

location, or acquires and releases of common locks. Deter-
mining if an execution is con�ict serializable can be reduced
to checking for the existence of a cycle in a graph called the
transaction graph. The transaction graph has atomic blocks
(a.k.a. transactions) as vertices, and edges between blocks
that contain non-commutable events. A path from atomic
block A to B indicates that A must be executed before B in a
serial execution, and so a cycle in such a graph indicates that
the execution is not equivalent to a serial one. All current
sound and precise dynamic analyses for con�ict serializabil-
ity [5, 19] rely on this idea and thus have an asymptotic
complexity of cubic time — each new event of the trace
requires updating the transaction graph, and checking for
cycles; the number of edges can be quadratic in the number
of events, giving a quadratic processing time per event.
The central question motivating this paper is the follow-

ing: Is a cubic running time necessary for checking con�ict
serializability? Or are there sub-cubic algorithms for this
problem? The main result of this paper is a new, linear time
algorithm for checking con�ict serializability.

For other concurrency speci�cations, like data race detec-
tion, that admit sound and precise linear time algorithms, the
key to achieving an e�cient algorithm is the use of vector
clocks [23, 27, 43, 45]. Such algorithms rely on computing
vector timestamps for events in a streaming fashion as the
trace is generated, and using these timestamps to recover
the causal order between a pair of events. However, general-
izing such an algorithmic principle to con�ict serializability
checking is far from straightforward. This is because check-
ing con�ict serializability requires identifying causal orders
between transactions (or atomic blocks) and not individual
events. For this reason, Flanagan-Freund-Yi [19], in fact, dis-
miss the possibility of a vector clock based algorithm for
con�ict serializability checking:

“The traditional representation of clock vectors [45]
is not applicable because our happens-before re-
lation is over compound transactions and not
individual operations.”

The challenge is to discover a way to associate a single times-
tamp with a transaction, even though new causal depen-
dencies are discovered as each individual event in the trace
is processed. This is further complicated by the following
observation. Vector timestamps implicitly summarize the set
of all events that must be ordered before. However, the set
of transactions that must be executed before a transaction
T might be known only well after all the events of T have
been seen (see Example 2). These observations suggest that a
scheme of assigning vector timestamps to transactions may
only be computed if the algorithm makes multiple streaming
passes over the trace, which may result in an algorithm that
is not linear time.
We address these challenges by assigning vector times-

tamps to individual events in a trace. The induced order on

events is then used to discover the ordering relationship
between transactions, and thereby determining if a trace is
con�ict serializable. For a trace containing a bounded number
of variables, threads, and locks, our algorithm, AeroDrome,
is a single pass, streaming algorithm that runs in linear time 2.
As with standard vector clock algorithms, such as those used
in data race detection [14, 50], our algorithm summarizes
information in vector clocks and thus does not need to store
the timestamp of all the events in the trace to detect serializ-
ability violations.

We have implemented AeroDrome in our tool R���� [41]
and have compared its performance against Velodrome [19]
on various benchmark programs. Atomicity speci�cations
(i.e., which blocks of code should be regarded as atomic) are
hard to come by. One naïve speci�cation is to consider each
method call to be atomic. Since often there is a main method
for each thread, this means that the entire computation of
each thread should be atomic. Programs are unlikely to sat-
isfy such strong atomicity speci�cations, but running detec-
tion algorithms against these, gives us a baseline. We use
such naïve speci�cations for some programs in our bench-
mark. For such benchmarks, con�ict serializability is trivially
violated in a small pre�x of the observed trace. The resulting
transaction graph is thus small, the overhead of maintaining
vector clocks outweighs the bene�ts of a linear time algo-
rithm, and Velodrome slightly outperforms AeroDrome. For
other programs in our benchmark, we use the more realis-
tic atomicity speci�cations given in [5]. Here transactions
consist of smaller blocks of code, and the resulting transac-
tion graph has many transactions. For such examples, our
algorithm signi�cantly outperforms Velodrome. This sug-
gests that on realistic atomicity speci�cations, the bene�ts
of having a linear time algorithm can be signi�cant.

The rest of the paper is organized as follows. In Section 2,
we discuss preliminary notations such as that of concur-
rent program traces and the de�nition of con�ict serializ-
ability. In Section 3, we use motivating examples to illus-
trate the challenges involved in developing a linear time
vector clock algorithm for dynamically checking con�ict se-
rializability. In Section 4, we discuss AeroDrome, a single
pass linear time vector clock algorithm for checking con-
�ict serializability, which is also the main contribution of
the paper. Section 4 also discusses the correctness and com-
plexity guarantees of the algorithm and optimizations for
improving the performance of AeroDrome. Our implemen-
tation of AeroDrome in our tool R���� and its performance
evaluation on a suite of benchmark programs is discussed
in Section 5. We discuss closely related work in Section 6 and

2Vector clock based algorithms are linear time under the computational as-

sumption that arithmetic operations take constant time. This is a reasonable

assumption because even for traces with billions of events, the numbers

involved in vector clocks can be stored in a single word, and so addition

and subtraction of such numbers can be reasoned to be in constant time.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

184

present concluding remarks in Section 7. Some proofs and
additional discussion can be found in the full version [44].

2 Preliminaries

An execution trace (or simply trace) of a concurrent program
is a sequence of events. We will use � , �1, �2, . . . to denote
traces. Each event in a trace is a pair e = ht ,opi, where t
denotes the thread that performs e and op is the operation
performed by e; we will use thr(e) to denote t and op(e) to
denote op. Operations can be one of r(x), w(x) (read from or
write to variable/memory location x), acq(`), rel(`) (acquire
or release of lock object `), fork(u), join(u) (fork or join of
thread u), B or C (denoting the begin or end of an atomic
block). Traces are assumed to be well-formed — all lock
acquires and releases are well matched, a lock is not acquired
by more than one thread at a time, all begin and end events
are well matched, fork events occur before the �rst event of
the child thread and join events occur after the last event
of the child thread. A transaction T in thread t is a maximal
subsequence 3 of events of thread t that starts with ht ,Bi
and ends with the matching ht ,Ci, and we say e 2 T if the
event e belongs to this maximal subsequence; in this case,
txn(e) denotes the transaction T to which e belongs. In a
trace � , we will say that a transaction T is completed in � if
the corresponding end transaction event h·,Ci 2 � . If T is
not completed in � , it is said to be active.

Given a trace � , we denote by �tr the total order on events
induced by � — for events e, e 0 in � , we say e �tr e

0 i� either
e = e 0 or e occurs before e 0 in the sequence � . Two events
e, e 0 are said to be con�icting if either (i) thr(e) = thr(e 0),
(ii) e = ht , fork(u)i and thr(e 0) = u, (iii) thr(e) = u and
e 0 = ht , join(u)i, (iv) there is a common memory location x

such that both op(e), op(e 0) are one of {w(x), r(x)} and not
both are r(x), or (v) there is a lock ` such that op(e) = rel(`)

and op(e 0) = acq(`). Given a trace � , con�ict-happens-before
�
CHB

is the smallest re�exive, transitive relation such that for
every pair of con�icting events e �tr e

0, we have e �
CHB

e 0.
Atomicity is closely related to the property of con�ict

serializability. Informally, this property requires that an ex-
ecution be equivalent to a serial execution by commuting
adjacent non-con�icting events; an execution is serial if for
every thread t in the trace and for every transaction T of
thread t , there are no events of any other thread between
the begin and end events of T . In this context, if two events
e and e 0 are ordered by CHB, then their order is the same in
all equivalent executions. To capture con�ict serializability,
such a causal relationship needs to be lifted to transactions.
Consider two transactions T and T 0 with events e 2 T and
e 0 2 T 0 such that e �

CHB
e 0. If the goal in a serial execution

is to schedule all events of T consecutively, given that e is
before e 0 in all equivalent executions, it must be the case

3We allow for nested blocks of begins and ends. In this case only the outer-

most begin and end constitute a transaction.

t1 t2 t3

1 B

2 w(x)

3 B

4 r(x)

5 C

6 B

7 w(z)

8 C

9 r(z)

10 C

Figure 1. Trace �1. TakingTi to be the transaction of thread
ti , we have T3 l

�1
Txn

T1 l
�1
Txn

T2.

that every event of T should happen before each event of
T 0. Thus, transaction T must happen before transaction T 0

in trace � (denoted T l�
Txn

T 0) if there are events e 2 T and
e 0 2 T 0 such that e �

CHB
e 0. We now present the de�nition

of con�ict serializability (which implies atomicity) from [19].

De�nition 1 (Con�ict Serializability [19]). A trace � is con-
�ict serializable if there is no sequence of k > 1 distinct trans-
actionsT0,T1 . . .Tk�1 such that for every 0  i  k�1, we have
Ti l

�
Txn

T(i+1) mod k . If � is not con�ict serializable, then such a
sequence T0, . . . ,Tk�1 is said to be a witness to the violation.

Example 1. Consider the trace �1 in Figure 1. This trace is
a sequence of 10 events, performed by three di�erent threads

t1, t2 and t3. In all our examples, we will use ei to denote the i
th

event in the trace. This trace has three transactions — transac-
tion T1 = e1e2e9e10 is performed in t1, transaction T2 = e3e4e5
is performed in t2 and transaction T3 = e6e7e8 is performed
in t3. All pairs of events, both of which are performed by the
same thread (such as (e1, e2) or (e2, e10) in �1) are con�icting.
In addition, (e2, e4) and (e7, e9) are con�icting pairs of events
in �1 and we use an explicit arrow () to depict such inter-
thread con�icting pairs. We haveT1l

�1
Txn

T2 because e2 
�1
CHB

e4
and T3 l

�1
Txn

T1 because e7 
�1
CHB

e9. Also note that CHB is a

transitive order and thus e1 
�1
CHB

e5 because e1 
�1
CHB

e2,

e2 
�1
CHB

e4 and e4 
�1
CHB

e5. Finally, the trace �1 is con�ict
serializable and the equivalent serial execution is the sequence

�serial1 = e6e7e8e1e2e9e10e3e4e5, in which the order of transac-
tion is T3T1T2. Observe that the relative order of con�icting

events in �serial1 is the same as in the original trace �1.

Based on De�nition 1, a cyclic dependency on transactions
using l�

Txn
suggests that � does not have an equivalent serial

execution and hence the program does not satisfy its atom-
icity speci�cation. Previous techniques [5, 19] for checking
con�ict serializability dynamically, rely on constructing a
directed graph. The vertices in such a graph are the di�erent
transactions in the observed trace, the edges correspond to
the order imposed by lTxn and checking violations of con�ict
serializability reduces to searching for a cycle in this graph.
These algorithms run in time that is cubic in the length of

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

185

the observed trace as they check for cycles each time a new
edge is added in the graph, whose size is quadratic in the
size of the trace.

3 Challenges in Designing a Vector Clock
Algorithm

Vector clocks have been very useful in designing linear
time algorithms for dynamic analysis of multi-threaded sys-
tems [14, 23, 24, 27, 43, 50, 52]. The broad principle behind
these algorithms, is to assign vector timestamps to events
as the trace is generated/observed so that the ordering be-
tween these assigned timestamps captures causal ordering.
Notice that, con�ict serializability is de�ned in terms of the
relation lTxn on transactions (De�nition 1), and thus, the
most straightforward vector clock algorithm would rely on
assigning timestamps to transactions in such a way that the
timestamp of transaction T1 is less than or equal to times-
tamp of transaction T2 if and only if T1 lTxn T2. However,
since a transaction is a sequence of events (and not a single
event), the �rst challenge is �guring out how to assign and
update timestamps of transactions when individual events
are being continuously generated by the execution; this is
one of the reasons why such algorithms were deemed impos-
sible for atomicity in [19]. However, there is a deeper and
more fundamental challenge with assigning timestamps to
transactions, as illustrated in the following example.

Example 2. Consider again the trace �1 in Figure 1. Notice
that there is a “path” from T3 to T2 (via T1) using l

�1
Txn

, even
though T3 starts after T2 is completed in the trace �1. Further
the discovery that T3 has a path to T2 can be made only after
the event e9 is generated in the trace, and at that point, both
T2 and T3 have completed. This poses serious challenges when
designing a vector clock algorithm. A vector clock algorithm
assigning a timestamp to transaction T that is consistent with
lTxn, needs to know (explicitly or implicitly) the set of transac-
tions that have a path toT ; this is because the algorithm needs
to ensure that the timestamp assigned to T is ordered after the
timestamps assigned to all these “predecessor” transactions.
However, as transaction T2 in trace �1 illustrates, this may
require knowing future events and transactions.

Example 2 illustrates that transactionsT 0 that have a lTxn-
path to a transaction T may only be determined by events
that appear after T itself. This suggests that one is unlikely
to get a linear time streaming algorithm that assigns times-
tamps to transactions for detecting atomicity violations.

Therefore, we explore the possibility of an algorithm that
assigns timestamps to events (not transactions), but which
can nonetheless enable checking con�ict serializability. The
�rst key question to address is which relation among events
should the timestamps try to capture implicitly? Recall that,
the relation lTxn (on transactions) is de�ned in terms of the
relation CHB (on events), and therefore, a natural �rst step

to explore, is to see if computing CHB is su�cient to detect
atomicity violations.

t1 t2

1 B

2 B

3 w(x)

4 r(x)

5 w(�)

6 r(�)

7 C

8 C

Figure 2. Trace �2. There is a cycle in the transaction graph
that can be realized by a path using CHB-edges that begins
and ends in the same transaction.

Example 3. Consider the trace �2 in Figure 2 with two trans-
actions T1 and T2 in threads t1 and t2 respectively. Here, we
have, T1 l

�2
Txn

T2 and T2 l
�2
Txn

T1, thus giving us a violation of
con�ict serializability with the sequence T1,T2 witnessing the
violation. Now consider the following CHB path in the trace

— e1 
�2
CHB

e4 
�2
CHB

e5 
�2
CHB

e7. This path, in fact, is symp-
tomatic of the atomicity violation because it starts and ends
in the same transaction (transaction T1) and passes through
another transaction (transaction T2).

The atomicity violation in trace �2 in Example 3 can be
deduced based on the observation that there are 3 events
e, f ,� (e1, e5, e7 in �2, speci�cally) such that txn(e) = txn(�),
txn(e) , txn(f), and e CHB f CHB �. If we can prove
that this is equivalent to De�nition 1, then all we need to
do is to compute (implicitly using vector clocks) the CHB
ordering. Unfortunately, this is not true, i.e., violations of
con�ict serializability cannot be detected by simply using
CHB ordering and searching for the above kind of CHB
paths. We illustrate this in the next example.

t1 t2

1 B

2 B

3 w(x)

4 w(�)

5 r(�)

6 r(x)

7 C

8 C

Figure 3. Trace �3. There is no CHB path that starts and
ends in the same transaction.

Example 4. Consider trace �3 in Figure 3. As before, letT1,T2
be the two transactions by threads t1 and t2 respectively. Here,
both T1 l

�3
Txn

T2 (because e3 
�3
CHB

e6) and T2 l
�3
Txn

T1 (because

e4 
�3
CHB

e5), thus giving us a con�ict serializability violation.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

186

However, there is no CHB-path that starts and ends in the same
transaction. If vector timestamps are used to compute CHB,
then violations of con�ict serializability cannot be detected by
checking ordering of vector timestamps of events.

Example 4 demonstrates that CHB is not the right relation
on events to detect violations of con�ict serializability. Then,
what is the right relation to track? In order to identify that,
we will �rst recast De�nition 1 in terms of events.

We will say that there is a path from event e to f through

transactions in trace � (denoted e
⇤
�!� f), if there is a

sequence of pairs (e1, f1), (e2, f2), . . . (ek , fk) (k > 1) such
that (a) e = e1 and f = fk , (b) txn(ei) = txn(fi), while
txn(fi) , txn(ei+1), for every i , and (c) fi 

�
CHB

ei+1 for ev-
ery i < k . Using the notion of path between events through
transactions, we can recast the notion of con�ict serializabil-
ity as follows.

Proposition 1. A trace � is not con�ict serializable if and

only if there is a pair of events e, f such that e
⇤
�!� f and

f �
CHB

e .

Though
⇤
�!� gives us a characterization of con�ict serial-

izability, it is not clear how to compute it algorithmically in
a single pass over the trace. The reasons are technical and
therefore, skipped. Instead, what we will compute is a slight

restriction of the relation
⇤
�!� , de�ned as follows.

De�nition 2. For events e, f in trace � , we say el�
E
f , if there

is an event � in � such that e �
CHB

� and either (a) � = f , or

(b) �
⇤
�!� f and txn(�) is completed in � .

The following theorem formalizes how we can check for
con�ict serializability violations using the new relation. The
proof of this theorem is presented in [44].

Theorem 2. For a transactionT , letTB denote the begin trans-
action event h·,Bi of T . The following observations hold.

1. Any trace � with a transaction T , events e and f such
that f 2 T , e < T , TB l

�
E
e and e l�

E
f , is not con�ict

serializable.
2. Let � be a trace that is not con�ict serializable with a

witness T0, . . .Tk�1 such that each Ti , except possibly
one, is complete in � . Then there is a transaction T and
events e, f in � such that f 2 T , e < T , TB l

�
E
e and

e l�
E
f .

We conclude this section with examples illustrating both
the de�nition lE and the use of Theorem 2.

Example 5. Let us begin by looking at trace �3 in Figure 3. Let
�i denote the pre�x of �3 upto (and including) event ei . In trace
�6, we have e3 l

�6
E
e6, e4 l

�6
E
e5, and e1 l

�6
E
e6 because they are

related by CHB. Here, e1
⇤
�!�6 e4 because txn(e1) = txn(e3),

e3 
�6
CHB

e6 and txn(e6) = txn(e4). However, it is not the case

that e1l
�6
E
e4. On the other hand, if we consider�7, then e1l

�7
E
e4

as the transaction in t1 is complete in �7. In �7 (and therefore
also in the full trace �3), conditions of Theorem 2 are satis�ed
— e1 l

�7
E
e4 and e4 l

�7
E
e7.

t1 t2 t3

1 B

2 w(x)

3 B

4 w(�)

5 r(x)

6 C

7 B

8 r(�)

9 w(z)

10 C

11 r(z)

12 C

Figure 4. Trace �4. Each transaction is a lTxn predecessor
of the other.

Example 6. Consider trace �4 in Figure 4; this is a slight mod-
i�cation of trace �1 from Figure 1 that now has an atomicity

violation. Again ei denotes the i
th event, and �i denotes the

pre�x upto event ei . Notice that in pre�x �11, e1l
�11
E

e5 (because

e1 
�11
CHB

e5) and e5 l
�11
E

e11 (because e5
⇤

�!�11 e11 and txn(e5)
is complete in �11). Thus by Theorem 2, there is a violation of
con�ict serializability.

4 Vector Clock Algorithm

Based on the intuitions developed in Section 3, we will now
describe our vector clock based algorithm called AeroDrome,
for checking violations of con�ict serializability. Before pre-
senting the algorithm itself, we recall some notation and
concepts related to vector clocks that will be useful.
Let us �x the set of threads in the trace/program to be

Thr. A vector time (or timestamp) is a vector of non-negative
integers, whose size/dimension is |Thr| (number of threads).
For a thread t 2 Thr, we denote the t th component of a
vector time V by V (t). We say a vector time V1 is less than
(or ordered before or simply before) another time V2 (of the
same dimension), denoted V1 v V2 if 8t 2 Thr.V1 (t)  V2 (t).
In this case, we say that V2 is greater than, ordered after
or after V1. The minimum vector time on threads Thr is
?Thr = �t . 0, and we will often use ? when Thr is clear from
context. Next, the join of two vector times V1 and V2 is the
timeV1tV2 = �t ·max{V1 (t),V2 (t)}. Finally, we useV [c/t] to
denote the timestamp �u . if u = t then c else V (u). Vector
clocks are variables (or place holders) for vector timestamps.
That is, vector clocks are variables that take values from the
space of vector times, and will be used in our algorithm to
compute the timestamps associated with various events in
a trace. All the operations on vector times can be naturally
thought of as applying to vector clocks as well.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

187

4.1 The AeroDrome Algorithm

Our algorithm AeroDrome is a single pass linear time algo-
rithm. It processes events in the trace as they are generated
and (implicitly) assigns vector timestamps to each of these
events. Broadly, the goal of the algorithm will be to assign
vector timestamps that capture the relation lE (De�nition 2)
and use Theorem 2 to discover con�ict serializability viola-
tions. The exact invariant maintained by the algorithm is
technical and is presented in [44]. Similar to vector clock
algorithms used in data race detection algorithms [14, 27, 50],
AeroDrome does not explicitly store the timestamps of each
event in the trace; it instead maintains the timestamps of
constantly many events using constantly many vector clocks.
This small set of vector clocks is adequate for detecting con-
�ict serializability violations.
Pseudocode for AeroDrome is shown in Algorithm 1. It

processes events in the trace based on their operation, calling
the appropriate handler. As mentioned before, the algorithm
uses several vector clocks, which we will depict using the
black-board font — C,L,W,R, etc. Let us assume for now
that every event in the trace is part of some transaction, and
that transactions are not nested; later in this section, we will
describe how to e�ciently handle nested transactions and
unary transactions, i.e., events not enclosed within a begin
and end atomic block.

4.1.1 Vector Clocks and Other Data in the State. The
most crucial set of clocks maintained by the algorithm are
those of the form Ct , for each thread t 2 Thr. The clock Ct ,
intuitively, stores the timestamp of the last event performed
by the thread t so far. That is, when performing an event
e = ht ,opi, the timestamp assigned to e by AeroDrome is, in
fact, determined by the value of the clock Ct right after e
was processed by the algorithm. This is similar in spirit to
vector clock algorithms for data race detection such as the
standard D���+ [50] or its derivatives like F���T���� [14].
The precise de�nition of ‘’the timestamp associated with an
event’ is technical and is deferred to [44].
The algorithm also checks for violations of con�ict seri-

alizability using the characterization in Theorem 2, which
relies on the timestamp of the begin event of a transaction.
The algorithm, therefore, also maintains another clock CB

t

which intuitively stores the timestamp of the last begin event
performed by thread t .

The goal of these vector timestamps is to capture the rela-
tion lE. Since lE is de�ned using CHB, we need to ensure
that the vector timestamps re�ect the orderings induced by
CHB. In order to capture the intra-thread dependencies im-
posed by CHB and lE, we need auxiliary clocks. Consider
an event e of the form ht , acq(`)i. All previously encoun-
tered events with operations on lock ` are CHB-before e .
Hence the timestamp of e must be after those assigned to
such events. To do this, AeroDrome will maintain a vector
clock L` for each lock `, that stores the timestamp of the

last rel(`) seen so far; this will be used to ensure that the
timestamp of e is appropriately larger. Similarly, we need
to ensure that the timestamp of every write event is after
the timestamp of all previous writes and reads to the same
variable, and that of a read event is after the timestamp of
previous writes. Therefore, for every variable x , AeroDrome
has a clockWx that stores the timestamp of the last write
w(x)-event and a clock Rt,x that stores the time of the last
ht , r(x)i-event.

Recall that, when considering paths between events through

transactions (
⇤
�!), we need to make sure that consecutive

transactions along the path are distinct. AeroDrome tracks
this constraint by maintaining scalar variables lastRelThr`
and lastWThrx , which store the identi�er of the thread that
performed the last release on ` and write on x , respectively.

4.1.2 Initialization and Updates to State. Each of the
clocksCt are initialized with the time?[1/t], all other clocks
are initialized to ?, and all the scalar variables are initialized
to a default value of NIL.
As new events are observed in the trace, the algorithm

updates these vector clocks in a manner that is consistent
with tracking thelE-relation.When processing a begin event
e = ht ,Bi, the algorithm �rst increments the local component
of Ct (line 35 - ‘Ct := Ct [Ct (t) + 1]’). To understand why,
let eprev be some event in the previous transaction (if any) by
the same thread t . Further, let e 0 be some event performed
by a di�erent thread t 0 , t such that (a) eprev lE e

0, and
(b) ¬(e lE e

0). The increment of the local component ensures
that this relationship between e , eprev and e

0 can be accurately
inferred from their timestamps by ensuring that the local
component of the timestamp of e is strictly greater than that
of eprev. Finally, AeroDrome updates CB

t
with the timestamp

of the current event e stored in Ct .
When processing an acquire event e = ht , acq(`)i, the

algorithm makes sure that the timestamp of e is ordered
after the timestamp of the last rel(`)-event e` in the trace
so far. This is achieved by updating ‘Ct := Ct t L` ’ in the
procedure �����A��G�� (invoked at line 15); the procedure
�����A��G�� also checks for con�ict serializability viola-
tion before updating Ct , but more on that later. Of course, if
e` is performed by the same thread t (line 14), then, this is
already ensured and no explicit update is required.
At a write event e = ht , w(x)i, AeroDrome ensures that

the timestamp of e is ordered after all the prior reads and
writes on x by calling �����A��G�� in lines 29 and 31. The
algorithm then updates Wx to be the timestamp of e (see
line 32) and lastWThrx to t , thus preserving the semantics of
the clockWx and the scalar variable lastWThrx . The updates
performed at a read event are similar.
At a fork event e = ht , fork(u)i, the algorithm updates

the clock of the child thread u (‘Cu := Cu t Ct ’ in line 20)
so that all events of u are ordered after e . At a join event

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

188

Algorithm 1 AeroDrome: Vector Clock Algorithm for Checking Violation of Con�ict Serializability

1: procedure I�������������

2: for t 2 Thr do

3: Ct := ?[1/t]; C
B

t
:= ?;

4: for ` 2 Locks do

5: L` := ?; lastRelThr` := NIL;

6: for x 2 Vars do

7: Wx := ?; lastWThrx := NIL;
8: for t 2 Thr do Rt,x := ?;

9: procedure �����A��G��(clk, t)
10: if CBt v clk and t has an active transaction then

11: declare ‘con�ict serializability violation’;

12: Ct := Ct t clk;

13: procedure ������(t , `)
14: if lastRelThr` , t then

15: �����A��G��(L` , t);

16: procedure �������(t , `)
17: L` := Ct ;
18: lastRelThr` := t ;

19: procedure ����(t , u)
20: Cu := Cu t Ct ;

21: procedure ����(t , u)
22: �����A��G��(Cu , t);

23: procedure ����(t , x)
24: if lastWThrx , t then

25: �����A��G��(Wx , t);

26: Rt,x := Ct ;

27: procedure �����(t , x)
28: if lastWThrx , t then

29: �����A��G��(Wx , t);

30: for u 2 Thr \ {t } do

31: �����A��G��(Ru,x , t);

32: Wx := Ct ;
33: lastWThrx = t ;

34: procedure �����(t)
35: Ct (t) := Ct (t) + 1 ;
36: C

B

t
:= Ct ;

37: procedure ���(t)
38: for u 2 Thr \ {t } do

39: if CB
t
v Cu then

40: �����A��G��(Ct , u);

41: for ` 2 Locks do

42: L` := C
B

t
v L` ? Ct t L` : L` ;

43: for x 2 Vars do

44: Wx := CB
t
v Wx ? Ct tWx :Wx ;

45: for u 2 Thr do

46: Ru,x := CB
t
v Ru,x ? Ct t Ru,x : Ru,x ;

e = ht , join(u)i, the algorithm updates Ct to Ct tCu so that
all events of thread u are ordered before e .
Let us now consider the updates performed at an end-

transaction event e = ht ,Ci. Let eB denote the matching
begin transaction event. Observe that for an event f , if eBlE
f , then e lE f because txn(e) is completed in � . That is,
all future events that are lE-after e

B must be assigned a
timestamp after that of e . This is ensured by updating clocks
Cu for all threads u that satisfy CB

t
v Cu (lines 38 to 40), and

clocks L` ,Wx , and Ru,x (lines 41 to 46).

4.1.3 CheckingViolations ofAtomicity. The algorithm
detects violations of atomicity at various points by a call to
the procedure �����A��G��. The checks can be broadly
classi�ed into two categories. First, the algorithm can report
a violation at an event e = ht ,opi such that there is an earlier
event e 0 (performed by a thread t 0 , t) that con�icts with
e (and thus e 0 lE e). In this case, if eB lE e

0 (where eB is the
begin event of txn(e)), then there is an atomicity violation
as per Theorem 2. This check is performed at acquire events
(line 15), at read events (line 25) and at write events (lines 29
and 31). Second, the algorithm reports atomicity violations
when processing an end event e = ht ,Ci (with a matching

begin event eB). The algorithm detects a violation when
there is another thread u , t having an active transaction,
with begin event eBu and last event is eu , such that eB lE eu
(line 39) and eBu lE e (line 40). These checks for violations
of con�ict serializability are performed in �����A��G��

(line 9), which takes two arguments: clk (vector timestamp)
and t (thread identi�er), and declares a violation if (a) thread
t has an active transaction, and (b) clk is ordered after CB

t
,

which is the timestamp of the begin event of the (active)
transaction of t (line 10). Whenever a violation is found, the
algorithm exits. Otherwise, the algorithm continues after
updating the value of the clock Ct to Ct t clk (line 12).

4.1.4 Nested and Unary Transactions. Let us now con-
sider the cases of nested and unary transactions that we
postponed. In the case of nested transactions, it is enough to
only consider the outermost transactions and ignore the in-
ner transactions. This is because if there is a cycle involving
a transaction T that is nested inside another transaction T 0,
then there is clearly also a cycle involvingT 0. As a result, we
simply ignore the begin and end events that have a non-zero
nesting depth.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

189

Events that are not enclosed by begin and end transaction
events consitute a trivial atomic block, namely, one con-
sisting of only that single event. These were called unary
transactions in [19]. Our algorithm does not report a viola-
tion at unary transactions (in the procedure �����A��G��,
lines 10 and 11) as these are not active transactions. The al-
gorithm, nevertheless, is still correct as a unary transaction
(corresponding to a read, write, acquire or join event) can
only correspond to a cycle that involves another non-unary
transactions.
We conclude this section with a theorem stating the cor-

rectness of Algorithm 1 (proof can be found in [44]).

Theorem 3. On any trace � , Algorithm 1 reports a violation
of con�ict serializability i� � is not con�ict serializable with
a witness T0, . . .Tk�1 such that each Ti , except possibly one, is
complete in � .

4.2 AeroDrome on Example Traces

Let us illustrate AeroDrome’s workings on the traces from
Section 3. Even though these examples do not use any syn-
chronization primitives like locking, they contain all the fea-
tures needed to highlight the subtle aspects of AeroDrome.

t1 t2

1 B

2 B

3 w(x)

4 r(x)

5 w(�)

6 r(�)

7 C

8 C

Ct1 Ct2 Wx W�

h2,0i

h0,2i

h2,0i

h2,2i

h2,2i

Conf. serializ. violation (CB
t1
v W�)

Figure 5. AeroDrome on Trace �2.

Let us begin with the simplest trace �2 from Figure 2. We
show the values of the relevant vector clocks in Figure 5. In
this �gure, we only depict the value of a vector clock in row i

if its value has changed after processing the ith event ei in the
trace. We do not show the values of the clocks Rt1,x , Rt2,x .
Rt1,� or Rt1,� as they are not important here. There are two
threads and thus the size of each vector clock is 2. The clocks
Ct1 and Ct2 are initialized to the timestamps h1,0i and h0,1i
respectively, and all other clocks are initialized to ? = h0,0i.
The local clocks increment after a begin event (line 35 in
Algorithm 1) and thus the clocks Ct1 and Ct2 become h2,0i
and h0,2i after e2. Further, these are also the values of the
clocks CB

t1
and CB

t2
from this point onwards until the end of

the execution. After processing e3 = ht1, w(x)i, the value of
the clockWx becomes h2,0i (line 32). At event e4, the call
to �����A��G�� (see line 25) with arguments (h2,0i, t2)
updates the clock Ct2 to h2,2i (line 12). The clockW� gets
the value of Ct2 = h2,2i after processing e5. Finally, at event
e6, the algorithm calls �����A��G��with arguments (h2,2i,

t1). In this procedure, the algorithm asserts that CB
t1
v W�

and declares an atomicity violation.

t1 t2

1 B

2 B

3 w(x)

4 w(�)

5 r(�)

6 r(x)

7 C

8 C

Ct1 Ct2 Wx W�

h2,0i

h0,2i

h2,0i

h0,2i

h2, 2i

h2,2i

Conf. serializ. violation (CB
t2
v Ct1)

Figure 6. AeroDrome on Trace �3.

Let us next consider the trace �3 from Figure 3. AeroDrome’s
run on this trace is shown in Figure 6. Updates corresponding
to the �rst four events are straightforward. In event e5, Ct1
gets updated to h2,2i because of the call to �����A��G��

in line 25. Notice that this call does not raise any violation
of atomicity because at this point, CB

t1
= h2,0i and the clock

W� is h0,2i thus failing the check CB
t1
v W� in line 10. The

same explanation applies to the r(x) event e6 in t2 and thus
no atomicity violation is reported here as well. Next, the algo-
rithm processes the end event e7 = ht1,Ci. At this point, the
algorithm checks if any event in the currently active transac-
tion of t2 is ordered after e1 (condition C

B

t1
v Ct2 in line 39 of

Algorithm 1). This check succeeds since CB
t1
= h2,0i and

Ct2 = h2,2i at this point. The algorithm then checks if
C
B

t2
v Ct1 in the procedure �����A��G�� and thus declares

an atomicity violation. This illustrates the subtlety in how
the algorithm reports atomicity violations at an end event.

Wewill now illustrate howAlgorithm 1 detects the atomic-
ity violation in the more involved trace �4 from Figure 4. This
example illustrates how AeroDrome handles dependencies
between transactions introduced by future events. The run
of AeroDrome on �4 is shown in Figure 7. We omit the up-
dates to the clocks Rti ,u (i 2 {1, 2, 3}, u 2 {x ,�, z}) as they do
not play a signi�cant role in this example. All vector clocks
have dimension 3 because there are three threads in �4. As
before, the clocks are initialized as follows: Ct1 = h1,0,0i,
Ct2 = h0,1,0i and Ct3 = h0,0,1i; all other clocks are ini-
tialized to h0,0,0i. The begin events result in incrementing
of local clocks and thus Ct1 = h2,0,0i after e1. Further, the
clockWx gets updated to the value of Ct1 at the end of e2.
The next two events e3 and e4 are processed in a similar fash-
ion. At event e5 = ht2, r(x)i, the clock Ct2 gets updated to
h2,2,0i (line 12 in Algorithm 1). After this, the transaction
in t2 ends. The clocks of none of the threads is updated be-
cause of e6 as neither thread t1 nor t3 have clock values larger
than CB

t2
(line 39). However the write and read clocks are

updated. Speci�cally, the clockW� maintaining the times-
tamp to the last write to � is such that CB

t2
v W� and thus,

the algorithm updatesW� toW� tCt2 = h2,2,0i (line 44 in
Algorithm 1). Event e7 is a begin event and updates Ct3 to

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

190

t1 t2 t3

1 B

2 w(x)

3 B

4 w(�)

5 r(x)

6 C

7 B

8 r(�)

9 w(z)

10 C

11 r(z)

12 C

Ct1 Ct2 Ct3 Wx W� Wz

h2,0,0i

h2,0,0i

h0,2,0i

h0,2,0i

h2,2,0i

h2,2,0i

h0,0,2i

h2,2,2i

h2,2,2i

Conf. serializ. violation (CB
t1
v Wz)

Figure 7. AeroDrome on Trace �4.

h0,0,2i. Now at the r(�) event e8, the clock Ct3 gets updated
withW� which at this point evaluates to h2,2,0i, thus giv-
ing Ct3 = h2,2,2i. The write clockWz then gets updated to
h2,2,2i after e9. More clock updates happen at e10 (though
not shown in Figure 7) Finally, an atomicity violation is de-
tected at event e11 = ht1, r(z)i; the algorithm checks if the
clockWz knows some event in t1 (C

B

t1
v Wz) and declares a

violation of con�ict serializability as this check passes.

4.3 Reducing the number of Read Clocks

Recall that Algorithm 1 maintains, a vector clock Rt,x for
every pair of thread t and memory location x . Therefore, the
number of such vector clocks that need to be tracked in the
basic algorithm is O (|Thr|V), where |Thr| is the number of
threads and V is the number of memory locations. Storing
and updating these many clocks can be expensive, when
the number of memory locations that need to be tracked is
prohibitively large, as is the case for most real world soft-
ware. We tackle this using our optimization to reduce the
number of clocks from O (|Thr|V) to O (V). To understand
the optimization, we need to �rst understand the role served
by clocks Rt,x . First, these clocks help detect atomicity vio-
lation — at a write event e = ht , w(x)i, a violation is reported
if there is a thread u , t such that CB

t
v Ru,x (line 10 in-

voked from line 31 in Algorithm 1). Second, these clocks are
used to update Ct — at a write event e = ht , w(x)i, we set
Ct :=

F
u,t Ct t Ru,x (line 12 invoked iteratively at line 31).

The reduction in the number of clocks is achieved by in-
stead maintaining one clock (per memory location) for each
of the above two purposes instead of maintaining O (|Thr|)

many clocks (per memory location). First, for updating clocks
correctly at write events, we will maintain a single clock
Rx for each location x . This clock stores the value

F
u Ru,x

at each point while processing the trace. Next, to perform
checks for violations of con�ict serializability, we will have
another clock Rx (check read). This clock will store the
value

F
u Ru,x [0/u] at each point in the analysis. Based on

the invariants maintained by the algorithm, one can show

that checking CB
t
v
F

u,t Ru,x is equivalent to checking
C
B

t
v Rx . This optimization and other useful optimiza-

tions that improve the performance of AeroDrome, are out-
lined in greater detail in [44].

We now state the time and space complexity for the opti-
mized version discussed in this section. We will use nnon-end
and nend for the number of non-end events and end events in
the trace (and thus n = nnon-end+nend is the size of the trace).
We will denote by |Thr|, V and L the number of threads,
memory locations and locks in the input trace. Further, all
arithmetic operations are assumed to take constant time.

Theorem 4. The algorithm takesO (|Thr|(nnon-end + (|Thr| +

L +V)nend)) time and O (|Thr|(|Thr| +V + L)) space.

The complexity observations easily follow from the de-
scription of the algorithm and the optimization discussed
in Section 4.3.

5 Experimental Evaluation

In this section, we describe our implementation of AeroDrome
and the results of evaluating it on benchmark programs. Ap-
pendix A discusses the accompanied artifact that describes
our overall experimental work�ow and can be used to repli-
cate our results.

5.1 Implementation

We have implemented AeroDrome in a prototype tool R����,
available publicly [41]. R���� is written in Java and analyzes
traces generated by concurrent programs to detect violations
of con�ict serializability. The primary goal of the evaluation
is to assess if the theoretical bound (linear time) of the algo-
rithm also translates to e�ective performance in practice, or
in other words, does our vector clock algorithm perform better
than existing approaches such as the classical graph based
algorithm (Velodrome) proposed in [19]? We emphasize that
the primary purpose of the evaluation is to compare di�er-
ent algorithms for checking atomicity instead of comparing
di�erent tools that implement these algorithms.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

191

Logging. In order to evaluate our algorithm against the
above objective and to ensure a fair comparison with other
approaches, we must ensure that all competing candidate
algorithms analyze the same trace. However, the dynamic
behavior of a concurrent program can vary signi�cantly
across di�erent runs, evenwhen starting with the same input.
In order to ensure fairness, we compare the performance of
the di�erent algorithms on the same dynamic execution. Our
tool R���� therefore �rst extracts an execution trace from
a concurrent programs and then analyzes the same trace
against all candidate algorithms. We use RoadRunner [15] to
log traces from our set of benchmark programs. RoadRunner
uses load time program instrumentation and can be extended
to log various events — read and write accesses to memory
locations, acquire and release of synchronization objects
(locks), forks and joins of threads, and events generated at
the entry and exit of each method, which we respectively
mark as transaction begin (B) and end (C) events.

Velodrome. The Velodrome algorithm [19] runs in (worst
case) cubic time and analyzes traces by building a directed
graph, with transactions as nodes in the graph and where
the edges correspond to lTxn relation between transactions.
There was no publicly available implementation of Velo-
drome that analyzes logged executions. Thus, we also im-
plement this algorithm in R����. We use the Java graph
library JGraphT [46] to implement various graph operations
(adding nodes and edges, cycle detection, etc.,) in Velodrome
algorithm. In our implementation of Velodrome, we also in-
corporate garbage collection as an optimization suggested
in [19] — transactions with no incoming edges do not partici-
pate in cycles and can be deleted from the graph. In line with
the objective of our evaluation, we analyze AeroDrome and
Velodrome on the same trace (generated by RoadRunner) to
ensure a fair comparison.

Other techniques. The tool DoubleChecker [5] is a state-
of-the-art tool for checking con�ict serializability in a sound
and complete manner. DoubleChecker implements a two-
phase analysis — the �rst phase performs a fast but imprecise
analysis and reports an over-approximation of the actual set
of cycles in the transaction graph. The second phase then
�lters out the false positives from this set with a more �ne
grained analysis. DoubleChecker’s performance crucially
relies on the �rst phase being carried out while the program
executes. Therefore, one cannot get performance data for
DoubleChecker on a logged trace. As a result, there can be no
fair comparison between our algorithm and DoubleChecker
as one cannot guarantee that the two analyses run on the
same trace. In order to gauge if DoubleChecker will signif-
icantly outperform our implementation of AeroDrome, we
ran DoubleChcker’s publicly available implementation [4]

on a subset of our benchmarks. On these benchmarks, Dou-
bleChecker’s performance was slower by an order of mag-
nitude. While these experiments do not indicate that Dou-
bleChecker performs worse than our algorithm, they do
suggest that our algorithm will be competitive against Dou-
bleChecker. We choose not to present these numbers in this
paper, because they are not an apples-to-apples comparison.

5.2 Atomicity Speci�cations and Benchmarks

Atomicity Speci�cations. In general, the logging mecha-
nism in RoadRunner instruments and tracks all events cor-
responding to entering and exiting methods. A naïve atom-
icity speci�cation would be to mark all method boundaries
as atomic. However, as expected, not all methods are in-
tended to be atomic. For example, default methods like run
or the static main methods in Java are often not intended
to be atomic. Thus, atomicity speci�cations need to be spe-
cially identi�ed by developers, by supplying manual anno-
tations [20]. In the absence of such static annotations, we
use atomicity speci�cations from prior work [5] whenever
possible (Table 1). For the benchmarks (Table 2) for which no
speci�cations were available, we declare all methods except
the main and run methods to be atomic.

Benchmarks and Setup. Our benchmark programs (Ta-
ble 1 and Table 2) are derived from the DaCaPo benchmark
suite [6] adapted to run with RoadRunner [15], Java Grande
Forum [57] and microbenchmarks from [59] and have been
used in prior work [5]. Our experiments were conducted on
a 2.6GHz 64-bit Linux machine with Java 1.8 as the JVM and
30GB heap space. In each table, Column 1 depicts the name
of the benchmark. Column 2 reports the number of events
in the trace generated from the corresponding benchmark
program in Column 1. Observe that the number of events in
the execution traces can vary from a few hundred to billions
of events and our algorithm can scale to such large traces.
Column 3, 4 and 5 report the number of distinct threads,
locks and variables accessed in the trace generated. Column
6 reports the number of transactions in the trace. Column
7 reports ‘7’ if an atomicity violation was detected and re-
ports ‘3’ otherwise. Columns 8 and 9 report the time (in
seconds) taken by respectively the Velodrome algorithm and
AeroDrome introduced in this article to analyze the trace
generated; a ‘TO’ represents timeout after 10 hours. Column
10 reports the speed-up of AeroDrome over Velodrome.

5.3 Evaluation Results

For the �rst set of benchmarks (Table 1), we use the atomicity
speci�cation obtained from prior work [5]. For the second
set of benchmarks (Table 2), we use default atomicity speci�-
cations (all methods except main and run are assumed to be
atomic). The speci�cations from [5] are carefully crafted to
ensure that spurious atomicity violations are not reported.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

192

Table 1. Trace characteristics and running times for benchmarks with atomicity speci�cations from DoubleChecker.

1 2 3 4 5 6 7 8 9 10

Program Events Threads Locks Variables Transactions Atomic? Velodrome (s) AeroDrome (s) Speed-up

avrora 2.4B 7 7 1079K 498M 7 TO 1.5 > 24000

elevator 280K 5 50 725 22.6K 3 162 1.7 97

hedc 9.8K 7 13 1694 84 7 0.07 0.06 1.16

luindex 570M 3 65 2.5M 86M 7 581 674 0.86

lusearch 2.0B 14 772 38M 306M 7 TO 5.5 > 6545

moldyn 1.7B 4 1 121K 1.4M 7 TO 54.9 > 650

montecarlo 494M 4 1 30.5M 812K 7 TO 0.75 > 48000

philo 613 6 1 24 0 3 0.02 0.02 1

pmd 367M 13 223 12.9M 81M 7 3.1 3.8 0.82

raytracer 2.8B 4 1 12.6M 277M 3 TO 55m40s > 10.7

sor 608M 4 2 1M 637K 7 6.9 9.6 0.72

sunflow 16.8M 16 9 1.2M 2.5M 7 67.9 0.65 104.5

tsp 312M 9 2 181M 9 7 4.2 5.7 0.73

xalan 1.0B 13 8624 31M 214M 7 1.6 2.0 0.8

Table 2. Trace characteristics and running times for benchmarks with naive atomicity speci�cations.

1 2 3 4 5 6 7 8 9 10

Program Events Threads Locks Variables Transactions Atomic? Velodrome (s) AeroDrome (s) Speed-up

batik 186M 7 1916 4.9M 15M 7 52.7 65.5 0.81

crypt 126M 7 1 9M 50 7 92.1 104 0.88

fop 96M 1 115 5M 25M 3 88.3 92.5 0.95

lufact 135M 4 1 252K 642M 7 2.4 2.9 0.82

series 40M 4 1 20K 20M 7 61.0 15.3 3.98

sparsematmult 726M 4 1 1.6M 25 7 1210 1197 1.01

tomcat 726M 4 1 1.6M 25 7 3.4 4.5 0.75

In the absence of careful speci�cations, we can expect that
the violations will be reported early on in executions.
Let us �rst consider the �rst set of benchmarks from Ta-

ble 1. On most of these benchmarks, the violations of atom-
icity are discovered late in the trace. This is expected as the
speci�cations are realistic and do not declare all methods to
be atomic. The performance of AeroDrome is signi�cantly
better than that of Velodrome. Velodrome times out on most
of these benchmarks (time limit was set to be 10 hours). This
is because of the prohibitively large number of transactions
that get accumulated in these traces. Consider, for example,
the case of sunflow for which AeroDrome takes less than a
second, while Velodrome spends about 68 seconds. In this
benchmark, the number of nodes in the graph analyzed by
Velodrome is about 9000, at the point where the violation is
reported. This coupled with the cubic runtime complexity,
results in the notable slowdown. Notice that, the slowdown
is despite the garbage collection optimization implemented
in Velodrome. Our algorithm, on the other hand, has a lin-
ear running time. Similarly, in the benchmark avrora, the
number of transactions is more than 393K in the pre�x of

the trace in which AeroDrome reports an atomicity viola-
tion. Any super linear time analysis is unlikely to scale for
so many transactions, and Velodrome, in fact, does not re-
turn an answer within 10 hours. AeroDrome, on the other
hand, scales to traces with more than a billion events (avrora,
lusearch, moldyn, raytracer, xalan) and demonstrates the
e�ectiveness of a linear time vector clock algorithm. For
the examples on which AeroDrome does not give a huge
speedup over Velodrome, we discovered that the number of
nodes in Velodrome’s graph analysis is fairly small owing to
garbage collection; for example, there were 13 nodes in the
graph for pmd, 4 nodes in sor and 13 nodes in xalan.
In the second set of benchmarks, we notice that the per-

formance of Velodrome is comparable to that of our algo-
rithm AeroDrome. This is expected because the atomicity
speci�cations are inadequate and do not re�ect realistic ones
— typically most methods are non-atomic and developers
have to identify a smaller set of candidate code blocks that
they think are atomic. As a result, on these benchmarks, vio-
lations are detected early on in the trace and thus, the size
of the transaction graph in Velodrome’s analysis is small.
A detailed analysis of the traces suggests that in all these

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

193

benchmarks, the number of nodes in the transaction graph
constructed by Velodrome did not grow more than 4, except
for tomcat, for which the size of the graph grows to 21. In
this case, the cost of maintaining vector clocks and updating
them at every event overrides their potential bene�ts, and
as a result, the graph based algorithm runs faster.

6 Related Work

Multi-threaded programs are challenging to reason about.
Atomicity is a principled concept that lets programmers
reason about coarse behaviors of programs, without being
concerned about �ne grained thread interleavings. Ensuring
atomicity of concurrent program blocks is therefore an im-
portant question [37] and has been investigated thoroughly.

Static analysis techniques analyze source code to con�rm
the atomicity of code blocks marked atomic. Such techniques
prominently rely on the design of type systems [17, 20].
These type systems rely on commutativity of operations and
are inspired from Lipton’s theory of reduction [33] and the
concept of purity [18]. Extensions to type inference [54] and
to programs with non-blocking synchronization [62] have
been developed. The work in [17] uses constraint based type
system inference for inferring atomicity speci�cations.
Dynamic analysis algorithms for checking atomicity in-

spect individual program executions instead of the program
source code. Lipton’s theory of reduction [33] has been a
prominent theme in this space, most notably the analysis
employed by Atomizer [13]. This approach however leads
to false alarms. The notion of con�ict serializability was in-
troduced concurrently by Flanagan et. al. [19] and Farzan et.
al. [12], inspired from the theory of concurrency control in
databases [47]. However, Farzan et. al. [12] do not account
for any lock operations which are crucially used in most Java
like concurrent programs, making their algorithm prone to
false positives. Further, their algorithm relies on maintain-
ing sets of locks, threads and variables, similar in spirit to
the Goldilocks algorithm [10] for detecting HB races. As in
the case of data race detection [14, 28], such an algorithm
is expected to be orders of magnitude slower than a vector
clock algorithm for the same problem. More importantly,
the algorithm in [12] is automata-theoretic, warranting a
global centralized observer that analyzes events in a serial
fashion. In contrast, our algorithm AeroDrome allows for a
distributed implementation — one can attach the analysis
metadata (vector clocks and other scalar variables, in our
case) to the various objects (like threads, locks and memory
locations) being tracked. The analysis can then be performed
with only little synchronization between these metadata, al-
lowing our vector clock algorithm to leverage parallelism.
Recently, DoubleChecker [5] proposed a two-pass analysis
for e�cient detection of con�ict serializability violations.
Here, a coarse �rst pass detects potential cycles in the trans-
action graph. This is followed by a �ne grained analysis

that tracks more information and ensures the soundness of
the overall analysis. Causal atomicity [11] is a weaker cri-
terion for atomicity and asks if there is an equivalent trace
where one particular transaction (instead of all transactions)
is serial.

As with most concurrency bugs, detecting atomicity viola-
tions is a challenging problem and is subject to interleaving
explosion problem. Techniques such as that in CTrigger [49]
and AVIO [39] resort to directed exploration of thread inter-
leavings to expose subtle atomicity violations. Penelope [58]
detects 2 thread atomicity violations using directed inter-
leaving exploration. The work in [2, 38, 63, 64] is also based
on exercising speci�c thread schedules. SMT solving based
predictive analysis techniques [60] have been developed, but
tend to not scale. The work of Samak et. al. [53] synthe-
sizes directed unit tests for catching atomicity violations.
The work in [11, 55] develop techniques for model checking
concurrent programs for exposing atomicity violations. The
use of random sampling and thread scheduling have also
been proposed previously in the literature [26, 48].

Like most concurrency bugs, atomicity bugs are hard to �x.
Naive �xes such as enforcing atomic regions using locks can
introduce new bugs, a�ect the performance of programs and
moreover can be inadequate in ensuring atomicity. Several
approaches have been proposed [25, 30, 30–32, 34, 36] for
automated repair of atomicity violation bugs.

7 Conclusions

In this paper, we considered the problem of checking atomic-
ity in concurrent programs. Con�ict serializability of traces
is a popular notion for checking atomicity dynamically. We
present the �rst linear time, vector clock algorithm for check-
ing violations of con�ict serializability on traces of concur-
rent programs. Our experimental evaluation demonstrates
the power of a linear time algorithm, in that, it scales well
to large executions and is often faster than existing graph
based algorithms. Interesting avenues for future work in-
clude extending the insights developed in our paper to de-
sign e�cient algorithms for other notions of atomicity, in-
cluding causal atomicity [11], view serializability [63] or
reduction based atomicity characterizations as in [13, 64].
Other promising lines of work include improving the e�-
ciency of the proposed dynamic analysis for atomicity by
incorporating ideas from data race detection. This includes
the classic epoch optimizations [14], static analysis for redun-
dancy elimination [16] and optimal check placement [51],
and advances concerning instrumentation [7, 8, 65, 66].

Acknowledgments

We thank the anonymous reviewers for several comments
that helped improve the paper. Umang Mathur is partially
supported by aGoogle PhD Fellowship.MaheshViswanathan
is partially supported by NSF CCF 1901069.

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

194

References
[1] 2019. Trace logs used in Section 5. h�ps://drive.google.com/drive/

folders/10tW4fL1iWp8MSrmh-Kaj_qqztjAGzLmf?usp=sharing

[2] Rahul Agarwal, Amit Sasturkar, Liqiang Wang, and Scott D. Stoller.

2005. Optimized Run-time Race Detection and Atomicity Checking

Using Partial Discovered Types. In Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineering (Long

Beach, CA, USA) (ASE ’05). ACM, New York, NY, USA, 233–242. h�ps:

//doi.org/10.1145/1101908.1101944

[3] Rahul Agarwal and Scott D. Stoller. 2004. Type Inference for Parame-

terized Race-Free Java. In Veri�cation, Model Checking, and Abstract

Interpretation, Bernhard Ste�en andGiorgio Levi (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 149–160.

[4] Swarnendu Biswas. 2014. DoubleChecker. h�ps://sourceforge.net/p/

jikesrvm/research-archive/45/ Accessed: 2020-01-15.

[5] Swarnendu Biswas, Jipeng Huang, Aritra Sengupta, and Michael D.

Bond. 2014. DoubleChecker: E�cient Sound and Precise Atomicity

Checking. In Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Edinburgh, United

Kingdom) (PLDI ’14). ACM, New York, NY, USA, 28–39. h�ps://doi.

org/10.1145/2594291.2594323

[6] StephenM. Blackburn, Robin Garner, Chris Ho�mann, AsjadM. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,

Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko

Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. 2006. The DaCapo Benchmarks: Java Benchmarking Devel-

opment and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-oriented Programming Systems, Languages, and

Applications (Portland, Oregon, USA) (OOPSLA ’06). ACM, New York,

NY, USA, 169–190. h�ps://doi.org/10.1145/1167473.1167488

[7] Michael D. Bond, Milind Kulkarni, Man Cao, Minjia Zhang, Meisam

Fathi Salmi, Swarnendu Biswas, Aritra Sengupta, and Jipeng Huang.

2013. OCTET: Capturing and Controlling Cross-Thread Depen-

dences E�ciently. In Proceedings of the 2013 ACM SIGPLAN Inter-

national Conference on Object Oriented Programming Systems Lan-

guages & Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). As-

sociation for Computing Machinery, New York, NY, USA, 693–712.

h�ps://doi.org/10.1145/2509136.2509519

[8] Man Cao, Minjia Zhang, Aritra Sengupta, and Michael D. Bond. 2016.

Drinking from Both Glasses: Combining Pessimistic and Optimistic

Tracking of Cross-thread Dependences. In Proceedings of the 21st ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(Barcelona, Spain) (PPoPP ’16). ACM, New York, NY, USA, Article 20,

13 pages. h�ps://doi.org/10.1145/2851141.2851143

[9] Lee Chew and David Lie. 2010. Kivati: Fast Detection and Prevention

of Atomicity Violations. In Proceedings of the 5th European Conference

on Computer Systems (Paris, France) (EuroSys ’10). Association for

Computing Machinery, New York, NY, USA, 307–320. h�ps://doi.org/

10.1145/1755913.1755945

[10] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks:

A Race and Transaction-aware Java Runtime. In Proceedings of the

28th ACM SIGPLAN Conference on Programming Language Design and

Implementation (San Diego, California, USA) (PLDI ’07). ACM, New

York, NY, USA, 245–255. h�ps://doi.org/10.1145/1250734.1250762

[11] Azadeh Farzan and P. Madhusudan. 2006. Causal Atomicity. In Proceed-

ings of the 18th International Conference on Computer Aided Veri�cation

(Seattle, WA) (CAV ’06). Springer-Verlag, Berlin, Heidelberg, 315–328.

h�ps://doi.org/10.1007/11817963_30

[12] Azadeh Farzan and P. Madhusudan. 2008. Monitoring Atomicity in

Concurrent Programs. In Proceedings of the 20th International Confer-

ence on Computer Aided Veri�cation (Princeton, NJ, USA) (CAV ’08).

Springer-Verlag, Berlin, Heidelberg, 52–65. h�ps://doi.org/10.1007/

978-3-540-70545-1_8

[13] Cormac Flanagan and Stephen N Freund. 2004. Atomizer: A Dynamic

Atomicity Checker for Multithreaded Programs. In Proceedings of the

31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Venice, Italy) (POPL ’04). Association for Computing Ma-

chinery, New York, NY, USA, 256–267. h�ps://doi.org/10.1145/964001.

964023

[14] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: E�cient

and Precise Dynamic Race Detection. In Proceedings of the 30th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (Dublin, Ireland) (PLDI ’09). ACM, New York, NY, USA, 121–133.

h�ps://doi.org/10.1145/1542476.1542490

[15] Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner Dy-

namic Analysis Framework for Concurrent Programs. In Proceedings

of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering (Toronto, Ontario, Canada) (PASTE ’10).

ACM, New York, NY, USA, 1–8. h�ps://github.com/stephenfreund/

RoadRunner

[16] Cormac Flanagan and Stephen N. Freund. 2013. RedCard: Redundant

Check Elimination for Dynamic Race Detectors. In Proceedings of the

27th European Conference on Object-Oriented Programming (Montpel-

lier, France) (ECOOP’13). Springer-Verlag, Berlin, Heidelberg, 255–280.

[17] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer.

2008. Types for Atomicity: Static Checking and Inference for Java.

ACM Trans. Program. Lang. Syst. 30, 4, Article 20 (Aug. 2008), 53 pages.

h�ps://doi.org/10.1145/1377492.1377495

[18] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. 2004. Ex-

ploiting Purity for Atomicity. In Proceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and Analysis (Boston, Mas-

sachusetts, USA) (ISSTA ’04). Association for Computing Machinery,

New York, NY, USA, 221–231. h�ps://doi.org/10.1145/1007512.1007543

[19] Cormac Flanagan, StephenN. Freund, and Jaeheon Yi. 2008. Velodrome:

A Sound and Complete Dynamic Atomicity Checker for Multithreaded

Programs. In Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Tucson, AZ, USA)

(PLDI ’08). ACM, New York, NY, USA, 293–303. h�ps://doi.org/10.

1145/1375581.1375618

[20] Cormac Flanagan and Shaz Qadeer. 2003. A Type and E�ect System

for Atomicity. In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation (San Diego,

California, USA) (PLDI ’03). ACM, New York, NY, USA, 338–349. h�ps:

//doi.org/10.1145/781131.781169

[21] Cormac Flanagan and Shaz Qadeer. 2003. Types for Atomicity. In

Proceedings of the 2003 ACM SIGPLAN International Workshop on Types

in Languages Design and Implementation (New Orleans, Louisiana,

USA) (TLDI ’03). Association for Computing Machinery, New York,

NY, USA, 1–12. h�ps://doi.org/10.1145/604174.604176

[22] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.

2017. An Empirical Study on the Correctness of Formally Veri�ed

Distributed Systems. In Proceedings of the Twelfth European Conference

on Computer Systems (Belgrade, Serbia) (EuroSys ’17). Association for

Computing Machinery, New York, NY, USA, 328–343. h�ps://doi.org/

10.1145/3064176.3064183

[23] Kaan Genç, Jake Roemer, Yufan Xu, and Michael D. Bond. 2019.

Dependence-Aware, Unbounded Sound Predictive Race Detection.

Proc. ACM Program. Lang. 3, OOPSLA, Article Article 179 (Oct. 2019),

30 pages. h�ps://doi.org/10.1145/3360605

[24] Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. 1999.

Toward Integration of Data Race Detection in DSM Systems. J. Parallel

Distrib. Comput. 59, 2 (Nov. 1999), 180–203. h�ps://doi.org/10.1006/

jpdc.1999.1574

[25] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011.

Automated Atomicity-violation Fixing. In Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (San Jose, California, USA) (PLDI ’11). ACM, New York, NY, USA,

389–400. h�ps://doi.org/10.1145/1993498.1993544

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

195

[26] Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. 2009.

CalFuzzer: An Extensible Active Testing Framework for Concurrent

Programs. In Proceedings of the 21st International Conference on Com-

puter Aided Veri�cation (Grenoble, France) (CAV ’09). Springer-Verlag,

Berlin, Heidelberg, 675–681.

[27] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dy-

namic Race Prediction in Linear Time. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (Barcelona, Spain) (PLDI ’17). ACM, New York, NY, USA,

157–170. h�ps://doi.org/10.1145/3062341.3062374

[28] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2018. Data

Race Detection on Compressed Traces. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (Lake Buena

Vista, FL, USA) (ESEC/FSE 2018). Association for ComputingMachinery,

New York, NY, USA, 26–37. h�ps://doi.org/10.1145/3236024.3236025

[29] Tanakorn Leesatapornwongsa, Je�rey F. Lukman, Shan Lu, and

Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic

Concurrency Bugs in Datacenter Distributed Systems. In Proceedings

of the Twenty-First International Conference on Architectural Support

for Programming Languages and Operating Systems (Atlanta, Georgia,

USA) (ASPLOS ’16). Association for Computing Machinery, New York,

NY, USA, 517–530. h�ps://doi.org/10.1145/2872362.2872374

[30] Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and

Shan Lu. 2019. DFix: Automatically Fixing Timing Bugs in Distributed

Systems. In Proceedings of the 40th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (Phoenix, AZ, USA)

(PLDI 2019). Association for Computing Machinery, New York, NY,

USA, 994–1009. h�ps://doi.org/10.1145/3314221.3314620

[31] Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and

Guangning Wei. 2018. PFix: Fixing Concurrency Bugs Based on Mem-

ory Access Patterns. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (Montpellier, France)

(ASE 2018). Association for Computing Machinery, New York, NY, USA,

589–600. h�ps://doi.org/10.1145/3238147.3238198

[32] Yiyan Lin and Sandeep S. Kulkarni. 2014. Automatic Repair for

Multi-Threaded Programs with Deadlock/Livelock Using Maximum

Satis�ability. In Proceedings of the 2014 International Symposium on

Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). As-

sociation for Computing Machinery, New York, NY, USA, 237–247.

h�ps://doi.org/10.1145/2610384.2610398

[33] Richard J. Lipton. 1975. Reduction: A Method of Proving Properties

of Parallel Programs. Commun. ACM 18, 12 (Dec. 1975), 717–721.

h�ps://doi.org/10.1145/361227.361234

[34] Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and

Generating High Quality Patches for Concurrency Bugs. In Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering (Seattle, WA, USA) (FSE 2016). Association for

Computing Machinery, New York, NY, USA, 715–726. h�ps://doi.org/

10.1145/2950290.2950309

[35] Haopeng Liu, Guangpu Li, Je�rey F. Lukman, Jiaxin Li, Shan Lu,

Haryadi S. Gunawi, and Chen Tian. 2017. DCatch: Automatically

Detecting Distributed Concurrency Bugs in Cloud Systems. In Pro-

ceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

’17). Association for Computing Machinery, New York, NY, USA, 677–

691. h�ps://doi.org/10.1145/3037697.3037735

[36] Peng Liu and Charles Zhang. 2012. Axis: Automatically Fixing Atom-

icity Violations through Solving Control Constraints. In Proceedings

of the 34th International Conference on Software Engineering (Zurich,

Switzerland) (ICSE ’12). IEEE Press, 299–309.

[37] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-

ing from Mistakes: A Comprehensive Study on Real World Concur-

rency Bug Characteristics. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and

Operating Systems (Seattle, WA, USA) (ASPLOS XIII). ACM, New York,

NY, USA, 329–339. h�ps://doi.org/10.1145/1346281.1346323

[38] Shan Lu, Soyeon Park, and Yuanyuan Zhou. 2012. Finding Atomicity-

Violation Bugs Through Unserializable Interleaving Testing. IEEE

Trans. Softw. Eng. 38, 4 (July 2012), 844–860. h�ps://doi.org/10.1109/

TSE.2011.35

[39] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO:

detecting atomicity violations via access interleaving invariants. In

Proceedings of the 12th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2006, San

Jose, CA, USA, October 21-25, 2006. 37–48. h�ps://doi.org/10.1145/

1168857.1168864

[40] Umang Mathur. 2019. Artifact for "Atomicity Checking in Linear Time

using Vector Clocks". h�ps://doi.org/10.5281/zenodo.3605759

[41] Umang Mathur. 2019. RAPID. h�ps://github.com/umangm/rapid

Accessed: 2020-01-15.

[42] Umang Mathur. 2020. umangm/rapid v1.1. h�ps://doi.org/10.5281/

zenodo.3605709

[43] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What

Happens-after the First Race? Enhancing the Predictive Power of

Happens-before Based Dynamic Race Detection. Proc. ACM Program.

Lang. 2, OOPSLA, Article 145 (Oct. 2018), 29 pages. h�ps://doi.org/10.

1145/3276515

[44] Umang Mathur and Mahesh Viswanathan. 2020. Atomicity Checking

in Linear Time using Vector Clocks. CoRR abs/2001.04961 (2020).

arXiv:2001.04961 h�ps://arxiv.org/abs/2001.04961

[45] Friedemann Mattern. 1988. Virtual Time and Global States of

Distributed Systems. In Parallel and Distributed Algorithms. North-

Holland, 215–226.

[46] Dimitrios Michail, Joris Kinable, Barak Naveh, and John V Sichi. 2019.

JGraphT–A Java library for graph data structures and algorithms. arXiv

preprint arXiv:1904.08355 (2019).

[47] Christos Papadimitriou. 1986. The Theory of Database Concurrency

Control. Computer Science Press, Inc., New York, NY, USA.

[48] Chang-Seo Park and Koushik Sen. 2008. Randomized Active Atomicity

Violation Detection in Concurrent Programs. In Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (Atlanta, Georgia) (SIGSOFT ’08/FSE-16). ACM, New York,

NY, USA, 135–145. h�ps://doi.org/10.1145/1453101.1453121

[49] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Ex-

posing Atomicity Violation Bugs from Their Hiding Places. In Pro-

ceedings of the 14th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (Washing-

ton, DC, USA) (ASPLOS XIV). ACM, New York, NY, USA, 25–36.

h�ps://doi.org/10.1145/1508244.1508249

[50] Eli Pozniansky and Assaf Schuster. 2003. E�cient On-the-�y Data

Race Detection in Multithreaded C++ Programs. In Proceedings of the

Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (San Diego, California, USA) (PPoPP ’03). ACM, New

York, NY, USA, 179–190. h�ps://doi.org/10.1145/781498.781529

[51] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. 2017. Big-

Foot: Static Check Placement for Dynamic Race Detection. In Proceed-

ings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New

York, NY, USA, 141–156. h�ps://doi.org/10.1145/3062341.3062350

[52] Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage,

Unbounded Sound Predictive Race Detection. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York,

NY, USA, 374–389. h�ps://doi.org/10.1145/3192366.3192385

[53] Malavika Samak and Murali Krishna Ramanathan. 2015. Synthesizing

Tests for Detecting Atomicity Violations. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering (Bergamo,

Italy) (ESEC/FSE 2015). ACM, New York, NY, USA, 131–142. h�ps:

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

196

//doi.org/10.1145/2786805.2786874

[54] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D. Stoller.

2005. Automated Type-Based Analysis of Data Races and Atomicity.

In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (Chicago, IL, USA) (PPoPP ’05).

Association for Computing Machinery, New York, NY, USA, 83–94.

h�ps://doi.org/10.1145/1065944.1065956

[55] Koushik Sen and Mahesh Viswanathan. 2006. Model Checking Multi-

threaded Programs with Asynchronous Atomic Methods. In Proceed-

ings of the 18th International Conference on Computer Aided Veri�cation

(Seattle, WA) (CAV’06). Springer-Verlag, Berlin, Heidelberg, 300–314.

[56] Ilya Sergey. 2019. What Does It Mean for a Program Analysis to Be

Sound? h�ps://blog.sigplan.org/2019/08/07/what-does-it-mean-for-

a-program-analysis-to-be-sound Accessed: 2020-01-15.

[57] Lorna A Smith and J Mark Bull. 2001. A multithreaded java grande

benchmark suite. In Proceedings of the third workshop on Java for high

performance computing.

[58] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. 2010. PENE-

LOPE:Weaving Threads to Expose Atomicity Violations. In Proceedings

of the Eighteenth ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10).

ACM, New York, NY, USA, 37–46. h�ps://doi.org/10.1145/1882291.

1882300

[59] Christoph von Praun and Thomas R. Gross. 2003. Static Con�ict

Analysis for Multi-threaded Object-oriented Programs. In Proceedings

of the ACM SIGPLAN 2003 Conference on Programming Language Design

and Implementation (San Diego, California, USA) (PLDI ’03). ACM, New

York, NY, USA, 115–128. h�ps://doi.org/10.1145/781131.781145

[60] Chao Wang, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta. 2010.

Trace-Based Symbolic Analysis for Atomicity Violations. In Proceed-

ings of the 16th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (Paphos, Cyprus) (TACAS’10).

Springer-Verlag, Berlin, Heidelberg, 328–342.

[61] Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin,

and Jun Wei. 2017. A Comprehensive Study on Real World Con-

currency Bugs in Node.Js. In Proceedings of the 32nd IEEE/ACM In-

ternational Conference on Automated Software Engineering (Urbana-

Champaign, IL, USA) (ASE 2017). IEEE Press, 520–531.

[62] Liqiang Wang and Scott D. Stoller. 2005. Static Analysis of Atomicity

for Programs with Non-blocking Synchronization. In Proceedings of the

Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (Chicago, IL, USA) (PPoPP ’05). ACM, New York, NY,

USA, 61–71. h�ps://doi.org/10.1145/1065944.1065953

[63] Liqiang Wang and Scott D. Stoller. 2006. Accurate and E�cient Run-

timeDetection of Atomicity Errors in Concurrent Programs. In Proceed-

ings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (New York, New York, USA) (PPoPP ’06). ACM,

New York, NY, USA, 137–146. h�ps://doi.org/10.1145/1122971.1122993

[64] LiqiangWang and Scott D. Stoller. 2006. RuntimeAnalysis of Atomicity

for Multithreaded Programs. IEEE Trans. Softw. Eng. 32, 2 (Feb. 2006),

93–110. h�ps://doi.org/10.1109/TSE.2006.1599419

[65] James R. Wilcox, Parker Finch, Cormac Flanagan, and Stephen N.

Freund. 2015. Array Shadow State Compression for Precise Dy-

namic Race Detection (T). In Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE)

(ASE ’15). IEEE Computer Society, Washington, DC, USA, 155–165.

h�ps://doi.org/10.1109/ASE.2015.19

[66] Benjamin P. Wood, Man Cao, Michael D. Bond, and Dan Grossman.

2017. Instrumentation Bias for Dynamic Data Race Detection. Proc.

ACM Program. Lang. 1, OOPSLA, Article 69 (Oct. 2017), 31 pages.

h�ps://doi.org/10.1145/3133893

[67] Min Xu, Rastislav Bodík, and Mark D. Hill. 2005. A Serializability

ViolationDetector for Shared-Memory Server Programs. In Proceedings

of the 2005 ACM SIGPLANConference on Programming Language Design
and Implementation (Chicago, IL, USA) (PLDI ’05). Association for

Computing Machinery, New York, NY, USA, 1–14. h�ps://doi.org/10.

1145/1065010.1065013

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

197

A Artifact Appendix

A.1 Abstract

This artifact appendix describes how to replicate our results
from Section 5. Our evaluation comprises of generating trace
logs of benchmark programs from Table 1 and Table 2, and
running AeroDrome and Velodrome [19] analyses on them.
We expect the speed-ups of AeroDrome over Velodrome to be
similar to those reported in Table 1 and Table 2. All analyses
are implemented in our tool R���� and we provide Python
scripts for automating the work�ow.

A.2 Artifact check-list (meta-information)

• Algorithm: AeroDrome.

• Program: Provided with the artifact (also see Section 5.2).

• Data set: Instructions and scripts for generating trace logs

from benchmarks programs have been provided. Trace logs

used in our original experiments can be downloaded from [1].

• Execution: Experiments to be conducted as sole user. Gen-

erating trace logs from scratch can take several hours for

large benchmarks.

• How much disk space required (approximately)?: Ap-

proximately 500GB space required to save trace logs. Indi-

vidual trace logs can be as large as 100GB.

• How much time is needed to prepare work�ow (ap-

proximately)?: All scripts are provided.

• How much time is needed to complete experiments

(approximately)?: If all traces need to be generated, then

about a day. If traces are obtained from [1], then as much as

the timeout set. We used a timeout of 10 hours per bench-

mark.

• Publicly available?: Yes. Artifact available at [40]. R����

available at [41] (archived at [42]).

• Code licenses (if publicly available)?: MIT License.

• Data licenses (if publicly available)?: None.

• Archived (provide DOI)?: Yes [40].

A.3 Description

A.3.1 How to access. Publicly available [40]. It extracts to less

than 250MB.

A.3.2 Hardware dependencies. No special hardware required.

A.3.3 Software dependencies. Java 1.8 or higher, Ant 1.10 or

higher, Python 2.7 or higher.

A.3.4 Data sets. Traces can be generated using benchmark pro-

grams provided. Alternatively, they can be downloaded from [1].

A.4 Installation

Obtain the artifact from [40] and extract.

A.5 Experiment work�ow

A.5.1 Directory Structure. The overall directory of the arti-

fact is shown in Figure 8. The directory benchmarks/ contains

our benchmark programs. The directory atomicity_specs/ con-

tain atomicity speci�cations for each benchmark (see Section 5.2).

The directory scripts/ contains our scripts for automating the

work�ow. The directory RoadRunner has been obtained from [15].

README.md is a more verbose description of the experimental work-

�ow, and LICENSE.txt is an MIT License agreement for the artifact.

AE/

|--- LICENSE.txt

|--- README.md

|--- RoadRunner/

|--- atomicity_specs/

|--- benchmarks/

|--- scripts/

Figure 8. Directory structure of the artifact

A.5.2 Overall Work�ow. The overall work�ow is as follows.

1. Generating Trace Logs. We need to generate trace logs

from benchmark programs. There are two options here:

(a) Option-1. Download trace logs directly from [1].

(b) Option-2 (time consuming). Use RoadRunner to generate

raw trace logs and then �lter those based on the provided

atomicity speci�cations, described below.

(i) Logging. We will use the logging and instrumentation

facility provided by RoadRunner [15] to generate traces.

(ii) Filtering.Wewill �lter out some events based on atom-

icity speci�cations in atomicity_specs/.

2. Performing AnalysesWe then analyze the �nal trace logs

(obtained int he previous step) using R���� [41]. R���� can

perform several kinds of analyses on a trace log:

• The class MetaInfo can be used to determine basic infor-

mation about the log, including the total number of events,

threads, variables, locks etc.

• The class Aerodrome determines atomicity violations us-

ing our proposed algorithm Aerodrome.

• The class Velodrome determines atomicity violations us-

ing the prior state-of-the-art algorithm Velodrome [19].

A.5.3 Getting Started. Downloaded the artifact from [40] and

set $AE_HOME:

> export AE_HOME=/path/to/AE/

Also, you need to change the variable home in the �le scripts/util.py

(line 17) to be the value of $AE_HOME. Also set the environment

variables JAVA_HOME and JVM_ARGS in the same �le appropriately.

Next download R���� from GitHub [41] or from the archive [42]

in $AE_HOME/rapid/ and install:

> cd $AE_HOME/rapid/; ant jar

A.5.4 Generating Trace Logs.

Option-1. Readers interested in simply reproducing the results can

download the traces used in our experiments from [1] and jump

to Appendix A.5.5 directly. Next, replace the benchmarks/ folder:

> rm -rf $AE_HOME/benchmarks/

> unzip /path/to/downloaded/zip -d $AE_HOME/

> mv $AE_HOME/asplos20-ae-traces $AE_HOME/benchmarks/

Option-2.

1. Download and install Roadrunner

> cd $AE_HOME

> git clone git@github.com:stephenfreund\

/RoadRunner.git

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

198

> wget https://raw.githubusercontent.com/umangm/\

rapid/master/notes/PrintSubsetTool.java.txt \

-O $AE_HOME/RoadRunner/src/rr/simple/\

PrintSubsetTool.java

> cd $AE_HOME/RoadRunner; ant; source msetup

2. Download and install R����

> cd $AE_HOME

> git clone git@github.com:umangm/rapid.git

> cd $AE_HOME/rapid; ant jar

3. Move to scripts/ folder.Wewill now execute some scripts

and for this, we will change the working directory:

> cd $AE_HOME/scripts/

4. Extract execution logs. To generate full trace for a single

benchmark:

> python gen_trace.py

Here, could be something like philo. To generate traces

for all benchmarks:

> python gen_trace.py

This step generates �les full_trace.rr in the directory

$AE_HOME/benchmarks//, either for particular bench-

mark or for all benchmarks based on the command.

5. Atomicity speci�cations. To modify the trace to account

for the atomicity speci�cations for a single benchmark:

> python atom_spec.py

To account for the atomicity speci�cations for all bench-

marks:

> python atom_spec.py

This step generates �les $AE_HOME/benchmarks//trace.std

(either for particular benchmark or for all benchmarks). At

this point, the �les full_trace.rr can be deleted.

A.5.5 Performing Analyses. Our experiments perform 3 di�er-

ent analysis on the traces: (a) metadata analysis to collect informa-

tion about the di�erent kinds of events in traces, (b) Velodrome

analysis, and (c) AeroDrome analysis.

Obtaining Trace metadata. To generate metadata information

from the trace of a single benchmark :

> python metainfo.py

When the �les trace.std are available for all benchmarks, run:

> python metainfo.py

This step generates three �les in $AE_HOME/benchmarks//: (i) the

�le metainfo.err contains error information from the Java com-

mands run in the python script metainfo.py and should ideally be

empty, (ii) metainfo.txt contains the actual output (including the

number of di�erent kinds of events); refer to $AE_HOME/README.md

for a description of the contents of this �le, (iii) metainfo.tim

reports the time taken by the system.

AeroDrome analysis. For a single benchmark , run:

> python aerodrome.py

To analyze the traces for all benchmarks, run:

> python aerodrome.py

This step generates three �les in $AE_HOME/benchmarks// -

aerodrome.txt, aerodrome.err and aerodrome.txt. Their de-

scription can be found in $AE_HOME/README.md.

Velodrome analysis For a single benchmark , run:

> python velodrome.py

To analyze the traces of all benchmarks, run:

> python velodrome.py

As before this step generates �les velodrome.txt, velodrome.err

and velodrome.tim, whose description can be found in the readme

�le $AE_HOME/README.md.

A.6 Evaluation and expected result

The work�ow described in Appendix A.5 can be used to generate

the data showed in Table 1 and Table 2. The primary objective of the

evaluation is to measure the speedup of AeroDrome analysis over

Velodrome analysis. We expect that Aerodrome outperforms Velo-

drome on all benchmarks where the speedup of AeroDrome (over

Velodrome) is more than 10⇥. The exact speed-ups may vary de-

pending upon the hardware and other processes running, but orders

of magnitude (for speedup) should stay the same. Of course, results

can vary when the the traces used are di�erent from those used

in our experiments [1]. The metadata analysis described in Appen-

dix A.5 can be used to generate the total number of events, threads,

locks and memory locations (often referred to as variables).

A.7 Experiment customization

All the di�erent analysis described in the work�ow (Appendix A.5)

can be performed for an execution of any concurrent Java program.

For this, see the instructions4 in R���� [41, 42] to generate a trace

from a benchmark. After this, if an atomicity speci�cation is avail-

able, one can account for it by using the script atom_spec.py. If not,

simply use an empty �le for an atomicity speci�cation and use the

same script. Finally, all the three analyses can be run using scripts

provided (metainfo.py, aerodrome.py and velodrome.py).

A.8 Notes

Contact umathur3@illinois.edu regarding any questions.

A.9 Methodology

Submission, reviewing and badging methodology:

• h�p://cTuning.org/ae/submission-20190109.html

• h�p://cTuning.org/ae/reviewing-20190109.html

• h�ps://www.acm.org/publications/policies/artifact-

review-badging

4$AE_HOME/rapid/notes/Generate_RoadRunner_traces.md

Session 3A: ACID — Trippy! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

199

