The Complexity of Dynamic Data Race Prediction

Umang Mathur Andreas Pavlogiannis Mahesh Viswanathan
University of Illinois, Urbana Aarhus University University of Illinois, Urbana
Champaign Denmark Champaign
USA USA

umathur3@illinois.edu

Abstract

Writing concurrent programs is notoriously hard due to
scheduling non-determinism. The most common concur-
rency bugs are data races, which are accesses to a shared
resource that can be executed concurrently. Dynamic data-
race prediction is the most standard technique for detecting
data races: given an observed, data-race-free trace t, the task
is to determine whether t can be reordered to a trace t*
that exposes a data-race. Although the problem has received
significant practical attention for over three decades, its com-
plexity has remained elusive. In this work, we address this
lacuna, identifying sources of intractability and conditions
under which the problem is efficiently solvable. Given a trace
t of size n over k threads, our main results are as follows.

First, we establish a general O(k - n>*~1) upper-bound, as
well as an O(n*) upper-bound when certain parameters of
t are constant. In addition, we show that the problem is
NP-hard and even W[1]-hard parameterized by k, and thus
unlikely to be fixed-parameter tractable. Second, we study
the problem over acyclic communication topologies, such as
server-clients hierarchies. We establish an O(k? - d - n% -log n)
upper-bound, where d is the number of shared variables ac-
cessed in t. In addition, we show that even for traces with
k = 2 threads, the problem has no O(n?~€) algorithm under
the Orthogonal Vectors conjecture. Since any trace with 2
threads defines an acyclic topology, our upper-bound for
this case is optimal up to polynomial improvements for up
to moderate values of k and d. Finally, motivated by exist-
ing heuristics, we study a distance-bounded version of the
problem, where the task is to expose a data race by a witness
trace that is similar to t. We develop an algorithm that works
in O(n) time when certain parameters of t are constant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

LICS ’20, July 8-11, 2020, Saarbriicken, Germany

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7104-9/20/07...$15.00
https://doi.org/10.1145/3373718.3394783

pavlogiannis@cs.au.dk

vmahesh@illinois.edu

CCS Concepts: « Theory of computation — Parameter-
ized complexity and exact algorithms; « Software and
its engineering — Software testing and debugging.

Keywords: Data Race Prediction, Complexity

ACM Reference Format:

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan.
2020. The Complexity of Dynamic Data Race Prediction. In Pro-
ceedings of the 35th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS °20), Fuly 8-11, 2020, Saarbriicken, Germany.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3373718.
3394783

1 Introduction

A concurrent program is said to have a data race if it can ex-
hibit an execution in which two conflicting accesses' to the
same memory location are “concurrent”. Data races in con-
current programs are often symptomatic of bugs in software
like data corruption [6, 19, 27], pose challenges in defining
the semantics of programming languages, and have led to
serious problems in the past [44]; it is no surprise that data
races have been deemed pure evil [7]. Automatically finding
data races in programs remains a widely studied problem be-
cause of its critical importance in building correct concurrent
software. Data-race detection techniques can broadly be clas-
sified into static and dynamic. Given that the race-detection
problem in programs is undecidable, static race detection
approaches [26, 34] are typically conservative, produce false
alarms, and do not scale to large software. On the other hand,
since dynamic approaches [15, 24, 33, 37] have the more mod-
est goal of discovering data races by analyzing a single trace,
they are lightweight, and can often scale to production-level
software. Moreover, many dynamic approaches are sound,
i.e., do not raise false race reports. The effectiveness and
scalability of dynamic approaches has lead to many practical
advances on the topic. Despite a wide-spread interest on the
problem, characterizing its complexity has remained elusive.

Informally, the dynamic race prediction problem is the follow-
ing: given an observed trace ¢ of a multi-threaded program,
determine if t demonstrates the presence of a data race in the
program that generates t. This means that either ¢ has two

ITwo accesses are conflicting if they access the same memory location, with
one of them being a write access.

LICS °20, July 8-11, 2020, Saarbriicken, Germany

conflicting data accesses that are concurrent, or a different
trace resulting from scheduling the threads of ¢ in a different
order, witnesses such a race. Additional traces that result
from alternate thread schedules are captured by the notion
of a correct reordering of t, that characterizes a set of traces
that can be exhibited by any program that can generate ¢; a
precise definition of correct reordering is given in Section 2.1.
So formally, the data race prediction problem is, given a trace
t, determine if there is a correct reordering of t in which a
pair of conflicting data accesses are concurrent.

While the data race prediction problem is clearly in NP —
guess a correct reordering and check if it demonstrates a
data race — its precise complexity has not been identified.
Evidence based on prior work, suggests a belief that the prob-
lem might be NP-complete. First, related problems, like data-
race detection for programs with strong synchronization
primitives [28-30], or verifying sequential consistency [16],
are known to be NP-hard. Second, all known “complete”
algorithms run in worst-case exponential time. These ap-
proaches either rely on an explicit enumeration of all correct
reorderings [10, 38], or they are symbolic approaches that re-
duce the race prediction problem to a constraint satisfaction
problem [18, 36, 42]. On the other hand, a slew of “partial
order”-based methods have been proposed, whose goal is to
predict data races in polynomial time, but at the cost of being
incomplete and failing to detect data races in some traces.
These include algorithms based on the classical happens-
before partial order [15, 21, 22, 24, 39], and those based on
newer partial orders that improve the prediction of data races
over happens-before [20, 32, 35, 41].

In this paper we study the problem of data-race prediction
from a complexity-theoretic perspective. Our goal is to un-
derstand whether the problem is intractable, the causes for
intractability, and conditions under it can can be solved ef-
ficiently. We provide partial answers to all these questions,
and in some cases characterize the tractability/intractability
landscape precisely in the form of optimality results.

Contributions. Consider an input trace t of size n over k
threads. Our main contributions are as follows. We refer to
Section 2.3 for a formal summary.

Our first result shows that the data-race prediction problem is
solvable in O(k - n#*=) time, and can be improved to O(n*)
when certain additional parameters of ¢ are constant. We
note that most benchmarks used in practice have a constant
number of threads [15, 20, 22, 32, 35, 41] , and in such cases
our upper-bound is polynomial.

The observation that data race predication is in polynomial
time for constantly many threads naturally leads to two
follow-up questions. Does the problem remain tractable for
any k? And if not, is it fixed parameter tractable (FPT) with
respect to k, i.e., is there an algorithm with running time
of the form O(f (k) - n°1)? Our second result answers both

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

these questions in the negative, by showing that the problem
is W[1]-hard. This formally establishes the NP-hardness of
the problem, and excludes efficient algorithms when k is
even moderately large (e.g., k = Q(log n)).

We then investigate whether there are practically relevant
contexts where data-race prediction is more efficiently solv-
able, i.e., the degree of the polynomial is fixed and inde-
pendent of k. We consider the case of traces over acyclic
communication topologies, such as pipelines, server-clients
hierarchies and divide-and-conquer parallelism. Our third
result shows that, perhaps surprisingly, over such topologies
data-race prediction can be solved in O(k? - d - n* - log n) time,
where d is the total number of synchronization variables
(locks) and global memory locations.

In practice, the size n of the trace is by far the dominating
parameter, while k and d are many orders of magnitude
smaller. Hence, given the above upper-bound, the relevant
question is whether the complexity on n can be improved
further. Our fourth result shows that this is unlikely: we
show that, under the Orthogonal Vectors conjecture, there
is no O(n?"€) algorithm even for traces restricted to only
2 threads. As any trace with 2 threads induces an acyclic
topology, our upper-bound is (conditionally) optimal up to
polynomial improvements.

Finally, the majority of practical data-race prediction heuris-
tics search for a data race witness among correct reorderings
that are very similar to the observed trace ¢, i.e., by only
attempting a few event reorderings on t. Motivated by these
approaches, we investigate the complexity of a distance-
bounded version of data-race predication, where the goal is
to expose a data race by only looking at correct reorderings
of t that are a small distance away. Here, distance between
traces is measured by the number of critical sections and
write events whose order is reversed from ¢. Our fifth re-
sult is a linear-time (and thus, optimal) algorithm for this
problem, when certain parameters of the trace t are constant.
This result gives a solid basis for the principled development
of fast heuristics for dynamic data-race prediction.

Technical contributions. Towards our main results, we make
several technical contributions that might be of independent
interest. We summarize some of them below.

1. We improve the lower-bound of the well-known problem
on verifying sequential consistency with read-mapping
(VSC-rm) [16] from the long-lasting NP-hardness to
W[1]-hard.

2. We show that VSC-rm can be solved efficiently on tree
communication topologies of any number of threads,
which improves a recent result of [32] for only 2 threads,
as well as a result of [9] for more than 2 threads.

3. The first challenge in data-race prediction given a trace
t is to choose the set X of events of t over which to
attempt to construct a correct reordering. Identifying

such choices for X is a significant challenge [18, 32, 35].
We establish non-trivial upper-bounds on the number of
choices for X, and show that they are constantly many
when certain parameters of ¢ are constant.

4. Particularly for tree communication topologies, we show
that a single choice for such X suffices.

Finally, we note that our notion of a predictable data race in
a trace ¢t requires as a witness a reordering t* of ¢ in which
every read event reads from the same write event as in ¢. This
guarantees that ¢* is valid in any program that produced ¢.
More permissive reorderings, e.g., requiring that every read
event reads the same value, are also possible, and can capture
potentially more races. Our notion of witness reflects the
most common practice in race-detection literature, where
trace logging typically does not track the values.

Related Work. Antoni Mazurkiewicz [1, 25] used the no-
tion of traces to mathematically model executions of concur-
rent programs. Bertoni et. al. [4] studied various language-
theoretic questions about Mazurkiewicz traces. The folklore
results about the NP-hardness of race detection are often at-
tributed to Netzer and Miller [28-30]. However, the problem
considered in their work differs in significant ways from the
problem of data-race prediction. First, the notion of feasible
executions in [28] (the counterpart of the notion of correct
reorderings) requires that any two conflicting events be or-
dered in the same way as the observed execution, and hence,
are less permissive. Next, the NP-hardness arises from the use
of complex synchronization primitives like wait and signal,
which are more powerful than the primitives we study here
(release/acquire of locks and read/write of registers). The
results due to Netzer and Miller, thus, do not apply to the
problem of data-race prediction. Gibbons and Korach [16]
establish NP-hardness for a closely related problem in dis-
tributed computing — verifying sequential consistency with
a read mapping (VSC-rm). Yet again, the problem is different
than the problem of race prediction. Complexity theoretic
investigations have also been undertaken for other problems
in distributed computing like linearizability [13, 16, 17], se-
rializability [31] and transactional consistency [5]. Hence,
although there have been many theoretical results on related
problems in concurrency, none of them addresses dynamic
data-race prediction. Our work fills this gap. Some proofs
are relegated to a technical report [23].

2 Preliminaries
2.1 Model

General notation. Given a natural number k, let [k] =
{1,...,k}. Given a function f : X — Y, we let dom(f) = X
and img(f) = Y. Given two functions f, g, we write f C g
to denote that dom(f) € dom(g) and for every x € dom(f)
we have f(x) = g(x). Given a set X’ C dom(f), we denote
by f|X’ the function with dom(f|X’) = X" and f|X’ C f.

LICS °20, July 8-11, 2020, Saarbriicken, Germany

Concurrent program. We consider a shared-memory con-
current program P that consists of k threads {p; };c[x], under
sequential consistency semantics [40]. For simplicity of pre-
sentation we assume no thread is created dynamically and
the set {p; };¢[x] is known a-priori. Communication between
threads occurs over a set of global variables G, and synchro-
nization over a set of locks £ such that G N L = 0. We let
YV = G U L be the set of all variables of . Each thread is
deterministic, and performs a sequence of operations. We are
only interested in the operations that access a global variable
or a lock, which are called events. In particular, the allowed
events are the following.

1. Given a global variable x € G, a thread can either write
to x via an event w(x) or read from x via an event r(x).

2. Given a lock ¢ € L, a thread can either acquire £ via an
event acq({) or release £ via an event rel({).

Each event is atomic, represented by a tuple (a, b, ¢, d), where

1. a € {w,r, acq, rel} represents the type of the event (i.e.,
write, read, lock-acquire or lock-release event),

2. b represents the variable or lock that the event accesses,

3. c is the thread of the event, and

4. d is a unique identifier of the event.

Given an event e, we let loc(e) denote the global variable
or lock that e accesses. We occasionally write e(x) to de-
note an event e with loc(e) = x, while the thread and event
id is often implied by the context. We denote by ‘W), (resp.
Rps Lﬁ, Lg) the set of all write (resp. read, lock-acquire,
lock-release) events that can be performed by thread p. We
let &, = W, UR, U Lﬁ U Lﬁ. We denote by & = Up Eps
W =U,Wp, R = UpR,, L4 = U, £, LX = U, L}
the events, write, read, lock-acquire and lock-release events
of the program P, respectively. Given an event e € &, we
denote by p(e) the thread of e. Finally, given a set of events
X C &, we denote by R(X) (resp., W(X), LA(X), LX(X)) the
set of read (resp., write, lock-acquire, lock-release) events
of X. For succinctness, we let WR(X) = W(X) U R(X),
RL(X) = R(X) U LE(X) and WL(X) = W(X) U LAX).
The semantics of P are the standard for sequential consis-
tency [40].

Conflicting events. Given two distinct events e, e; € &,
we say that e; and e; are conflicting, denoted by e; > ey, if
(i) loc(e1) = loc(ez) (i.e., both events access the same global
variable or the same lock) and (ii) {e;,e2} N W % 0 or
{e1,e2} N LA # 0 ie., at least one of them is either a write
event or a lock-acquire event. We extend the notion of con-
flict to sets of events in the natural way: two sets of events
X1, X, € & are called conflicting, denoted by X; > X, if
(e, e2) € (X7 X X3) such that e; x e.

Event sequences. Let t be a sequence of events. We de-

note by &(¢) the set of events, by L(¢) the set of locks, and
by G(t) the set of global variables in t. We let ‘W () (resp.,

LICS °20, July 8-11, 2020, Saarbriicken, Germany

R(t), LAt), LR(t)) denote the set W(E(t)) (resp., R(E(t)),
LA(S(t)), LR(S(t))), i.e., it is the set of write (resp., read,
lock-acquire, lock-release) events of t. Given two distinct
events ej, e; € E(t), we say that e; is earlier than e, in t, de-
noted by e; <; ey iff e; appears before e; in t. We say that e;
is thread-ordered earlier than e;, denoted e; <to(y) €2, when
e; <; e; and p(e;) = p(ez). For events ey, e; € E(t), we say
e1 <t ey (resp. ey <to(r) e2) if either e; = e, or e; <; e (resp.
e1 <to(1) €2). We will often use <7o (resp. <to) in place of
<70(1) (resp. <to(r)) when the trace ¢ is clear from context.
Given a set of events X C &, we denote by |X the projection
of t onto X. Given a thread p;, we let t|p; = t|E,,. Given two
sequences t1, Iz, we denote by #; o t, their concatenation.

Lock events. Given a sequence of events ¢ and a lock-
acquire event acq € £4(t), we denote by match;(acq) the
earliest lock-release event rel € LR(t) such that rel acq
and acq <10 rel, and let match;(acq) = L if no such lock-
release event exists. If match;(acq) # L, we require that
p(acq) = p(match;(acq)), i.e., the two lock events belong
to the same thread. Similarly, given a lock-release event
rel € LR(t), we denote by match,(rel) the latest acquire
event acq € L£4(t) such that match,(acq) = rel and require
that such a lock-acquire event always exists. Given a lock-
acquire event acq, the critical section CS;(acq) is the set of
events e such that (i) acq <70 e and (ii) if match,(acq) # L,
then e <to match;(acq). For simplicity of presentation,
we assume that locks are not re-entrant. That is, for any
two lock-acquire events acq,, acq, with acq, > acq, and
acq, <to acq,, we must have match;(acq;) <70 acq,.
The lock-nesting depth of t is the maximum number ¢ such
that there exist distinct lock-acquire events {acqi}f=1 with
(i) acq; <70 acq, <70 - <10 acqy, and (ii) for all i € [£], if
match;(acq;) € &(t) then acq, <10 match,(acq;).

Traces and reads-from functions. An event sequence ¢ is
called a trace if for any two lock-acquire events acqy, acq, €
LA(t), if loc(acq,) = loc(acq,) and acq; <; acqy, then
rel; = match,(acq,) € LX(t) and rel; <, acq,. A trace there-
fore ensures that locks obey mutual exclusion, i.e., critical
sections over the same lock cannot overlap.

Given a trace t, we define its reads-from function RF,
R(t) — W(t) as follows: RF;(r) = wiff w <; rand YW’ €
W(t)withw x w’, we have w' <, r = w’ <; w. That
is, RF; maps every read event r to the write event w that r
observes in ¢t. For simplicity, we assume that ¢ starts with a
write event to every location, hence RF; is well-defined. For
notational convenience, we extend the reads-from function
RF,; to lock-release events, such that, for any lock-release
event rel € LE(t), we have RF;(rel) = match,(rel), i.e., rel
observes its matching lock acquire event.

Correct reordering, enabled events and predictable
data races. A trace t* is a correct reordering of trace ¢ if
(i) E(t*) € &(1), (ii) for every thread p;, we have that t*|p;

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

is a prefix of t|p;, and (iii) RF;+ C RF,, i.e., the reads-from
functions of t* and t agree on their common read and lock-re-
lease events. Given a trace t, an event e € E(¢) and a correct
reordering t* of t, we say that e is enabled in t* if e ¢ E(t7)
and for every e’ € &(t) such that e’ <1o e, we have that
e’ € E(t"). Given two conflicting events e, e; € E(t) with
loc(ey) = loc(e;) € G, we say the pair (e;, e) is a predictable
data race of trace ¢ if there is a correct reordering t* of ¢ such
that both e; and e; are enabled in t*. Finally, we say t has
a predictable data race if there is a pair (e;, e;) which is a
predictable data race of ¢t.

Note that predictability of a race is defined with respect to a
correct reordering in which every read event observes the
same write event. This requirement guarantees that the cor-
rect reordering is a valid trace of any concurrent program
that produced the initial trace. Hence, every such program
is racy. More permissive notions of predictability can also
be defined, e.g., by requiring that, in a correct reordering,
every read event reads the same value (possibly from a dif-
ferent write event). This alternative definition would cap-
ture potentially more predictable races. Our definition of
correct reorderings reflects the most common practice in
race-detection literature, where trace logging typically does
not track the values [20, 22, 32, 35, 41].

The communication topology. The trace ¢ naturally in-
duces a communication topology graph G = (V, E) where
() V = {p:}: and (i) E = {(py py) |1 # j and E(py) »a E(p))}.
In words, we have one node in G per thread, and there is an
edge between two distinct nodes if the corresponding threads
execute conflicting events (note that G is undirected). For
simplicity, we assume that G is connected. In later sections,
we will make a distinction between tree topologies (i.e., that
do not contain cycles) and general topologies (that might
contain cycles). Common examples of tree topologies include
stars (e.g., server-clients), pipelines, divide-and-conquer par-
allelism, and the special case of two threads.

2.2 Problem Statement

In the dynamic data-race prediction problem, we are given
an observed trace t, and the task is to identify whether ¢
has a predictable data race. In this work we focus on the
following decision problem — given a trace ¢t and two (read
or write) conflicting events e, e; € E(t), the task is to de-
cide whether (e, e2) is a predictable data race of t. Clearly,
having established the complexity of the decision problem,
the general problem can be solved by answering the deci-
sion problem for all O(n?) pairs of conflicting variable access
events of t. In the other direction, as the following lemma
observes, detecting whether ¢ has some predictable data race
is no easier than detecting whether a given event pair of ¢
constitutes a predictable data race.

Lemma 2.1. Given atracet of lengthn and two eventsey, e; €
&E(t), we can construct a trace t’ in O(n) time so that t’ has a
predictable data race iff (e, e;) is a predictable data race of t .

To make the presentation simpler, we assume w.l.o.g that
there are no open critical sections in ¢, i.e., every lock-
acquire event acq is followed by a matching lock-release
event match,(acq). Motivated by practical applications, we
also study the complexity of dynamic data-race prediction
parameterized by a notion of distance between the input
trace t and the witness t* that reveals the data race.

Trace distances. Consider a trace t and a correct reordering
t" of t. The set of reversals between t and t’ is defined as

Rv(t,t') ={(w1,wz) € WL({EH)x WL
wi M wy and wy <; wp and wy <z Wy}

In words, Rv(t,t’) contains the pairs of conflicting write
events or lock-acquire events, the order of which has been
reversed in t" when compared to t. The distance of t' from ¢ is
defined as 6(t, t') = | Rv(t, t’)|. Our notion of distance, thus,
only counts the number of reversals of conflicting write or
lock-acquire events instead of counting reversals over all
events (or even conflicting write-read events).

Distance-bounded dynamic data race prediction. Con-
sider a trace t and two events ey, e; of t. Given an integer
¢ > 0, the {-distance-bounded dynamic data-race prediction
problem is the promise problem? that allows for any answer
(True/False) if (ey, e;) is a predictable data race of t and every
witness correct reordering t* is such that §(t, t*) > ¢.

2.3 Summary of Main Results

Here we state the main results of this work, and present the
technical details in the later parts of the paper.

2.3.1 The General Case. First, we study the complexity
of the problem with respect to various parameters of the
input trace. These parameters are the number of threads,
the number of variables, the lock-nesting depth, as well as
the lock-dependence factor, which, intuitively, measures the
amount of data flow between critical sections. In the follow-
ing, <7gr (formal definition in Section 3), is the smallest par-
tial order that contains <t1g, and also orders read events after
their corresponding observed write event (i.e., RF(r) <rgf r
for every r € RL(E(1))).

The lock-dependence factor. The lock-dependence graph
of a trace ¢ is the graph G, = (V;, E;) defined as follows.

1. The set of vertices is V; = LA(t), i.e., it is the set of
lock-acquire events of .

2. The set of edges is such that (acq;,acq,) € E; if
(i) acq; #£rtrr acq,, (ii) acq; <trr match;(acq,), and
(iii) match,(acq;) £trr match,(acq,).

2The promise problem ([14]) given languages L1,ye and L,se is to design

an algorithm A such that A(x) = True for every x € Lne, A(x) = False
for every x € Lp,jse, and A(x) is any of True or False if x ¢ L1yye U Lpajse-

LICS °20, July 8-11, 2020, Saarbriicken, Germany

Given a lock-acquire event acq € V;, let A,q be the set of
lock-acquire events that can reach acq in G;. We define the
lock dependence factor of t as maX,cqev, |Aacql- We show the
following theorem.

Theorem 2.2. Consider a trace t of length n, k threads, lock-
nesting depth y, and lock-dependence factor {. The dynamic
data-race prediction problem on t can be solved in O(a -)
time, where & = min(n, k -y -) and f = k - n.

In particular, the problem is polynomial-time solvable for
a fixed number of threads k. In practice, the parameters k,
y and { behave as constants, and in such cases our upper-
bound becomes O(n*). Theorem 2.2 naturally leads to two
questions, namely (i) whether there is a polynomial-time
algorithm for any k, and (ii) if not, whether the problem is
FPT with respect to the parameter k, i.e., can be solved in
O(f(k)-n°W) time, for some function f. Question (ii) is very
relevant, as typically k is several orders of magnitude smaller
than n. We complement Theorem 2.3 with the following
lower-bound, which answers both questions in negative.

Theorem 2.3. The dynamic data-race prediction problem is
W[1]-hard parameterized by the number of threads.

2.3.2 Tree Communication Topologies. Next, we
study the problem for tree communication topologies, such
as pipelines and server-clients architectures. We show the
following theorem.

Theorem 2.4. Let t be a trace over a tree communication
topology with n events, k threads and d variables. The dynamic
data-race prediction problem fort can be solved in O(k? - d -
n? - logn) time.

Perhaps surprisingly, in sharp contrast to Theorem 2.3, for
tree topologies there exists an efficient algorithm where the
degree of the polynomial is fixed and does not depend on
any input parameter (e.g., number of threads). Note that the
dominating factor in this complexity is n?, while k and d
are typically much smaller. Hence, the relevant theoretical
question is whether the dependency on n can be improved
further. We show that this is unlikely, by complementing
Theorem 2.4 with the following conditional lower-bound,
based on the Orthogonal Vectors conjecture [8].

Theorem 2.5. Lett be a trace with n events, k > 2 threads
and d > 9 shared global variables with at least one lock. There
is no algorithm that solves the decision problem of dynamic
data-race prediction fort in time O(n*~¢), for any e > 0, unless
the Orthogonal Vectors conjecture fails.

Since k = 2 implies a tree communication topology, the
result of Theorem 2.4 is conditionally optimal, up-to poly-
logarithmic factors, for a reasonable number of threads and
variables (e.g., when k,d = logo(l)(n)).

LICS °20, July 8-11, 2020, Saarbriicken, Germany

2.3.3 Witnesses in Small Distance. Finally, we study
the problem in more practical settings, namely, when (i) the
number of threads, lock-nesting depth, lock-dependence fac-
tor of t are bounded, and (ii) we are searching for a witness
at a small distance from ¢.

Theorem 2.6. Fix a reversal bound ¢ > 0. Consider a trace t
of length n and constant number of threads, lock-nesting depth
and lock-dependence factor. The {-distance-bounded dynamic
data-race prediction problem fort can be solved in O(n) time.

3 Trace Ideals
3.1 Partial Orders

Partially ordered sets. A partially ordered set (or poset) is
a pair (X, P) where X is a set of (write, read, lock-acquire,
lock-release) events and P is a reflexive, antisymmetric and
transitive relation over X. We will often write e; <p e to
denote (e, e;) € P. Given two events eq,e; € X we write
e; <p ey to denote that e; <p e, and e; # e;, and write
e; <p e, to denote that e; <p e, and there exists no event e
such that e; <p e <p ey. Given two distinct events e;, e; € X,
we say that e; and e, are unordered by P, denoted by e; ||p e,
if neither e; <p ey nor e; <p e;. We call an event e € X
maximal if there exists no ¢’ € X such that e <p e’. Given a
set Y C X, we denote by P|Y the projection of Pon Y, i.e., we
have P|Y C Y x Y, and for all e, e; € Y, we have e; <p|y e,
iff e; <p e;. Given two posets (X, P) and (X, Q), we say that
the partial order Q refines P, denoted by Q C P, if for every
two events ej, e; € X, if e; <p e, then e; <g e,. If Q refines
P, we say that P is weaker than Q. We denote by Q C P the
factthat Q C P and P Z Q. A linearization of (X, P) is a total
order over X that refines P. An order ideal (or simply ideal)
of a poset (X, P) is subset Y C X such that for every two
events e; € Y and e, € X with ey, <p e;, we have e; € Y. An
event e is executable in ideal Y if Y U {e} is also an ideal of
(X, P). The number of threads and variables of a poset (X, P)
is the number of threads and variables of the events of X.

Partially ordered sets with reads-from functions. A
poset with a reads-from function (or rf-poset) is a tuple
(X, P,RF) where (i) RF: RL(X) —» W L(X) is a reads-from
function such that for all r € R £(X), we have RF(r) € W(X)
iff r € R(X), and (ii) (X, P) is a poset where for allr € RL(X)
we have RF(r) <p r. Notation from posets is naturally lifted
to rf-posets, e.g., an ideal of P is an ideal of (X, P).

Thread-reads-from order and trace ideals. Given a trace
t, the thread-reads-from order TRF(¢) (or simply TRF when
t is clear from context) is the weakest partial order over the
set &(t) such that (i) TRF C TO, and (ii) (&6(t), TRF,RF;) is
an rf-poset. In particular, TRF is the transitive closure of
(TOU{RF,(r) < r|r € R(t)}). A trace ideal of t is an ideal
X of the poset (E(t), TRF). We say an event e € E(¢) \ X is
enabled in X if for every e’ <10 e, we have e’ € X. We call X
lock-feasible if for every two lock-acquire events acq, acq, €

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

LA(X) with acq; > acq,, we have match,(acq;) € X for
some i € [2]. We call X feasible if it is lock-feasible, and there
exists a partial order P over X such that (i) P C TRF|X and
(ii) for every pair of lock-acquire events acq,,acq, € L4(X)
with acq, > acq,, and match;(acq,) ¢ X, we have rel, <p
acq,, where rel, = match;(acq,). If X is feasible, we define
the canonical rf-poset of X as (X, Q, RF; |X), where Q is the
weakest among all such partial orders P. It is easy to see
that Q is well-defined, i.e., there exists at most one weakest
partial order among all such partial orders P.

The realizability problem of feasible trace ideals. The
realizability problem for an rf-poset # = (X, P, RF) asks
whether there exists a linearization t* of P such that RF;+ =
RF. Given a trace t and a feasible trace ideal X of t, the
realizability problem for X is the realizability problem of
the canonical rf-poset (X, P, RF) of X. The following remark
relates the decision problem of dynamic race prediction in t
with the realizability of trace ideals of ¢.

Remark 1. Ift* is a witness of the realizability of X, then t*
is a correct reordering of t. Two conflicting events eq, e; € E(t)
are a predictable data race of t iff there exists a realizable trace
ideal X of t such that ey, e; are enabled in X.

Read pairs and triplets. For notational convenience, we
introduce the notion of read pairs and read triplets. Given an
rf-poset P = (X, P, RF), a read pair (or pair for short) of P is
a pair (w, r) such that r € RL(X) and w = RF(r) (note that
w € X). A read triplet (or triplet for short) is a triplet (w, r, w’)
such that (i) (w, r) is a pair of P, (ii) w’ € X, and (iii)) w’ # w
and r w’. We denote by Pairs(?) and Triplets(®) the set
of pairs and triplets of P, respectively.

Closed rf-posets. We call an rf-poset P = (X, P, RF) closed
if for every triplet (w,r,w’) € Triplets(P), we have (i) if
w’ <p rthen w <p w, and (ii) if w <p W’ then r <p
w’. Given, an rf-poset P = (X, P,RF), the closure of P is
an rf-poset Q = (X, Q, RF) where Q is the weakest partial
order over X such that Q C P and Q is closed. If no such
Q exists, we let the closure of # be L. The closure is well-
defined [32]. The associated Closure problem is, given an
rf-poset P, decide whether the closure of # is not L.

Remark 2. An rf-poset is realizable only if its closure exists
and is realizable.

3.2 Bounds on the Number of Feasible Trace Ideals

Remark 1 suggests that the dynamic data-race prediction
problem for a trace t is reducible to deciding whether ¢ has
some realizable trace ideal. In general, if t has length n and k
threads, there exist n* possible trace ideals to test for realiz-
ability. Here we derive another upper-bound on the number
of such ideals that are sufficient to test, based on the number
of threads of ¢, its lock-nesting depth and its lock-dependence
factor. These parameters typically behave as constants in

practice, and thus understanding the complexity of dynamic
data race prediction in terms of these parameters is crucial.

Causal cones. Given an event e € &(t), the causal cone
Cone,(e) of e € &(t) is the smallest trace ideal X of ¢ so that
e is enabled in X. In words, we construct Cone,(e) by taking
the TRF-downwards closure of the thread-local predecessor
e’ of e (ie.,, e/ <710 e). Given a non-empty set of events
S C &(t), we define the causal cone of S as Cone,(S) =
Uees Cone;(e); notice that Cone,(S) is a trace ideal.

Candidate ideal set. Given a set of events X, we denote
by OpenAcqs(X) the set of lock-acquire events acq such
that match,(acq) ¢ X. Given two events e, e; € E(t), the
candidate ideal set C1S;(eq, e;) of ey, e, is the smallest set of
trace ideals of ¢ such that the following hold.

1. Cone;({e1, e2}) € CIS;(eq, e2).

2.Let Y € ClISs(er,e2), acq € OpenAcgs(Y), rel =
match,(acq), and Y’ = Cone;(Y U {rel}) U {rel}. If
e, e ¢ Y, then Y’ € CIS;(ey, es).

In light of Remark 1, we will decide whether (ej, ;) is a
predictable data race by deciding the realizability of ideals
in the candidate ideal set. Item 2 states that, as long as there
is some ideal Y in the candidate ideal set such that Y leaves
some critical section open, we construct another ideal Y’ >
Y by choosing one such open critical section and closing
it, and add Y’ in the candidate set as well. Intuitively, the
open critical section of Y might deem Y not realizable, while
closing that critical section might make Y’ realizable. Clearly,
ife; € Y or e; € Y/, then the realizability of Y’ does not
imply a data race on ey, e, as one of the two events is not
enabled in Y’ (Remark 1). As the following lemma shows, in
order to decide whether (ey, e;) is a predictable data race of t,
it suffices to test for realizability all the ideals in CIS;(ey, e2).

Lemma 3.1. (e, e;) is a predictable data race of t iff there
exists a realizable ideal X € CIS;(ey, e5) such that ey, e, ¢ X.

The following lemma gives an upper-bound on [CIS;(ey, €2)|,
i.e., on the number of ideals we need to test for realizability.

Lemma 3.2. We have |CIS;(e1, e2)| < min(n, &)*~2, where
a =k-y-{, andk is the number of threads, y is the lock-nesting
depth, and { is the lock-dependence factor of t.

4 The General Case

In this section we address the general case of dynamic data-
race prediction. The section is organized in two parts, which
present the formal details of Theorem 2.2 and Theorem 2.3.

4.1 Upper Bound

In this section we establish Theorem 2.2. Recall that, by
Lemma 3.1, the problem is reducible to detecting a realizable
rf-poset in the candidate ideal set of the two events that are
tested for a data-race. Rf-poset realizability is known to be
NP-complete [16], and solvable in polynomial time when the

LICS °20, July 8-11, 2020, Saarbriicken, Germany

number of threads is bounded [2]. Here we establish more
precise upper-bounds, based on the number of threads. In
particular, we show the following.

Lemma 4.1. Rf-poset realizability can be solved in O(k - n*)
time for an rf-poset of size n and k threads.

Frontiers and extensions. Let # = (X, P,RF) be an rf-
poset, and consider an ideal Y of . The frontier of Y, denoted
Frontierp(Y), is the set of pairs (w, r) € Pairs(?) such that
w € Yandr ¢ Y. An event e executable in Y is said to
extend Y if for every triplet (w, r, e) € Triplets(®), we have
(w, r) ¢ Frontierp(Y). In this case, we say that Y U {e} is an
extension of Y via e.

Ideal graphs and canonical traces. Let # = (X, P, RF) be
an rf-poset. The ideal graph of P, denoted Gp = (Vp, Ep) is
a directed graph defined as follows.

1. Vp is the set of ideals of P.
2. We have (Y1, Y;) € Ep iff Y, is an extension of Y;.

The ideal tree of P, denoted Tp = (Ip, Rp) is a (arbitrary)
spanning tree of Gp when restricted to nodes reachable from
0. We let 0 be the root of Tp. Given an ideal Y € Ip, we
define the canonical trace ty of Y inductively, as follows. If
Y = 0 then ty = €. Otherwise, Y has a parent Y’ in Tp such
that Y = Y’ U{e} for some event e € X. We define ty = ty oe.
Lemma 4.1 relies on the following lemmas.

Lemma 4.2. We have X € Ip iff P is realizable.

Lemma 4.3. The ideal graph Gp has O(n*) nodes.

Proof of Theorem 2.2. Consider a trace ¢ and two conflicting
events er,e; € WR(t). By Lemma 3.1, to decide whether
(e1, €2) is a predictable data race of ¢, it suffices to iterate
over all feasible trace ideals X in the candidate ideal set
CIS;(ej, e2), and test whether X is realizable. By Lemma 3.2,
we have |CIS,(ey, e5)| = O(a), where a = min(n, k - y - {)F72.
Finally, due to Lemma 4.1, the realizability of every such
ideal can be performed in O(k - n¥) = O(p) time. O

4.2 Hardness of Data Race Prediction

Here we establish that the problem of dynamic data-race
prediction is W[1]-hard when parameterized by the number
of threads k. Our proof is established in two steps. In the
first step, we show the following lemma.

Lemma 4.4. Rf-poset realizability parameterized by the num-
ber of threads k is W[1]-hard.

Rf-poset realizability is known to be NP-hard [16, Theo-
rem 4.1], and Lemma 4.4 strengthens that result by showing
that the problem is even unlikely to be FPT. In the second
step, we show how the class of W[1]-hard instances of in
Lemma 4.4 can be reduced to dynamic data-race prediction.

LICS °20, July 8-11, 2020, Saarbriicken, Germany

Hardness of rf-poset realizability. Our reduction is from
the INDEPENDENT-SET(c) problem, which takes as input
an undirected graph G = (V, E) and asks whether G has an
independent set of size c. INDEPENDENT-SET(c) parame-
terized by c is one of the canonical W[1]-hard problems [12].

Given an input G = (V, E) of INDEPENDENT-SET(c) with
n = |V|, we construct an rf-poset P = (X, P,RF) of size
O(c - n) and O(c) threads such that P is realizable iff G has
an independent set of size c. We assume wlog that every node
in G has at least one neighbor, otherwise, we can remove all
s such nodes and solve the problem for parameter ¢’ = ¢ —s.
The rf-poset Pg consists of k = 2 - ¢ + 2 total orders (Xj, 7;).
Figure 1 provides an illustration. In high level, for each i € [c],
7; and 7.; are used to encode the i-th copy of G, whereas
the last two total orders are auxiliary. Superscripts on the
events and/or their variables refer to the node of G that is
encoded by those events. Below we describe the events and
certain orderings between them. The partial order P is the
transitive closure of these orderings.

1. Fori = 2- ¢ + 1, 7; consists of a single event 7; = w(x).
2. Fori=2-c+ 2, wehave 7; = 0 o o, where

o =r(s1),...,r(sc), acq(ty), ..., acq(l.) and
o = r(x), rel(€;), ..., rel(€) .

3. For each i € [c], we have 7; = ril o rl.z o...ot]', where

each T{ encodes node j of G and is defined as follows. Let
7, = o] o o}, where

alj =acq; ({1 - - ->acq;(€gj1,,1) and

‘OJl. = re]i(f{j,lm})’ PN reli({’{j,ll})

where [y, ..., I, are the neighbors of j in G. For each
j € [n]\ {1, n}, the sequence rlj is identical to ?{ with
the addition that the innermost critical section (i.e., be-
tween acq;(€(;,1,,}) and rel;(€(;;,,})) contains the se-
quence w(y{), r(z{). The sequence rl.l is defined similarly,
except that the innermost critical section contains the
sequence w(s;), r(z}). Finally, the sequence /" is defined
similarly, except that the innermost critical section con-
tains the sequence w(y?), r;(x).
4. For each i € [c], we have 7.4; = Tcl+l. o Tfﬂ. 0...0 TC";il,

where TZH = acq/(¢;), w(zf), r(yf“), rel (¢;).

Note that every memory location is written exactly once,

hence the reads-from function RF is defined implicitly. In

addition, for every read event r, we have RF(r) <p r, as well

as r(x) <p r;(x) for each i € [c].

Correctness. We now sketch the correctness of the construc-
tion.Assume that P is realizable by a witness t. We say that
r(x) separates a critical section in t if the lock-acquire (resp.,
lock-release) event of that critical section appears before
(resp., after) r(x) in ¢. The construction guarantees that, for
each i € [c], r(x) separates the critical sections of z; that

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

encode some node [; of G. By construction, these critical
sections are on locks £(;, .}, where v ranges over the neigh-
bors of [; in G. Hence, for any i’ # i, the node I;; cannot
be a neighbor of [;, as this would imply that both critical
sections on lock £(j, 1.} are opened before r(x) and closed
after r(x) in t, which clearly violates lock semantics. Thus,
an independent set A = {ly, ..., .} of G is formed by taking
each [; to be the node of G, the critical sections of which
belong to thread 7; and are separated by r(x) in ¢. On the
other hand, if G has an independent set A = {I;,...,l.}, a
witness t that realizes can be constructed by separating
the critical sections of the node [; in 7;, for each i € [c].

Hardness of dynamic data-race prediction. Finally, we
turn our attention to the hardness of dynamic data-race
prediction. Consider the INDEPENDENT-SET(c) problem
on a graph G and the associated rf-poset P = (X, P, RF)
defined above. We construct a trace ¢t with E(t) = X and
RF; = RF such that (w(x), r(x)) is a predictable data-race of ¢
iff P is realizable. In particular, ¢ consists of 2 - ¢ + 2 threads
pi, one for each total order 7; of P. We obtain ¢ as

I =7T3.c410110...080Tp.c42,

where each t; is an appropriate interleaving of the total or-
ders 7; and 7.4; that respects the reads-from function RF. We
conclude the proof of Theorem 2.3 by observing that G has
an independent set of size ¢ iff (w(x), r(x)) is a predictable
data-race of t.

Remark 3. It is known that INDEPENDENT-SET(c) cannot
be solved in f(c) - n°) time under ETH [11]. As our reduction
to rf-poset realizability and dynamic data-race prediction uses
k = O(c) threads, each of these problems does not have a
f(k) - n°®)-time algorithm under ETH.

5 Tree Communication Topologies

In this section we focus on the case where the input trace ¢
constitutes a tree communication topology. The section is
organized in two parts, which present the formal details of
Theorem 2.4 and Theorem 2.5.

5.1 An Efficient Algorithm for Tree Topologies

In this section we present the formal details of Theorem 2.4.
Recall that the Theorem 2.2 states an O(« -) upper-bound
for dynamic data-race prediction, where f is the complexity
of deciding rf-poset realizability, and « is an upper-bound
on the number of candidate ideals whose realizability we
need to check. For tree communication topologies, we obtain
Theorem 2.4: (i) we show an improved upper-bound f on
the complexity of the realizability of trace ideals over tree
topologies, and (ii) we show that it suffices to check the
realizability of a single trace ideal (i.e., @ = 1). We start with
point (i), and then proceed with (ii).

LICS °20, July 8-11, 2020, Saarbriicken, Germany

73 Ty T4 T5 To
v \ v — r(s;
acq’ (¢, acq! (£ \,L
G , ——
[e] | w1 == :
|acq1(f{1,2))|/| rel () | |acq,(£11,2)) | | rel?(6,) |
Lreli(t2) | [acg®(¢) | Lrela(Cr2) | [_acq
w(z7) w(z5
acq,(£(1,3)) / MM /}«I_.E_Ir(yz
w(yy) I W(yzj) I I—z'—l
rel®(£1) rel
L_nx L_ra(x (\
reli ({13 rela(£q1,3
B = ~ ~

Figure 1. Illustration of the o-poset P given a graph G and independent-set size ¢ = 2. Edges represent orderings in P.

Tree-inducible rf-posets. Let (X, P) be a poset where X C
&E(t). We call (X, P) tree-inducible if X can be partitioned into
k sets {X;}1<;i<k such that the following conditions hold.

1. The graph T = ([k], {(i, /) | X; > X;}) is a tree.

2. P|X; is a total order for each i € [k].

3. For every node ¢ € [k] such that ¢ is an internal node
in T and for every two connected components Cy, C, of
T that are created after removing ¢ from T, we have the
following. Consider two nodes i € C; and j € C; and
two events e; € X; and e, € X such that e; <p ey, there
exists some event e € Xy such that e; <p e <p es.

We call an rf-poset (X, P, RF) tree-inducible if (X, P) is tree-
inducible. The insight is that traces from tree communication
topologies yield tree-inducible trace ideals. Our motivation
behind tree inducibility comes from the following lemma.

Lemma 5.1. Rf-poset realizability of tree-inducible rf-posets
can be solved in O(k? - d - n? - log n) time, for an rf-poset of
size n, k threads and d variables.

The proof of Lemma 5.1 is in two steps. Recall the definition
of closed rf-posets from Section 3.1. First, we show that a tree-
inducible, closed rf-poset is realizable (Lemma 5.2). Second,
we show that the closure of a tree-inducible rf-poset is also
tree-inducible (Lemma 5.3).

Lemma 5.2. Every closed, tree-inducible rf-poset is realizable.

Indeed, consider a tree-inducible, closed rf-poset P =
(X, P,RF). The witness ¢ realizing is obtained in two steps.

1. We construct a poset (X, Q) with Q E P as follows. Ini-
tially, we let Q be identical to P. Let # be tree-inducible
toatree T = ([k], {(i,j) | X; > X;}). We traverse T top-
down, and for every node i and child j of i, for every two

events e; € X; and e; € X; with e; > e; and e; £p e,
we order e; < ey. Finally, we transitively close Q.
2. We construct t by linearizing (X, Q) arbitrarily.

The next lemma shows that tree-inducibility is preserved
under taking closures (if the closure exists).

Lemma 5.3. Consider an rf-poset = (X, P,RF) and let
Q = (X, Q,RF) be the closure of P. If P is tree-inducible then
Q is also tree-inducible.

Since, by Remark 2, an rf-poset is realizable only if its closure
exists and is realizable, Lemma 5.2 and Lemma 5.3 allow
to decide the realizability of an rf-poset by computing its
closure. The complexity of the algorithm comes from the
complexity of deciding whether the closure exists.

Recall that Lemma 3.2 provides an upper-bound on the num-
ber of trace ideals of t that we need to examine for realizabil-
ity in order to decide data-race prediction. We now proceed
with point (ii) towards Theorem 2.4, i.e., we show that for
tree communication topologies, a single ideal suffices. Our
proof is based on the notion of lock causal cones below.

Lock causal cones. Consider a trace ¢ that defines a tree
communication topology G; = (V;, E;). Given an event e €
&E(t) the lock causal cone LCone;(e) of e is the set X defined
by the following process. Consider that G; is rooted in p(e).

1. Initially X contains all predecessors of e in (&(t), TO).
We perform a top-down traversal of G;, and consider a
current thread p; visited by the traversal.

2. Let p, be the parent of p; in the traversal tree, and e, be
the unique maximal event in (X|p,, TO), i.e., e, is the last
event of thread p, that appears in X. We insert in X all
events e; € E(t)|p; such that e; <tgr e2.

LICS °20, July 8-11, 2020, Saarbriicken, Germany

3. While there exists some lock-acquire event acq; € X|p,
and there exists another lock-acquire event acq, €
OpenAcqs(X) with acq; ™ acq, and p(acq,) = p;, we in-
sert in X all predecessors of rel; in (E(t), TO) (including
rely), where rel; = match,(acq,).

Observe that, by construction, LCone,(e) is a lock-feasible
trace ideal of t. In addition, for any two events e, e; € &(t),
the set LCone,(e;) U LCone,(ez) is an ideal of ¢, though not
necessarily lock-feasible. Our motivation behind lock causal
cones comes from the following lemma. Intuitively, we can
decide a predictable data-race by deciding the realizability
of the ideal that is the union of the two lock-causal cones.

Lemma 5.4. Let X = LCone;(e;)ULCone,(e;). We have that
(e1, e2) is a predictable data race of t iff (i) {e1,e2} N X = 0,
and (ii) X is a realizable trace ideal of t.

The (&) direction of the lemma is straightforward. We refer
to [23] for the (=) direction. Finally, Theorem 2.4 follows
immediately from Lemma 5.1 and Lemma 5.4.

Proof of Theorem 2.4. By Lemma 5.4, we have that (ey, e;) is
a predictable data race of t iff {e;,e,} N X = 0 and X is
realizable. By Lemma 5.1, deciding the realizability of X is
done in O(k?-d-n?-log n) time. The desired result follows. O

5.2 A Lower Bound for Two Threads

In this section we prove a conditional quadratic lower bound
for dynamic data-race prediction for two threads. Our proof
is via a reduction from the Orthogonal Vectors problem.
To make it conceptually simpler, we present our reduction
in two steps. First, we show a fine-grained reduction from
Orthogonal Vectors to the realizability of an rf-poset with
2 threads and 7 variables. Afterwards, we show how the
realizability problem for the rf-posets of the first step can
be reduced to the decision problem of dynamic data race
prediction with 2 threads, 9 variables and 1 lock.

The Orthogonal Vectors problem (OV). An instance of
Orthogonal Vectors consists of two sets A, B, where each set
contains n/2 binary vectors in D dimensions. The task is to
determine whether there exists a pair of vectors (a, b) € AXB
that is orthogonal, i.e., for all i € [D] we have a[i] - b[i] = 0.
There exist algorithms that solve the problem in O(n? - D)
and O(2P - n) time, simply by computing the inner product of
each pair (a, b) € AX B and following a classic Four-Russians
technique, respectively. It is conjectured that there is no truly
sub-quadratic algorithm for OV [8].

Conjecture 5.5 (Orthogonal Vectors). There is no algorithm
for OV that operates in O(n*=¢ - DOW) time, for any e > 0.

It is also known that SETH implies the OV conjecture [43].
We first relate OV with rf-poset realizability.

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Lemma 5.6. Rf-poset realizability for an rf-poset with 2
threads and 7 variables has no O(n?~€)-time algorithm for
any € > 0, under the Orthogonal Vectors conjecture.

Reduction from OV to rf-poset realizability. For a fine-
grained reduction from OV to rf-poset realizability, con-
sider an OV instance (A, B), where A = (a;)1<j<nj2, B =
(b1)1<1<ny2, and each a;, by € {0,1}P. We will construct an
rf-poset P = (X, P, RF) with 2 threads and 7 variables such
that the closure of P exists iff there exists a pair of orthogonal
vectors (a, b) € A X B. Since 2 threads define a tree-inducible
rf-poset, Remark 2 and Lemma 5.2 imply that ¥ is realiz-
able iff OV has a positive answer. The set X consists of two
disjoint sets X 4, Xp, so that each is totally ordered in P. For
ease of presentation, we denote by 74, 7p the linear orders
(X4, P|X4) and (X, P|Xp), respectively. To develop some
insight, we start with a high-level view of the construction,
and then proceed with the details.

Overview of the construction. The linear orders 74 and 7p
encode the vectors of A and B, respectively. Each of 74 and
7 consists of n/2 segments, so that the i-th (resp. (n/2—i+1)-
th) segment of 74 (resp. 7p) encodes the contents of the i-th
vector of A (resp., B). The two total orders are constructed
with a closure computation in mind, which inserts event
orderings in P one-by-one. In high-level, an ordering e; < e;
encodes the test of whether the bits in a specific coordinate
i of two vectors a; € A and b; € B have product 0. If yes,
and moreover, i < D, then the closure conditions enforce
a new ordering e] < e;, which encodes the test of the bits
in coordinate i + 1. Otherwise i = D, and the closure has
been computed and an orthogonal pair has been found. On
the other hand, if the bits in coordinate i have product 1,
the two current vectors are not orthogonal, and the closure
conditions enforce a new ordering e;” < e;’, which encodes
the test of the first coordinate of the next pair of vectors. The
above is achieved using 7 variables {x;};c[7.

Formal construction. We now present the formal details of
the construction (illustrated in Figure 2). The construction
creates various events which have the form e% and e? when
they are used at the vector level, and have the form el.aj and

ef’, where i € [D], when they are used at the coordinate
level. As a general rule, for each j,I € [n/2 — 1], we have
e% <., e+ and e?1 <., P, both for events at the vector
and at the coordinate level. At the coordinate level, we also
aj aj by by :
have e;/, <., ¢;” and e;}, <;; e;'. For succinctness, we
often write eq, e5 < e3 to denote e; < e3 and e; < e3. We next
describe the events and orderings between them. The partial

order P is the transitive closure of these orderings.

Events on x; and x;. For every vector a; € A and coordinate
. aj aj aj

i € [D], we cr(izqte three e}llgnts w;” (x1), w,” (x2) and r,” (x).
We make RF(r,” (x2)) = w,’ (x3), and order

wi (), Wi (x2) <oy 1 (x2) (1)

TA TB

L L
wy(x1) WP (xz)
W, (x2) wh2(x1)
W, (x3) wP2(x;)
Wi (xs) r (x1)
ry' (x2) wy? (xo)
wi'l (x2) wfz(xl) .

0 == 7 0| <« Coordinate 2
4 = [1] Vi () w)| b2 = [1] « Coordinate 1
(%) 2 (x3)
W (x4) w2 (xy)
w (xs) 12 (x1)
ri(xz) w2 (x5)
w1 (x7)
r1(xs)
W;ZI(XZ) wfl (x1)
w2 (x1) wé’l(xz)
Wzaz(x3) wfl (x3)
. w2 (xo) ry (x1) .
as = [0] T2 (x;) wh (xo)| b1 = H

wi? (x1) w (x1)
w12 (xz) WP (x;)
i (xo) 7 (x3)
r42(xz) w1 (x7)
w2 (xy) rb1(xy)
2 (xz) ' (x1)

~ ~

Figure 2. Illustration of the reduction of an OV instance
(A ={ay,az}, B = {by, bz}) to the Closure problem of an P.

For every vector by € B and coordinate i € [D], we
create three events wf’ (x1), rf’ (x1) and wf’ (x2). We make
RF(r?’ (x1)) = w?’ (x1), and order

b b b
W, (1), W (x2) <gp 13 (x1) (2)
In addition, we order

Wil (xz) <gp Wi (x1) ff aj[i] =1 and

wWh(x1) <5 W(xy) iff Byli] = 1. 3)

Observe that if a;[i] - b;[i] = 1, and if we order w?j (x1) <
wf’ (x1) then transitively w?j (x2) < w?’ (x2) and hence by
closure r{’(x;) < wf’ (x2).

Events on xs. Let i € [D—1] be a coordinate. For every vector
aj € A, we create an event w?il(m), and order

aj aj aj a; aj
w7 (), Wil () <z Wil (xs) <qy W7 (), W7 (x2) . (4)

LICS °20, July 8-11, 2020, Saarbriicken, Germany

For every vector b; € B, we create two events wfil(m) and
r?l (x3), and make RF(rfl (x3)) = wffrl(m). We order

Wi (e Wit (62) <oy Wity (X3) <o rihy(x1) and

Wi (1), W' () < 17 (63) <o 17 (1) (5)
Observe that if we order w?j (x1) < wf’ (x1) then we also have
w?il(xg) < rf’ (x3), hence by closure w?il(xg) < wffrl(m) and
thus w}’ (x;) < rf’ (x1).

Events on x4. For every coordinate i € [D — 1], we do as fol-
lows. For every vector a i € A, we create two events w?il(xé)
and r;’ (xs), and make RF(r}” (x5)) = w? (x¢). We order

aj a; aj
w;i, () <gy Wil (%) <g, 114 (x2) and
Wi (1), Wi (32) <y 17 (36) <oy 1y (32) - (6)

b
For every vector b; € B, we create one event w;, J’rl(xﬁ), and
order

b b b b
ri (1) <gp Wit (X6) <o W' (x1), W) (x2) (7)

Observe that if we order r?il(xz) < W?_f_l(?(g) , since
i
hence by closure r;’(x) < wf}rl(x6) and thus w}’(x;) <
Wfl(xz)-

Events on x4. For every vector a; € A, we create one event
w%(x4), and order

b i b
w;i(x5) <z 11 (x1), we also have w?frl(x6) < w1, (%),

r7(x6) <eu WY (x4) <y 177 (32) - 8)

For every vector b; € B, with [€ [n/2 — 1], we create
two events w?+1(x,) and r?(x,), and make RF(r’ (x;)) =
whi+1(x,). We order

b b

rll(x3) <TB rbl(x‘l) <TB rll(xl) and

b b

r" () <o WP (xa) <o 1) (31) 9)

Observe that if we order r?j (x2) < wf’ (x2) then we also have
w% (xz) < rP(x4) (since wf’ (32) <ip rf’ (x3) by Eq. (5)) and
thus by closure w% (x4) < w1 (xy).

Events on x5 and x;. For every vector a; € A, with j €
[n/2—1], we create two events w% (xs5) and r% (xs), and make
RF(r% (xs5)) = w% (x5). We also create two events w% (x;) and
r%+(x;), and make RF(r%*!(x;)) = w% (x7). We order

W (x4) <, WY(x5) <r, rfj(xz) <ry WY(x7) <z, 1%(x5) and

P () <oy FU(7) <oy W (xy) . (10)

We also create two events w?n/2(x5) and w?! (x7), and order

n/2

b b bpja—1 bpja—1
rl (xl) <‘L'B w n/z(x5) <TB VVDn/2 (xl)a an/Z (x2) and

PP (x3) <o WHL(37) <y 1P (x4) . (1)

by
" (x) then we also

Observe that if we order r{’(x;) < w
. - by
have w9 (xs) < wbn/2(xs) (since w,"*(x2) < ;" (x1) by a

LICS °20, July 8-11, 2020, Saarbriicken, Germany

previous item) and thus by closure r% (xs) < w’7/2(xs). But
then also w% (x;) < w(x7) (since w?/2(xs) <., WP (x7))
and thus by closure r%+ (x;) < w? (x7).

Final orderings. Finally, we order
by by
Wi (xs) <o i) wp) (12)

For each j € [n/2 — 1], we order

Y (xs) <gp Wh (e, W () -

For each j € [n/2 — 2], we order
. b; b;
P (1) <o Wy (1) W) (x2) - (13)
We make two orderings across 74 and 7p, namely

wi(xy) <p rPi(xy) and wl(xp) <p ri() . (14)

Correctness. Observe that we have used 7 variables, while
|Xal + |XB| = O(n - D), and the reduction can be easily
computed in linear time. We refer to [23] for the proof of
correctness. This concludes Lemma 5.6, as any algorithm
for rf-poset realizability on the above instances that runs
in O((n - D)*~€) time also solves OV in O(n*~€ - D) time.
Although the full proof is rather technical, the correctness is
conceptually straightforward. We illustrate the key idea on
the example of Figure 2, where we perform closure opera-
tions by inserting new orderings in a partial order <.

By construction, we have w{" (x;) < ri’I (1), which signifies
testing the first coordinate of vectors a; and b;. Note that
ai[1] - b1[1] = 1, for which our encoding guarantees that
eventually r{" (xz) < wi’l (x2). Indeed, since w{’(x1) < rfl (1),
by closure we also have w{ (x;) < wfl (x1). In turn, this leads
to wi(x,) < wll’1 (x2), and by closure, we also have r{’(x,) <
wfl (x2). This leads to w® (x4) < r?(x4), and by closure, we
have w® (x4) < w?(x4). This last ordering leads to wil(xg) <
rfz (x1), which signifies testing the first coordinate of vectors
a; and by, i.e., moving with the next vector of B.

The process for a; and b, is similar to a; and by, as the two
vectors are found not orthogonal already in the first coordi-
nate. As previously, we eventually arrive at r{’ (x;) < wlfz (x2).
Note that this leads to w% (x5) < w’(xs), and by closure,
we have r%(xs) < w”(xs). In turn, this leads to w% (x;) <
w?1(x;), and by closure, we have r®(x;) < w”'(x;). This last
ordering leads to wi?(x;) < r}fl (x1), which signifies testing
the first coordinate of vectors a; and b4, i.e., moving with
the next vector of A and the first vector of B.

The process for a, and b, is initially different than before,
as ap[1] - b1[1] = 0, i.e., the test on the first coordinate does
not deem a; and b; not orthogonal. By closure, the ordering
wi?(xy) < rfl (x1) leads to wi?(x;) < wi’l (x1). This leads to
wy?(x3) < r’fl (x3), and by closure, we have wy? (x3) < wgl (x3).
This leads to wy?(x1) < rgl (x1), which signifies testing the
second coordinate of vectors a; and by. As a3[2] - by[2] = 1,

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

the two vectors are discovered as non-orthogonal, which
is captured by an eventual ordering ry*(x;) < w;’ '(x2). This
ordering which witnesses non-orthogonality is propagated
downwards to the first coordinate, i.e., rj*(x;) < wfl (x2).
This propagation is made by events on variable x¢. Indeed,
first note that, as ry*(x;) < wgl (x2), we also have wy?(xs) <
wgl (x6), and by closure, we have r{*(xs) < ng (x). This
leads to w{?(x;) < wf‘ (x2), and by closure, r{?(x;) < wf‘ (x2),
which marks the two vectors as non-orthogonal. This leads to
w%(x4) < % (x,), and by closure, we have w®(x4) < wb(xy).
This last ordering leads to w{?(x;) < r}fz (1), which signifies
testing the first coordinate of vectors a; and by, i.e., moving
with the next vector of B.

The process for a; and b, is initially similar to the previous
case, as az[1] - by[1] = 0. However, because we also have
az[2] - by[2] = 0, we will not order ry*(x;) < wlz.’z(xz), and
the closure will terminate after ordering wy?(x1) < wsz (x1).
Since no cyclical orderings were introduce, the closure of
exists, and by Lemma 5.2, P is realizable. Finally, observe that
if we eventually had r{?(x;) < wlfz (x2) (signifying that a, and
b, are not orthogonal, hence there is no orthogonal pair in
AXB), this would create a cycle with the ordering wi’z (x2) <p
r{*(xz), and by Remark 2, would not be realizable.

Reduction to dynamic data-race prediction. Consider
an instance of the rf-poset £ = (X, P, RF) constructed in
the above reduction, and we construct a trace t and two
events eq, e; € E(t) such that P is realizable iff (eq, e;) is a
predictable data race of t. The trace t consists of two threads
pa,pp and two local traces 7 and 7 such that 7} and 7
contain the events of p4 and pg, respectively. Each of 7, and
1'1’3 is identical to 74 and 7p of P, respectively, with some
additional events inserted in it. In particular, besides the vari-
ables x;, i € [7] that appear in the events of X, we introduce
one variable y and one lock ¢. For the event set, we have

E(t) =X U{w(y), r(y)} U {acq(0), rela(€)}u
{acqg(0), relg(0)} U {w(z),r(2)} .

The local traces 7 and 7}, are constructed as follows.

1. For 7, we insert an empty critical section acq 4(£), rel 4(£)
right after w{" (x;). Additionally, we insert the read event
Aan/2

r(y) right before r;

!
event of 7 e

(x2), and the event r(z) as the last

. . . b,
2. For 7}, we insert the write event w(y) right after w, " (x,).

Additionally, we insert w(z) right after rfl (x1), and sur-
round these two events with acqgz(¢), relg(£).

Finally, we obtain t as t = 7 o 7, i.e,, the two local traces
are executed sequentially and there is no context switching.
The task is to decide whether (w(z), r(z)) is a predictable
data race of t. We refer to [23] for the correctness of the
construction, which concludes Theorem 2.5.

6 Witnesses in Small Distance

The results in the previous sections neglect information pro-
vided by the input trace ¢ about constructing a correct re-
ordering that witnesses the data race. Indeed, our hardness
results show that, in the worst case, the orderings in t pro-
vide no help. However, in practice when a data race exists,
a witness trace t* can be constructed that is similar to ¢. In
fact, virtually all practical techniques predict data races by
constructing t* to be very similar to ¢ (e.g., [15, 20, 32, 35, 41]).

The distance-bounded realizability problem of feasi-
ble trace ideals. Given a natural number ¢, a trace ¢ and a
feasible trace ideal X of t, the solution to the ¢-distance-
bounded realizability problem is False if X is not realiz-
able, True if there is a witness t* that realizes X such that
d(t,t*) < ¢, and can be any answer (True/False) if X is realiz-
able but any witness ¢* that realizes X is such that §(¢, t*) > £.
We remark that this formulation is that of a promise prob-
lem [14]. We are interested in the case where { = O(1).
There exists a straightforward algorithm that operates in
O(1X)?%) time. The algorithm iterates over all possible sub-
sets of pairs of conflicting write and lock-acquire events that
have size at most ¢, and tries all possible combinations of
conflicting-write reversals in that set. Theorem 2.6 is based
on the following lemma, which states that the problem can
be solved much faster when k is also constant.

Lemma 6.1. Consider a natural number €, a trace t over n
events and k threads, and a feasible trace ideal X of t. The
¢-distance-bounded realizability problem for X can be solved
in O(k“+OW . n) time.

Proof of Theorem 2.6. By Lemma 6.1, given a trace ideal X of
t, we can solve the {-distance-bounded realizability problem
for X in O(n) time. The proof then follows by Lemma 3.1 and
Lemma 3.2, as to decide whether (ej, e;) is a predictable data
race of t, it suffices to examine O(1) trace ideals of ¢. O

In the remaining of this section we prove Lemma 6.1. We
first define the notion of read extensions of graphs. After-
wards, we present the algorithm for the lemma, and show
its correctness and complexity.

Read extensions. Consider a digraph G = (X, E) where X is
a set of events. Given two events ey, e; € G, we write e; ~ ey
to denote that e, is reachable from e;. We call G write-ordered
if for every two distinct conflicting write or lock-acquire
events wi, wy € W.L(X), we have wi ~> wy Or Wy ~> Wi
in G. Given an acyclic write-ordered graph G; = (X, E;),
the read extension of Gy is the digraph G, = (X, E;) where
E, = E{UAUB, where the sets A and B are defined as follows.

A={(r,w) € RLX) X WL(X)|r > wand (RF;(r),w) € E{},
B ={(w,r) € WL(X)XxRL(X)|r v wand (w,RF(r)) € E;} .

LICS °20, July 8-11, 2020, Saarbriicken, Germany

A fast algorithm for distance-bounded rf-poset realiz-
ability. Let # = (X, P,RF) be the canonical rf-poset of X,
and the task is to decide the realizability of with ¢ reversals.
We describe a recursive algorithm for solving the problem
for some rf-poset Q = (X, Q, RF) with ¢’ reversals, for some
¢’ < ¢, where initially Q = P and ¢’ = €.

Algorithm and correctness. Consider the set
C ={(wy,wz) € WL(X) x WLEX) | wy > w
wi [lo wa and wy <; wa} .

We construct a graph G; = (X, E;), where E; = (TRF|X) UC.
Note that G; is write-ordered. If it is acyclic, we construct
the read extension G, of G;. Observe that if G; is acyclic then
any linearization t* of G realizes Q, hence we are done. Now
consider that either G; or G; is not acyclic, and let G = G,
if Gy is not acyclic, otherwise G = G,. Given a cycle C of G,
represented as a collection of edges, define the set of cross-
edges of C as € \ Q. Note that, since there are k threads, G
has a cycle with < k cross edges. In addition, any trace t*
that realizes Q must linearize an rf-poset (X, Q,, RF) where
a = (e, ey) ranges over the cross-edges of C. In particular,
we take Q, = Q U {b}, where

ifa e WLX)xWLX)
if a € WLX)xRLX)
ifa e RLX) X WLX).

and

(2, €1),
b = 1 (RF(ez), e1),
(e2, RF(eq)),

Observe that any such choice of b reverses the order of two
conflicting write events or lock-acquire events in ¢. Since
there are < k cross edges in C, there are < k such choices for
Qg. Repeating the same process recursively for the rf-poset
(X, Qq, RF) for ¢’ — 1 levels solves the ¢’-distance-bounded
realizability problem for Q. Since initially ¢’ = £ and Q = P,
this process solves the same problem for # and thus for X.

Complexity. The recursion tree above has branching < k
and depth < ¢, hence there will be at most k¢ recursive
instances. In [23], we provide some lower-level algorith-
mic details which show that each instance can be solved in
O(k®W . n) time. The main idea is that each of the graphs G,
and G, have a sparse transitive reduction [3] of size O(k - n),
and thus each graph can be analyzed in O(k - n) time.

Acknowledgments

We thank anonymous reviewers for their constructive feed-
back on an earlier draft of this manuscript. Remark 3 is due to
anonymous reviewer. Umang Mathur is partially supported
by a Google PhD Fellowship. Mahesh Viswanathan was par-
tially supported by grant NSF SHF 1901069.

—

—

—

LICS °20, July 8-11, 2020, Saarbriicken, Germany

References
[1] I.]. Aalbersberg. 1988. Theory of Traces. Theor. Comput. Sci. 60, 1

(Sept. 1988), 1-82. https://doi.org/10.1016/0304-3975(88)90051-5

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus

Lang, Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal
Stateless Model Checking for Reads-from Equivalence under Sequen-
tial Consistency. Proc. ACM Program. Lang. 3, OOPSLA, Article Article
150 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360576

A.V.Aho, M. R. Garey, and J. D. Ullman. 1972. The Transitive Reduction
of a Directed Graph. SIAM J. Comput. 1, 2 (1972), 131-137. https:
//doi.org/10.1137/0201008

A. Bertoni, G. Mauri, and N. Sabadini. 1989. Membership Problems for
Regular and Context-Free Trace Languages. Inf. Comput. 82, 2 (Aug.
1989), 135-150. https://doi.org/10.1016/0890-5401(89)90051-5
Ranadeep Biswas and Constantin Enea. 2019. On the Complexity of
Checking Transactional Consistency. Proc. ACM Program. Lang. 3,
OOPSLA, Article Article 165 (Oct. 2019), 28 pages. https://doi.org/10.
1145/3360591

Hans-J. Boehm. 2011. How to Miscompile Programs with “Benign”
Data Races. In Proceedings of the 3rd USENIX Conference on Hot Topic
in Parallelism (HotPar’11). USENIX Association, USA, 3.

Hans-J. Boehm. 2012. Position Paper: Nondeterminism is Unavoidable,
but Data Races Are Pure Evil. In Proceedings of the 2012 ACM Workshop
on Relaxing Synchronization for Multicore and Manycore Scalability
(RACES ’12). Association for Computing Machinery, New York, NY,
USA, 9-14. https://doi.org/10.1145/2414729.2414732

Karl Bringmann. 2019. Fine-Grained Complexity Theory (Tutorial).
In 36th International Symposium on Theoretical Aspects of Computer
Science (STACS 2019) (Leibniz International Proceedings in Informatics
(LIPIcs)), Rolf Niedermeier and Christophe Paul (Eds.), Vol. 126. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 4:1-
4:7. https://doi.org/10.4230/LIPlcs.STACS.2019.4

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Kapil
Vaidya, and Nishant Sinha. 2018. Data-centric Dynamic Partial Order
Reduction. In Proceedings of the 45rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’18).

Feng Chen and Grigore Rosu. 2007. Parametric and Sliced Causality.
In Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’07). Springer-Verlag, Berlin, Heidelberg, 240-253.
http://dl.acm.org/citation.cfm?id=1770351.1770387

[11] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong

computational lower bounds via parameterized complexity. J. Comput.
System Sci. 72, 8 (2006), 1346 — 1367. https://doi.org/10.1016/j.jcss.2006.
04.007

Rodney G. Downey and Michael R. Fellows. 1999. Parameterized
Complexity. Springer. https://doi.org/10.1007/978-1-4612-0515-9
Michael Emmi and Constantin Enea. 2017. Sound, Complete, and
Tractable Linearizability Monitoring for Concurrent Collections. Proc.
ACM Program. Lang. 2, POPL, Article Article 25 (Dec. 2017), 27 pages.
https://doi.org/10.1145/3158113

Shimon Even, Alan L. Selman, and Yacov Yacobi. 1984. The Complexity
of Promise Problems with Applications to Public-Key Cryptography.
Inf. Control 61, 2 (May 1984), 159-173. https://doi.org/10.1016/S0019-
9958(84)80056-X

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Effi-
cient and Precise Dynamic Race Detection. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 09). ACM, New York, NY, USA, 121-133.
https://doi.org/10.1145/1542476.1542490

Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memo-
ries. SIAM J. Comput. 26, 4 (Aug. 1997), 1208-1244. https://doi.org/10.
1137/50097539794279614

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Lang. Syst. 12, 3 (July 1990), 463-492. https://doi.org/10.1145/78969.
78972

[18] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal
Sound Predictive Race Detection with Control Flow Abstraction. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI '14). ACM, New York, NY,
USA, 337-348. https://doi.org/10.1145/2594291.2594315

[19] Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob:
Crowdsourced Data Race Detection. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 406-422.
https://doi.org/10.1145/2517349.2522736

[20] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dy-
namic Race Prediction in Linear Time. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). ACM, New York, NY, USA, 157-170.
https://doi.org/10.1145/3062341.3062374

[21] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (July 1978), 558-565. https:
//doi.org/10.1145/359545.359563

[22] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What
Happens-after the First Race? Enhancing the Predictive Power of
Happens-before Based Dynamic Race Detection. Proc. ACM Program.
Lang. 2, OOPSLA, Article 145 (Oct. 2018), 29 pages. https://doi.org/10.
1145/3276515

[23] Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan.
2020. The Complexity of Dynamic Data Race Prediction. (2020).
arXiv:cs.PL/2004.14931

[24] Friedemann Mattern. 1989. Virtual Time and Global States of Dis-
tributed Systems. In Parallel and Distributed Algorithms: proceedings
of the International Workshop on Parallel & Distributed Algorithms,
M. Cosnard et. al. (Ed.). Elsevier Science Publishers B. V., 215-226.

[25] A Mazurkiewicz. 1987. Trace Theory. In Advances in Petri Nets 1986,
Part II on Petri Nets: Applications and Relationships to Other Models of
Concurrency. Springer-Verlag New York, Inc., 279-324.

[26] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race
Detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM,
New York, NY, USA, 308-319. https://doi.org/10.1145/1133981.1134018

[27] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-
wards, and Brad Calder. 2007. Automatically Classifying Benign and
Harmful Data Races Using Replay Analysis. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI "07). Association for Computing Machinery, New
York, NY, USA, 22-31. https://doi.org/10.1145/1250734.1250738

[28] Robert H.B. Netzer and Barton P. Miller. 1990. On the Complexity of
Event Ordering for Shared-Memory Parallel Program Executions. In In
Proceedings of the 1990 International Conference on Parallel Processing.
93-97.

[29] Robert H. B. Netzer and Barton P. Miller. 1992. What Are Race Condi-
tions? Some Issues and Formalizations. ACM Lett. Program. Lang. Syst.
1, 1 (March 1992), 74-88. https://doi.org/10.1145/130616.130623

[30] Robert Netzer Netzer and Barton P. Miller. 1989. Detecting Data
Races in Parallel Program Executions. In In Advances in Languages and
Compilers for Parallel Computing, 1990 Workshop. MIT Press, 109-129.

[31] Christos H. Papadimitriou. 1979. The Serializability of Concurrent
Database Updates. J. ACM 26, 4 (Oct. 1979), 631-653. https://doi.org/
10.1145/322154.322158

[32] Andreas Pavlogiannis. 2019. Fast, Sound, and Effectively Complete
Dynamic Race Prediction. Proc. ACM Program. Lang. 4, POPL, Article
Article 17 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371085

[33] Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data
Race Detection in Multithreaded C++ Programs. SIGPLAN Not. 38, 10
(June 2003), 179-190. https://doi.org/10.1145/966049.781529

(34]

(35]

(36]

(37]

(38]

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCK-
SMITH: Practical Static Race Detection for C. ACM Trans. Program.
Lang. Syst. 33, 1, Article 3 (Jan. 2011), 55 pages. https://doi.org/10.1145/
1889997.1890000

Jake Roemer, Kaan Geng, and Michael D. Bond. 2018. High-coverage,
Unbounded Sound Predictive Race Detection. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2018). ACM, New York, NY, USA, 374-389.
https://doi.org/10.1145/3192366.3192385

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011.
Generating Data Race Witnesses by an SMT-based Analysis. In Pro-
ceedings of the Third International Conference on NASA Formal Meth-
ods (NFM’11). Springer-Verlag, Berlin, Heidelberg, 313-327. http:
//dl.acm.org/citation.cfm?id=1986308.1986334

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. 1997. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997),
391-411. https://doi.org/10.1145/265924.265927

Koushik Sen, Grigore Rosu, and Gul Agha. 2005. Detecting Errors in
Multithreaded Programs by Generalized Predictive Analysis of Exe-
cutions. In Formal Methods for Open Object-Based Distributed Systems,
Martin Steffen and Gianluigi Zavattaro (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 211-226.

[39]

[40]

[41]

[42]

[43]

[44]

LICS °20, July 8-11, 2020, Saarbriicken, Germany

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSan-
itizer: Data Race Detection in Practice. In Proceedings of the Work-
shop on Binary Instrumentation and Applications (WBIA *09). Associ-
ation for Computing Machinery, New York, NY, USA, 62-71. https:
//doi.org/10.1145/1791194.1791203

Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution
of Parallel Programs That Share Memory. ACM Trans. Program. Lang.
Syst. 10, 2 (April 1988), 282-312. https://doi.org/10.1145/42190.42277
Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and
Cormac Flanagan. 2012. Sound Predictive Race Detection in Polyno-
mial Time. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL °12). ACM,
New York, NY, USA, 387-400. https://doi.org/10.1145/2103656.2103702
Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009.
Symbolic Predictive Analysis for Concurrent Programs. In Proceedings
of the 2Nd World Congress on Formal Methods (FM °09). Springer-Verlag,
Berlin, Heidelberg, 256-272. https://doi.org/10.1007/978-3-642-05089-
3.17

Ryan Williams. 2005. A New Algorithm for Optimal 2-constraint
Satisfaction and Its Implications. Theor. Comput. Sci. 348, 2 (Dec. 2005),
357-365. https://doi.org/10.1016/j.tcs.2005.09.023

M. Zhivich and R. K. Cunningham. 2009. The Real Cost of Software
Errors. IEEE Security and Privacy 7, 2 (March 2009), 87-90. https:
//doi.org/10.1109/MSP.2009.56

