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Synopsis Invasive species represent a serious ecological threat for many ecosystems worldwide and provide a unique

opportunity to investigate rapid adaptation and evolution. Genetic variation allows populations of organisms to be both

robust and adaptable to different environmental conditions over evolutionary timeframes. In contrast, invasive animals

can rapidly adapt to new environments, with minimal genetic diversity. Thus, the extent to which environmental effects

can trigger epigenetic responses is particularly interesting for understanding the role of epigenetics in rapid adaptation.

In this review, we provide a brief overview of the different epigenetic mechanisms that control gene expression, and

emphasize the importance of epigenetics for environmental adaptation. We also discuss recent publications that provide

important examples for the role of epigenetic mechanisms in environmental adaptation. Furthermore, we present an

overview of the current knowledge about epigenetic modulation as an adaptive strategy for invasive species. A partic-

ularly interesting example is provided by the marbled crayfish, a novel, monoclonal freshwater crayfish species that has

colonized diverse habitats within a few years. Finally, we address important limitations of current approaches and

highlight the potential importance of less well-known mechanisms for non-genetic organismal adaptation.

Introduction

It is commonly accepted that differences in the de-

oxyribonucleic acid (DNA) sequence (i.e., genetic

variation) provide organisms with the ability to

adapt to different environmental conditions.

Natural selection acting on genetic variants explains

how organisms can colonize ecological niches over

evolutionary timeframes. However, several examples

of rapid adaptation and invasion are difficult to ex-

plain solely by the selection of genetic variants. As

such, epigenetic mechanisms have been increasingly

used to explain these phenomena. We delimit epige-

netic plasticity from transgenerational epigenetic in-

heritance, which is controversially discussed and

would allow the inheritance of acquired epigenetic

traits (Heard and Martienssen 2014). In contrast,

epigenetic adaptation is effective within single

generations.

Our article focuses on epigenetic adaptation in

animals, as several reviews are already available for

plants (Richards 2011; Pikaard and Mittelsten Scheid

2014). We begin by defining epigenetics, providing a

short overview of the different epigenetic mecha-

nisms, and emphasizing the importance of epige-

netics for environmental adaptation. We continue

with a detailed description of recent studies that pro-

vided important paradigms for the role of epigenetic

mechanisms in environmental adaptation. This

includes the marbled crayfish, a clonally reproducing

animal that has recently colonized various ecosys-

tems worldwide. Finally, we identify important

open questions and provide suggestions for future

development.

Epigenetic regulation of gene expression

Multicellular organisms are genetically homoge-

neous, but different cell types and functions arise

from the differential expression of genes. It has

been shown that differentiating mammalian cells un-

dergo dynamic epigenetic changes, resulting in the
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establishment of cell-type-specific programs (Gifford

et al. 2013; Xie et al. 2013; Roadmap Epigenomics

Consortium et al. 2015). Transcription factors pri-

marily control gene expression, and nearly all bio-

logical processes are linked to post-synthetic

modifications of the three fundamental macromole-

cules: DNA, ribonucleic acid (RNA), and proteins

(Fig. 1). These covalent modifications have been

commonly termed as “epigenetic” even though this

broad definition has often resulted in misconcep-

tions (Deichmann 2016; Henikoff and Greally 2016).

Transcription in eukaryotes takes place in the con-

text of chromatin. In general, nucleosomes impede

DNA transcription, either by physically obstructing

or by compartmentalizing the binding of transcrip-

tion factors to DNA. An important feature of histo-

nes, and particularly of their N-terminal tails, is their

ability to carry post-translational modifications,

which can affect chromatin structure in different

ways. Many of these modifications are dynamically

regulated by families of enzymes that write or erase

the modifications (Allis and Jenuwein 2016). Besides

their role in chromatin remodeling, histone modifi-

cations are also responsible for recruiting effector

proteins or disrupting their binding to chromatin.

RNA-based mechanisms have also been involved

in epigenetic regulation, but are less well understood

in animals. Key molecules are noncoding RNAs that

belong to several classes. Small interfering RNAs

(siRNAs) and microRNAs are derived from longer

precursor RNAs by the action of RNAse III-family

enzymes, such as Drosha and Dicer, and can inhibit

translation or direct mRNA degradation (Kim et al.

2009; Castel and Martienssen 2013). Additionally,

siRNAs can regulate gene transcription through

transposable element silencing and the interaction

with other epigenetic mechanisms, such as DNA

methylation and histone modification (Holoch and

Moazed 2015). Finally, it should be noted that addi-

tional mechanisms that are not traditionally associ-

ated with epigenetic gene regulation have the

capacity to increase phenotypic plasticity. A

Fig. 1 Mechanistic model for epigenetic control of gene expression. Epigenetic mechanisms are important for regulating gene ex-

pression and chromatin architecture in eukaryotic cells. The fundamental repeat unit of chromatin is the nucleosome, which is

comprised of an octamer of core histone proteins (represented by blue circles). Post-translational modifications (small green circles) of

the amino-terminal tails of histone proteins (short blue lines deriving from the histones) affect chromatin structure by fine-tuning the

accessibility of the transcription machinery (transcription factors, co-regulators, and the RNA polymerase II complex). DNA methyl-

ation (red hexagons) refers to the addition of a methyl group to the five-position of cytosine in the context of CpG dinucleotides.

RNA-based mechanisms silence gene expression via complementary base-pairing to mRNA molecules. This evolutionarily conserved

mechanism affects gene expression by promoting mRNA degradation or the disruption of protein translation. Adenosine to inosine (A-

to-I) RNA editing represents a mechanism to diversify mRNA coding. Because inosine pairs with cytosine, it is a biological mimic for

guanosine and can thus alter mRNA coding. The potential of A-to-I editing to diversify the transcriptomic profile represents a possible

mechanism to increase phenotypic plasticity and, therefore, aid adaptation to new environments.

268 V. C. Carneiro and F. Lyko

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/60/2/267/5825282 by C

ollege of C
harleston user on 02 O

ctober 2020



prominent example is provided by mRNA editing

(Figure 1). The deamination of adenosine to inosine

(recognized as guanosine during translation) by the

ADAR family of enzymes has the potential to recode

codons and diversify the transcriptome by allowing

the translation of alternative protein products from a

single gene (Eisenberg and Levanon 2018).

DNA methylation represents the most well-studied

epigenetic mechanism, and characterizing the biolog-

ical relevance of this modification and its impact on

gene expression has driven research in the field for a

long time (Lyko 2018). The dynamic equilibrium

between methylation and demethylation modulates

gene expression and can be faithfully propagated

through many cell generations (Jones 2012). While

often associated with transcriptional silencing in

mammals, DNA methylation patterns are complex

and can affect gene promoters, gene bodies, and

repeats differently (Jones 2012; Schubeler 2015).

Mechanistically, the effects of DNA methylation

are often explained by their complex association be-

tween DNA methylation and transcription factor

binding (Schubeler 2015; Yin et al. 2017). An addi-

tional model involves the recruitment of methyl-

binding proteins (MBPs), which triggers chromatin

structural changes and altered gene expression (Klose

and Bird 2006). More specifically, MBPs have been

shown to bind to methylated DNA, often at gene

promoters, resulting in transcriptional repression

through the recruitment of histone deacetylases

(Klose and Bird 2006). While these models are

well-established in vertebrate systems, the role of

DNA methylation in invertebrates remains much

less understood. Invertebrate methylation patterns

can be highly diverse (Bewick et al. 2017) and are

often defined by gene body methylation, while pro-

moter methylation is rarely observed. Gene body

methylation may reduce spurious RNA polymerase

transcription (Neri et al. 2017), which is also known

as transcriptional noise (Faure et al. 2017).

From an ecological perspective, epigenetic mecha-

nisms could promote phenotypic plasticity and ad-

aptation to different environments (Verhoeven et al.

2016). Thus, the extent to which environmental

effects can trigger epigenetic responses is particularly

interesting for understanding the role of epigenetics

in animal adaptation.

Key examples for rapid epigenetic

adaptation

With the emergence of epigenetics and the develop-

ment of methods for the detection of epigenetic

modifications, many studies have attempted to link

adaptive changes to epigenetic changes (Feil and

Fraga 2012; Hu and Barrett 2017). More recently,

however, several key studies have provided more

convincing evidence, based on improved study de-

sign and more rigorous methodology. In the follow-

ing, we provide an overview of several of these

particularly interesting examples. For instance, it

has been shown that DNA methylation patterns of

salmon that were reared in artificial hatcheries were

different from salmon that were reared in the wild

(Le Luyer et al. 2017). While the phenotypic effects

of differentially methylated regions were not investi-

gated, the results were based on sound statistical

analysis and included controls for genetic polymor-

phisms, which represent a major confounding factor

in DNA methylation analyses. Overall, the study sug-

gested that adaptive epigenetic changes to the hatch-

ery environment underpin the reduced fitness of

hatchery-reared salmon when released in the wild.

Similar observations were also made in terrestrial

animals. For example, different methylation patterns

were identified in the early stages of a founding pop-

ulation of the brown anole lizard (Anolis sagrei),

suggesting a relationship between epigenetic varia-

tion and rapid responses to environmental changes

(Hu et al. 2019). It was shown that after a 4-days

exposure to a new habitat, the lizards had methyla-

tion patterns that were distinct from their original

habitat. Interestingly, differentially methylated cyto-

sines were detected at genes with functions likely to

be relevant to animal plasticity (e.g., signal transduc-

tion, immune response, and circadian rhythm).

Further integrative studies using whole-genome bi-

sulfite sequencing and RNA sequencing, should im-

prove the understanding of how DNA methylation

modulates phenotypic responses to environmental

stressors during the colonization of new habitats.

Epigenetic mechanisms have also been implied in

the adaptation of the globally distributed scleracti-

nian coral Stylophora pistillata to warmer and more

acidic ocean water. Genome-wide DNA methylation

analysis revealed pH-dependent differential methyla-

tion at genes associated with growth and stress re-

sponse pathways (Liew et al. 2018). Interestingly, the

coral methylome is characterized by gene body

methylation, and high levels of gene body methyla-

tion were shown to reduce spurious transcription

and transcriptional noise (Li et al. 2018). While it

appears possible that reduced transcriptional noise

facilitates adaptation, variable gene expression has

also been suggested as an adaptive mechanism in

corals (Kenkel and Matz 2016). Both effects could

conceivably be mediated by alterations in gene

body methylation.
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Another interesting example of an adaptive epige-

netic change is provided by certain cavefish, where

the environment triggers the degeneration of the

eyes. Interestingly, in the Pach�on blind morph of

the Mexican tetra (Astyanax mexicanus), this process

is not accompanied by known genetic mutations in

eye developmental genes. Instead, it was shown that

promoter hypermethylation could repress eye-

specific genes and thus results in defective eye devel-

opment (Gore et al. 2018). Of note, this study also

provides promising results from initial functional

experiments, such as a partial rescue of eye pheno-

types by injection of a DNA methylation inhibitor

(Gore et al. 2018).

Epigenetic adaptation in invasive species

Invasive species represent a serious ecological threat

for many ecosystems worldwide and provide a

unique opportunity to investigate rapid adaptation

and evolution. Invasive animals often show reduced

genetic diversity, which is thought to limit the adap-

tive and evolutionary potential by constraining the

availability of new gene variants (Chown et al. 2015).

Nevertheless, invasive species are often highly suc-

cessful in adapting to new and heterogeneous envi-

ronments, with adaptive plasticity as an essential

strategy for rapidly colonizing new habitats and

out-competing native species. Commonly neglected

or hidden in natural environments, phenotypic plas-

ticity becomes particularly relevant when the inva-

sion of a new or altered environment occurs

(Ghalambor et al. 2007; Fox et al. 2019).

Defined as the ability of a genome to express var-

ious phenotypes, phenotypic plasticity implies the

capacity for multiple adaptive responses to environ-

mental changes, such as environmental stress, rapid

growth, and reproduction (Fox et al. 2019).

However, the expansion of invasive species repre-

sents a genetic paradox, as individuals can adapt

rapidly to new, sometimes challenging environments.

As discussed before, epigenetic mechanisms can

modulate phenotypes without changing genotypes.

Through the modulation of gene expression, epige-

netic changes can increase phenotypic variation in

the absence of genetic diversity, which might facili-

tate animal adaptation to both biotic and abiotic

environmental challenges (Jaenisch and Bird 2003;

Duncan et al. 2014).

Epigenetic plasticity can explain organismal adap-

tation to environmental changes (Hollander et al.

2015). A detailed summary of a significant number

of indicative studies that link adaptivity in invasive

species to DNA methylation variability has been

published recently (Hawes et al. 2018). For example,

intrapopulation DNA methylation variability was ob-

served in the invasive house sparrow (Passer domes-

ticus) and proposed as a rapid response mechanism

to environmental challenges (Liebl et al. 2013;

Sheldon et al. 2018). Additionally, in the pygmy

mussel (Xenostrobus secures), global DNA hypome-

thylation was detected in a recently evolved popula-

tion and interpreted as a mechanism to promote

phenotypic plasticity and thereby facilitate the ex-

pansion of invasive populations (Ardura et al.

2017). Finally, in the invasive whitefly (Bemisia

tabaci), DNA methyltransferase 1 (DNMT1) knock-

down caused reduced thermotolerance, but DNA

methylation patterns were not investigated (Dai

et al. 2018).

Despite these recent advances, it is worth men-

tioning that many studies in this field have analyzed

DNA methylation using indirect methods and that it

will be important to confirm initial findings by more

robust and more powerful approaches, such as bisul-

fite sequencing (Lea et al. 2017). Furthermore, the

mechanisms of how the environment shapes the epi-

genome are mainly unknown. Finally, it will be im-

portant to more comprehensively analyze epigenetic

gene regulation in invasive animals, in order to bet-

ter understand and ultimately predict their adaptive

and invasive potential. Detailed analyses of select

model organisms could be particularly useful for

the establishment of more generalizable concepts.

The marbled crayfish as an example for

epigenetic adaptation in an invasive

species

The marbled crayfish (Procambarus virginalis) repre-

sents a novel freshwater crayfish species that emerged

from the German aquarium trade about 25 years ago

(Scholtz et al. 2003; Lyko 2017). Anthropogenic

releases have founded expanding wild populations

in several European countries (Chucholl and

Pfeiffer 2010; Lipt�ak et al. 2016; Novitsky and Son

2016; Patoka et al. 2016; Pârvulescu et al. 2017;

Deidun et al. 2018; Ercoli et al. 2019).

Furthermore, marbled crayfish have rapidly invaded

ecologically distinct habitats in Madagascar and cur-

rently colonize an area that extends over 100.000 km2

(Jones et al. 2009; Kawai et al. 2009; Gutekunst et al.

2018; Andriantsoa et al. 2019).

The marbled crayfish is a parthenogenetic descen-

dant of the sexually reproducing slough crayfish (P.

fallax) from Florida (Martin et al. 2010). Its partic-

ular mode of reproduction (obligatory apomictic

parthenogenesis) results in the generation of a
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genetically homogeneous, monoclonal population

(Gutekunst et al. 2018). Parthenogenetic reproduc-

tion is not uncommon in the animal kingdom, but

obligatory parthenogenesis is very rare and has been

described as an “evolutionary scandal,” as it runs

counter to fundamental tenets of evolutionary biol-

ogy. As genetic polymorphisms are negligible in the

marbled crayfish population, the successful adapta-

tion of the animals to different environments cannot

be explained by the Darwinian selection of the ge-

netically best-adapted genotype. It is therefore very

likely that marbled crayfish use epigenetic mecha-

nisms, such as DNA methylation, to adapt their ge-

nome to specific environmental conditions

(Figure 2).

The combination of obligatory apomictic parthe-

nogenesis with an extremely young species age (25–

30 years) in marbled crayfish creates unique oppor-

tunities for elucidating the role of epigenetic mech-

anisms in invasiveness. Indeed, the genome of the

marbled crayfish encodes a conserved and active

DNA methylation toolkit (Gatzmann et al. 2018).

A detailed analysis of DNA methylation patterns

revealed that that the modification is targeted to

the gene bodies of housekeeping genes, similar to

many other invertebrates (Gatzmann et al. 2018).

Interestingly, gene body methylation was found to

be inversely correlated with gene expression variabil-

ity. When compared to the parent species of marbled

crayfish (P. fallax), many genes showed reduced

levels of gene body methylation and increased

levels of gene expression variability (Gatzmann

et al. 2018). This might indicate that low levels of

gene body methylation promote adaptability (and

invasiveness) through increased gene expression

variability. This hypothesis will have to be

confirmed by a detailed molecular analysis of

specific ecotypes and/or by direct experimental

approaches that elucidate the functional role of

DNA methylation in this organism.

Of note, marbled crayfish possess key prerequisites

for a laboratory model, such as suitable size,

Fig. 2 Clonal expansion and rapid adaptation of marbled crayfish. The marbled crayfish is a monoclonal, parthenogenetically repro-

ducing species. Individual animals show considerable phenotypic plasticity and adaptivity to various parameters, such as temperature,

osmolarity, and pollution. Epigenetic modulation has been implied to marbled crayfish adaptation, but the precise mechanisms remain

to be identified. The top panel picture shows an adult marbled crayfish (3 years old) with eggs. The bottom panel displays three

ecologically different locations with established marbled crayfish population: Ihosy River (Madagascar), Lake Reilingen (Germany), and

Ranomaimbo lake (Madagascar).
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resistance against handling stress, high fertility, and a

relatively short generation time (Vogt 2011). In ad-

dition, marbled crayfish combine obligatory apomic-

tic parthenogenesis with an extremely young

evolutionary age (25–30 years), thus generating a

population with an unparalleled genetic homogene-

ity. Up to date, this model has been used for re-

search on several biological processes such as

development (Seitz et al. 2005), neurobiology

(Vilpoux et al. 2006), and epigenetics (Vogt et al.

2008). Furthermore, marbled crayfish has been

shown to be very robust against various environmen-

tal parameters (Andriantsoa et al. 2019) and repre-

sents an excellent model system for modulating

environmental conditions in a standardized labora-

tory setting.

Future directions

Elucidating the role of epigenetic mechanisms in

phenotypic plasticity and adaptation will remain an

important research topic for many years to come. It

will be important to avoid known issues in the de-

sign and interpretation of epigenome mapping stud-

ies that have plagued the field in the past

(Lappalainen and Greally 2017; Lea et al. 2017). In

this context, we consider three issues as particularly

relevant: (1) Epigenetic patterns can be cell-type spe-

cific, but epigenetic profiles are often obtained from

whole animals or bulk tissue. For example, two

groups from different environments might differ in

the cellular composition of a specific tissue, which

could introduce a systematic (and potentially large)

confounding effect that is unrelated to true epige-

netic adaptation. As such, it is important to control

the cellular sample composition. (2) Epigenetic effect

sizes are often relatively small in ecological studies.

The generation of conclusive results, therefore,

requires the design of sufficiently powered studies

with relatively high sequencing depths and relatively

large sample numbers. We recommend that power

estimates are included in the study design (Lea et al.

2017). (3) Wild specimens from a single species can

have very heterogeneous genetic backgrounds, which

can introduce a very strong confounding effect on

the analysis. For example, if a cytosine is methylated

in one population, but polymorphic in another pop-

ulation, it will be scored as differentially methylated.

However, this change is not related to differential

epigenetic programming, but rather reflects differen-

ces in population genetic structures. Integrated ge-

nome/epigenome analysis should be used to resolve

this issue.

It will also be critically important to analyze the

functional role of epigenetic mechanisms in rapid

adaptation and invasiveness. This can be achieved

by Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPR)-mediated editing

(Rees and Liu 2018) and inactivation of various epi-

genetic modifier genes, such as DNA methyltransfer-

ases, DNA demethylases, and histone modifying

enzymes. Knockout animals can then be challenged

by changes in environmental parameters that can be

easily varied in the laboratory (e.g., temperature, wa-

ter supplements, and feed components). The increas-

ing availability of complete genome sequences from

non-model organisms and the broad application po-

tential of CRISPR-based genome editing tools allow

the use of functional approaches in an increasing

number of interesting and relevant organisms.

Finally, it is also likely, that additional epigenetic

mechanisms will emerge in the context of rapid ad-

aptation and invasiveness. A prominent example is

provided by small RNAs that can be loaded into

oocytes and sperm and can thus be transmitted

from parents to offspring (Chen et al. 2016). If these

RNAs have the capacity to modulate genes that are

involved in phenotypic plasticity, they can have a

profound impact on the adaptive potential of the

corresponding organism. Additionally, mRNA edit-

ing represents another interesting example of a

mechanism that could conceivably play an important

role in rapid adaptation (Eisenberg and Levanon

2018). A-to-I mRNA editing is a dynamic process

that can diversify the transcriptome, and that has

been strongly implicated in adaptive processes

(Garrett and Rosenthal 2012). Interestingly, a trade-

off between genome evolution and transcriptome

plasticity was suggested in cephalopods, as the geno-

mic regions surrounding the editing sites appeared

highly conserved (Liscovitch-Brauer et al. 2017). The

high frequency and the conservation of editing sites

significantly reduce genetic polymorphisms, and

thereby decelerate genome evolution. Thus, RNA

editing could provide a paradigm for how animals

overcome the lack of genetic diversity and rapidly

adapt to new environments by diversifying their

transcriptome.
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