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Abstract

Specifying the objective function that an AI system should
pursue can be challenging. Especially when the decisions
to be made by the system have a moral component, input
from multiple stakeholders is often required. We consider ap-
proaches that query them about their judgments in individual
examples, and then aggregate these judgments into a general
policy. We propose a formal learning-theoretic framework for
this setting. We then give general results on how to translate
classical results from PAC learning into results in our frame-
work. Subsequently, we show that in some settings, better re-
sults can be obtained by working directly in our framework.
Finally, we discuss how our model can be extended in a vari-
ety of ways for future research.

Introduction

As AI systems are being broadly deployed in the world, the
problem of specifying the objective functions that they pur-
sue is becoming ever more complex. Simple objective func-
tions that are sensible for the purpose of evaluating tech-
niques in the lab often cause unwanted outcomes in practice.
For example, one might try to simply minimize error rate in
a speech recognition system, only to realize that the result-
ing system performs extremely well on the majority dialect
but poorly on the minority dialect. This may socially not be
acceptable.

More generally, AI systems increasingly need to make
difficult tradeoffs. Should a self-driving car take an action
that increases the risk for a nearby pedestrian, but reduces
it for the occupant of the car? Should an algorithm that
matches patients and donors in a kidney exchange priori-
tize younger patients even if this reduces the total number
of matches? Given that today’s AI systems do not have a
broad understanding of the world, they cannot appropriately
make these tradeoffs themselves; human input is required.
But these problems are difficult for humans too, and they
will not always agree.

One approach to doing so is the following (Conitzer et al.
2017; Noothigattu et al. 2018). Ask multiple human subjects
what option they would choose in certain situations in the
domain at hand; from this, learn a model for each of them,
predicting what they would choose in other situations; and
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then, use techniques from social choice theory (Brandt et al.
2015) to aggregate this into a single decision policy for the
AI system. For example, the “Moral Machine” website de-
veloped at MIT invites visitors to consider various scenarios
in which the car will necessarily end up killing one group
of people (and/or animals) or another, and ask them which
they would choose.1 Indeed, these responses have been ag-
gregated into policies via a voting-based approach (Nooth-
igattu et al. 2018). In a similar project, MTurkers were asked
such comparison queries in the context of kidney exchanges
and their responses were aggregated into a policy (Freedman
et al. 2018).

Human subject responses are not freely available. They
either require compensation (e.g., MTurkers) or a gamified
design that makes it enjoyable to participate but may come
at other costs.2 This raises several related questions for the
purpose of designing similar systems. How many responses
should we aim to get? Do we need to recruit many distinct
subjects, or does it suffice to have many responses from
a few subjects? Do random queries suffice or should we
actively design them? In this paper, we propose a formal
learning-theoretic framework for this problem, building on
the framework of Probably Approximately Correct (PAC)
learning (Valiant 1984). In our model, there is a single cor-
rect concept c∗ that we attempt to learn.3 Each human sub-
ject j has her own concept cj , which is a noisy estimate of
the correct concept. When we ask subject j query xj,k, the
subject will respond with yj,k according to her own concept
cj . From these responses, we aim to learn the correct con-
cept c∗.

1This project has been much maligned for focusing on an unre-
alistic problem. But there is no doubt that self-driving cars will face
some problems where they will have to make such tradeoffs, for ex-
ample in deciding how aggressive to be in merging lanes (Sadigh
et al. 2016).

2The Moral Machine team has been open about prioritizing the
site going viral over other objectives.

3In the context of moral decision making, it is of course a matter
of philosophical debate whether there is truly a correct concept,
and we will not resolve this debate here. However, belief that such
a correct concept exists is not necessary to use our methodology;
one might also see it as merely a useful fiction to proceed with the
analysis, as is sometimes done in voting theory as well (Elkind and
Slinko 2015).
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In the remainder of the paper, we first formally introduce
the framework. We then give general results on how to trans-
late classical results from PAC learning into results in our
framework. Subsequently, we show that in some settings,
better results can be obtained by working directly in our
framework. Finally, we discuss how our model can be ex-
tended in a variety of ways for future research.

Related Work

There is a rich body of research on learning from mul-
tiple entities, among which most closely related to ours
are collaborative learning (Blum et al. 2017; Qiao 2018),
domain adaptation (Mansour, Mohri, and Rostamizadeh
2009a; 2009b), and learning from nearby sources (Cram-
mer, Kearns, and Wortman 2006; 2008). Collaborative learn-
ing concerns a setting in which multiple agents try to learn
the same concept with respect to their own distinct distri-
butions of data points; in contrast, in our setting, agents
draw data points from the same global distribution, but la-
bel based on their own noisy concepts. Domain adaptation
concerns a problem in which, given concepts with small er-
rors w.r.t. different distributions, the goal is to aggregate the
given concepts into a new one, with small error w.r.t. any
mixture of the distributions. The setting is intrinsically dif-
ferent from ours, in the sense that (1) in our setting, all data
points are from the same distribution (but are labeled accord-
ing to different noisy concepts), and (2) our goal is to recover
the ground truth instead of combining existing slightly er-
roneous ones into another slightly erroneous one. Learning
from nearby sources considers a problem in which, given la-
beled data sets w.r.t. different sources and the “similarity”
between these sources, the goal is to select a subset of data
that will result in the best model for each of the sources.
This problem, while being similar to ours in terms of the ex-
istence of multiple sources, studies estimation of many po-
tentially unrelated concepts, instead of one ground truth.

Another line of work is noise-tolerant learning (Kearns
1998; Blum, Kalai, and Wasserman 2003; Natarajan et al.
2013). This problem is similar to ours in the sense that the
goal is also to learn a target concept with noisy data points.
However, in noise-tolerant learning, noise models are usu-
ally less structured: normally, all data points are corrupted in
a more or less homogeneous way, at random (e.g., flipping
each label independently with a fixed probability) or adver-
sarially. Relatedly, Michael (2010) considers PAC learning
when part of each data point is hidden, and Blum and Cha-
lasani (1992) consider a setting where whenever a data point
is labeled, it is labeled according to some concept drawn
randomly or adversarially from a fixed set. In our model,
in contrast, it is known which data points are from which
agent, and each agent labels according to a single concept;
the aggregation algorithm can, and should, make use of this
information.

Judgment aggregation is a central topic in social choice
theory, to which a significant body of research has been
devoted (e.g., (Endriss, Grandi, and Porello 2012; Endriss
2016)). There, the problem is how to aggregate diverse judg-
ments into a single outcome. In contrast, in this paper, we
focus less on pure social-choice-theoretic aspects and more

Agent x1 x2 x3 y
Alice 1 0 0 1

Alice 1 0 1 1

Alice 1 1 0 1

Bob 1 0 0 0

Bob 1 0 1 1

Bob 0 0 1 0

Charlie 1 0 0 0

Charlie 1 1 0 1

Charlie 0 0 1 0

Table 1: Reports by the agents.

on statistical learning aspects.

The PAC Judgment Aggregation Model

Before formally introducing our model, first we discuss a
concrete example.

Example 1. Suppose we want to learn a Boolean conjunc-
tion formula from the agents. Each of the 3 agents, Alice,
Bob, and Charlie, has responded to 3 queries (see Table 1).
Observe that every agent is consistent, in the sense that there
is indeed a Boolean conjunction that conforms with her/his
reports. In particular, Alice’s formula is x1, Bob’s is x1∧x3,
and Charlie’s is either x2 or x1 ∧ x2. But our goal is to find
an aggregate conjunction.

One way to aggregate the responses of the 3 agents is
to find the Boolean conjunction that conflicts with as few
reports as possible. The resulting aggregate conjunction is
x1, which conflicts only with Bob’s first report and Char-
lie’s first report. One may check that any other conjunction
conflicts with more data points.

An alternative way of aggregating is to first compute the
majority label on every feature vector, and then find the for-
mula that conflicts with as few of the majority labels as pos-
sible. Among the 9 data points, there are only 4 distinct fea-
ture vectors: (1, 0, 0), (1, 0, 1), (1, 1, 0) and (0, 0, 1), and the
majority judgments on these feature combinations are 0, 1,
1, and 0, respectively. Given these majority labels, there are
4 formulas that conflict with only 1 label: x1, x2, x1 ∧ x2,
and x1 ∧ x3. Depending on the tie-breaking rule, any one of
these 4 might be the aggregate formula.

From the above example, we see that the aggregate re-
sult depends heavily on the method used. To decide which
method is best, we consider the following statistical model
of the problem. As described in the introduction, this model
assumes that every agent responds to data points (feature
vectors) according to her own noisy estimate of the correct
concept. Formally:

Definition 1 (PAC Judgment Aggregation). Given a dis-
tribution of data points D, a concept class C where each
c ∈ C maps each data point in the support of D to a label
in {−1, 1}, and a noisy mapping ν : C → ∆(C)4 which
maps each concept to a distribution over concepts, the PAC

4∆(C) denotes the family of distributions over C.
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judgment aggregation problem (with parameters ε and δ) is
defined as follows:

1. A ground truth concept c∗ ∈ C is chosen.

2. m agents’ concepts, denoted by A = (c1, . . . , cm) are
generated by drawing independent and identically dis-
tributed (i.i.d.) samples from ν(c∗).

3. ℓ data points are generated for each agent j, by draw-
ing i.i.d. samples (xj,k)k∈[ℓ]

5 and attaching to each sam-

ple xj,k the label yj,k = cj(xj,k), together forming
((xj,k, yj,k))k∈[ℓ].

4. Based on the data points (((xj,k, yj,k))k∈[ℓ])j∈[m], a
learning algorithm computes a hypothesis h ∈ C. We
are interested in algorithms that, with probability at least
1− δ, compute a hypothesis h that satisfies:

Pr
x∼D

[c∗(x) 6= h(x)] ≤ ε.

Definition 1 can be viewed as a natural generalization of
the PAC learning model in the presence of noise in agents’
judgments. In fact, if the noise vanishes, i.e., if the noisy
mapping satisfies that for any c ∈ C, Prcν∼ν(c)[c = cν ] = 1,
then with probability 1, every agent has the same concept—
the ground truth. In this special case, it does not help to
query more than 1 agent, so that PAC aggregation coincides
with PAC learning.

In the rest of this paper, we consider finite concept classes,
and focus on exact recovery of the ground truth. That is, we
consider algorithms that with probability 1 − δ output the
correct concept, h = c∗. This is natural when C is finite:
fixing a distribution D, for any ε smaller than the minimum
probability that two concepts differ, the algorithm must out-
put exactly the ground truth with high probability.6

General Algorithms for PAC Aggregation

In this section, we present two paradigms to extend general
sample complexity upper bounds from the traditional PAC
learning setting to our PAC aggregation setting.

Before proceeding to the paradigms, we define the dis-
tance between two concepts, which helps simplify the nota-
tion. The intuition is straightforward: fixing the distribution
D over data points, the probability that two concepts differ at
a random data point induces a metric over the concept class.
Formally, for two concepts c1 and c2, we define the distance
between c1 and c2 to be

d(c1, c2) = Pr
x∼D

[c1(x) 6= c2(x)].

One can show that d(·, ·) is indeed a metric over C; in par-
ticular, it satisfies the triangle inequality.

With the above definition of distance between concepts,
in Definition 1, one may equivalently require the output
hypothesis h to satisfy: with probability at least 1 − δ,
d(c∗, h) ≤ ε. In the rest of the paper, we will use this simpler
notation whenever possible.

5[ℓ] denotes the set {1, 2, . . . , ℓ}.
6We assume that any two distinct concepts differ with positive

probability, i.e., the probability of drawing a data point on which
they disagree is positive.

Occam’s Razor

Recall the following basic result in PAC learning for when
the concept class is finite:

Proposition 1 (Occam’s Razor for PAC learning (Folklore)).

With O
(

log(|C|/δ)
ε

)

data points, a concept c that minimizes

empirical error, which by definition is consistent with c∗ on
all data points, satisfies d(c, c∗) ≤ ε with probability at least
1− δ.

For exact recovery, when the minimum gap between any
two concepts is α (i.e., minc1 6=c2 d(c1, c2) = α), setting

ε = α/2, Occam’s Razor guarantees that O
(

log(|C|/δ)
α

)

data points are sufficient to recover c∗. Note that the num-
ber of required data points increases as the size of the con-
cept class C increases and the gap α decreases. In the rest
of this subsection, we prove an extension of Occam’s Razor
to the PAC aggregation model, with an additional parameter
characterizing the dependence on the strength of the noise
(which is always 0 in PAC learning).

Theorem 1 (Occam’s Razor for PAC Aggregation). Sup-
pose the noisy mapping ν satisfies the following two condi-
tions:

1. For any c and c′ 6= c,

Ecν∼ν(c)[d(c, cν)] ≤ Ecν∼ν(c)[d(c
′, cν)]− αOR.

2. For any c and c′ (where possibly c = c′), letting cν ∼
ν(c), d(c′, cν) is sub-Gaussian with parameter β, i.e., for
any λ ∈ R,

E[exp(λ(d(c′, cν)− E[d(c′, cν)]))] ≤ exp(β2λ2/2).

Then, using m = O
(

log(|C|/δ)β2

α2

OR

)

agents and ℓm =

O
(

log(|C|/δ)
α2

OR

)

data points in total, with probability at least

1−δ, a concept c that minimizes the empirical error, defined
as

errA,S(c) =
1

ℓm

∑

j∈[m],k∈[ℓ]

I[c(xj,k) 6= yj,k],

is the ground truth.

Before proving the theorem, we briefly discuss the impli-
cations of its components:

Dependence on |C|. The main message of the theorem is
similar to that of the classical Occam’s Razor result for PAC
learning: with sufficiently many data points, with high prob-
ability, an empirical error minimizer recovers the ground
truth. Both m and ℓm are required to increase proportion-
ally to log(|C|). In other words, if the concept class is small,
then few agents and data points suffice to recover the ground
truth. This is why the result is named after Occam’s Razor—
simpler models tend to explain the world better.
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Dependence on αOR. Condition 1 of the theorem states
that in expectation, the noisy version cν of a concept c is
closer to c than to any other concept. The gap αOR by
which cν is closer to c than to any other concept deter-
mines the number of agents and samples required to re-
cover c. The larger the gap is, the fewer agents and sam-
ples are required. In particular, when the noise vanishes, for
c, c′ 6= c, and cν ∼ ν(c), we have c = cν , and therefore
d(c, cν) = d(c, c) = 0, and d(c′, cν) = d(c, c′). In such
cases, αOR is the minimum distance between two distinct
concepts.

Dependence on β. Condition 2 of the theorem states that
the distribution of noisy judgments is well concentrated,
in the sense that the distance between cν and any concept
is a sub-Gaussian random variable with parameter β. The
smaller β is, the fewer agents are required. This condition
may appear rather strong at first sight. Nevertheless, since
d(c′, cν) ∈ [0, 1], it is always true that d(c′, cν) is sub-
Gaussian with parameter 1/2 (i.e., β ≤ 1/2). In natural
noise models, the sub-Gaussian parameter β goes to 0 as
the noise vanishes, in which case the number of agents re-
quired is significantly reduced. For example, if the noisy ver-
sion cν of c is never too far away from c—i.e., for any c,
cν ∼ ν(c), we have d(c, cν) ≤ γ with probability 1—then
we have β ≤ min{γ, 1/2}. This is because for any c′, by the
triangle inequality d(c′, cν) ∈ [d(c, c′)− d(c, cν), d(c, c

′) +
d(c, cν)] ⊆ [d(c, c′)− γ, d(c, c′) + γ], and any random vari-
able with a support of length bounded by 2γ is sub-Gaussian
with parameter γ. In particular, when there is no noise (i.e.,
cν = c with probability 1), we have β = 0, and m = 1
agent suffices7—corresponding to the traditional PAC learn-
ing setting.

Tradeoff between m and ℓ. When β = o(1), the required
number of agents m is asymptotically smaller than the total
number of data points ℓm. As a result, a tradeoff between m
and ℓ emerges: while keeping the probability of failure δ the
same, one may use more data points per agent in order to de-
crease the number of agents needed (and vice versa), as long
as the number of agents meets the minimum requirement.

Learnability with ℓ = 1 data point per agent. Setting
β = 1/2 in the second condition of Theorem 1, we immedi-
ately obtain the following simpler version:

Corollary 1 (Occam’s Razor, Simplified). Suppose the
noisy mapping ν satisfies: for any c and c′ 6= c,

Ecν∼ν(c)[d(c, cν)] ≤ Ecν∼ν(c)[d(c
′, cν)]− αOR,

Then, using m = O
(

log(|C|/δ)
α2

OR

)

agents and ℓ = 1 data point

per agent, with probability 1 − δ, a concept that minimizes
the empirical error is the ground truth.

In other words, with sufficiently many agents, one data
point per agent suffices to recover the ground truth.

7Here, we abuse notation to allow 1 = O(0).

Computational efficiency. Like the classical Occam’s
Razor result for PAC learning, Theorem 1 does not guaran-
tee computational efficiency. This is because it is sometimes
hard to compute a minimizer of the empirical error. Indeed,
it is impossible to design general algorithms for PAC learn-
ing/aggregation that are “computationally efficient” without
specifying the representation of the particular problem. In
a later section, we present computationally efficient algo-
rithms in several specific settings. We now turn back to prove
Theorem 1.

Proof of Theorem 1. First we define some notation. Recall
that A = (c1, . . . , cm) is the (ordered) set of agents. Let
S = ((xj,k)k)j be the (ordered) set of data points. Let

errA(c) = ES∼Dℓm [errA,S(c)]

err(c) = EA∼(ν(c∗))m [errA(c)].

denote the expected empirical error of a concept c, with the
latter expression also taking the expectation over the agents’
concepts. For each c ∈ C, we show that with high probabil-
ity, the empirical error of c is close to its expectation. Fixing
c, consider two events:

• E1: |errA,S(c)− errA(c)| ≤
1
6αOR.

• E2: |errA(c)− err(c)| ≤ 1
6αOR.

We show that both events happen with high probability, so
with high probability they happen simultaneously, in which
case we have:

|errA,S(c)− err(c)| ≤
1

3
αOR.

First we bound the probability that E1 does not hap-
pen. Note that conditioned on A, errA,S(c) is the aver-

age of ℓm independent r.v.’s in [0, 1], namely {I[c(xj,k) =
yj,k]}j,k, with mean errA(c). Applying the Hoeffding bound

to errA,S(c) conditioned on A, we have

Pr

[

|errA,S(c)− errA(c)| >
1

6
αOR

]

≤ 2e−ℓmα2

OR
/18 ≤

δ

2|C|
.

Now consider E2. Observe that errA(c) =
1
m

∑

j d(c, c
j)

and err(c) = Ecν∼ν(c∗)[d(c, cν)]. It follows that errA(c) is

sub-Gaussian with parameter β√
m

. Applying the Hoeffding

bound for sub-Gaussian variables to errA(c) gives

Pr

[

|errA(c)− err(c)| >
1

6
αOR

]

≤ 2e−mα2

OR
/72β2

≤
δ

2|C|
.

Now taking the union bound over the two events and all
concepts, with probability 1− δ, for any c ∈ C,

|errA,S(c)− err(c)| ≤
1

3
αOR.

In that case, for any c 6= c∗, we have

errA,S(c
∗) ≤ err(c∗) +

1

3
αOR ≤ err(c)−

2

3
αOR

≤ errA,S(c)−
1

3
αOR < errA,S(c).

In other words, c∗ minimizes the empirical error.
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Majority Voting

When the support of D, denoted by |D|, is finite, another
way to aggregate agents’ judgments is to first estimate their
individual concepts, and then let these estimated concepts
take a majority vote for each x in the support of D (denoted
by x ∈ D). Formally, we have:

Theorem 2. When |D| is finite, if

1. the minimum distance between concepts is αMV > 0, and

2. the noisy mapping satisfies, for some θ > 0, that for any
x ∈ D, Prcν∼ν(c)[c(x) = cν(x)] ≥

1
2 + θ,

then with m = O
(

log(|D|/δ)
θ2

)

agents and ℓ =

O
(

log(|C| log |D|/θδ)
αMV

)

data points per agent, the pointwise

majority concept h of the empirical error minimizers hj of
each agent’s data points, i.e., the concept h such that for any

x ∈ D, h(x) = sgn
(

∑

j h
j(x)

)

, is the ground truth with

probability 1− δ.

Again, before proceeding to the proof, we discuss the im-
plications of the various components of the theorem.

Dependence on |C|. As in the Occam’s Razor result, the
number of data points required by the majority-voting ap-
proach depends logarithmically on |C|. However, unlike in
Occam’s Razor, the number of agents required for majority
voting does not explicitly depend on |C|. This can be par-
tially explained by the fact that since |D| < ∞, there are at

most 2|D| possible concepts in total.

Dependence on |D|. Although, in contrast to Occam’s Ra-
zor, majority voting requires D to be finite, one may observe
that the dependence on |D| is rather mild, i.e., logarithmic
for m and doubly logarithmic for ℓ. This means majority
voting remains relatively efficient even when |D| grows ex-
ponentially fast.

Dependence on αMV. The parameter αMV here is similar
to αOR in Occam’s Razor, in the sense that when the noise
vanishes, i.e., Prcν∼ν(c)[cν = c] = 1, the two parameters
are exactly the same. The key difference is that, for majority
voting, αMV does not depend on the strength or form of the
noise.

Dependence on θ. Majority voting requires that the noisy
concepts are more likely to agree with the ground truth.
The parameter θ can be viewed as the distance between
the expected judgment and a random guess, which in some
sense characterizes the strength of the noise. The larger θ is,
the easier to distinguish the noisy judgments from random
guesses and extract the ground truth, and therefore fewer
agents and data points are required.

Now we prove Theorem 2.

Proof of Theorem 2. We first show that with probability
1 − δ

2 , the empirical error minimizers for the agents’ data

points coincide exactly with the agents’ concepts. Ac-

cording to Proposition 1, with ℓ = O
(

log(|C|m/δ)
αMV

)

=

O
(

log(|C| log |D|/θδ)
αMV

)

data points, hj = cj with probability

at least 1− δ
2m . Taking the union bound over the m agents,

we conclude that with probability at least 1− δ
2 , it is the case

that for every j, hj = cj .
Now, conditioning on the event that hj = cj for any j,

we show that majority voting recovers c∗ exactly with prob-
ability at least 1 − δ

2 . Consider some x ∈ D where w.l.o.g.

c∗(x) = 1. Since Prcj∼ν(c∗)[c
j(x) = 1] ≥ 1

2 + θ, the Cher-
noff bound gives

Pr





1

m

∑

j∈[m]

hj(x) ≤ 0



 ≤ exp(−θ2m/2).

With m = O
(

log(|D|/δ)
θ2

)

, the right hand side is at most

δ
2|D| . Taking the union bound over the support of D, we

have: with probability 1− δ
2 , for all x ∈ D, h(x) = c∗(x).

Recall that the immediately preceding argument condi-
tioned on hj = cj for all j, which happens with probability
at least 1 − δ

2 . Taking the union bound over the two parts,
it follows that with probability at least 1 − δ, the pointwise
majority concept h is exactly the ground truth c∗.

Finally, we note that the definition of the pointwise ma-
jority concept does not guarantee its membership in C. This
is not a problem, because when the algorithm succeeds, we
do have h ∈ C since c∗ ∈ C. When it fails and h /∈ C, we can
let the algorithm output an arbitrary hypothesis in C.

Occam’s Razor vs. Majority Voting

Occam’s Razor (Theorem 1) and majority voting (Theo-
rem 2) rely on different parameters. As these parameters
vary across settings, either approach may be preferred over
the other. Two key differences are:

1. Theorem 2 requires both |D| and |C| to be finite, while
Theorem 1 depends only on |C|. This means majority vot-
ing may fail when the support of D is infinite.

2. The parameter αMV in Theorem 2 is always positive, but
Theorem 1 puts a strong requirement on the gap αOR that
in principle does not always hold. As an extreme (if un-
realistic) example, suppose that the noisy mapping ν is
actually a deterministic permutation of the concept space
C. In this case, the noisy version of a concept is clearly
closer in expectation to another concept, namely the con-
cept to which it is deterministically mapped.

Tighter Bounds in Restricted Settings

In this section, we consider a linear model, where each con-
cept c is an n-dimensional vector in R

n. For a data point x
(also in R

n), the label that c assigns to x is determined by
the sign of c · x, denoted by sgn(c · x).8

8For simplicity, we consider only D such that for any c,
Prx∼D[c · x = 0] = 0. Alternatively, we may say when c · x = 0,
the label is 0. Our results are consistent with either convention.
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ALGORITHM 1: Aggregation algorithm for binary judgments.

Input : ℓ labeled samples each from m agents {(xj,k, yj,k)}j,k.
Output: h which with high probability is equal to c∗.
for i ∈ [n] do

Let hi ← sgn
(

∑

j,k sgn
(

xj,k
i

)

yj,k
)

end
Output h = (hi)i

One example of the linear model is pass/fail exams in
which there are n true-or-false questions. If concept c∗ is the
ground truth solution, then the correct answer to question i is
sgn(c∗i ) and that question is worth |c∗i | points, i.e., the right
answer to the i-th question increases the score by |c∗i |, and
the wrong one decreases the score by |c∗i |. The support of
D is {−1, 1}n, where x ∈ D corresponds to a completed
exam with a true or false (1 or −1) answer to every ques-
tion. Hence, indeed, the correct score for completed exam x
is c∗ · x. A completed exam should get a grade of “Pass” if
c∗ ·x > 0 and “Fail” otherwise. Unfortunately, there are only
imperfect evaluators—the m judges—available to grade the
exams, where judge j’s estimate of the ground truth is cj .
Thus, when judge j evaluates an exam, j will output “Pass”
if and only if cj · x > 0. Each judge j makes P/F decisions
about ℓ sampled completed exams {xj,k}k∈[ℓ]. Given these
samples and labels, our aim is to recover the ground truth c∗.
(In real applications, an “exam” can be any test with a vector
of binary outcomes, and a “judge” any individual that makes
judgments about what the overall result should be.)

We show that in certain settings, while the general Oc-
cam’s Razor (Theorem 1 and Corollary 1) and majority vot-
ing (Theorem 2) results yield nontrivial sample complexity
bounds, both the required number of agents m and the total
number of data points ℓm can be significantly reduced us-
ing setting-specific methods. We further prove nearly tight
lower bounds on m and ℓm.

Efficient Learning Algorithms

We give efficient algorithms for two restricted settings in the
linear model. First, we consider the following setting: the at-
tributes of instances are i.i.d., agents only make binary (pos-
itive/negative) judgments about (i.e., place binary weights
on) each attribute, and each agent’s judgment about an at-

tribute cji is obtained independently by flipping the corre-
sponding judgment in the ground truth, c∗i , with some fixed
probability. We show that as long as the distribution of the at-
tributes is not extremely heavy-tailed and the noisy mapping
preserves some information about the ground truth, then we
can efficiently recover the ground truth. Formally, we prove
the following theorem:

Theorem 3 (Binary Judgments, I.I.D. Symmetric Distribu-
tions). Suppose that C = {−1, 1}n; for each i ∈ [n],
Di = D0 is a non-degenerate9 symmetric distribution with
bounded absolute third moment; and the noisy mapping with

9D is non-degenerate if for X ∼ D, Pr[X = 0] 6= 1.

noise rate η satisfies

ν(c)i =

{

ci, w.p. 1− η
−1, w.p. η/2
1, w.p. η/2

,

Then, Algorithm 1 with m = O
(

ln(n/δ)
(1−η)2

)

agents and ℓm =

O
(

n ln(n/δ)
(1−η)2

)

data points in total outputs the correct con-

cept h = c∗ with probability at least 1− δ, in O(ℓmn) time.

The proof of Theorem 3, as well as those of Propositions 2
and 3 and Theorems 4, 5 and 6, are available in the appendix
of the full version of the paper. To demonstrate the power of
setting-specific algorithms, we compare Theorem 3 with the
guarantees provided by Theorems 1 and 2.

Performance of Occam’s Razor. Recall that the bounds
of Theorem 1 rely on 3 parameters: |C|, αOR and β. When
C = {−1, 1}n, |C| = 2n, and one may show:

Proposition 2. When C and ν satisfy the conditions in The-
orem 3, and D is the uniform distribution over {−1, 1}n, we

have αOR = Θ
(

1−η√
n

)

.

So, applying Theorem 1 to the above setting, we obtain

that with ℓm = O
(

n2 log(1/δ)
(1−η)2

)

data points (and m ≤ ℓm

agents10), the empirical error minimizer is the ground truth
with probability 1− δ. That is, even with the further restric-
tion that the distribution D is uniform, this number is larger
roughly by a factor of n than the corresponding requirement
of Theorem 3.

Performance of majority voting. Now we consider The-
orem 2. The parameters involved are |C| = 2n, |D| = 2n,
αMV and θ. One may show:

Proposition 3. When C and ν satisfy the conditions in The-
orem 3, and D is the uniform distribution over {−1, 1}n, we

have αMV = Θ(n−1/2) and θ = Θ
(

1−η√
n

)

.

So, applying Theorem 2, majority voting requires m =

O
(

n2 log(1/δ)
(1−η)2

)

agents and ℓm = O
(

n7/2 log(n/(1−η)δ)
(1−η)2

)

data points in total. The number of agents required is at
least the same as that of Occam’s Razor, and the number
of data points is even larger than that of Occam’s Razor by

a factor of n3/2. To summarize, for the setting above, the
setting-specific algorithm outperforms the general ones, and
Occam’s Razor outperforms majority voting.

We now proceed to an efficient algorithm for another set-
ting, where the distributions of the attributes are independent
(but not necessarily identical) Gaussian distributions, agents
have discrete (instead of binary) judgments about each at-
tribute, and the noisy mapping flips the sign of the judgment
of the attribute independently with some fixed probability. In

10The parameter β appears hard to sharply estimate in this set-
ting, which is why we do not compare the requirements on m — it
would be less meaningful to compare based on a loose estimation
of β.
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ALGORITHM 2: Aggregation algorithm for discrete judgments.

Input : ℓ labeled samples each from m agents {(xj,k, yj,k)}j,k.
Output: h which with high probability is equal to c∗.
for i ∈ [n] do

Let s2i ←
1

ℓm

∑

j,k(x
j,k)2

Let ai ←
1

si

1

ℓm

∑

j,k sgn
(

xj,k
i

)

yj,k

end
Let a0 ← mini ai

for i ∈ [n] do
Let hi = pi/qi be the closest fraction to ai/a0, where
pi, qi ∈ Z ∩ [−d, d] and pi > 0.

end
Output h = (hi)i

words, at the cost of further restricting the shape of the distri-
bution D, this setting allows more heterogeneity across the
attributes, in the sense that the sizes of both the attributes’
values and the judgments can vary. Formally, we prove:

Theorem 4 (Discrete Judgments, Independent Gaussian
Distributions). For constant d, suppose that C = (Z ∩
[−d, d])n; for each i ∈ [n], Di = N (0, σ2

i ) is a Gaussian
distribution with mean 0 and standard deviation σi ∈ [1, d];
and the noisy mapping with noise rate η satisfies

ν(c)i =

{

ci, w.p. 1− η
−|ci|, w.p. η/2
|ci|, w.p. η/2

,

Then, Algorithm 2 with m = O
(

ln(n/δ)
(1−η)2

)

agents and ℓm =

O
(

n ln(n/δ)
(1−η)2

)

data points in total outputs a correct concept

h, in the sense that there is some α ∈ R
+ such that h = αc∗,

with probability at least 1− δ, in O(ℓmn) time.

Lower Bounds

Now that we have provided some efficient algorithms, we
discuss the information-theoretic hardness of the linear
model. We show that, even in highly restricted settings, the
numbers of agents and data points required to recover the
ground truth are roughly the same as the upper bounds ob-
tained in Theorems 3 and 4.

In our first lower bound, we restrict attention to binary
judgments. We show that even if the algorithm is given each
agent j’s exact concept cj—which is the most it could hope
to learn for any number ℓ of samples per agent—it still needs

Ω
(

log(n/δ)
(1−η)2

)

agents to recover the ground truth. Formally:

Theorem 5 (Lower Bound: Number of Agents). If C =
{−1, 1}n and Di is the uniform distribution over {−1, 1},
then any algorithm that outputs the correct concept with

probability 1− δ requires m = Ω
(

log(n/δ)
(1−η)2

)

agents.

We note that this lower bound extends immediately to the
discrete-judgments setting in Theorem 4. It follows that the
requirement on the number of agents in Theorems 3 and 4

(i.e., m = O
(

log(n/δ)
(1−η)2

)

) is tight up to a constant factor.

Next, we prove a lower bound on the total number of data
points (or agents) when each agent reports only 1 data point.

Theorem 6 (Lower Bound: Total Number of Data Points).
If C = {−1, 1}n, Di is the uniform distribution over {−1, 1}
or the standard Gaussian distribution N (0, 1), the number

of data points per agent is ℓ = 1, and 1 − η = Ω(n−1/2),
then any algorithm that outputs the correct concept with

constant probability requires ℓm = Ω
(

n
(1−η)2

)

data points

in total.

Given Theorem 6, the requirement in Theorems 3 and 4

(i.e., ℓm = O
(

n log(n/δ)
(1−η)2

)

) is tight up to a factor of

log(n/δ), when ℓ = 1. We suspect that the loss of the
log(n/δ) factor is due to an intrinsic limitation of the mu-
tual information argument used to prove the theorem.

Discussion

Our objective in this paper has been to introduce a general
framework for learning from multiple agents’ judgments,
and to illustrate the types of results that can be obtained in
this framework. Much work remains to be done.

While we have provided some results that are quite gen-
eral, we have also shown that sometimes stronger results can
be obtained for more specific settings, with specific assump-
tions on the distribution of instances, concept class, and
noise in the agents’ perceived concepts. This raises the ques-
tion of whether similar results can be obtained under differ-
ent assumptions that may fit particular applications better. It
should be noted that in many cases, an efficient PAC aggre-
gation algorithm also implies an efficient algorithm in the
simpler traditional PAC learning model for the same con-
cept class. However, PAC learning of some natural concept
classes is known to be computationally hard. For example,
efficient PAC learning algorithms for 3-term DNFs do not
exist unless RP = NP (see (Kearns, Vazirani, and Vazirani
1994)); hence, the same is true for efficient PAC aggregation
algorithms in this setting.

A natural variant would allow active learning, where in-
stead of receiving the labels for random instances, the al-
gorithm can choose which instances it would like to have
labeled (and by which agents).11 Indeed, if we consider set-
tings such as that of the MIT Moral Machine, this is po-
tentially a sensible model, because those who designed the
website control which instances are shown. It would thus be
desirable to extend the theory of active learning to this set-
ting. For example, the majority voting paradigm, which we
use to translate passive learning algorithms to our setting,
works for active learning too. One may show:

Theorem 7 (informal). Given a PAC active learning al-
gorithm for concept class C, under distribution D of data
points, where |C| and |D| are finite and the conditions in
Theorem 2 are satisfied, with sufficiently many agents and
data points, the algorithm that (1) runs the PAC active learn-
ing algorithm on each individual agent’s data points, and

11There are, in fact, multiple variants; for example, one variant
would require that every agent sees the same instances.
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then (2) outputs the concept that is the the pointwise ma-
jority of the concepts learned in the first step, recovers the
ground truth with high probability.

One downside of the active learning approach in this con-
text is that the precise instances shown would depend on (for
example) the concept class, so that one could not simply re-
use the same data for a different concept class. If gathering
data from human subjects is costly (in terms of both finances
and effort), then using random instances would allow for
better re-use (also by other researchers) of the data. Also,
of course any upper bound in the passive model still applies
in the active model.

One could imagine other modes of interaction yet. For ex-
ample, we may show an instance to three agents and ask
them to come to a consensus judgment (cf. (Goel and Lee
2016; Fain et al. 2017)). The space of possible designs is
extremely broad, and there is much potential for both theo-
retical and empirical work.
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