple networks (e.g., Twitter
and Facebook) or involve multiplex networks where indi-
viduals engage in different types of relationships (e.g., ac-
quaintance, coworker, family, etc.). To this end, this paper
studies multistage complex contagions that take place over
multilayer or multiplex networks. Under a linear threshold
based contagion model, we first give analytic results for
the expected size of global cascades, that is, cases where
a randomly chosen node can initiate a propagation that
eventually reaches a positive fraction of the whole popula-
tion. Next, we analytically derive the probability of triggering
global cascades. Then, analytic results are confirmed and
supported by an extensive numerical study. In addition, we
demonstrate how the dynamics of complex contagions is af-
fected by the extra weight exerted by hyperactive nodes and
by the structural properties of the networks. In particular, we
reveal an interesting connection between the assortativity
of a network and the impact of hyperactive nodes on the
cascade size.

Index Terms—Complex networks, computational model-
ing, communication networks, facebook, network topology,
numerical models, sociology.

|. INTRODUCTION

ODELING and analysis of dynamical processes in com-
plex networks have been a very active research field in
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the past decade. This has led to many advances in our under-
standing and ability to control a wide range of physical and so-
cial phenomena. Examples include adoption of cultural fads, the
diffusion of beliefs, norms, and innovations in social networks
[1]-[5]; disease contagion in human and animal populations
[6]-[11]; cascading failures in interdependent infrastructures
[12]-[14]; insolvency and default cascades in financial networks
[15]; and the spread of computer viruses or worms on the Web
[16], [17].

In this paper, we focus on complex contagions, a class of
dynamical processes typically used in modeling the propagation
of influence in social networks. In particular, complex contagion
models are used when social reinforcement plays an important
role in the propagation process, that is, when multiple sources
of exposure are needed for an individual to adopt an activity.
Examples include the spread of social movements and radical
behavior, the rise of collective action to join ariot, or the decision
to support one political candidate versus the other. This differs
from the class of models known as simple contagions, where
propagation often takes place after only a single copy is received
(e.g., spread of diseases, viruses, etc).

Complex contagions have typically been studied in the lit-
erature using a linear threshold model. The original threshold
model, proposed by Watts [1], considers binary-state dynamics
where each node is in one of the two states, inactive or active,
and is initially assigned a threshold 7 in (0, 1]. At any point in
time, if an inactive node has d neighbors of which m are active,
we determine if it will be activated by checking the relationship
between 7(’1—” and the preassigned threshold 7. If % > 1, then
the node will turn active. Otherwise, if “- < 7, it stays inac-
tive. Once a node is activated, it is assumed to remain active
forever.

In the Watts threshold model, there are two important assump-
tions. The first assumption is that all active individuals exhibit
the same amount of influence on their neighbors. However, in-
dividuals’ standings on a given matter could vary significantly.
For example, followers of a radical organization or a revolution-
ary movement may have varying levels of commitment to the
cause, or a varying desire and ability to recruit new members.
To cope with the multistate nature of individuals’ activity levels,
Melnik et al. [18] introduced a multistage contagion model as a
generalization of the Watts threshold model. There, nodes can
be inactive or in one of several active states with different levels
of influence (e.g., active, hyperactive, etc).

The second assumption of the Watts model, which is also
used in the multistage model by Melnik er al. [18], is that
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contagion is taking place over a single network where all edges
have the same impact on spreading the influence. However,
most real-world influence propagation events take place over
multiple networks. For example, individuals may participate in
multiple online social networks (e.g., Facebook, Twitter, etc.),
and may have different levels of influence in each network.
Similarly, within a single network, individuals may form differ-
ent types of relationships (e.g., friendship, colleagueship, etc.),
and each relationship type might have a different impact on
the propagation of influence in a given context. For example,
video games might be more likely to spread among high-school
friends rather than parents, whereas the opposite might be true
for political ideas. That is, if we do not distinguish different
types of relationships, dynamics of influence propagation may
not be accurately captured. Hence, it is natural to consider com-
plex contagions over multiplex networks. With this motivation,
Yagan and Gligor [4] proposed and studied a threshold model
in multiplex networks. However, they [4] still used the first as-
sumption mentioned above in the sense that their model is not
suitable for multistage contagions (where nodes can belong to
arich set of states).

In this paper, we drop both of the aforementioned assump-
tions and study for the first time a multistage contagion model on
multiplex networks. For simplicity, we assume that the network
consists of two types of links, red and blue, and individuals can
be in one of three possible states, inactive, active, and hyperac-
tive. Then, we seek to answer several important questions: In
the cases where a global spreading event is possible, could we
give analytic answers to the exact probability and the condition
of its taking place, as well as the final expected cascade size?
Under the newly proposed model, how do hyperinfluencers and
topological properties affect the cascade process? Our contri-
butions toward answering these questions are summarized as
follows.

1) For a class of random networks generated by the colored
configuration model (see Section II-A for precise defini-
tions), we analytically derive the expected size of global
cascades, that is, cases where a positive fraction of nodes
(in the asymptotic limit) eventually becomes active or
hyperactive when a randomly selected node is switched
to the active state.

2) We are the first to give analytic results for the probability
of triggering global cascades for multistage models.

3) We explore the intricate relationships between the struc-
tural properties of the underlying network and the impact
of hyperactive nodes on the contagion dynamics. For
instance, a particularly interesting scenario is when the
hyperactive state is manifested in only one link type. This
is motivated by the case where people may be more will-
ing to express their viewpoints to close friends instead
of office mates, or can reach a hyperinfluential state only
in one social network (e.g., Twitter) versus another (e.g.,
Facebook). Our main finding is the interesting connection
between the assortativity (i.e., the correlation among the
degree of neighboring nodes) of the network and the im-
pact of hyperactive nodes on cascade size. For instance,
when the network is highly assortative (i.e., when high-
degree nodes are likely to be connected with high-degree

nodes), the influence exerted by the hyperactive nodes
has a much more significant impact on the cascade size
as opposed to the case when the network has low assorta-
tivity (i.e., when the degrees of neighboring nodes tend to
be uncorrelated). This impact is best observed when the
cascade size is plotted as a function of the mean degree of
the network. There, as the influence of hyperactive nodes
increases, the highly assortative networks are shown to
exhibit changes on not only the critical transition points
(i.e., mean degree values at which expected cascade size
changes from zero to a positive value, or vice versa), but
also the number and order of transitions.

4) Considering an important property in real-world net-
works, clustering, we analytically derive the expected
size of global cascades for random networks with clus-
tering. Due to the page limit, we include all derivations
and results in supplementary materials. Supplementary
materials are at https://goo.gl/1nTgQS.

The rest of the paper is organized as follows. In Section II, we
introduce the network and contagion models. Then, we describe
the problem of interest and our main results in Section III. In
Section IV, we present numerical results that demonstrate the
accuracy of our analysis in the finite node regime, and discuss
the impact of hyperinfluencers on complex contagions under
different levels of assortativity. Further details about the impact
of hyperinfluencers are given in the Appendix. We conclude the
paper in Section V where we also suggest several directions for
future work.

[I. MODEL DEFINITION: NETWORKS AND DYNAMICS
A. Multilayer and Multiplex Network Models

A multiplex network is a network model where links are
classified into different types (or colors), which can capture
the different types of connections between nodes in networks.
For convenience, in the following discussion, we focus on a
multiplex network with two types of links, red and blue, but
the model and results can be easily extended to an arbitrary
number of link types. These two link types can be motivated
by the case where one color accounts for edges in Facebook,
whereas the other for edges in Instagram. Alternatively, one
link color may be representing close friendship links, whereas
the other representing “acquaintances” in a social network. In
this network model, we let A" = {1,2, ..., n} denote the vertex
set, with n standing for the number of nodes. We let N, C N/
denote the set of vertices that have red edges and N, C N
denote the set of vertices having blue edges. For simplicity, we
assume Aj, = N, which means all vertices in the network may
have blue edges. To model the possibility that not everyone may
have red links, we assume that each vertex in A/ has red links
with probability a € (0, 1]

PlieN,]=a, i=1,...,n. (1

With this assumption, by the law of large numbers, we can easily
conclude that % a.s, o, where |V, | denotes the cardinality of
N, and a.s, indicates almost sure convergence.

This network model can be interpreted in two different ways.
The first one is a multilayer network where each network layer
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Fig. 1. lllustration of a multilayer and a multiplex network representation of our model. (a) Multilayer network (e.g., a physical communication

layer and an online social network layer) with overlapping vertex sets; vertical dashed lines represent nodes corresponding to the same individual.
(b) Equivalent representation of this model by a multiplex network. Edges from the online network are red, whereas edges from the physical network

are blue.

is generated by the widely used configuration model [19]-[21];
this case is illustrated in Fig. 1(a). In particular, we use P(d, )
[resp. P(d})] as the degree distribution to determine the number
of red (resp. blue) edges that will be assigned to each node in
N, (resp. V). Once the degree of each node is determined, we
generate the networks R and B by selecting a graph uniformly
at random from among all possible graphs that have the same
degree sequence, see [19] and [20] for more details. Next, we
take a union of the edges in R and B to create a network H.
Equivalently, we can consider a multiplex network model gener-
ated by the colored configuration model [22]. Let d = (d,., d})
denote the colored degree of a node, where d,. and d; stand for
the number of red and blue edges incident on it. Each of the n
nodes in the network is assigned a colored degree by indepen-
dently drawing from the distribution Py. Then, pairs of edges
of the same color are randomly chosen and connected together
until none is left, see [22] for details. Fig. 1(b) is an illustration
of this multiplex network model.

B. Multistage Content-Dependent Linear
Threshold Model

We first introduce the single-stage content-dependent linear
threshold model [4], which is a generalization of the vanilla
threshold model [1]. In the content-dependent linear threshold
model, links are classified into 7 types. For a given content (a ru-
mor, product, etc.), scalars ¢;, 2 = 1, ..., r, represent the weight
of type-i edges on spreading this particular content. Nodes be-
long to either one of the two states, active or inactive, and each
node is assigned a threshold 7 in (0, 1] drawn from a distribu-
tion P (7). Given an inactive node with m; active and d; — m;

inactive neighbors for each link type-¢, 7 = 1,...,r, an inactive
node will turn active if 223(7(7; > 7. Namely, an inactive node
withm = (my,...,m,)andd = (dy,...,d,) will turn active
with probability
F[m,d éP[MzT] )
., d| > iz Cids

Throughout, F[m, d] is referred to as the response function. If
we do not distinguish the edge types or simply set ¢; = 1 for
all i =1,...,r, then this model reduces to the Watts thresh-
old model [1]. The content-dependent threshold model enables
modeling the case where people’s influence on others vary ac-
cording to their relationship type, or the social network that they
are interacting through.

Different from the single-stage threshold model where nodes
can be only in two states, the multistage linear threshold model
[18] allows nodes to be in a richer set of active states. In this
paper, we assume that nodes can belong to three states: inac-
tive, active, and hyperactive. In the following discussion, we use
state-0, state-1, and state-2 to represent the inactive, active, and
hyperactive state, respectively. Let 7; and 7» denote the thresh-
olds associated with transitioning to the active and hyperactive
states, respectively. The hyperactive individuals are assumed to
be [-times more influential than active nodes in the propaga-
tion process (where 3 > 1). For example, an individual with d
neighbors of which m; are active and my are hyperactive, the
probability of switching to state-¢ from the inactive state (i.e.,
state-0) is given by

my + Bma

<Tip1|,1=0,1,2  (3)
where m = (my,msy), 790 = 0, 73 = 00, and [ > 1. Although
we assume there are three states in the contagion process, our
analysis can be extended to an arbitrary number of states.

Finally, we introduce the multistage content-dependent linear
threshold model. Assume that there are two types of links in the
network, red and blue, and that nodes can be in three states,
inactive, active, and hyperactive. We let ¢, and ¢, denote the
weight of red and blue edges, respectively, and set ¢ = (71 With
this notation, the probability of an inactive node switching to
state-7 is given by

Fi[m, d]

c(my1 + Bmy ) +my 1 + By 2
cd, + dy

£P|n < < Tit1| (4
where m = (m,. 1, m, 2, mp1,Mp2), d = (d,,dp), m,1 and
m,. o (resp. my, 1 and my, ») denote the number of active and hy-
peractive neighbors connected through a red (resp. blue) edge,
and d, and d;, denote the number of red and blue neighbors,
respectively. Assume that all nodes are initially inactive and
the contagion process starts by randomly choosing a node and
setting it as active. The influence might then propagate in the
network according to (4) and other nodes might turn active,
and so on. More precisely, we consider a discrete-time process,
which is an approximation to study the continuous-time Markov
process model and has been applied in many works [23], [24].
In discrete-time approaches, we discretize time into uniform
time steps of length At = 1. Then, nodes update their states
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synchronously at the discrete time steps ¢ = 0,1,..., and an
inactive node will be activated at time ¢ according to the influ-
ence they receive at time ¢ — 1 and formula (4). Once active,
a node cannot be deactivated. Since we are only interested in
the fraction of nodes in active or hyperactive state in the steady
state (i.e., when nodes no longer change their states), our results
do not depend on the length of the discrete time steps, that is,
we can use arbitrarily small time steps and get arbitrarily close
to continuous-time dynamics.

[ll. MAIN RESULTS

Since the proposed contagion process is monotone (i.e., an
active node can never switch back to inactive), it will eventually
stop, i.e., a steady state will be reached. A global cascade is
said to take place if the fraction of nodes that are activated is
positive in the limit of large network sizes. Our main goals are
as follows:

1) determining the conditions (in terms of network parame-
ters) for global cascades to be possible;

2) calculating the expected size of global cascades when
they are possible;

3) calculating the probability of triggering global cascades.

A. Expected Cascade Size and the Condition to Have a
Global Cascade

We start the analysis with computing the expected size of
global cascades when they occur. Consider a random variable .S
defined as

g4 # of active and hyperactive nodes at steady state

n

where n is the number of nodes in the network. Then, a global
cascade is said to take place if S > 0 in the limit n — oo, and
our main goal is to derive

lim E [S|S > 0]

n—oo
which gives the expected size of global cascades when they
exist. For simplicity, in our analysis we omit self-loops, that
is, the possibility of having more than one edge between two
nodes. It is a simple matter to show that such self-loops occur
very rarely in the construction of the configuration model and
they have negligible impact on the cascade dynamics (e.g., see
[25]). In fact, our experiments also confirm that the impact of
this omission is negligible.

According to our definition, the expected cascade size stands
for the final fraction of active and hyperactive individuals in
the network. Therefore, we can compute it by computing the
probability that an arbitrary node is active or hyperactive at the
steady state. We will compute this probability recursively using
the “tree-approximation” approach [4], [18], [26], which is a
mean-field treatment of the zero-temperature random-field Ising
model on Bethe lattices [27]. The tree-approximation approach
assumes that the network has a locally treelike structure, which
is valid under the configuration model considered here [19].
In supplementary materials, we show how the results can be
extended to a broader class of networks that have large clustering
coefficient (i.e., a large number of triangles). Clustering is a

common property of many real-life social networks and capture
the fact that a pair of individuals are more likely to be connected
with each other if they have a common friend as compared to
the case where no common friend exists.

Labeling the tree structure from the bottom to the top, it
is assumed that the node states are updated starting from the
bottom, and continuing to the top, one level at a time. In other
words, the nodes at level ¢ will not update their states until the
nodes atlevels 0, 1, ..., ¢ — 1 have finished updating. We define
Gr,1,¢ (resp. qp.1,¢) as the probability that a node at level £ that is
connected to its only parent at level £ + 1 by a red (resp. blue)
edge turns active. Similarly, we define ¢, » ¢ (respectively, gy 2.¢)
as the probability that a node at level ¢ that is attached to its only
parent via a red (resp. blue) edge turns hyperactive. Given our
assumption that nodes in the tree update their states one level at
a time, these probabilities will be computed under the condition
that the parent nodes at level ¢ + 1 are inactive.

In the interest of brevity, we only explain the derivation of
Gr,1,0+1 in details. The derivations of ¢, 2 ¢+1, qy,1,041, and
Gp,2,0+1 can be explained very similarly. Since ¢, 1 41 can-
not be expressed explicitly, we derive a recursive relation in
terms of ¢, 1.¢, gr 2.0, @v,1,¢, and gy 2 ¢, see (6)—(9). The valid-
ity of expression (6) for ¢, 1 ¢+1 can be explained as follows.
Consider an inactive node at level ¢+ 1 with colored degree
d = (d,, dy) that is connected to its unique parent at level £ + 2
via a red edge. The probability that this node has ¢ active chil-
dren connected via red edges, s active children connected via
blue edges, j hyperactive children connected via red edges, and
t hyperactive children connected via blue edges, and that it turns
active is given by

de =1\ (d, —1 =4\ , i
( , >< , )QT‘I,I,Qf»?Q/(l(JT,l,/.’qT,Q,/f)d7 e

! J

db db — S ) _g—
X ( ) ( )qg,qu,u(l —qb,1,0 — Qb,Q,é)db -

s t
XFI [(ivjvsat)vd] (5)

where F[(i,7,s,t),d] is as defined in (4), that is, it denotes
the probability that an inactive node with a colored degree d
and a group of active and hyperactive neighbors for each color
represented by m = (4, j, s, ¢) switches to state-1. To simplify
the notation, we use F1[(7, j, s, t), (z,y)] as defined in (10), so
the term given in (5) becomes equivalent to [Fy (i, j, s, t), (d, —
1, dy )7 @]

The intuition behind (5) is as follows. Since we assume that
the network is treelike, the state of each child node at level /¢
is independent from other children at the same level. Thus, we
multiply together the probability of being at a specific state for
each child node to get the whole expression (5) using a simple
combinatorial argument. The reason behind using d,, — 1 rather
than d, in (5) is the fact that the node under consideration is
attached to its unique parent at level £ + 2 through a red edge,
and by assumption this parent node is inactive; recall that a
node at level ¢ + 2 cannot update its state until all nodes in level
¢ + 1 finish updating. A node that is known to have at least one
red edge can be seen to have colored degree d = (d,, d;,) with

probability d<’f§‘ , €.2., see [4] and [19] for a discussion on the
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excess degree distribution. Finally, we get the detailed expres-
sions of ¢, 1 ¢+1 (6) after taking the expectation of (5) over the
degree of the node at level ¢ 4+ 1. We can use similar arguments
to derive expressions for g, 2 ¢+1, Gp,1.0+1, and ¢y 2 ¢+1. The
expressions of all four probabilities are shown in (6)—(9)

d,—1d,—1—i d, dy—s
Qra,e+1 = Z d:pa Z Z Z Z Iy
i=0 j=0 s=0 t=0
X [(ivjvsvt)v (d’!‘ - 1vdb),£] (6)
p (f, ld, —1—1 db dh,s
Q2041 = Z & Z > Iy
dr) i=0 j=0 s=0 t=0
X [(ivjasat), (dr - 17db)7€] (7)
dbpd d, 7 Zd[, 1d),71 S
qb,1,0+1 = Zm Z Z F,
d \7 iZ0 =0 s=0 =0
[(Z j,S,t), (d db - 1)78] (8)
dp d, dr—idy—1dy—1-—s
b.2,0+1 = Z bdzzz Z Iy
i=0 j=0 s=0 t=0
X [(ivjv&t)v(dradb_l)vg] (9)

where for k = 1, 2, we define (10), shown at the bottom of this
page.

Equations (6)—(9) form a nonlinear system. Since our goal
is to compute the expected size of global cascades given
that they exist, we can initialize this dynamical system with
qr,1,0,9r,2,0,9,1,059b,2,0 > 0 to obtain the fixed points, qr,1,005
Gr,2,00> Qb,1,00» a0d @y 2 . These fixed points account for the
probability of being in a corresponding state for the children
of the node chosen uniformly at random. We can use them to
calculate the expected size of global cascades.

We give the expected size of the cascades (given that they ex-
ist) in (11). The validity of (11) can be seen as follows. First, we
randomly choose a node, whose colored degree is d = (d,., dy),
with probability pq. The probability that each of its d, neigh-
bors (viared links) is active (resp. hyperactive) is given by g, 1
(resp. g2, ). Similarly, each of the dj, neighbors (connected via
blue links) of this randomly chosen node is active with proba-
bility ¢;.1,0c and hyperactive with probability g; 2 , indepen-
dently from each other. Then, with each possible combination of
numbers of active and hyperactive neighbors, we can calculate

the probability of being active or hyperactive for the node by
the response function (4). Taking the expectation with respect to
the degree d yields (11). As discussed in details in [4], [18], and
[26], this method, based on the tree-approximation technique,
gives precise results in the asymptotic limit n — oo, when the
underlying network is generated according to the configuration
model. We present extensive numerical studies in Section IV
that supports our results even in the finite node regime, (11)
shown at the bottom of this page.

From the recursive equations derived above, we can also ob-
tain the conditions needed for the global cascades to be possible,
i.e., conditions under which S > 0 with a positive probabil-
ity in the limit n — oo. For notational convenience, we de-
fine q1 1= Gr.1,000 2 = @r.2,005 43 = Qb,1,00> A0 @4 = G 2 00-
Then, the four recursive equations (6)—(9) take the form

qi :fi(qlaq27q3aQ4)7 i:1727374' (12)

By direct inspection, we see that the recursive equations (12)
have a trivial fixed point ¢; = ¢» = q3 = q4 = 0, which yields
S = 0 almost surely; this can be seen from the fact that in that
case we have E[S] = 0. In other words, when (12) has only
a single solution given by this trivial fixed point, then with
probability one global cascades do not take place. In general,
the trivial fixed point may not be stable and there may exist
nontrivial fixed points that yield E[S] > 0. In that case, we
have S > 0 with a positive probability in the limit n — oo and
hence global cascade may take place. To check the existence of
nontrivial solutions of (6)—(9), we linearize them at ¢; = ¢ =
q3 = q4 = 0, which yields the Jacobian matrix J given as

g 9filar,a2,03,91)

13
¢, (13)

1=92=93=44=0

If the spectral radius, i.e., the largest eigenvalue in absolute
value, of the Jacobian matrix is larger than one, then the trivial
fixed point ¢; = g2 = g3 = q4 = 0 is not stable. That is, there
exists a nontrivial fixed point indicating that global cascades are
possible and .S > 0 with positive probability. Otherwise, if the
spectral radius of J is less than or equal to one, then there will
be no global cascades.

B. Probability of Triggering a Global Cascade

We now turn our attention to computing the probability
P[S > 0] of global cascades. As discussed in [1] and [4], the
possibility of a seed node to trigger a global cascade is closely
tied to the size of (and the seed node’s connectivity to) the set of

B llidos. 0. e = (7) (77 Jabneda i -

7

qr.1,0 — qn?.f)z*li]

-8\ . e ..
()1 b athnd = s = ™ % Filldis,0) o] (10)
d, dr—i dy dy—s
lim E[S]S > 0] = ZdeZZZ{E (i, 4, 5,0), (drydy), 00] + F2 [(3, 5,5, 1), (dr,dy),00]} . (11)

i=0 j=0 s=0 t=0
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vulnerable nodes in the network; a node is deemed vulnerable
if it can be activated by only one active neighbor [1], [2], [4],
[28]. The definition of vulnerable nodes and of the vulnerable
component has been extended in [4] to the case of multiplex
networks. There, a “vulnerable component” is defined as a set
of nodes, each of which is vulnerable w.r.t. at least one of the
link types, such that in the subgraph containing this set of nodes,
activating any node leads to the activation of all nodes in the
set. A multiplex network is said to contain a giant vulnerable
component (GVC) if the fraction of nodes in its largest vulnera-
ble component is positive in the limit n — oo. These definitions
were then used [4] to demonstrate that an initial node can trig-
ger a global cascade if and only if it belongs to the extended
giant vulnerable cluster (EGVC), which contains nodes in the
GVC and nodes whose activation leads to activation of a node
in GVC. Put differently, the probability of a randomly selected
node triggering a global cascade is equal to the fractional size
of the EGVC, see [4] for details.

Here, we use the ideas mentioned above to calculate the prob-
ability of global cascades, or equivalently the fraction of nodes
that are in EGVC. This will be done through the analysis of a
branching process that starts from a randomly selected and ac-
tivated initial node, and keeps exploring the neighboring nodes
that are activated according to nodes’ response function (4).
The branching process will continue by exploring the neighbors
of the newly activated nodes that will also be activated, and
SO on.

The fraction of nodes identified by the branching process de-
scribed above can be analyzed using the method of probability
generating functions [29] (e.g., see [1], [4], [6], [19], and [30]),
where this tool was demonstrated to be useful for similar pur-
poses. The first generating function we use in our analysis is
G(x), and it generates the probability distribution of “the finite
number of nodes reached and influenced by the above branch-
ing process”; different from [3], [30], and [31], we exclude the
initially activated nodes. We have

G(x) =Y pagea (@) o1 ()" (14)
d

where g, 1 (x) (resp. g1(z)) generates the probability distri-
bution of “the finite number of nodes reached and influenced
by following a randomly chosen red (resp. blue) edge one of
whose ends is set to active.” The difference between G(x) and
gr.1(2) is illustrated in Fig. 2. The validity of expression (14)
can be seen as follows. First, we initially activate a node that is
chosen uniformly at random. The probability that this node has
a degree d = (d,, dp) is pa. In that case, the number of nodes
that are reached and activated by this node will be generated
(in view of the powers property of the generating functions) by
gr.1(2)? gy 1 (x)% . Summing over all possible degrees d of the
initial node leads to (14).

For (14) to be useful, we also need to derive expressions for
gr1 () and g; 1 (x). This will be done by the help of two more
generating functions. Namely, let g, o () [resp. gy 2 ()] gener-
ate the distribution of “the finite number of nodes reached and
influenced by following a red (resp. blue) edge whose one end

¢
2
SR ~
v/ YL )
( dooo -0 A [~ C -0 A
b NS NS
N ) N
<. BN // — <~ 77/\\”7 )~ /

(@) (b)

Fig. 2.  Difference between (a) G(x) and (b) g, 1 (x). Red dashed lines
account for red edges in our analysis, whereas other lines represent blue
edges. Circles with solid fill indicate active nodes, whereas circles without
fill account for inactive nodes (that can potentially be made active). Then,
G (x) generates the distribution of the number of active nodes by following
the initially activated node, whereas g, 1 (x) generates the distribution of
the number of active nodes by following a randomly chosen red edge.

is connected to a hyperactive node.” The detailed expressions of
the four generating functions are given in (15)—(18). Here, we
only explain the derivation g, ; (), as others can be explained
in a similar manner.

To see why (15) holds, first note that as the randomly selected
red edge whose one end is connected to an active node is fol-
lowed, we will find a node with colored degree d = (d,,d;)
with probability d<d’7) ‘;‘ as already explained in the derivation of
(6). There are three possible cases for this node with degree
d=(d.,dp).

1) It turns active, that is, 7 < ﬁ < Ty, which hap-
pens with probability Fj [(1,0,0,0), (d,,dp)]. Then, this
newly activated node will activate g, 1 (z)% g, ()%
other nodes based on the powers property of generating
functions. The reason why we use d,, — 1 instead of d, is
because one of its d, edges has already been considered
as its connection to the active end.

2) It turns hyperactive, that is, ﬁ > Ty, which happens
with probability F» [(1,0,0,0), (d,, dy)]. Then, the num-
ber of nodes reached and influenced by this newly ac-
tivated node will be generated by g, 2 (x)% gy o (x)%;
this can be seen via similar arguments to the case above.

3) It remains inactive, that is, cd,.(ijrdb < 11, which hap-
pens with probability 1— F[(1,0,0,0),(d,,dy)] —
F»[(1,0,0,0), (dr,dp)]. Then, there will be no newly
activated nodes.

Combining these three cases and summing over all possible
d, we get (15), where the explicit factor « accounts for the initial
node that is activated. The expressions for ¢, 2 (x), g5.1(x), and
gp,2(x) can be derived similarly as in (15)—(18), shown at the
bottom of the next page.

These recursive equations can be used to compute the proba-
bility that a global cascade is triggered in the following manner.
Since G(z) generates the number of finite nodes reached and ac-
tivated by this branching process, we should have G(1) = 1 by
the conservation of probability, unless there is a positive proba-
bility that the branching process leads to an infinite number of
nodes. In other words, 1 — G(1) corresponds to the probabil-
ity that the branching process under consideration will survive
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forever and will not go extinct, meaning that the underlying
influence propagation process will constitute a global cascade.
Thus, we have

lim P[S >0]=1-G(1).

n—0o0

19)

This approach has been introduced in [1] and used in [4] and
[19] for similar calculations.

In order to calculate G(1), we now solve for the fixed point of
(15)—(18) at « = 1. Simplifying the notation as ¢, := g, 1(1),
g2 = gr2(1), g3 := gp.1(1), and gy := gy 2(1), the recursive
equations (15)—(18) at x = 1 can be expressed as

gi :hi(gl7927931.g4)1 i:1327374' (20)

Here, the exact form of the functions hi(g1,g2,93,94)- -,
hy(g1, 92,93, g94) will be obtained from (15) to (18). Once the
fixed points of (20) are obtained, we get from (14) that

Zpdgl 95"

In view of (19), we finally obtain the desired probability of
global cascades as

lim P[S > 0] —1—2:1)(191

n—oo

ey

(22)

IV. NUMERICAL RESULTS

In this section, we present numerical results to support our
analysis on the probability and expected size of global cascades.
We are particularly interested in checking the accuracy of our
asymptotic results when the number of nodes is finite. We will
also investigate the impact of hyperinfluencers (i.e., the addi-
tional influence exerted by them) on the contagion dynamics.

In particular, we aim at exploring if structural properties of
networks will change the impact of hyperinfluencers. Besides,
more details about the impact of hyperinfluencers are given in
the Appendix.

A. Agreement Between Our Analysis and Simulations

We focus on demonstrating the accuracy of our analytic re-
sults on the expected size of global cascades in the finite node
regime. In our numerical simulations, we use a doubly Poisson
distribution to assign the number of red and blue edges for each
node. Namely, with p; (respectively, pZ) denoting the probabil-
ity that a node is assigned k red (respectively, blue) edges, we
let

A k
pzze*b(]:') . k=0,1,... (23)

b
P =ae ™ ( k') +(1—a)bpo, k=0,1,.... (24)
Here, X, (respectively, A;) denotes the mean number of red (resp.

blue) edges assigned per node, o denotes the fraction of nodes
that have red edges (i.e., the relative size of the red network R),
and ¢ denotes the Kronecker delta. In our simulations to verify
our analysis on the expected size, we use n = 1 x 105 nodes!
to create networks and set & = (0.5. Besides, we use ¢ = 0.5 and
# = 1.5 as the content parameter and the weight of hyperactive
nodes, respectively, and fix 7; = 0.18 and 7» = 0.32. Then, for
several values of A, = Aj, we run 1000 independent experiments
(for each parameter set), each time computing the fraction of
nodes that eventually turn active or hyperactive. The results

ITo avoid the finite size effect, we use n = 2 x 10% as the number of nodes
around the second phase transition in the simulations.

gata) =3 TR R 00,000, (0 b)) 1 (2)" g @)+ 5 [(1,0,0.00, ()] ()" g 20"
+ 2’ zd: ‘i‘f‘; (1 - F[(1,0,0,0), (dy,dy)] — F» [(1,0,0,0), (d;, dy)]) (15)

rala) =3 TR R 10.1.0.0), (@ )] s (2)" g @)+ 3 [(0.2,0.00, ()] (@) 20"
+ a0 zd: ‘fdp;‘ (1— F, [(0,1,0,0), (dy,dy)] — F [(0,1,0,0), (dy, dy)]) (16)

g1 (@) = ”32 dbp;l [F1[(0,0,1,0), (dy, db)] gr1 ()" g1 (@)™ 1 + F5[(0,0,1,0), (dy, dy)] gr.2 ()" gy 2 ()" ]
de (1= FL [(0,0,1,0), (dr dy)] — F2 [(0,0,1,0), (d dy)]) a7

92 ( g de [(0,0,0,1), (dy, dy)] gr1 (2)" gp.1 (2)™ 1 + F5 [(0,0,0,1), (dy, dy)] gr2(x)" go2 ()" ]
?{d (1= F 0,0,0,1), (dr )] — E [(0,0,0,1), (d o)) (18)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 02,2020 at 17:05:30 UTC from IEEE Xplore. Restrictions apply.



ZHUANG AND YAGAN: MULTISTAGE COMPLEX CONTAGIONS IN RANDOM MULTIPLEX NETWORKS

417

Stz - Anlys
@ Size - Expt.
0.8F d
S
Zost
<
=]
2
5041
3
=
0.2r
0 . .
0 2 4 6 8
Degree Parameter (A, = \)
(@)
1
—Prob. - Anlys
0.8F d
e
Z 06t
<
2
A4t
Q
<
H
0.2
G 1 1
0 2 4 6 8
Degree Parameter (A, = \)
(b)
Fig. 3. Simulations for doubly Poisson degree distributions, o = 0.5,

71 = 0.18, and 7 = 0.32. The weight of hyperinfluencers is taken to
be 3 = 1.5. (a) Expected size of global cascades. (b) Probability of the
emergence of global cascades.

are depicted in Fig. 3(a), where lines represent analytic results
obtained from (6) to (9), and symbols represent the average
cascade size obtained in simulations (over 1000 experiments
for each data point). We see that there is a good agreement
between the analytic results and the simulations.

Next, to check the correctness of our analysis on the prob-
ability, we fix all parameters except increasing the number of
experiments from 1000 to 10 000. As shown in Fig. 3(b), we ob-
serve that our analysis on the probability (15)—(18) also match
very well the simulations results. This indicates that, although
asymptotic in nature, the results presented in Section III are still
helpful in understanding complex contagion dynamics (e.g., the
probability and expected size of global cascades) in finite net-
works.

In addition, we observe from Fig. 3(a) and (b) that the conta-
gion exhibits two phase transitions, i.e., two different A, = A,
values around which fractional cascade size transitions from
zero to a positive value, or vice versa. These points are of great
interest since they provide insights on how network connectivity
affects the possibility of observing global influence spreading
events. The first transition occurs around /ow values of A, and re-
flects the fact that global spreading events become possible only
after the network reaches a certain level of connectivity. The
second phase transition occurs around high X values, indicating
that global cascades cannot occur when nodes are locally stable,

that is, when they have a large number of friends, individuals
tend to be difficult to get influenced by a few active neighbors.

After demonstrating the correctness of our analysis, we fo-
cus on exploring the impact of hyperinfluencers on complex
contagion dynamics in the following section.

B. Impact of Hyperinfluencers in Multiplex Networks

In this section, we investigate more closely how hyperinflu-
encers affect the complex contagions. We consider a case where
hyperactive nodes are restricted to appear only through one type
of edges, red or blue, rather than allowing them to exert addi-
tional influence through both types of edges. This setting is mo-
tivated by cases where people can reach a more active/influential
state only in one network, or one relationship type. For example,
some people may be reluctant to express their opinions freely in
person (e.g., physical networks), but may be much more active
on online networks (e.g., Twitter) due to anonymity. This raises
an interesting question: Which network or edge type would
facilitate the influence propagation process most when hyperin-
fluencers are allowed there? In what follows, we conduct several
experiments to answer this question: 1) we only allow hyper-
activity in red edges, that is, hyperactive neighbors connected
by blue edges will be counted as merely active when checking
the response function; and 2) we only allow hyperactivity in
blue edges. As discussed in some previous studies [30]-[32],
assortativity is one of the most important structural properties
on multiplex networks. Assortativity is defined as the Pearson
correlation coefficient between the degree of nodes that are con-
nected by a link [33]. If a network is assortative, then nodes of
high degree in the network tend to attach to high degree nodes;
it was noted in [33] that social networks tend to have high as-
sortativity. Therefore, it is interesting to see if assortativity has
any impact on the answer to the above question.

In the following experiments, we conduct these experiments
on a network with low assortativity and then a network with
high assortativity. We use the degree distributions (23) and (24)
to assign red and blue degrees. To be able to control the assorta-
tivity of networks without changing the first moment of degree,
we set A, = Ay rather than A, = A;. With this setting, when «
is large, for example, 0.99, nearly all of the nodes will have a
similar number of red and blue edges, which leads to networks
with limited assortativity. On the contrary, when « is low, for
example, 0.1, only 10% of the nodes will have extra red edges.
In addition, these nodes will have a significantly larger number
of edges, since A, is ten times larger than A;. The nodes with
extra red edges will tend to be connected together, which re-
sults in the network to have high assortativity. A more detailed
discussion on this can be found in [31].

We start with the limited assortativity case, that is, « = 0.99.
As shown in Fig. 4, we observe that regardless of which network
hyperinfluencers are constrained to exist, there are two phase
transitions as in the case of single-stage complex contagions.
However, we see that the existence of hyperinfluencers delays
the second phase transitions to higher mean degrees. The reason
behind this delay can be explained as follows. As mentioned be-
fore, the second phase transition occurs due to high local stability
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the assortativity is negligible.
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Fig. 5. Hyperactivity only appears in red edges. We fix 7, = 0.18 and
79 = 0.32, and vary the mean degree. When « = 0.1, the assortativity
of the network is around 0.8.

of nodes making their states hard to change by only few active
neighbors. However, hyperinfluencers help increase the value
of the perceived influence, that is, clmratpm,, ZHdTb"” 1 Bmz
so that the response function could be exceeded even with few
active and hyperactive neighbors, in the high mean degree re-
gion. Besides, allowing hyperactivity in blue edges leads to a
larger region where global cascades take place, in comparison
with the case where hyperactivity exists only in red edges. This
can be explained as follows. When o = 0.99, there are more
nodes connected by blue edges in the network than red edges.
That is, the impact of blue edges on impeding global cascades
is more than that of red edges. Thus, allowing hyperinfluence
to be exerted in blue edges delays the second phase transition
further.

Next, we discuss the case where o = 0.1 that leads to a highly
assortative network [31]. In Fig. 5, we present numerical results
for the first setting where the hyperactive state is manifested
in only red edges. When 3 = 1, that is, when there are no hy-
perinfluencers in the network, four phase transitions take place.
However, if we increase ( from one to three, then only two
phase transitions are observed. This can be explained as fol-
lows. When 8 = 1, multistage complex contagions are reduced
to single-stage complex contagions, in which case four phase
transitions might occur when assortativity is high [31]. As ex-
plained in [31], the first pair of phase transitions are mainly due
to the red edges. When 1, is small, there are too few blue edges
to trigger a global cascade. However, since we have A, = 101,

—_

B=1] oo :

.ﬁ 3 1

g 08— |
wn 1
=06 [ !
= 1
R=t !
2 0.4r |
: |
~o0.2r '

OL—A—A— : bood

2 4 6 8 10 12
Degree Parameter (a\, = \)

o

Fig. 6. Hyperactivity only appears in blue edges. We fix 71 = 0.18 and
79 = 0.32, and vary the mean degree. When a = 0.1, the assortativity
is high (be up to 0.8).

there are still enough red edges to have global cascades. As we
increase );, we observe a parameter interval where red edges
are too many, whereas blue edges are too few to have a global
cascade. If we keep increasing A, further, global cascades start
appearing again when the network has enough connectivity in
blue edges to propagate the influence. However, further increas-
ing in ); leads to high local stability of nodes w.r.t. both blue
and red edges and global cascades become impossible again.
A more detailed discussion can be found in [31].

The reason why increasing (3 changes the number of phase
transitions is as follows. From definition (4) of the response
function, we observe that it is monotonically increasing with
respect to (3. Thus, when f is higher, an inactive node is easier
to be activated by a hyperactive node, which makes it possible
to have global cascades at higher levels of connectivity, that
is, the second phase transition tends to appear at larger A. This
leads to the second and the third phase transitions seen in Fig. 5
disappear when ( = 1, that is, the interval where we have too
many red and too few blue edges disappear.

Next, we focus on the second setting where hyperactivity is
only manifested in blue edges. The results are shown in Fig. 6.
Allowing hyperactivity in blue edges does not change the con-
nectivity of the network, so the first and the second phase tran-
sitions caused by the connectivity w.r.t. red edges remain the
same. However, the gap between the second and third transi-
tions still exists. The gap happens between the second transition
w.r.t. red and the first transition w.r.t. blue edges. A high /3 only
shifts the second transition to the right but does not affect the first
transition much. Thus, the gap disappears quickly with increas-
ing 5 when we allow it in red edges, but remains when we only
allow it in blue edges. Besides, compared with the case 8 = 1,
the fourth transition is significantly delayed when 3 = 3. The
reason behind the delay of the fourth phase transition is similar
to the previous discussion: A higher 5 makes it easier to exceed
the threshold even when the degree parameter is at a high level,
so the original fourth phase transition has been extended to a
larger mean degree.

From these experiments, we conclude that depending on the
assortativity of the network, the impact of hyperactivity in red
or blue edges on complex contagions is different: When the net-
work is highly assortative, the additional influence exerted by
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the hyperactive nodes may change not only the critical transi-
tion points, but also the number and order of phase transitions,
whereas for networks that have little or no assortativity, the
additional influence mainly enlarges global cascade regions.

V. CONCLUSION AND FUTURE WORK

In this paper, we study the propagation of influence in multi-
plex networks under a multistage complex contagion model. We
derive recursive relations characterizing the dynamics of influ-
ence propagation to compute the probability and expected size
of global cascades, that is, cases where a single individual can
initiate a propagation that eventually influences a positive frac-
tion of the population. The analytic results are also confirmed
and supported by a numerical study. An interesting finding is
that depending on the assortativity of the network, the existence
of hyperinfluencers affects the expected size of global cascades
differently. For instance, when the network is highly assortative,
the additional influence exerted by the hyperactive nodes may
change not only the critical transition points, but also the num-
ber and order of phase transitions, whereas the effect is much
more limited in networks with low assortativity. In addition, we
relaxed the assumption that the network topology has a treelike
structure and added analysis of multistage complex contagions
over networks with high clustering coefficient, which is an im-
portant property of real-world networks.

There are many interesting directions for future work. For
example, it would also be interesting to study the case where
it is possible for a node to transition back to the inactive state
after being activated, for example, due to the negative influence
received by several hyperinactive neighbors. It would also be of
interest to study multistage complex contagions using nonlinear
threshold models, or correlated propagation of multiple opinions
over the same population.

APPENDIX A
IMPACT OF HYPERINFLUENCERS ON THE GLOBAL
CASCADE BOUNDARY

In this section, we investigate how the parameters 3,7, 7
of the contagion model and the connectivity of the network
jointly affect the possibility of global cascades. In particular,
we will determine the boundaries in the space of parameters
that separate the region where global cascades are possible (i.e.,
P[S > 0]) from the region where global cascades do not take
place almost surely (i.e., P[S = 0]). First, we will focus on the
impact of the weight 3 of hyperinfluencers on the global cascade
boundary, and then move on to the discussion about the impact
of the threshold 7; of ordinary influencers.

Fig. 7 shows the global cascade boundary in the space of 7
and degree parameter . = A, = A, for several values of 3. We
observe that larger 3 values lead to a larger region of parameters
79, A for which global cascades can take place, that is, the global
cascade region gets larger with increasing 3. An interesting ob-
servation is that the cascade boundary is more sensitive to the
changes in 3 values when X is large, that is, the lower parts of
the boundaries seen in Fig. 7 are less dependent on the choice
of (3 as compared to the upper parts. This can be explained as
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Fig. 7. Given 7y = 0.15 and a = 0.5, we vary the mean degree A and
79 to plot the global cascade region for several 3, 1.5, 2.0, and 3.0.
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Fig. 8. Given the weight of extra influence g = 1.5 and a = 0.5, we

vary the degree parameter » = A, = A, and 7 to plot the region where
there exists a global cascade for several 71, 0.15, 0.18, and 0.2. Both
of the edges are assigned by the doubly Poisson distribution in Section
IV-A.

follows. When A is small, the existence of global cascades (and
hence the cascade boundary) is mainly determined by whether
the network has enough connectivity to spread the influence.
However, increasing ( does not change the connectivity of the
network, and hence does not affect the boundary when A is
low. Differently, when X high, the location of the boundary [i.e.,
the second phase transition points seen in Fig. 3(a) and (b)] is
decided by the likelihood of nodes with high degree being in-
fluenced by a single active or hyperactive neighbor. Thus, the
boundary is determined from a node’s perceived influence, or
perceived proportion of active and hyperactive neighbors, given
at (4), and on how this compares with the activation thresholds
71 and 7. From (4), we see that higher (3 leads to an increased
perceived influence for a node that has at least one hyperac-
tive neighbor, making it possible for the activation threshold to
be exceeded at higher d,,d;, values (equivalently at higher A
values). Thus, when A is high, the boundary tends to be more
sensitive to the changes in /3.

Next, we investigate the impact of the activation threshold
71 on the global cascade boundary (again considering the space
of A — ). In Fig. 8, we fix 3 = 1.5 and plot the boundary
on the 72 — A plane that separates the regions where cascades
are possible and not possible, respectively. This is done for
three different values of 7. We observe that the impact of 7;
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EXPECTED SI1ZE OF GLOBAL CASCADES

We start by investigating the impact of the extra influence (3
(that hyperactive nodes exert on their neighbors) on the proba-
bility of global cascades. From Fig. 9, we observe that a larger
[ will increase the probability of triggering a global cascade.
This observation is intuitive given that the response function
(4) is increasing with respect to 3. Thus, with a higher 3, the
perceived influence from a single active or hyperactive neighbor
exceeds the threshold more easily, leading to a larger vulnerable
component. Also, we see in Fig. 9 that when the degree param-
eter is large, the cascade probability becomes more sensitive to
the changes in (3. This is consistent with the observations from
Fig. 8 and can be explained in a similar manner.

Next, we discuss the impact of hyperinfluencers on the ex-
pected size of global cascades. From Fig. 10, we observe that
increasing 3 leads to an expansion of the interval of A, = A,
values for which expected cascade size is positive. However,
over the common interval where cascade size is positive, we
see that increasing (3 nearly does not lead to changes in the ex-
pected cascade size. The reason behind this observation is that
the expected cascade size is mainly determined by the connec-
tivity, (e.g., the mean degree) of the network, which remains
invariant to changes in 3. Thus, increasing [ nearly does not
change the expected size of global cascades. The expansion of
the interval over which .S > 0 with increasing (3 is explained by
the response function (4) being increasing in /3. In other words,
a higher 0 makes it easier for the perceived influence to exceed
the activation threshold, helping global cascades take place even
at higher mean degree.

Degree Parameter (A, = ;)

Fig. 11.  Comparison between the asymptotic and the finite-size results
for different size of networks.

APPENDIX C
IMPACT OF THE NETWORK SI1ZE ON THE COMPARISON
BETWEEN ANALYTIC RESULTS AND EXPERIMENTS

In this section, we explore the impact of network size on
the comparison of analytic results and simulation experiments.
In particular, we repeat the experiments conducted to obtain
Fig. 3(a) and compare the asymptotic and the finite-size results
forn =2 x 10%,2 x 10*,2 x 10°.

The results are shown in Fig. 11, where we see that the dif-
ferences between the asymptotic and the finite-size results are
not significant when the mean degree is at a low level. How-
ever, when the mean degree is at a high level, simulation results
are significantly different from the asymptotic results when the
network size is small. In particular, when n = 200, the second
phase transition observed at large mean degrees appears much
later than suggested by the analysis. This transition also appears
like a continuous one in the simulations with n = 200 although it
is clearly a discontinuous transition in the analytic results. When
n = 20000, we see that simulation results match the analysis
a lot better than the case with n = 200 although the match is
not nearly as perfect as the one seen when n = 2000 000. In
particular, we see significant discrepancies around the second
phase transition point, though it is at least suggested correctly by
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the simulations that the transition is discontinuous. Overall, we
can conclude that our asymptotic analysis yields almost perfect
predictions for networks with a million nodes or more, and rel-
atively accurate predictions for networks with 20 000—100 000
nodes. For smaller networks with only a few hundred nodes, the
asymptotic results do not yield reliable predictions.
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