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Synopsis Invasive species represent a serious ecological threat for many ecosystems worldwide and provide a unique
opportunity to investigate rapid adaptation and evolution. Genetic variation allows populations of organisms to be both
robust and adaptable to different environmental conditions over evolutionary timeframes. In contrast, invasive animals
can rapidly adapt to new environments, with minimal genetic diversity. Thus, the extent to which environmental effects
can trigger epigenetic responses is particularly interesting for understanding the role of epigenetics in rapid adaptation.
In this review, we provide a brief overview of the different epigenetic mechanisms that control gene expression, and
emphasize the importance of epigenetics for environmental adaptation. We also discuss recent publications that provide
important examples for the role of epigenetic mechanisms in environmental adaptation. Furthermore, we present an
overview of the current knowledge about epigenetic modulation as an adaptive strategy for invasive species. A partic-
ularly interesting example is provided by the marbled crayfish, a novel, monoclonal freshwater crayfish species that has
colonized diverse habitats within a few years. Finally, we address important limitations of current approaches and
highlight the potential importance of less well-known mechanisms for non-genetic organismal adaptation.

Introduction plants (Richards 2011; Pikaard and Mittelsten Scheid

It is commonly accepted that differences in the de-
oxyribonucleic acid (DNA) sequence (i.e., genetic
variation) provide organisms with the ability to
adapt to different environmental conditions.
Natural selection acting on genetic variants explains
how organisms can colonize ecological niches over
evolutionary timeframes. However, several examples
of rapid adaptation and invasion are difficult to ex-
plain solely by the selection of genetic variants. As
such, epigenetic mechanisms have been increasingly
used to explain these phenomena. We delimit epige-
netic plasticity from transgenerational epigenetic in-
heritance, which is controversially discussed and
would allow the inheritance of acquired epigenetic
traits (Heard and Martienssen 2014). In contrast,
epigenetic adaptation is effective within single
generations.

Our article focuses on epigenetic adaptation in
animals, as several reviews are already available for
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2014). We begin by defining epigenetics, providing a
short overview of the different epigenetic mecha-
nisms, and emphasizing the importance of epige-
netics for environmental adaptation. We continue
with a detailed description of recent studies that pro-
vided important paradigms for the role of epigenetic
mechanisms in environmental adaptation. This
includes the marbled crayfish, a clonally reproducing
animal that has recently colonized various ecosys-
tems worldwide. Finally, we identify important
open questions and provide suggestions for future
development.

Epigenetic regulation of gene expression

Multicellular organisms are genetically homoge-
neous, but different cell types and functions arise
from the differential expression of genes. It has
been shown that differentiating mammalian cells un-
dergo dynamic epigenetic changes, resulting in the
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Fig. 1 Mechanistic model for epigenetic control of gene expression. Epigenetic mechanisms are important for regulating gene ex-
pression and chromatin architecture in eukaryotic cells. The fundamental repeat unit of chromatin is the nucleosome, which is
comprised of an octamer of core histone proteins (represented by blue circles). Post-translational modifications (small green circles) of
the amino-terminal tails of histone proteins (short blue lines deriving from the histones) affect chromatin structure by fine-tuning the
accessibility of the transcription machinery (transcription factors, co-regulators, and the RNA polymerase Il complex). DNA methyl-
ation (red hexagons) refers to the addition of a methyl group to the five-position of cytosine in the context of CpG dinucleotides.
RNA-based mechanisms silence gene expression via complementary base-pairing to mMRNA molecules. This evolutionarily conserved
mechanism affects gene expression by promoting MRNA degradation or the disruption of protein translation. Adenosine to inosine (A-
to-) RNA editing represents a mechanism to diversify mRNA coding. Because inosine pairs with cytosine, it is a biological mimic for
guanosine and can thus alter mRNA coding. The potential of A-to-l editing to diversify the transcriptomic profile represents a possible
mechanism to increase phenotypic plasticity and, therefore, aid adaptation to new environments.

establishment of cell-type-specific programs (Gifford
et al. 2013; Xie et al. 2013; Roadmap Epigenomics
Consortium et al. 2015). Transcription factors pri-
marily control gene expression, and nearly all bio-
logical processes are linked to post-synthetic
modifications of the three fundamental macromole-
cules: DNA, ribonucleic acid (RNA), and proteins
(Fig. 1). These covalent modifications have been
commonly termed as “epigenetic” even though this
broad definition has often resulted in misconcep-
tions (Deichmann 2016; Henikoff and Greally 2016).

Transcription in eukaryotes takes place in the con-
text of chromatin. In general, nucleosomes impede
DNA transcription, either by physically obstructing
or by compartmentalizing the binding of transcrip-
tion factors to DNA. An important feature of histo-
nes, and particularly of their N-terminal tails, is their
ability to carry post-translational modifications,
which can affect chromatin structure in different
ways. Many of these modifications are dynamically
regulated by families of enzymes that write or erase

the modifications (Allis and Jenuwein 2016). Besides
their role in chromatin remodeling, histone modifi-
cations are also responsible for recruiting effector
proteins or disrupting their binding to chromatin.
RNA-based mechanisms have also been involved
in epigenetic regulation, but are less well understood
in animals. Key molecules are noncoding RNAs that
belong to several classes. Small interfering RNAs
(siRNAs) and microRNAs are derived from longer
precursor RNAs by the action of RNAse III-family
enzymes, such as Drosha and Dicer, and can inhibit
translation or direct mRNA degradation (Kim et al.
2009; Castel and Martienssen 2013). Additionally,
siRNAs can regulate gene transcription through
transposable element silencing and the interaction
with other epigenetic mechanisms, such as DNA
methylation and histone modification (Holoch and
Moazed 2015). Finally, it should be noted that addi-
tional mechanisms that are not traditionally associ-
ated with epigenetic gene regulation have the
capacity to increase phenotypic plasticity. A
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prominent example is provided by mRNA editing
(Figure 1). The deamination of adenosine to inosine
(recognized as guanosine during translation) by the
ADAR family of enzymes has the potential to recode
codons and diversify the transcriptome by allowing
the translation of alternative protein products from a
single gene (Eisenberg and Levanon 2018).

DNA methylation represents the most well-studied
epigenetic mechanism, and characterizing the biolog-
ical relevance of this modification and its impact on
gene expression has driven research in the field for a
long time (Lyko 2018). The dynamic equilibrium
between methylation and demethylation modulates
gene expression and can be faithfully propagated
through many cell generations (Jones 2012). While
often associated with transcriptional silencing in
mammals, DNA methylation patterns are complex
and can affect gene promoters, gene bodies, and
repeats differently (Jones 2012; Schubeler 2015).

Mechanistically, the effects of DNA methylation
are often explained by their complex association be-
tween DNA methylation and transcription factor
binding (Schubeler 2015; Yin et al. 2017). An addi-
tional model involves the recruitment of methyl-
binding proteins (MBPs), which triggers chromatin
structural changes and altered gene expression (Klose
and Bird 2006). More specifically, MBPs have been
shown to bind to methylated DNA, often at gene
promoters, resulting in transcriptional repression
through the recruitment of histone deacetylases
(Klose and Bird 2006). While these models are
well-established in vertebrate systems, the role of
DNA methylation in invertebrates remains much
less understood. Invertebrate methylation patterns
can be highly diverse (Bewick et al. 2017) and are
often defined by gene body methylation, while pro-
moter methylation is rarely observed. Gene body
methylation may reduce spurious RNA polymerase
transcription (Neri et al. 2017), which is also known
as transcriptional noise (Faure et al. 2017).

From an ecological perspective, epigenetic mecha-
nisms could promote phenotypic plasticity and ad-
aptation to different environments (Verhoeven et al.
2016). Thus, the extent to which environmental
effects can trigger epigenetic responses is particularly
interesting for understanding the role of epigenetics
in animal adaptation.

Key examples for rapid epigenetic
adaptation
With the emergence of epigenetics and the develop-

ment of methods for the detection of epigenetic
modifications, many studies have attempted to link
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adaptive changes to epigenetic changes (Feil and
Fraga 2012; Hu and Barrett 2017). More recently,
however, several key studies have provided more
convincing evidence, based on improved study de-
sign and more rigorous methodology. In the follow-
ing, we provide an overview of several of these
particularly interesting examples. For instance, it
has been shown that DNA methylation patterns of
salmon that were reared in artificial hatcheries were
different from salmon that were reared in the wild
(Le Luyer et al. 2017). While the phenotypic effects
of differentially methylated regions were not investi-
gated, the results were based on sound statistical
analysis and included controls for genetic polymor-
phisms, which represent a major confounding factor
in DNA methylation analyses. Overall, the study sug-
gested that adaptive epigenetic changes to the hatch-
ery environment underpin the reduced fitness of
hatchery-reared salmon when released in the wild.

Similar observations were also made in terrestrial
animals. For example, different methylation patterns
were identified in the early stages of a founding pop-
ulation of the brown anole lizard (Anolis sagrei),
suggesting a relationship between epigenetic varia-
tion and rapid responses to environmental changes
(Hu et al. 2019). It was shown that after a 4-days
exposure to a new habitat, the lizards had methyla-
tion patterns that were distinct from their original
habitat. Interestingly, differentially methylated cyto-
sines were detected at genes with functions likely to
be relevant to animal plasticity (e.g., signal transduc-
tion, immune response, and circadian rhythm).
Further integrative studies using whole-genome bi-
sulfite sequencing and RNA sequencing, should im-
prove the understanding of how DNA methylation
modulates phenotypic responses to environmental
stressors during the colonization of new habitats.

Epigenetic mechanisms have also been implied in
the adaptation of the globally distributed scleracti-
nian coral Stylophora pistillata to warmer and more
acidic ocean water. Genome-wide DNA methylation
analysis revealed pH-dependent differential methyla-
tion at genes associated with growth and stress re-
sponse pathways (Liew et al. 2018). Interestingly, the
coral methylome is characterized by gene body
methylation, and high levels of gene body methyla-
tion were shown to reduce spurious transcription
and transcriptional noise (Li et al. 2018). While it
appears possible that reduced transcriptional noise
facilitates adaptation, variable gene expression has
also been suggested as an adaptive mechanism in
corals (Kenkel and Matz 2016). Both effects could
conceivably be mediated by alterations in gene
body methylation.
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Another interesting example of an adaptive epige-
netic change is provided by certain cavefish, where
the environment triggers the degeneration of the
eyes. Interestingly, in the Pachén blind morph of
the Mexican tetra (Astyanax mexicanus), this process
is not accompanied by known genetic mutations in
eye developmental genes. Instead, it was shown that
promoter hypermethylation could repress eye-
specific genes and thus results in defective eye devel-
opment (Gore et al. 2018). Of note, this study also
provides promising results from initial functional
experiments, such as a partial rescue of eye pheno-
types by injection of a DNA methylation inhibitor
(Gore et al. 2018).

Epigenetic adaptation in invasive species

Invasive species represent a serious ecological threat
for many ecosystems worldwide and provide a
unique opportunity to investigate rapid adaptation
and evolution. Invasive animals often show reduced
genetic diversity, which is thought to limit the adap-
tive and evolutionary potential by constraining the
availability of new gene variants (Chown et al. 2015).
Nevertheless, invasive species are often highly suc-
cessful in adapting to new and heterogeneous envi-
ronments, with adaptive plasticity as an essential
strategy for rapidly colonizing new habitats and
out-competing native species. Commonly neglected
or hidden in natural environments, phenotypic plas-
ticity becomes particularly relevant when the inva-
sion of a new or altered environment occurs
(Ghalambor et al. 2007; Fox et al. 2019).

Defined as the ability of a genome to express var-
ious phenotypes, phenotypic plasticity implies the
capacity for multiple adaptive responses to environ-
mental changes, such as environmental stress, rapid
growth, and reproduction (Fox et al. 2019).
However, the expansion of invasive species repre-
sents a genetic paradox, as individuals can adapt
rapidly to new, sometimes challenging environments.
As discussed before, epigenetic mechanisms can
modulate phenotypes without changing genotypes.
Through the modulation of gene expression, epige-
netic changes can increase phenotypic variation in
the absence of genetic diversity, which might facili-
tate animal adaptation to both biotic and abiotic
environmental challenges (Jaenisch and Bird 2003;
Duncan et al. 2014).

Epigenetic plasticity can explain organismal adap-
tation to environmental changes (Hollander et al.
2015). A detailed summary of a significant number
of indicative studies that link adaptivity in invasive
species to DNA methylation variability has been
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published recently (Hawes et al. 2018). For example,
intrapopulation DNA methylation variability was ob-
served in the invasive house sparrow (Passer domes-
ticus) and proposed as a rapid response mechanism
to environmental challenges (Liebl et al. 2013;
Sheldon et al. 2018). Additionally, in the pygmy
mussel (Xenostrobus secures), global DNA hypome-
thylation was detected in a recently evolved popula-
tion and interpreted as a mechanism to promote
phenotypic plasticity and thereby facilitate the ex-
pansion of invasive populations (Ardura et al.
2017). Finally, in the invasive whitefly (Bemisia
tabaci), DNA methyltransferase 1 (DNMT1) knock-
down caused reduced thermotolerance, but DNA
methylation patterns were not investigated (Dai
et al. 2018).

Despite these recent advances, it is worth men-
tioning that many studies in this field have analyzed
DNA methylation using indirect methods and that it
will be important to confirm initial findings by more
robust and more powerful approaches, such as bisul-
fite sequencing (Lea et al. 2017). Furthermore, the
mechanisms of how the environment shapes the epi-
genome are mainly unknown. Finally, it will be im-
portant to more comprehensively analyze epigenetic
gene regulation in invasive animals, in order to bet-
ter understand and ultimately predict their adaptive
and invasive potential. Detailed analyses of select
model organisms could be particularly useful for
the establishment of more generalizable concepts.

The marbled crayfish as an example for
epigenetic adaptation in an invasive
species

The marbled crayfish (Procambarus virginalis) repre-
sents a novel freshwater crayfish species that emerged
from the German aquarium trade about 25 years ago
(Scholtz et al. 2003; Lyko 2017). Anthropogenic
releases have founded expanding wild populations
in several European countries (Chucholl and
Pfeiffer 2010; Liptdk et al. 2016; Novitsky and Son
2016; Patoka et al. 2016; Parvulescu et al. 2017;
Deidun et al. 2018; Ercoli et al. 2019).
Furthermore, marbled crayfish have rapidly invaded
ecologically distinct habitats in Madagascar and cur-
rently colonize an area that extends over 100.000 km?
(Jones et al. 2009; Kawai et al. 2009; Gutekunst et al.
2018; Andriantsoa et al. 2019).

The marbled crayfish is a parthenogenetic descen-
dant of the sexually reproducing slough crayfish (P.
fallax) from Florida (Martin et al. 2010). Its partic-
ular mode of reproduction (obligatory apomictic
parthenogenesis) results in the generation of a
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Fig. 2 Clonal expansion and rapid adaptation of marbled crayfish. The marbled crayfish is a monoclonal, parthenogenetically repro-
ducing species. Individual animals show considerable phenotypic plasticity and adaptivity to various parameters, such as temperature,
osmolarity, and pollution. Epigenetic modulation has been implied to marbled crayfish adaptation, but the precise mechanisms remain
to be identified. The top panel picture shows an adult marbled crayfish (3 years old) with eggs. The bottom panel displays three

ecologically different locations with established marbled crayfish population: Ihosy River (Madagascar), Lake Reilingen (Germany), and

Ranomaimbo lake (Madagascar).

genetically homogeneous, monoclonal population
(Gutekunst et al. 2018). Parthenogenetic reproduc-
tion is not uncommon in the animal kingdom, but
obligatory parthenogenesis is very rare and has been
described as an “evolutionary scandal,” as it runs
counter to fundamental tenets of evolutionary biol-
ogy. As genetic polymorphisms are negligible in the
marbled crayfish population, the successful adapta-
tion of the animals to different environments cannot
be explained by the Darwinian selection of the ge-
netically best-adapted genotype. It is therefore very
likely that marbled crayfish use epigenetic mecha-
nisms, such as DNA methylation, to adapt their ge-
nome to specific environmental conditions
(Figure 2).

The combination of obligatory apomictic parthe-
nogenesis with an extremely young species age (25—
30years) in marbled crayfish creates unique oppor-
tunities for elucidating the role of epigenetic mech-
anisms in invasiveness. Indeed, the genome of the
marbled crayfish encodes a conserved and active

DNA methylation toolkit (Gatzmann et al. 2018).
A detailed analysis of DNA methylation patterns
revealed that that the modification is targeted to
the gene bodies of housekeeping genes, similar to
many other invertebrates (Gatzmann et al. 2018).
Interestingly, gene body methylation was found to
be inversely correlated with gene expression variabil-
ity. When compared to the parent species of marbled
crayfish (P. fallax), many genes showed reduced
levels of gene body methylation and increased
levels of gene expression variability (Gatzmann
et al. 2018). This might indicate that low levels of
gene body methylation promote adaptability (and
invasiveness) through increased gene expression
variability. This hypothesis will have to be
confirmed by a detailed molecular analysis of
specific ecotypes and/or by direct experimental
approaches that elucidate the functional role of
DNA methylation in this organism.

Of note, marbled crayfish possess key prerequisites
for a laboratory model, such as suitable size,
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resistance against handling stress, high fertility, and a
relatively short generation time (Vogt 2011). In ad-
dition, marbled crayfish combine obligatory apomic-
tic parthenogenesis with an extremely young
evolutionary age (25-30years), thus generating a
population with an unparalleled genetic homogene-
ity. Up to date, this model has been used for re-
search on several biological processes such as
development (Seitz et al. 2005), neurobiology
(Vilpoux et al. 2006), and epigenetics (Vogt et al.
2008). Furthermore, marbled crayfish has been
shown to be very robust against various environmen-
tal parameters (Andriantsoa et al. 2019) and repre-
sents an excellent model system for modulating
environmental conditions in a standardized labora-
tory setting.

Future directions

Elucidating the role of epigenetic mechanisms in
phenotypic plasticity and adaptation will remain an
important research topic for many years to come. It
will be important to avoid known issues in the de-
sign and interpretation of epigenome mapping stud-
ies that have plagued the field in the past
(Lappalainen and Greally 2017; Lea et al. 2017). In
this context, we consider three issues as particularly
relevant: (1) Epigenetic patterns can be cell-type spe-
cific, but epigenetic profiles are often obtained from
whole animals or bulk tissue. For example, two
groups from different environments might differ in
the cellular composition of a specific tissue, which
could introduce a systematic (and potentially large)
confounding effect that is unrelated to true epige-
netic adaptation. As such, it is important to control
the cellular sample composition. (2) Epigenetic effect
sizes are often relatively small in ecological studies.
The generation of conclusive results, therefore,
requires the design of sufficiently powered studies
with relatively high sequencing depths and relatively
large sample numbers. We recommend that power
estimates are included in the study design (Lea et al.
2017). (3) Wild specimens from a single species can
have very heterogeneous genetic backgrounds, which
can introduce a very strong confounding effect on
the analysis. For example, if a cytosine is methylated
in one population, but polymorphic in another pop-
ulation, it will be scored as differentially methylated.
However, this change is not related to differential
epigenetic programming, but rather reflects differen-
ces in population genetic structures. Integrated ge-
nome/epigenome analysis should be used to resolve
this issue.

V. C. Carneiro and F. Lyko

It will also be critically important to analyze the
functional role of epigenetic mechanisms in rapid
adaptation and invasiveness. This can be achieved
by  Clustered Regularly  Interspaced  Short
Palindromic Repeats (CRISPR)-mediated editing
(Rees and Liu 2018) and inactivation of various epi-
genetic modifier genes, such as DNA methyltransfer-
ases, DNA demethylases, and histone modifying
enzymes. Knockout animals can then be challenged
by changes in environmental parameters that can be
easily varied in the laboratory (e.g., temperature, wa-
ter supplements, and feed components). The increas-
ing availability of complete genome sequences from
non-model organisms and the broad application po-
tential of CRISPR-based genome editing tools allow
the use of functional approaches in an increasing
number of interesting and relevant organisms.

Finally, it is also likely, that additional epigenetic
mechanisms will emerge in the context of rapid ad-
aptation and invasiveness. A prominent example is
provided by small RNAs that can be loaded into
oocytes and sperm and can thus be transmitted
from parents to offspring (Chen et al. 2016). If these
RNAs have the capacity to modulate genes that are
involved in phenotypic plasticity, they can have a
profound impact on the adaptive potential of the
corresponding organism. Additionally, mRNA edit-
ing represents another interesting example of a
mechanism that could conceivably play an important
role in rapid adaptation (Eisenberg and Levanon
2018). A-to-I mRNA editing is a dynamic process
that can diversify the transcriptome, and that has
been strongly implicated in adaptive processes
(Garrett and Rosenthal 2012). Interestingly, a trade-
off between genome evolution and transcriptome
plasticity was suggested in cephalopods, as the geno-
mic regions surrounding the editing sites appeared
highly conserved (Liscovitch-Brauer et al. 2017). The
high frequency and the conservation of editing sites
significantly reduce genetic polymorphisms, and
thereby decelerate genome evolution. Thus, RNA
editing could provide a paradigm for how animals
overcome the lack of genetic diversity and rapidly
adapt to new environments by diversifying their
transcriptome.
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