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a b s t r a c t

The National Hydrography Dataset (NHD) is a foundational geospatial data source in the United States
that enables extensive and diverse environmental research and supports decision-making in numerous
contexts. However, the NHD requires regular validation and update given possible inconsistent initial
collection and hydrographic changes. Furthermore, systems or tools that use NHD data must manage
regular updates that occur within the high-resolution version of the NHD (NHD HR). This research
contributes to filling this gap by establishing an open-source software tool named OpenCLC, which
automatically identifies matching and mismatching line features between two sets of hydrographic
flowlines. Aside from identifying differences among two version of NHD lines, results can be applied
to improve the quality of NHD HR content. OpenCLC significantly outperforms the best available
commercial off-the-shelf software in computational scalability, and it is made widely available as part
of the CyberGIS Toolkit to benefit broad environmental and geospatial science communities.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and background

The National Hydrography Dataset (NHD) is a comprehensive
vector dataset of surface-water features within the United States
([1] U.S. Geological Survey, 2000) that is used for geomorphomet-
ric, hydrologic, and watershed research ([2] Sheng et al. 2007; [3]
Maceyka and Hansen, 2016; [4] Schneider et al. 2017; [5] Vander-
hoof et al. 2017; [6] Wu and Lane, 2017; [7] Liu et al. 2018). Two
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NHD datasets are currently available. The medium-resolution
NHD, compiled from 1:100,000-scale source data, is a legacy
dataset that is no longer maintained by the U.S. Geological Survey.
The high-resolution NHD (NHD HR) is compiled from 1:24,000-
scale (24K) or finer-scale source data and is regularly updated.
NHD HR is the most up-to-date and detailed hydrography dataset
for the United States ([8] U.S. Geological Survey, 2018). Multiple
efforts are in progress to improve the accuracy of the NHD HR.
For instance, drainage lines or other hydrographic features are
often derived from recent digital elevation models (DEMs), lidar,
or other data ([9] Poppenga et al. 2013; [10] Stanislawski, But-
tenfield, and Doumbouya, 2015; [5] Vanderhoof et al. 2017). This
paper describes an open-source software tool named OpenCLC
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Fig. 1. The workflow of OpenCLC.

that automates a process of identifying matching and mismatch-
ing lines between two sets of lines representing similar features.
The matching and mismatching lines determined through this
process provide locations where verification can be focused to
improve NHD content.

The process described here was first used by [10] Stanislawski,
Buttenfield, and Doumbouya (2015) to generate the Coefficient of
Line Correspondence (CLC), a metric used to estimate similarity
for sets of elevation-derived drainage lines and NHD flowlines.
Initial tests were conducted on thirty Hydrologic Unit Code 8
(HUC-8) subbasins, each of which includes between 700 to 21,000
surface-water flowlines. Early versions of the process were im-
plemented with ArcGIS R⃝ tools customized through Python and
required between 10 min to an hour of processing per subbasin.
Because there are more than 2000 HUC-8 subbasins in the United
States, widespread implementation was not practical. The new
OpenCLC is implemented with Python and C programming lan-
guages to enable parallel processing within high-performance
computing (HPC) environments. OpenCLC is part of the CyberGIS
Toolkit that benefits broad environmental and geospatial science
communities ([11] Wang, 2010; [12] Wang et al. 2016). CyberGIS
Toolkit is a suite of programs and applications for GIS processing
in HPC. The efficiency of OpenCLC is demonstrated by comparing
elevation-derived drainage lines to NHD flowlines for all HUC-8
subbasins in the conterminous United States.

2. Workflow

Determining the CLC is an ordered process: rasterize the line
density of each input dataset; calculate the difference between
the two line density rasters; compute a confidence interval for
matching cells (cells with difference values not significantly dif-
ferent from zero) based on the difference raster; reclassify the
study area based on the difference raster and confidence inter-
vals; identify the parts of line features within the matching or
mismatching cells in the reclassified raster; compute the CLC of
any given area as the sum of the length of all matching lines in
both input datasets and dividing by the sum of the length of all
lines in both datasets ([10] Stanislawski, Buttenfield, and Doum-
bouya, 2015) (Fig. 1). Each subbasin can be further partitioned
using a spatial grid, and the CLC value is calculated in each smaller
partition.

OpenCLC is designed to exploit the power of HPC for the
CLC computation process and allow nationwide comparison of
surface-water flow networks. It is implemented in Python and

C and uses the Geospatial Data Abstraction Library (GDAL, http:
//gdal.org). As input, OpenCLC takes two datasets of line features
in shapefile format (.shp), both with the same spatial reference
and similar spatial extents (e.g., stream networks should be from
the same subbasin or watershed). The user specifies two addi-
tional parameters, search radius and cell size, which are used
in line-density rasterization. OpenCLC outputs two line-density
rasters and their difference raster, a reclassified raster, a shapefile
of matching and mismatching features between each input line
dataset, and a shapefile of a spatial grid with CLC values.

3. Implementation

3.1. Line density rasterization

A straightforward way to calculate a line-density raster for an
input line dataset is to create a circular buffer at each cell center,
and then intersect this circle with the input lines to compute the
line density for each cell. However, a buffer and intersection anal-
ysis at each cell can be computationally intensive. Each polyline in
a shapefile is composed of a series of line segments. In OpenCLC,
the calculation of line density at each cell is decomposed into
calculating the intersected length of a single line segment and
a circle (buffer boundary) centered on a pixel of interest, which
is recomputed for all candidate line segments. Fig. 2 shows an
efficient way to calculate the length of intersection between
a single line segment and a circle using straightforward math
calculation without buffer or intersection analysis. The lengths of
all line segments from a dataset that intersect a cell’s circle are
summed to determine the final line density for that cell.

Instead of looping through all the line segments to calculate
the length of intersection and density at each cell, the line-
density rasterization process calculates line density for cells near
each line segment within an input line dataset and accumulates
partial results to get the final line density raster. Empty cells
without nearby lines can be skipped. A query of cells near each
line segment is easier to run than a query of lines near each
cell. As shown in Fig. 3, the line-density rasterization proce-
dure loops through each line segment, identifies cells within
distance r of the bounding box for the line segment, and adds
the segment-intersection length to the sum for each cell.

3.2. Identifying matching and mismatching features

Once the line density of each input line dataset has been
created, a difference raster between the two line-density rasters
is calculated. A confidence interval for matching cells (difference
values not significantly different from zero) is calculated from the
difference raster. Applying the vertical accuracy test procedures
from the National Standard for Spatial Data Accuracy ([13] U.S.
Federal Geographic Data Committee, 1998), an upper bound for
a 95% confidence interval for matching line features is estimated
by multiplying the root mean square error (RMSE) for the entire
difference raster by 1.96. The difference raster is computed as
the line-density raster for line dataset 1 (LD1) minus the line-
density raster for line dataset 2 (LD2). Then the difference raster
is reclassified into four classes based on the confidence interval:
values less than the lower bound (clc_code = 1, LD1 match, LD2
do not match); values within the confidence interval (clc_code
= 2, LD1 and LD2 match); values greater than the upper bound
(clc_code = 3, LD1 do not match, LD2 match); and empty area,
where line density of LD1 and LD2 is close to 0 (clc_code = 4, LD1
and LD2 do not match). Optionally, if waterbody polygons that
overlap lines in both datasets are available, such as NHD double-
line streams, lakes, ponds, and reservoirs, then they can be used

http://gdal.org
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Fig. 2. Length of intersection (L) between line and circle.

by the program. The program will rasterize the waterbody poly-
gons and categorize them as matching pixels (clc_code = 2) in
the reclassified raster. This step allows better matching of flow
lines within waterbodies, because they are subject to positional
variation within the banks of these polygons. The reclassified
difference raster is used to identify matching and mismatching
features in the two input line datasets.

A line-tracking algorithm uses the clc_code values of intersect-
ing raster cells of the reclassified difference raster to determine
the portions of lines passing through matching or mismatching
cells. As shown in Fig. 4, a tracking point moves from the start
point to the end point of each line, and the line is split each time
the value of the raster cell changes. Each polyline feature in the
two input line datasets will be split into multiple parts depending
on intersecting cell values in the reclassified difference raster.
Each polyline part becomes a new polyline feature in the output
shapefile with the additional clc_code attribute field. Given the
line-density difference defined as LD1 density minus LD2 density,
full or partial line features from LD1 with clc_code values of 3
or 4 are mismatching features, and features with clc_code values
of 1 or 2 are matching features; full or partial line features from

LD2 with clc_code values of 1 or 4 are mismatching features, and
features with clc_code values of 2 or 3 are matching features.

3.3. CLC calculation

Upon identifying matching and mismatching lines in the two
datasets, a CLC metric is computed as follows (Stanislawski et al.
2015):

CLC =
M1 + M2

M1 + M2 + O1 + O2

M1 is the sum of the length of matching features in LD1, M2 is the
sum of the length of matching features in LD2, O1 is the sum of
the length of features in LD1 that are omitted from the LD2, and
O2 is the sum of the length of features in the LD2 that are omitted
from the LD1. CLC values estimate the proportion of lines that are
matching and range between 0 and 1. A CLC value of 1 indicates
all features match in both datasets, and 0 indicates no matching
features.

The CLC metric is calculated for the entire study area where
the two input line datasets are compared. It can also be calculated
for all partitions in a grid (fishnet) that overlays the study area,



4 T. Li, L.V. Stanislawski, T. Brockmeyer et al. / SoftwareX 11 (2020) 100401

Fig. 3. (a) For each line segment, only nearby cell centers that fall within the buffer of radius r will be influenced by it when calculating line density; (b) the
bounding box of line buffer with radius r is the same as the result of extending the bounding box of the line with r.

Fig. 4. Illustration of the line tracking algorithm. Different cell colors represent
different class values in the reclassified raster. A tracking point moves along the
line and splits the line when the cell value changes.

which generates a spatial distribution of CLC values. To generate
the CLC distribution, an identity analysis finds the portion of all
lines with the clc_code attribute that fall within each grid cell.
Subsequently the CLC metric is determined for each subset of
lines that fall within each grid cell. Relatively lower values in the
CLC distribution indicate locations where further verification or
improvement efforts may be focused.

4. Evaluation

This section demonstrates the use of the OpenCLC tool in an
HPC environment to estimate the similarity between elevation-
derived drainage lines and associated NHD flowlines in the con-
terminous United States.

4.1. Data and computing

Because NHD HR is compiled at multiple resolutions
(or scales), the data generally must be thinned to a common
scale in order to be used for analysis or display purposes. To
accomplish this task, a reference drainage network that depicts
natural drainage patterns at 24k was extracted for the conter-
minous United States from 1/3rd arc-second DEM data (nominal
10-m cell resolution) using a weighted flow accumulation model
([14] Stanislawski, Falgout and Buttenfield, 2015). Given a 24K-
based drainage pattern, the NHD HR can be thinned to 24K and

several smaller scales using a stratified pruning process ([15]
Stanislawski, 2009; [16] Stauffer, Finelli and Stanislawski, 2016).
The elevation-derived drainage lines were extracted from each
of the 2119 HUC-8 subbasins in the conterminous United States,
which furnished between 17 and 2800 km of drainage lines each.
OpenCLC was tested on a 12-node Linux cluster, with each node
having 20 processing cores and 128 GB of RAM. Job execution and
computational resources—such as nodes, processors, memory and
processing time—were managed through the Slurm Workload
Manager. The workflow allowed simultaneous comparison of up
to 240 HUC-8 subbasin datasets by processing one subbasin on
each available core. Rapid access to file storage was provided
through a parallel shared Lustre file system on a high-speed
Infiniband network.

4.2. Results

OpenCLC processing of an individual HUC-8 subbasin with a
24-m cell resolution and radius for line-density computations
required less than two minutes using a single processing core.
This is a substantial improvement over the ArcGIS process that
required between 10 min to an hour. Simultaneous processing of
up to 240 subbasins completed all 2119 subbasins in the conter-
minous United States in about two hours. This task compares over
10 million km of flowlines, comprised from over 30 million vector
features with more than 160 million vertices, and these values
can be doubled to account for the elevation-derived drainage
lines. The spatial distribution of HUC-8 CLC values determined
through OpenCLC is shown in Fig. 5. Processing failed in 35 of
the 2119 subbasins, which is a 1.65 percent failure rate. Overall,
poorer matching is evident in the southwest, where many fea-
tures are ephemeral features. This is an expected result, because
ephemeral features were not included in model parameters for
extracting elevation-derived drainage lines. These results iden-
tify specific subbasins where obvious problems exist with the
extraction model, and where model improvements should be
focused.

Fig. 6 shows the spatial distribution of matching and mis-
matching features identified by the OpenCLC, along with the
gridded CLC values. The gridded results clearly identify sections
with relatively high proportions of mismatching features that
may require more detailed assessment (Fig. 6c), and the vector
results furnish a more detailed assessment (Fig. 6b). A detailed
analysis reveals that a majority of mismatching features occur
among first-order (headwater) tributaries for subbasin 0303003
(Fig. 6a, b), and this is generally the case revealed for all tested
subbasins.
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Fig. 5. Distribution of CLC values comparing 1:24,000-scale (24K) elevation-derived drainage lines to 24K NHD flowlines for the HUC-8 subbasins in the conterminous
United States. CLC values estimate the proportion of lines that are matching; 1 indicates all features match in both datasets, and 0 indicates no matching features.
CLC processing failed for 35 (pink shade) of 2119 subbasins.

Fig. 6. Distribution of matching and mismatching (a) flowlines and (b) elevation-derived drainage lines determined by OpenCLC for the Deep River watershed in
North Carolina, which is assigned 8-digit Hydrologic Unit Code (HUC8) 03030003 within the National Hydrography Dataset (NHD). Grid CLC values (c) show the
distribution of CLC values for each about 6.6-km-by-6.6-km grid in the watershed.

5. Conclusion

As demonstrated by this analysis, OpenCLC is an effective tool
for identifying differences between elevation-derived drainage
lines and NHD flowlines that can greatly assist management
and update of the NHD. Through an HPC-based implementation,
OpenCLC provides a rapid assessment of the similarity between
two different sets of hydrographic lines for very large regions
or countries. The entire analysis for the conterminous United
States required about two hours with OpenCLC, whereas other
available tools would have taken several weeks for this process.
This performance improvement unlocks other possible uses for
the tool, such as refining or comparing drainage-line extraction
models for the entire country.

OpenCLC is intended for automated comparison of two sets
of linear features representing similar phenomenon of any type—
such as comparing two sets of linear road features, or two sets
of contour lines. This initial version of OpenCLC, as described in
this paper, is configured to compare two sets of surface water
drainage lines having similar positional accuracy. In this version,
it is expected that the line-density resolution parameter is de-
duced from the positional accuracy of the input datasets. As in the

above analysis, given the source scale of 24K for the input flow-
lines, it was deduced that a 24-m cell resolution was adequate for
the line-density rasterization process and subsequent CLC compu-
tation. However, in order to compare two linear feature datasets
with substantively different accuracies, the program would need
to be modified to allow inputs of two resolution parameters and
to process two line-density datasets with different resolutions.
Such development is expected for future versions of the software.
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