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ABSTRACT
With the increased frequency of natural hazards and disasters and
consequent losses, it is imperative to develop efficient and timely
strategies for emergency response and relief operations. In this paper,
we propose a cyberGIS-enabled multi-criteria spatial decision support
system for supporting rapid decision making during emergency
management. It combines a high-performance computing environment
(cyberGIS-Jupyter) and multi-criteria decision analysis models (Weighted
Sum Model (WSM) and Technique for Order Preference by Similarity to
Ideal Solution Model (TOPSIS)) with various types of social vulnerability
indicators to solve decision problems that contain conflicting evaluation
criteria in a flood emergency situation. Social media data (e.g. Twitter
data) was used as an additional tool to support the decision-making
process. Our case study involves two decision goals generated based on
a past flood event in the city of Austin, Texas, U.S.A. As our result shows,
WSM produces more diverse values and higher output category
estimations than the TOPSIS model. Finally, the model was validated
using an innovative questionnaire. This cyberGIS- enabled spatial
decision support system allows collaborative problem solving and
efficient knowledge transformation between decision makers, where
different emergency responders can formulate their decision objectives,
select relevant evaluation criteria, and perform interactive weighting and
sensitivity analyses.
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1. Introduction

A highly responsive decision-making process based on comprehensive and timely information is
critical for emergency managers, planners, first responders, voluntary agency coordinators, and
other professionals in the event of hazards and disasters. For example, a well-formed decision-sup-
port system can help a community better respond to and recover from a hazard event. Conversely,
poor decision making may potentially result in unexpectedly severe casualties and mounting costs
(FEMA n.d.a). Therefore, a decision support system plays an essential role in emergency
management.
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Facilitating the decision-making process during an emergency response can, however, be a chal-
lenging task. Disaster responders often need to make quick decisions in complex situations that
involve multiple and even conflicting objectives under time stress. The decision goal is usually
achieved through an inquiry into a series of spatial questions closely tied to decision objectives
and their associated evaluation criteria based on diverse socioeconomic and demographic con-
ditions. In general, the primary goal of emergency management is to protect the health and safety
of people (FEMA n.d.a). If a limited amount of rescue resources is available, rescue personnel
need to prioritize interventions at the most vulnerable locations ahead of other locations to save
more lives and property, which raises the question: where are vulnerable groups of people in a dis-
aster? The second goal of emergency management is to protect property and the environment, as
well as to minimize the disruption of community activities (FEMA n.d.a). To meet this goal, govern-
mental organizations would be interested in knowing which area had the greatest economic loss and
needs the most significant financial support after a disaster event. Here, risk is defined as the inter-
action between hazard and vulnerability (Blaikie et al. 2004), where vulnerability is the potential to
suffer loss or harm (Cutter 1996).

Geographical Information Systems (GIS) provides the technical capability to help a decision
maker in understanding interdependencies between spatial, socioeconomic, and cultural factors in
decision-making processes (Sugumaran and Degroote 2011). However, most conventional GIS
approaches lack support for taken into account domain experts’ knowledge and decision-making
capabilities, which weakens their ability to enable decision processes dealing with conflicting objec-
tives (Hendriks and Vriens 2000). Advances in decision-making theories and GIS capabilities have
provided opportunities for the development of Multi-Criteria Spatial Decision Support Systems
(MCSDSS). Additionally, GIS can provide capabilities for storing, managing, analyzing, and visua-
lizing geospatial data. Multi-criteria analyses offer a rich collection of decision techniques for struc-
turing problems that contain conflicting objectives and enabling the prioritization of decision
alternatives and sensitivity analyses.

Various types of MCSDSS has been developed to support decision making in environmental
hazard and emergency management. Malczewski (2006) classified GIS-based multiple-criteria
decision-making analyses (GIS-MCDM) into two categories: decisions under conditions of certainty
and those under uncertainty. Brito and Evers (2016) conducted a literature survey on using MCDM
for flood risk management. From 1995 to 2015, there were 180 articles published on this topic,
among which 22% of the articles focused on ranking alternatives for flood mitigation, 15% on vul-
nerability assessment, and 3% on emergency management. The rest of the articles are related to the
topics of risk and hazard assessment, susceptibility assessment, coping capacity, and reservoir flood
control. Wang et al. (2011) proposed a spatial multi-criteria approach for flood risk assessment in the
Dongting Lake region. Karnatak et al. (2007) developed a web-based multicriteria spatial decision
analysis application. Mitra et al. (2017) proposed a multi-criteria decision support system that
was based on a Bayesian network approach for analysing landslide risk assessment. Zhang et al.
(2014) developed a fuzzy multiple-attribute decision-making model to identify the vulnerability of
an urban area based on population information. In their model, expert knowledge was collected
using a questionnaire combined with a fuzzy modeling approach.

However, most of the aforementioned studies are subject to several limitations. First, decision cri-
teria as well as their weights are often difficult to identify and quantify. Despite the uncertain nature
of decision processes, some MCSDSSs do not allow a sensitivity analysis to quantify output uncer-
tainties, and weights are often collected from engineers or system developers rather than domain
experts. Second, current MCSDSSs are incapable of facilitating knowledge sharing and communi-
cation among different decision makers. In MCSDSS, decisions are often made by a group of decision
makers such as domain experts, engineers, system developers, and users with diverse backgrounds,
skills, and different preferred terminologies (Turban, Aronson, and Liang 2000). These various users
contribute to a synergistic and complex decision space. Thus, how the knowledge can be collected,
represented, and transferred between different decision makers promptly under time stress is

INTERNATIONAL JOURNAL OF DIGITAL EARTH 1365



extremely important to emergency management. Third, knowledge, often derived from geospatial
data, comes from various data sources with different formats and scales, leading to tremendous com-
putational challenges (Yang et al. 2017). Therefore, cyberGIS is needed in a MCSDSS to provide
high-performance computation support during an emergency, for tasks such as fast data queries
and information visualization (Lin et al. 2015).

In this article, we demonstrate a cyberGIS-enabled MCSDSS that can be used to model two
decision goals in emergency management mentioned above (FEMA n.d.a). This research considers
a flooding case in Austin that happened on 31 October 2013, and combines several data sources
such as census data, social media data, and a flood hazard map. In our MCSDSS, domain experts
are also users, and a Simple Multi Attribute Rating Techniques (SMART) form is implemented in
the user interface to help the domain experts select relevant criteria and generate weights.
Weighted Sum Model (WSM) and Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) models are used to combine the relevant criteria along with the criteria weights, and
analysis results are interactively visualized on a map. Finally, a sensitivity analysis is performed
to evaluate the sensitivity of selected criteria, and a questionnaire was developed to validate the
results of the decision analysis. In order to address the above mentioned first and second chal-
lenges, our decision support system can facilitate knowledge transformation between different
decision makers efficiently, since domain experts (users) can formulate their decision objectives,
select relevant evaluation criteria, and perform weighting and sensitivity analysis by using an inter-
active user interface. The weight of the criteria can be directly generated by a group of domain
experts through the user interface. Furthermore, our decision support system is implemented
on a cyberGIS-Jupyter platform, which leverages a Jupyter notebook, Docker containers, cloud-
based infrastructure provisioning, and high-performance computing. Furthermore, it allows
diverse data sources (e.g. census data and social media data) to be integrated into the system
and visualized onto an actionable vulnerability map to support spatial decision making. The cur-
rent implementation of the spatial decision support system, as described in the remainder of this
paper, can produce a near real-time vulnerability map depicting the highest overall vulnerability
value within a study area during the flooding event.

2. Background and theory

This section provides a theoretical background of key concepts used in this research. It includes var-
ious types of vulnerability indicators, spatial decision support systems, multi-criteria decision-mak-
ing techniques, and decision-making sensitivity analyses.

2.1. Social vulnerability indicators for emergency management

In the context of social sciences, vulnerability often refers to a condition of people as opposed to
physical structures, economies, or regions of the earth (Wisner et al. 2004; Juntunen 2006). Inhabi-
tants with higher social vulnerability seem to suffer more significantly from a disaster compared to
those with lower vulnerability (Brouwer et al. 2007). In this respect, social vulnerability can be used
as an important indicator/tool to evaluate the disaster preparedness of local communities, dispatch
emergency responses, and allocate limited resources for disaster relief. Federal agencies, such as Cen-
ters for Disease Control and Prevention (CDC) and National Oceanic and Atmospheric Adminis-
tration (NOAA), have adopted social vulnerability indices to map and identify vulnerable
communities that may need support before, during, and after a hazard event. Commonly, an
index system, based on a weighted linear combination of relevant variables, is used to develop social
vulnerability indicators. For example, the pioneering work by Cutter, Boruff, and Shirley (2003)
defines the Social Vulnerability Index (SoVI) using 11 independent factors derived from 42 variables
based on a factor analytic approach. Flanagan et al. (2011) developed another social vulnerability
index (SVI) based on the percentile ranks of 15 census variables at the census tract level with the
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goal of improving all 4 phases of the disaster management, including preparedness, response, recov-
ery, and mitigation. Bjarnadottir, Li, and Stewart (2011) proposed a Coastal Community Social Vul-
nerability Index (CCSVI) to project the social vulnerability of hurricane-prone areas under climate
change scenarios by combining both intensities of climate-induced hazard factors and various social
characteristics. Various types of social vulnerability indicators for disaster management have been
developed in literature, such as family structures (Cutter, Boruff, and Shirley 2003), education (Mor-
row 1999; Cutter, Boruff, and Shirley 2003), socioeconomic status (Rygel, O’sullivan, and Yarnal
2006; Collins and Bolin 2009), employment (Cutter, Boruff, and Shirley 2003), age (Morrow 1999;
Cutter, Boruff, and Shirley 2003; Rygel, O’sullivan, and Yarnal 2006), race and ethnicity (Cutter,
Boruff, and Shirley 2003; Rygel, O’sullivan, and Yarnal 2006), and gender (Rygel, O’sullivan, and
Yarnal 2006). In addition to the social vulnerability indicators, the availability of motor vehicles
will affect the rescue route planning. People with motor vehicles can quickly drive away from the
risk area during certain disasters. Social indicators can be developed based on several aspects for dis-
aster management. Fenton and MacGregor (1999) identified five classes of social indicators: infor-
mative indicators, predictive indicators, problem-oriented indicators, program evaluation
indicators, and target delineation indicators. King and MacGregor (2000) claimed that social vulner-
ability indicators could be developed based on the aspects of vulnerability and resilience of commu-
nities that affected by a disaster. For instance, low income households can be an indicator of
vulnerability and high-income households can be an indicator of resilience, and rank trades occu-
pations are more important for resilience than highly paid ones. Community vulnerability and resi-
lience can be further divided into social, economic and demographic characteristics and attributes,
behavior and values, which become a separate construct that is indicated by the set of social vulner-
ability indicators. A review of relevant literature indicates that the commonly used methods for con-
structing social vulnerability include Analytical Hierarchy Process (AHP), Principal Component
Analysis (PCA), and Geographic Information Systems (GIS), which help to identify, manage, and
visualize social vulnerability indices in specific geographical areas (Tate 2012; Frigerio et al. 2016;
Frigerio and De Amicis 2016).

However, social vulnerability assessment in emergency management currently faces several chal-
lenges due to its uncertain and complex nature. First, the social vulnerability index system is difficult
to construct, since it is often based on emergency responders’ subjective experiences. Emergency
management can be considered as a set of collaboration processes among various types of emergency
responders, such as fire and rescue departments, emergency medical crew, transportation agencies,
and insurance companies, with varying decision criteria and foci. Emergency management requires
effective collaboration and coordination among multiple parties and objectives, that may lead to
overlapping disaster response efforts, ineffective communication, and poor coordination. The second
challenge is to assign weights to the social vulnerability indices for evaluating the vulnerability of an
area in a case of any disaster. Emergency responders should create their own decision objectives and
assign weights to the indicators according to their professional responsibilities. However, this raises
the question of how emergency responders’ knowledge can be collected and represented in geospatial
modeling processes to efficiently support spatial decisions. Human knowledge exists in a compiled
format while computers require information to be represented in a structured way (Turban, Aron-
son, and Liang 2000).

2.2. Use of social media in emergency management

In addition to social vulnerability indicators, social media data (e.g. Twitter) has been often used to
model communication behaviors of disaster responders to improve situational awareness in emer-
gency management. Social media channels allow for quick dissemination of information during a
crisis, as well as two-way communication between members of the public and emergency manage-
ment organizations (Goodchild and Alan Glennon 2010). Chatfield, Scholl, and Brajawidagda
(2013) used Twitter as a warning tool in natural disasters. Kryvasheyeu et al. (2016) found that
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there was a correlation between the number of tweets mentioning hurricane Sandy and the time
when the hurricane landed in the continental United States. Schnebele and Cervone (2013)
found that the magnitude of the Calgary flood had a similar pattern to the location of flood related
tweets. Li et al. (2018) developed a kernel-based flood mapping model to map the flooding possi-
bility for the study area based on the water height points derived from tweets and stream gauges.
Kongthon et al. (2012) classified the flood-related tweets into four major categories: situation
announcements and alerts, support announcements, requests for assistance, and requests for infor-
mation. Most of these situational tweets were tweeted by local citizens who knew what had been
happening during a disaster situation. This raises the question of how social media could help to
improve communications between emergency management organizations and citizens. Therefore,
there is a need to establish a disaster-related social media channel and mapping application, so citi-
zens can provide more detailed or accurate information to assist authorized agencies during emer-
gency incidents.

ATXfloods is an online application for collecting real-time flood information and mapping
emergency road closures in Austin. Austin city has also Twitter channel, which displays the con-
tent of tweets that are related to Austin flood events (@ATXfloods)(Twitter 2018a). Similarly, Fed-
eral Emergency Management Agency (FEMA) also provides a Twitter channel, which supports
communication between citizens and first responders before, during, and after an emergency
(Twitter 2018b). Here, Twitter data is used as a communication tool in applications where the
spatial context is ignored. For instance, it is not obvious as to where people might request
assistance.

2.3. Spatial decision support systems

Decision support systems (DSSs) have many definitions. Turban, Aronson, and Liang (2000)
identified four key components of DSSs: a data management system (e.g. a database management
system), a management subsystem (quantitative models that provide the system with analytical
capabilities and software management), a knowledge-based management subsystem (an intelli-
gent knowledge base that stores knowledge that can be used to make decision), and an interface
subsystem (the user communicates with the DSS through this subsystem). According to above
mentioned definitions of DSSs, a spatial decision support system (SDSS) can be defined as a fra-
mework for integrating analytical and spatial decision modeling capabilities (management sub-
system), spatial and non-spatial data management (data management system), domain
knowledge (knowledge acquisition and knowledge-based management system), spatial display
capabilities and reporting capabilities (user interface) (Sugumaran and Degroote 2011). The
next section introduces two types of decision-making models that were used in our MCSDSS
management subsystem.

2.4. Multi-criteria decision making (MCDM)

A variety of GIS analytical methods have been developed to help decision-makers solve spatial
decision-making problems with multiple criteria. The WSM is the earliest and probably the most
widely used method (Fishburn 1967). The weighted product model (WPM) can be considered a
modification of the WSM and has been proposed in order to overcome some of its weaknesses.
The analytic hierarchy process (AHP), as proposed by Saaty (Saaty 1980, 2008), is a later develop-
ment that has recently become increasingly popular. Belton and Gear (1983) suggested a modifi-
cation to the AHP (which we will call the revised AHP) that appears (as it is demonstrated in
later chapters) to be more consistent than the original approach. Some other widely used methods
are the ELECTRE and the TOPSIS methods (Hwang and Yoon 1981).

MCDM analysis is a mathematical decision-making framework where many decision criteria are
combined to meet one or several objectives to give support for decision making. Given a set of m
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alternatives, denoted as A1, A2, A3,… , Am, and a set of n decision criteria, denoted as C1, C2, C3, … ,
Cn, it is assumed that the decision maker (DM) has to determine the performance value aij (for i = 1,
2, 3, … , m and j = 1, 2, 3, … , n) of each alternative in terms of each criterion. A matrix A with aij
values is defined, along with the criteria weight Wj (the weight of the relative performance of the
decision criteria). Usually, these weights are normalized to add up to one. Finally, the alternatives
are ranked.

2.4.1. Weighted sum model
If there are m alternatives and n criteria, the best alternative is the one that satisfies (in a maximiza-
tion case) the following expression:

A = max
∑n
j=1

aijwj, for i = 1, . . . , m and j = 1, . . . , n (1)

Where A is the WSM score of the best alternative, n is the number of decision criteria, aij is the actual
value of ith alternative in terms of the jth criterion, and wj is the weight or importance of the jth

criterion.

2.4.2. Technique for order preference by similarity to ideal solution (TOPSIS)
The TOPSIS technique is based on the concept that the best alternative is the one that is closest to its
ideal solution and farthest from the negative ideal solution (Behzadian et al. 2012). The formal TOP-
SIS procedure is defined as follows:

Step 1: Calculate normalized rating for each element in the decision matrix.
Step 2: Calculate weighted normalized ratings. The weighted normalized value vij is calculated

through this formula

vij = wjaij, i = 1, . . .m; j = 1, . . . , n. (2)

Step 3: Identify the positive ideal A∗ and negative ideal A− solutions. The A∗ and A− are defined in
terms of the weighted normalized values, as shown bellow

A∗ = {v∗1 , v
∗
2 , . . . , v

∗
j , . . . , v

∗
n} = {(maxivij|j [ J2)|i = 1, . . .m} (3)

A− = {v−1 , v
−
2 , . . . , v−j , . . . , v

−
n } = {(minivij|j [ J2)|i = 1, . . .m} (4)

Where J1 is a set of benefit attributes and J2 is a set of cost attributes.

Step 4: Calculate separation measures. The separation between alternatives can be measured by n
dimensional Euclidean distance. The separation of each alternative from the positive idea sol-
ution is given by

S∗i =
����������������
∑n
j=1

((vij − v∗j )
2

√√√√ , i = 1, . . . , m (5)

Similarly, the separation from the negative ideal solution is given by

S−i =
�����������������
∑n
j=1

((vij − v−j )
2

√√√√ , i = 1, . . . , m (6)
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Step 5: Calculate similarities to ideal solution.

C∗
i = S−i

S∗i + S−i
i = 1, . . .m (7)

0 ≤ C∗
i ≤ 1 where C∗

i = 0 when A∗ = A− and C∗
i = 1 when Ai = A∗

Step 6: Rank preference order. Choose an alternative with maximum C∗
i or rank alternatives accord-

ing to C∗
i in descending order.

2.5. Sensitivity analysis

Sensitivity analysis is a critical component of MCDM, which evaluates how changes in the entire vec-
tor of a decision matrix (or changes in the current weights of the decision criteria) may change the
ranking of the alternatives. One important step of sensitivity analysis is to identify critical criteria and
then, if needed, to re-evaluate the weights for the criteria. For the current study, we consider critical
criteria to be the criterion whose weight change may change the ranking of any alternative. In this
case, the criticality degree of criteria is the smallest percent amount by which the current value of wk

(weight of criteria Ck) must change, such that the existing ranking of the alternatives will change. An
illustrative example of this calculation is available in Triantaphyllou (2000).

3. Methods

This section introduces data collection and processing techniques and methods used in this research.
Various types of data have been used in this research such as Austin city census data, a flood hazard
map, and Twitter data collected using the Twitter API. MCDM WSM and TOPSIS models are used
as core methodologies in the MCSDSS management subsystem to combine different criteria to pro-
duce an overall vulnerability map.

3.1. Data collection and processing

The data used in this research comes from three data sources. Austin city census data was down-
loaded from the TIGER Geodatabase and American Fact Finder from United States Census Bureau
(United States Census Bureau 2017). Census data was collected at the block group level for attributes
on the age, sex, educational attainment, poverty, income, housing characteristics, and health insur-
ance status. In this study, the following criteria are used to evaluate the vulnerability of people
affected by the flood hazard: total population in an area, number of people over 75 years old, number
of people without health insurance, number of people in poverty, number of people in a minority
group, area median house value, population education attainment, number of children, people with-
out a vehicle, and the number of tweets that are relevant for the flooding event. While most social
vulnerability research (as discussed earlier) includes more vulnerability indicators, in this study we
considered a smaller set of indicators to demonstrate our MCSDSS. Our proposed system is also
flexible enough to incorporate more vulnerability indicators as considered important for particular
hazard or geographic context. In addition to census data, a flood hazard map layer was downloaded
from FEMA’s flood map service center portal (FEMA n.d.b).

We collected Twitter data through the Twitter API over five years (2012–2017) for the continental
United States, and the data has been used for many research projects. The collected Twitter data con-
tains 2 billion tweets (about 4TB), which poses significant computational intensive challenges for tra-
ditional GIS computing environments. To resolve this challenge, we used the cyberGIS-Jupyter
environment that deployed on the first cyberGIS supercomputer ROGER (Wang 2016; Yin et al.
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2017). Geographical and geospatial information sciences have been undergoing dramatic digital
transformations, which has fueled the development of cyberGIS as a new generation of geospatial
information sciences and systems (GIS) based on advanced cyberinfrastructure during the recent
decade (Wang 2016). CyberGIS-Jupyter is a new type of cyberGIS gateway platform that provides
interactive, flexible, and reproducible GIS interfaces to advanced cyberinfrastructure. It organically
synthesized Jupyter notebooks, containerization, cloud computing, data-intensive computing, and
high-performance computing, which grants easy access to the power of advanced cyber-infrastruc-
ture inside the user-friendly notebook interfaces. To process the Twitter data, we used the Hadoop
functionality of cyberGIS-Jupyter to first filter all tweets within the bounding box of Austin (–98.230,
–97.279, 29.986, 30.678) from the whole set of US tweets and retrieve 23,802,637 tweets (about
14GB) inside the Austin area. The next step is to develop a strategy in finding suitable keywords
that can be used to filter the Twitter data and identify tweets that are related to flooding events,
such as reporting the flooding situation of a location or asking for rescue help during flooding events.

First, we selected Tweets tweeted during flooding events that occurred between October 30th and
November 6th in 2013 and 2015, and August 25th through 1 September 2017, which contain the key
word ‘flood’. This query resulted in 806 tweets, a large number of tweets with a variety of relevant and
non-relevant content. For instance, the filtered data contained many false flooding related tweets
(e.g. ‘Can the flood warnings be any more annoying on the iPhones’, ‘I’m getting really annoyed
of these flash flood warnings on my tv and phone … I get it already’), which are not useful for
our case. Therefore, ‘flood’ may not be the best keyword for filtering the data. After that, we com-
bined the keywords ‘flood’ to filter the data. For the ‘flood rescue’ keywords, this resulted in 18
filtered tweets where 6 of them are relevant. Many of other tweets that are related to flooding events
were taken from a local news channel’s Twitter feed (http://www.topix.com/austin), and so are not
tweets from local residents.

In the next step, we selected all Tweets in Austin that happened during the same flooding events
and sorted words according to their frequency of appearance in the selected Tweets. By doing so, we
are able to see which words are most often used during flooding events. The analysis result is illus-
trated in Figure 1, where the numbers represent number of tweets that contain the corresponding
key word. These results indicate most of the frequently appearing key words (with more than
2118 tweets) are not related to flooding. During this time period, some career channels had been

Figure 1. Frequency of keywords in tweets during the flooding events.
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actively using Twitter for advertising. Therefore, the key words ‘Hiring’, ‘#Jobs’, and ‘CareerArc’ have
received high ranks.

The NOAA storm events database contains comprehensive and detailed information on major
climatic events from January 1950 to November 2017, as entered by NOAA’s National Weather Ser-
vice (NWS). This database was used to search for flood events that occurred between January 2012
and December 2017 in Travis County (NOAA 2018). Search results indicate 88 flood events were
recorded with $122.1 million in total property damages. The City of Austin has created a Twitter
channel @ATXflood to support communication before, during and after a flood emergency. There-
fore, the keyword @ATXflood might be more reasonable to use for filtering the data than using the
above-mentioned methods (e.g. using the keyword ‘flood’ or ‘flood rescue’). The tweets that exactly
contained the ‘@ATXflood’ keyword were selected, 305 tweets in total. Each tweet contains geospa-
tial coordinates and a timestamp, which is treated as a user’s activity at that point. After that, the
normalized number of flood events data were plotted together with the normalized number of tweets
to observe the spatiotemporal correlation between them (Figure 2). A positive relationship occurs
during 2013 except from June to August, in 2014 from April to December, in 2015 from April to
May and from September to November, and most of the time in 2016. After that, we computed
the correlation coefficient between number of the @ATXflood tweets and number of flood events.
The overall correlation coefficient is 0.52, which indicates a moderate positive correlation, meaning
people use @ATXflood channel to tweet more frequently during flooding events than other times.
Therefore, it is reasonable to include @ATXflood Twitter data in the flood emergency decision pro-
cess as we have implemented in our proposed MCSDSS.

3.2. Case study

Austin city has experienced serious flooding problems throughout its history. Since the late 1970s,
the federal government has paid out $54 million for flood claims in Austin and $43 million more
in the rest of Travis County (Price 2016). To present the MCSDSS, this research considers a flooding
case in Austin that happed on 31 October 2013. The neighborhoods near Austin-Bergstrom Inter-
national Airport were overwhelmed when water from the nearby Onion Creek surged past its banks
and rolled into their streets, filling homes within minutes. The flood killed four people and damaged

Figure 2. Relationship between the number of Tweets from the @ATXflood channel and the number of flood events in Travis
County.
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more than 1,200 homes (Jervis 2013). During this flooding event, there were 52 @ATXflood tweets,
178 tweets containing the ‘flood’ keyword, and 11 tweets with both the ‘flood’ and ‘rescue’ keywords
captured. In the introduction section, we introduced two decision goals based on FEMA’s literature
from the perspectives of emergency response and recovery (FEMA n.d.a).

Decision goal 1: which area should rescue personnel go to first in order to save more lives? If the
disaster occurs over a large area and the government has limited resources, rescue personnel need to
prioritize interventions at the most vulnerable locations ahead of other locations in order to save
more lives.

Decision goal 2: which area had the most significant economic loss and needs the greatest finan-
cial support to recover from a flooding event?

The structure of our cyberGIS-enabled MCSDSS is presented in Figure 3. In this framework,
knowledge for making decisions is collected through interactions between domain experts (users)
and the user interface. The collected expert knowledge and geospatial data are stored in the knowl-
edge base, which can be used as input for the model management system. The model management
system includes two decision-making models that are used to combine multiple criteria values (social
vulnerability indicators) for creating an overall vulnerability score for the decision goals. Each census
block is considered as one alternative. For instance, the value for the aij variable in Equations (1) and
(2) were generated using normalized social vulnerability indicator values attached to each block. A
weight was simulated using the Simple Multi Attribute Rating Techniques (SMART), which assigned
an importance of 100 points to the most important criterion and the next-most-important criteria is
assigned a number of points reflecting the ratio of relative importance to the most important dimen-
sion (Olson 1996). Furthermore, our decision support system application is designed to enable group
decision-making capabilities, so that a group of decision-makers (DMs) can participate in the
decision-making process and assign weights to the criteria simultaneously. In this research work,
six GIS experts participated in simulating the weight for each criterion based on two decision
goals. A weight matrix W was generated where d refers to the number of DMs and n refers to the
number of evaluation criteria (Figure 3). The final weights were calculated by averaging the value
from each row in matrix W. Simulated weighting results are illustrated in Table 1. The weights
were normalized to represent variable wj in Equations (1) and (2). The area that has the highest
(or maximum) overall value is considered as the recommended place for earliest intervention.

Figure 3. An overview of cyberGIS-enabled MCSDSS.
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4. Results

This section presents the results of the case study. Our cyberGIS-enabled MCSDSS user interface was
implemented using the cyberGIS Jupyter computing platform. Figure 4 illustrates the user interface
of the implemented system. It contains several layers, such as a flood hazard layer and a Twitter layer
that the DM can switch on or off. In this article, the Twitter layer is used as an additional decision

Table 1. Simulated weights for the evaluation criteria in perspectives of two decision goals.

Evaluation Criteria Decision goal 1 Decision goal 2

Total population 74 83
People over 75 years old 87 70
People without health insurance 60 82
People in poverty 63 83
People in a minority group 60 68
Area median house value 47 66
Population education attainment 41 56
Number of children 93 79
People without a vehicle 78 58

Figure 4. The cyberGIS-enabled MCSDSS user interface.
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support tool added on the top of the decision model. The decision maker can use this tool to filter the
Twitter data using different keywords. In this article we used three keywords sets: ‘@ATXflood’,
‘flood’, and ‘flood’ combined with the keyword ‘rescue’. The filtered results are illustrated in Figure
4(A–C) respectively. In the future, this decision support tool can be developed further so the decision
maker can enter any keyword of interest and interactively observe the filtered results on the map. In
Figure 4(C), the blue pinpoint on the map represents a single tweet with content mentioning ‘flood’
and ‘rescue’ during the flooding event. If multiple tweets are geographically close to each other, they
are grouped and visualized as clusters on the map with the number indicating the count of tweets in
that region (see Figures 4(A and B)). The user can zoom in and out on the map and click on the blue
pinpoint to see the tweet contents. This application is capable of visualizing flood-related tweets in
real time, and thus help emergency management organizations identify areas and locations of people
that are at risk.

The left side of the Figure 4(A) illustrates the weighting slider, which can be used to assign weights
to the criteria that are relevant to the decision goals. If the DM selects the option ‘using weight from a
single user’, the vulnerability map will be generated based on the single submitted list of weights. If
the DM selects the option ‘using weight from a group of users’, the assigned weights will be first com-
bined with a weight matrix stored in a common accessible file managed by the CyberGIS-Jupyter
notebook. This weight matrix has the weight information previously submitted by other DMs in
the same group, and it will be updated based on the latest submitted weight. After that, the weight
will be averaged and normalized to generate the final weight to produce an overall vulnerability map.

The weights illustrated in Table 1 resulted in a vulnerability index map shown in Figure 5. For the
first decision goal, both models show block numbers 1, 4, and 5 received high vulnerability values,
and rescue personnel should go there first in order to save more lives in an emergency situation.
Most of the blocks that received middle-high category overall values in the TOPSIS model received
the highest overall values in the WSM. Block numbers 1, 2, 17, and 6 received high overall values in
the TOPSIS model but lower vulnerability values in the WSM model. In addition, block number 15
received the low category for both maps. For the second decision goal, block numbers 3, 4, 5, 13 and
14 received the highest overall values for both maps, meaning those blocks may suffer the most econ-
omic loss and need the most financial support for post event recovery. Most blocks that received
middle-high overall values in the TOPSIS model had high vulnerability value in the WSM. The
opposite situation applied to block numbers 1 and 2. Generally speaking, WSM produces a wider
range of values and higher output category estimations than the TOPSIS model. Block number 15
represents the Austin-Bergstrom international airport, which received a low vulnerability value
for all the decision models. This can be caused by fewer people living in that area compared to
the other blocks. However, there are 11 tweets contain ‘flood’ keyword near block number 15,
and most of them are relevant tweets. In this case, the decision maker should not ignore this
block due to the low vulnerability score produced by the decision models.

Sensitivity analysis is performed to observe the sensitivity of the criteria, and the results are illus-
trated in Table 2. The values in Table 2 represent the rank of criticality degrees of the criteria that are
explained in section 2.3. For the first decision goal, the number of children and people without
vehicles are the most sensitive criteria and median house value is the least sensitive criterion. It
means that if the weight of people without vehicles is changed, even by a small value, the census
block with the highest vulnerability values will most likely also change. In other words, the weight
of people without vehicles should be carefully determined by experts in a real-world decision- mak-
ing scenario. On the other hand, median house value is the least sensitive criterion so that the census
block with the highest vulnerability index is not likely to be changed even if the weight of median
house value is significantly increased or decreased. However, a big ranking difference between the
two decision models appears for some of the criteria, such as the criteria of people without health
insurance and the number of children. For the second decision goal, people without vehicles and
insurance are the most sensitive criteria, and population education attainment and the area median
house value are the least sensitive criteria. The number of children and people without health
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Figure 5. Vulnerability maps based on two decision-making models (WSM and TOPSIS).

Table 2. Sensitivity analysis results.

Criteria

Objective 1
(Rank of Criticality Degrees of

the Criteria)

Objective 2
(Rank of Criticality Degrees of

the Criteria)

TOPSIS WSM TOPSIS WSM

Total population 3 5 2 5
People over 75 years old 2 4 5 6
People without health insurance 7 3 6 1
People in poverty 5 6 3 4
People in a minority group 6 7 4 7
Area median house value 9 9 7 9
Population education attainment 8 8 9 8
Number of children 4 1 8 2
People without a vehicle 1 2 1 3
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insurance criteria received the greatest and the second greatest ranking difference between the two
decision models.

Model validation has been challenging task for multicriteria decision analysis (Qureshi, Harrison,
andWegener 1999; Meyer et al. 2014). In this article, we used sensitivity analysis to check the stability
of the decision model. Additionally, we developed a questionnaire to evaluate the decision model’s
results. The questionnaire contains all the attribute information for 10 blocks, such as total popu-
lation, number of children, people without a vehicle. The participants who have participated in the
first questionnaire was asked to fill in the second questionnaire. The decision maker has to give a
rank from 1 to 10, based on the given attribute information, where rank number 1 represents the
most vulnerable block. This is similar to a real-life emergency situation, in that rescue personnel
have to make the decision based on how well they know the area. All the participants said it was
hard to rank the 10 blocks based on many given attributes, and there is a need to develop a multicri-
teria decision support tool to make the ranking easier. After that, these blocks were ranked based on
the decision model’s vulnerability results and compared with the questionnaire results. By doing so,
we can see how well the decision model’s results match decision makers’ rapid thinking in real life.

The model validation result is illustrated in Table 3. The error rate for each block was calculated
using the absolute value of the difference between the decision model’s ranking results and the ques-
tionnaire’s ranking result and divided by the number of 10 (maximum value of the rank). After that
the average error rate was calculated. According to the results, both WSM and TOPSIS models pro-
duced a over 40% error rate for the decision objective 1, and a smaller error rate (over 20%) for the
decision objective 2.

5. Discussion

In this study, MCDM was used to combine different social vulnerability indicators to reach
decision goals that are related to emergency management. While we used a limited set of indi-
cators in this case study, more indicators, such as family income status, family structures, housing
characteristics, and flood severity (e.g. rainfall intensity), can be included in our proposed
MCSDSS in order to make this framework applicable for different kinds of disaster scenarios.
The flexible structure and portability of this technology also make it quickly adaptable for any
geographic context.

In this article, weights for different evaluation criteria were simulated by six GIS experts. How-
ever, the experts who participated in simulating the weights were not emergency management
domain experts, therefore the results of the study cannot be used to answer the decision goals cor-
rectly in a real-world situation. In the future, real domain experts such as rescue operation officers or
public agency professionals should use the application to generate weights in order to make the
analysis results more accurate and realistic for an actual disaster scenario.

Table 3. Model validation results.

Blocks WSM Model TOPSIS Model

Objective 1 Objective 2 Objective 1 Objective 2

1 0.1 0 0 0.2
2 0.8 0.8 0.8 0.8
3 0.2 0.1 0.2 0.1
4 0.4 0.5 0.4 0.5
5 0.6 0 0.5 0.1
6 0.2 0.3 0.4 0.4
7 0.8 0.1 0.9 0
8 0.3 0 0.4 0.1
9 0.4 0.1 0.4 0.1
10 0.6 0.5 0.4 0.3
Average Error 0.44 (44%) 0.24 (24%) 0.48 (48%) 0.26 (26%)
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One objective of this work is to develop a software application that enhances the communication
between citizens and emergency management organizations. Our application provides fine-grained
location (or exact location) information for rescue personnel to evacuate people who need help
during the disaster event using a Twitter data layer. For instance, rescue personnel can identify
the areas and people at risk by observing the content of a tweet and its corresponding location on
the map. Currently, we used three keyword sets to filter the tweets. In the future, text mining tech-
niques can be embedded in the tool to categorize tweets (e.g. according to Kongthon et al. (2012)’s
work) in order to support different types of decision problems. For instance, this tool can be devel-
oped further so the decision maker can enter any keywords that they think are useful and interac-
tively observe the filtered results on the map. Besides Twitter, this framework can be further
expanded by incorporating other social media postings (e.g. Facebook, Instagram, Snapchat/Snap
Map, etc.) to make it more useful for emergency responders and more accessible to wider audience.

In this application, our analysis is at the block group level, which is the finest-grained geographic
level in U.S. Census where socio-economic data is reported. It would have been better if we could use
the parcel level but enumerating data at that granular level will be a separate research project by itself.
In this article, we are proposing a computational framework, and it can be implemented later by res-
cue organizations using more detailed data (e.g. parcel level data or their own rescue data, which
might not be publicly available) to provide fine-grained location information.

Other important aspects of this application are ensuring consistent results or facilitating different
actors in quickly reaching an agreement. WSM produces more diverse values and a higher output
category estimation than the TOPSIS model. Simanaviciene and Ustinovichius (2010) found that
if the values of criteria differ by 10% from the average criterion value, the TOPSIS method is
more sensitive than the WSM. In our case, for both decision objectives, both models produced con-
sistent answer for some places that have high vulnerability. Both models provide interfaces (through
weights) for trials and errors from decision makers. We used sensitivity analysis to check the stability
of the decision model. Additionally, we developed a questionnaire to validate decision model’s
results. As a result, both WSM and TOPSIS produced similar validation results for each decision
objective. However, clear error differences appear between the two objectives. For instance, both
models produced a higher error rate for the first decision objective, and a lower error rate for the
second decision objective. Finally, the parameterization and evaluation of the models should depend
on a panel of experts and decision makers following Delphi style approaches. For instance, if there
are extremely limited rescue resources available, a decision maker might want to consider using the
results that are produced by the TOPSIS model first since it produces fewer hot spots than WSM
results.

6. Conclusion

In this article, we described a cyberGIS enabled decision support framework, which combines a high-
performance geospatial computing environment (cyberGIS Jupyter), advanced multi-criteria
decision analysis models, various types of social vulnerability indicators, and Twitter data to efficien-
tly support spatial decision-making processes in emergency management. The advantages of this
MCSDSS come from several perspectives. First, cyberGIS Jupyter enables collaborative big data ana-
lytics so various types of data sources can be integrated into the decision-making processes. Second,
multiple and conflicting objectives are common decision problems in emergency management. In
this study, two types of MCDMmodels (WSM and TOPSIS) were constructed, where many different
criteria can be combined to meet one or several objectives and give support in decision making.
Third, this framework supports group decision making and collaborative problem solving, which
is important since emergency management requires effective collaboration and coordination
among emergency responders. In this framework, emergency responders can work together to for-
mulate decision objectives, select relevant evaluation criteria, and perform interactive weighting and
sensitivity analysis. In addition, we developed an innovative way to use Twitter data to enhance

1378 Z. ZHANG ET AL.



communications between citizen and emergency management organizations, and therefore to
improve the awareness of various spatial situations. For instance, this framework can support
geo-visualization of near real-time Twitter data and help emergency organizations identify the
areas and people that are at risk. Finally, the interactive user interface enables the expert knowledge
of decision makers to be collected and incorporated to efficiently support spatial decision making for
emergency management.
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