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The parameter retrieval method based on scattering data is used to derive dynamic constitutive param-
eters of solids with periodic structure. There are inherent ambiguities in the real part of the retrieved
wavenumber and the sign of impedance, though the latter has a one-to-one correspondence with the
direction of energy flux. Moreover, for lossless structures there can be multiple solution branches that
satisfy passivity and continuity of the wavenumber as a function of frequency, leading to potentially
double positive or double negative (in terms of density and modulus) overall descriptions of the
micro-structured medium. The continuity of wavenumber for lossy unit cells is used to unambiguously
determine their constitutive parameters and by taking the limit when loss approaches zero, one can
determine the stable solution branches of lossless micro-structures. The two loss models of nonzero
damping and complex modulus are compared in terms of their energy loss characteristics and retrieved
parameters. These models are employed in both time and frequency domain calculations. The lossy solu-
tions demonstrate that from double-negative and double-positive solutions, only the latter is the stable
solution branch in a pass-band of a lossless 1D unit cell. A 2D photonic crystal example is used to demon-
strate that the wavenumber appears to jump, discontinuously, at the transition point between two con-
secutive stop-bands, hence rendering the existing methods based on continuity of wavenumber
ineffective. In contrast, the proposed approach based on taking limit of lossy solutions can successfully
be used to determine stable overall properties of such media. Finally, certain features of half- and full-
cycle stop-bands are discussed.

Published by Elsevier Ltd.
1. Introduction

As described in Srivastava (2015), for quasi-static regime, i.e.,
when the characteristic size of the unit cell of a periodic structure,
l, is much smaller than the wavelength k, traditional static homog-
enization approaches (Nemat-Nasser and Hori, 2013) can be used
to represent the overall behavior of the micro-structured medium.
In contrast for the short wavelength regime, the heterogeneous
material response cannot be represented by effective bulk constitu-
tive models. Our interest is in intermediate/long wave length limit,
where the ratio k=l is a finite quantity of order 1. Needless to say,
this approach is also applicable to cases when k=l becomes large,
i.e., the long wavelength limit. Under such circumstances material
response can be modeled by effective constitutive parameters which
are frequency-dependent, i.e., dispersive.
In solid mechanics several approaches are proposed to model
dynamic effects in the intermediate regime. In a (quasi) static
regime and in the absence of inertia terms the Hill-Mandel energy
equivalency between micro and macro scales enables the defini-
tion of Representative Volume Element (RVE) and derivation of
macroscopic effective parameters. In Wang and Sun (2002) Hill-
Mandel condition is extended to dynamic regime by adding source
terms at macroscale that preserve energy equivalency. In general,
full dynamic coupling between computational models at micro
and macro scales is quite challenging. Accordingly, several
approaches with different levels of dynamic coupling and fidelity
are proposed. In the context of computational homogenization
methods, a limited dynamic coupling between macroscale and
RVEs at finite element quadrature points is formulated in Pham
et al. (2013). The majority of asymptotic expansion methods, e.g.,
(Santosa and Symes, 1991; Andrianov et al., 2008; Auriault et al.,
2010, solve a dynamic problem only at macroscale. In Craster
et al., 2010; Hui and Oskay, 2013; Hui and Oskay, 2014; Hui and
Oskay, 2015) homogenization is formulated at fixed frequencies.
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Some of these methods expand to third or higher order asymptotic
terms for increased accuracy and applicability, for example to
model two-phase (Boutin and Auriault, 1993) and three-phase
(Auriault and Boutin, 2012) composites with potentially high con-
trast ratio of elastic moduli of different phases.

Another approach is the derivation of dispersive effective con-
stitutive parameters that can subsequently be directly used in
macroscopic dynamic simulations. In frequency domain (FD) this
involves modeling a unit cell (or RVE) at fixed frequencies to derive
these dispersive constitutive parameters. The derivation of such
dispersive properties has traditionally been focused on field aver-
aging techniques; cf. (Smith et al., 2000; Smith and Pendry, 2006;
Lerat et al., 2006; Amirkhizi and Nemat-Nasser, 2008; Pors and
Bozhevolnyi, 2011 for electromagnetic and Willis, 2009; Nemat-
Nasser et al., 2011; Willis, 2011; Srivastava and Nemat-Nasser,
2011; Norris et al., 2012) for elastodynamic examples. By comput-
ing the averages of the (periodic part of the) fields on the left-hand
and right-hand sides of a constitutive relation, the parameters of
the constitutive equation can be derived.

The parameter retrieval method is another method that can char-
acterize dispersive properties of composites at the intermediate
wavelength regime. In these methods the scattering (S) parameters
of a finite samples are experimentally or computationallymeasured.
Next, effective properties for the material are sought such that the
scattering parameters for the same width of effective medium
match those of the original sample. While field averaging methods
are often preferred to computationally characterize complex 2D
and 3D geometries, the use of parameter retrievalmethods is preva-
lent in experimental settings. This is due to the lack of access to
micro-scale field quantities in the laboratory (Amirkhizi, 2017)
and relative ease in experimentally measuring scattering parame-
ters. This method is used in computational electromagnetics
(Smith et al., 2002; Markoš and Soukoulis, 2003; Chen et al., 2004;
Liu et al., 2007; Smith et al., 2005; Chen et al., 2005; Arslanagić
et al., 2013; Hasar et al., 2015) and acoustics (Fokin et al., 2007;
Wang et al., 2008; Zhu et al., 2012). For elastodynamics, while not
used for equivalent constitutivemodeling, S-parameters are studied
in Merheb et al. (2008), Dontsov et al. (2013), Wautier and Guzina
(2015), Sadeghi et al. (2013) among others.

For dispersive materials both spatial and temporal dispersions
can be modeled through the dependency of overall properties on
wave vector k and angular frequency x, respectively. Some exam-
ples can be found in Hui and Oskay (2014), Meng and Guzina
(2018), Guzina et al. (2019) for the asymptotic methods and
Silveirinha (2011) for the field averaging method. For these meth-
ods, the excitation of the unit cell is often in the form of a source
term that depends on both k and x. However, homogenizing to
overall properties that are only temporally dispersive is more com-
mon in the literature. For materials that would require gradient
elasticity theory as their constitutive equation (Hui and Oskay,
2014) incorporates both spatial and temporal dispersion. For the
remainder of this paper, we only consider temporal dispersion in
which overall properties depend solely onx. For further discussion
on the class of problems that may require both spatial and tempo-
ral dispersions and the relation between the two models, we refer
the readers to Silveirinha (2011).

In this paper, dispersive overall (or apparent) properties of sym-
metric unit cells are derived based on the parameter retrieval
method. Specifically, we use a robust approach proposed in
Amirkhizi (2017) to characterize layered media. It is shown that
by adding loss to a unit cell and taking the limit of retrieved disper-
sive parameters as loss goes to zero, properties of the lossless unit
cell can be unambiguously determined. It must be noted, the work
presented here focuses on regions of frequency and wave vector
spaces,where suchanoverallwavedynamicsdescription is suitable.
It is likely that such a description is not suitable, for example, near
Dirac cones or other singularities of the band structure (e.g., excep-
tional points). We note, however, that simple crossings of band
structure, e.g., when shear modes and longitudinal modes have the
same wavelength and frequency, do not necessarily interfere with
this analysis as mentioned briefly in Section 5.3, where the shear
mode is shown to cross the longitudinal mode (based on eigenvalue
band structure calculations), but the longitudinal parameter extrac-
tion method for longitudinal waves is not at all affected.

There is an inherent non-uniqueness in the parameter retrieval
method, in that the transmission phase change, i.e., the product of
the real part of the wavenumber by the slab length, can only be
determined by up to arbitrary additions of full circle angle. That
is, p, the number of full cycle waves in the effective domain cannot
be uniquely determined. A general approach is the characterization
of the sample from low enough frequencies for which the number
of full wave cycles is zero. Then, continuity of certain quantities,
e.g., the wavenumber k, is used to unambiguously March the
parameter retrieval method forward to higher frequencies. As
shown in Arslanagić et al. (2013), by assigning an incorrect value
for p, the properties at a given frequency can erroneously be char-
acterized as double positive, single positive, or even double nega-
tive. The characterization of lossless unit cells is even more
challenging, since there can be multiple valid solution branches
for which the aforementioned continuity constraints are satisfied.
There is an inherent non-uniqueness in the parameter retrieval
method, in that the transmission phase change, i.e., the product
of the real part of the wavenumber by the slab length, can only
be determined by up to arbitrary additions of full circle angle. That
is, p, the number of full cycle waves in the effective domain cannot
be uniquely determined. A general approach is the characterization
of the sample from low enough frequencies for which the number
of full wave cycles is zero. Then, continuity of certain quantities,
e.g., the wavenumber k, is used to unambiguously March the
parameter retrieval method forward to higher frequencies. As
shown in Arslanagić et al. (2013), by assigning an incorrect value
for p, the properties at a given frequency can erroneously be char-
acterized as double positive, single positive, or even double nega-
tive. The characterization of lossless unit cells is even more
challenging, since there can be multiple valid solution branches
for which the aforementioned continuity constraints are satisfied.

In this paper, dispersive overall (or apparent) properties of sym-
metric unit cells are derived based on the parameter retrieval
method. Furthermore, we use a robust approach proposed in
Amirkhizi (2017) to characterize layered media. It is shown that
by adding loss to a unit cell and taking the limit of retrieved disper-
sive parameters as loss goes to zero, properties of the lossless unit
cell can be unambiguously determined.

Since the constitutive parameters of dispersive materials are
expressed as functions of frequency x, FD methods appear to be
the natural choice for their characterization. However, time domain
(TD) methods have the ability to characterize dispersive properties
for awide range of frequencieswith just one simulation, and in some
cases they have been reported to bemore efficient that FDmethods;
see for example (Silveirinha, 2011; Chan et al., 1995; Niegemann
et al., 2009). Herein, we also compare two different methods to
introduce loss to a unit cell; for TDmethods loss is often introduced
by using a nonzero damping parameter, whereas for FD methods a
complex modulus is typically used. We show that the limiting pro-
cess can be applied in both time and frequency domains and is rel-
atively independent of the way loss is introduced.

The outline of the paper is as follows. In Section 2 the parameter
retrieval method and the ambiguities involved in the value of p and
sign of impedance are described. In Section 3 the two loss models
are compared in terms of their energy loss characteristics and



1 It is noted that the transfer matrices in this paper and in Amirkhizi (2017) are
distinct and have different interpretations. However, the retrieved parameters are
equivalent.
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accuracy in retrieved constitutive parameters relative to a lossless
homogeneous material. In Section 4 several 1D layered unit cells
are characterized and the form of the retrieved parameters in
stop-bands and pass-bands are discussed. Further, the two loss
models are compared and used to determine the stable solution
branches. Specifically, by using lossy solutions, it is shown that
from two valid double positive and double negative solutions of
retrieved parameters in a pass-band, only the double positive solu-
tion is stable. Next, the 2D unit cell in Section 5 is used to elaborate
on some solution features that were not encountered for 1D unit
cells. Specifically, it is shown that the wavenumber can in fact suf-
fer jumps in lossless micro-structures. The use of lossy unit cells
can robustly handle this more complex problem, whereas the
retrieval methods that are based on the continuity of k would fail.
The approach described in this paper is suitable when the ratio k=l
is a finite quantity of order 1, as well as in the long wavelength
limit when it is a large quantity. The final conclusions are drawn
in Section 6.

2. Parameter retrieval method

In this section, we discuss the derivation of effective material
parameters for 1D and 2D unit cells using the parameter retrieval
method. This process is shown in Fig. 1. The scattering parameters
of a unit cell can be obtained using different approaches, as con-
ceptually shown in Fig. 1(a). In Section 2.1, matching and propaga-
tion matrices are used to analytically derive scattering parameters
for a 1D multi-layer unit cell for an arbitrary frequency x. Time
domain (TD) and frequency domain (FD) approaches are discussed
in Section 2.3 to derive scattering parameters of 2D unit cells.

Once the scattering parameters are determined for a given
angular frequency x, effective properties are sought such that
the scattering parameters of the unit cell, formed by uniform effec-
tive properties, matches those of the unit cell. The concept of effec-
tive properties is shown in Fig. 1(b) and discussed in Section 2.1.
The inverse problem for the derivation of these effective proper-
ties, shown in Fig. 1(c), is discussed in Section 2.2.

2.1. Scattering parameters for 1D multi-layer unit cells

We aim to obtain the scattering matrix for the m-layer 1D unit
cell shown in Fig. 2. Beside its use for analytical derivation of scat-
tering properties for 1D multi-layer unit cells in Section 4.1 to Sec-
tion 4.3, this approach is the basis to derive effective properties in
Section 2.2. The length, impedance, and wave speed of layer j are
lj; Zj, and cj, respectively. The stress values for the right- and left-
going waves on the left side of the layer j are denoted by rþ

jl and
r�

jl , respectively. The same values on the right side of layer j are
denoted by rþ

jr and r�
jr . The constitutive parameters of layer j are

mass density qj ¼ Zj=cj and modulus Cj ¼ Zjcj. The ambient med-
ium on the left side of the unit cell has the impedance Z0, whereas
the impedance on the right side of interface mþ 1 is Zmþ1. To sat-
isfy the continuity of displacements and tractions from the two
sides of this m-layer unit cell, we use matching and propagating
matrices. The matching matrix of interface j;Mj, relates the stress
values from the left and right sides of interface j (Orfanidis, 2014),

rþ
j�1ð Þr

r�
j�1ð Þr

" #
¼ Mj

rþ
jl

r�
jl

" #
; where Mj ¼ 1

sj
1 .j

.j 1

" #
; and ð1aÞ

.j ¼
Zj � Zj�1

Zj þ Zj�1
sj ¼ 2Zj

Zj þ Zj�1
ð1bÞ

are reflection and transmission coefficients of the interface j,
respectively, for a right-going wave. The stress values at the end
points of slab j are related by the propagating matrix, Pj,
rþ
jl

r�
jl

" #
¼ Pj

rþ
jr

r�
jr

" #
; where Pj ¼

fj 0

0 f�1
j

" #
; and fj ¼ ekjlj

ð2Þ
where kj ¼ x=cj is the wavenumber corresponding to x in layer j

with wave speed cj. We use the e xt�kjxð Þ convention, where the wave
is traveling to the right (in the sense of phase advance).

Using (1) for interfaces 1 to mþ 1 and (2) for layers 1 to m, we
obtain the transfer matrix between the stresses at the two ends of
the slab as,1

rþ
0r

r�
0r

� �
¼ T

rþ
mþ1ð Þl

r�
mþ1ð Þl

" #
; where T ¼ M1P1 � � �M mþ1ð Þ ð3Þ

Finally by considering a right-going wave, i.e., r�
mþ1ð Þl ¼ 0, scat-

tering coefficients of the slab are obtained as,

S21 ¼
rþ

mþ1ð Þl
rþ

0r
¼ 1

T11
ð4aÞ

S11 ¼ r�
0r

rþ
0r
¼ T21

T11
ð4bÞ

where S11 and S21 denote the reflection and transmission coeffi-
cients of a right-going wave. The left-going wave reflection S22
and transmission S12 coefficients can also be derived by inverting
T and reversing the role of + and � waves.

In this paper, we limit ourselves to unit cells where scattering
parameters are symmetric. The reflection and transmission coeffi-
cients of the unit cell are then unambiguously defined as
R :¼ S11 ¼ S22 and T :¼ S21 ¼ S12; see Fig. 1(a, c) for the depiction
of R and T. This condition is equivalent to detT ¼ 1 and
T21 ¼ �T12. Clearly, symmetry in geometry and material properties
of the unit cell with respect to the y axis, cf. Fig. 1(a), ensures the
symmetry of scattering properties of any given 1D or 2D unit cell.
This symmetry includes the condition Z0 ¼ Zmþ1. Finally, the reflec-
tance r, transmittance t, and absorbance a, defined by,

r ¼ jRj2 t ¼ jTj2 a ¼ 1� r � t ð5Þ
measure the portions of the energy that is reflected from, transmit-
ted through, and absorbed in the unit cell. These energetic quanti-
ties are useful in analyzing the effect of added loss to lossless unit
cells studied in subsequent sections.

2.2. Inverse problem for effective properties

As shown in Fig. 1(b), to derive equivalent properties, a unit cell
with uniform properties Z; c is considered in an ambient medium
with impedance Z0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

q0C0
p

. This corresponds to the 1D geometry
in Fig. 2 with a single layer (m ¼ 1), and ambient impedances
Z2 ¼ Z0. For simplicity, the subscripts of the first interface and layer
are dropped. That is, for the first layer . :¼ .1 ¼ Z � Z0ð Þ= Z þ Z0ð Þ,
and for the first layer, Z :¼ Z1; c :¼ c1; k :¼ x=c1. Using (1)–(4),
the scattering parameters of a symmetric unit cell are derived as,

R ¼ .
f2 � 1
f2 � .2

; T ¼ f:
1� .2

f2 � .2
ð6Þ

The parameter f :¼ f1 is, cf. (2),

f ¼ ekl ð7Þ
where k ¼ x=c is the wavenumber of wave in the medium and
l :¼ l1 is the total length of the unit cell; cf. Fig. 1(a). It is noted that



Fig. 1. Schematic of parameter retrieval method.

Fig. 2. Computing scattering parameters for an m-layer 1D unit cell in an ambient with impedance Zmþ1 ¼ Z0.
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the scattering parameters in (6) match the original values of the
Nicolson-Ross-Weir method (Nicolson and Ross, 1970; Weir, 1974).

There are many studies on the inversion of (6) to obtain Z and c
once R and T are known, see for example (Smith et al., 2002; Fokin
et al., 2007; Shi et al., 2016). Herein a process given by Arslanagić
et al. (2013) is followed where Z and f are given by,

Z ¼Z0

ffiffiffi
n
d

r
; where n :¼ Rþ 1ð Þ2 � T2; d :¼ R� 1ð Þ2 � T2 ð8aÞ

f ¼ Z þ Z0ð Þ � R Z � Z0ð Þ
T Z þ Z0ð Þ ð8bÞ

The + and � signs in (8) a, correspond to the roots of
ffiffiffiffiffiffiffiffi
n=d

p
for

which the real part of Z is positive and negative respectively; the
root choices when Zr ¼ 0 will be discussed later. One observes that
if Z; f; kð Þ satisfy (8), so does the set �Z;1=f;�kð Þ; see also (7). As
will be discussed later, both sets of solutions result in the same
effective material properties. Unlike the choice of sign of Z, there
is an inherent ambiguity in deriving wavenumber k from f because
of the phase ambiguity of log function; i.e.,

k ¼ /
l
� log jfj

l
; where / :¼ hþ 2pp ð9Þ

and jfj and h 2 �p;pð � are used in polar expression of f ¼ jfjeh. In
other words, the phase angle of kl is obtained only within arbitrary
number of full waves traveling in the slab.

Before the discussion on the choice of p, we clarify how the sign
of Z is chosen in (8) a. Based on the convention e xt�kxð Þ when / is
not an integer multiple of p, passivity requires krki 6 0, where kr
and ki are real and imaginary parts of k. The choices Z; f; p; kð Þ
and Z;1=f;�p;�kð Þ are the left- and right-moving waves that sat-
isfy (8) and (9) (Arslanagić et al., 2013). We choose the set that cor-
responds to right-going waves (in the sense of phase velocity), as
shown in Fig. 1(a, b). This stipulates kr P 0 and ki 6 0. For a lossless
unit cell, / equal to an integer multiple of p corresponds to a
standing wave for an infinite domain. For this case, the sign of ki
for kr > 0 is chosen from the zero-loss limit solution of lossy unit
cells which stipulates ki 6 0. Thus, the sign choice kr P 0 and
ki 6 0, referred to as right-going wave convention, is taken for all
parameter retrieval cases from hereon. Since ki ¼ � log jfj=l is
unambiguously derived from (9), the sign of Z in (8) is determined
when ki – 0; i.e., the root of Z is chosen such that it results in ki < 0.
The correct root corresponding to ki ¼ 0 is discussed below.
Thus, apart from the sign ambiguity of Z when ki ¼ 0, the only
remaining unknown to determine k is p. One approach to resolve
this non-uniqueness of p (and kr) in the inverse problem is to start
from low frequencies where p ¼ 0 and as x increases, determine
the correct value of p by preserving the continuity of the
wavenumber. A similar approach is taken in Shi et al. (2016) and
Abedi and Mudaliar (2017) for electromagnetics problem. As long
as k is a continuous function ofx, this approach can be used to cor-
rectly determine the frequencies for which p changes to ensure this
continuity constraint. However, in Section 5, we show that this
condition is violated for a 2D lossless photonic crystal.

Similar to Amirkhizi (2017), we propose the use of lossy unit
cells to not only resolve the problem with continuity of k xð Þ, but
also address the ambiguity in the sign of Z for frequencies for
which ki ¼ 0. First, for lossy unit cells one should expect k to be a
continuous function of x, particularly in 1D wave propagation.
The potential of mixed mode behavior complicates this expecta-
tion and requires further analysis. Moreover, for low enough loss
values, one could expect extremely low transmission values within
certain portions of the stop band which affects the numerical accu-
racy of the inversion procedure (using either computational results
or experimental data). Nevertheless, one can always increase the
loss value, without significantly altering the physical behavior of
the structure, to reach a continuous dispersive k. Hence, this conti-
nuity constraint can be used to adjust p from its initial value of 0 at
x ¼ 0, as x increases. Second, the two valid solutions of the loss-
less unit cells for ki ¼ 0 in pass-bands correspond to
kr > 0; ki < 0ð Þ and kr > 0; ki > 0ð Þ for lossy unit cells. The solution
branch corresponding to kr > 0; ki < 0ð Þ is referred to as the stable
solution, as small disturbances to the lossless unit cell in the form
of added loss result in a solution that is physically acceptable, sat-
isfying passivity. Conversely, the latter solution branch is referred
to as unstable. The solutions for Z xð Þ and k xð Þ of a lossless unit cell
are unambiguously determined as the limiting values of the corre-
sponding solutions for lossy unit cells with ki < 0 when the introduced
loss parameter tends to zero.

After k and Z are obtained, elastic constitutive parameters, com-
pliance D and modulus C, are given by,

D ¼ k
Zx

) C ¼ 1
D
¼ Zx

k
ð10aÞ

q ¼ kZ
x

ð10bÞ
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The simultaneous appearance of k and Z in all retrieved consti-
tutive parameters confirms that if Z; f; p; kð Þ is a valid retrieved set
of parameters for a right-going wave, so is �Z;1=f;�p;�kð Þ for a
left-going wave. Finally, if the symmetry of scattering parameters
discussed under (4) is not satisfied, the more general Willis-type
constitutive equations (Milton and Willis, 2007; Willis, 2012)
should have been employed to characterize the properties of the
effective properties; see for example (Amirkhizi, 2017) for the
use of parameter retrieval method for the more general Willis-
type constitutive equations.

2.3. Computational derivation of scattering parameters

In this section, we will discuss how the scattering parameters
are derived for a symmetric unit cell, in the sense defined below
(4). Each layer is characterized with its constitutive parameters
qj xð Þ and Cj xð Þ. We employ this method to analytically obtain
scattering parameters for 1D unit cells considered in Section 4.1
to Section 4.3. The individual layers can be lossless or have loss
in the form of having a nonzero damping coefficient or imaginary
modulus Cj;i xð Þ, as discussed in Section 3.1.

For higher dimension unit cells we use a FD and a TD finite ele-
ment method to numerically derive R xð Þ and T xð Þ. For the FD
approach, the commercial software COMSOL is used as described
in Aghighi et al. (2019). For the TD analysis, the incident, transmit-
ted, and reflected waves are all determined as functions of time.
Upon the completion of the TD simulation, Fourier transform is
applied on these waves to obtain their corresponding frequency-
dependent functions. This facilitates the computation of scattering
parameters for a wide range of frequencies.

The TD incident signal I tð Þ should satisfy a few conditions. First,
it should have a rich FD representation to enable characterization
of material for a wide range of frequencies. It also should be close
to zero at initial time t ¼ 0 and final time t ¼ T so that the infinite
limits of Fourier transform in time can be replaced with zero and T .
An incident wave in the form,

I tð Þ ¼ sin x0tð Þe� t�t0ð Þ2=12 ð11Þ
with the Fourier transform,

I xð Þ ¼ 1
2
1 exp �xt0ð Þ e�

12
2 xþx0ð Þ2 � e�

12
2 x�x0ð Þ2

� �
ð12Þ

satisfies all these conditions, as discussed below. In (11), t0 and 1
are two time scales andx0 is a reference frequency. The most dom-
inant frequency content of I xð Þ in (12) is xmin;xmax½ � =
x0 � 1=1;x0 þ 1=1½ �. Thus, x0 and 1 can be obtained from the min-
imum and maximum frequencies of interest from
x0 ¼ 0:5 xmax þxminð Þ and 1 ¼ 2= xmax �xminð Þ. The role of t0 is to
ensure I tð Þ � 0 close to the initial time t ¼ 0. The time t0 is assumed
to be sufficiently large if it is at least three to four times larger than
1 (Silveirinha, 2011; Busch et al., 2011). The final time T is chosen
sufficiently large so that elastic waves withing and on the bound-
aries of the unit cell have attenuated sufficiently though the absorp-
tion in the unit cell, if applicable, and transmission and reflection
from the right and left boundaries in Fig. 1(a). Thus, the Fourier
transform for the reflected wave, can be approximated as follows,

R xð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
Z 1

�1
R tð Þe�xtdt � 1ffiffiffiffiffiffiffi

2p
p

Z T

0
R tð Þe�xtdt ð13Þ

where R tð Þ is the spatial average of the reflected wave at time t. The
details of the computation of R tð Þ from a space and time dependent
solution can be found in Abedi (2017). The same transformation can
be used to compute T xð Þ from T tð Þ. Subsequently, reflection and
transmission coefficients are computed from R xð Þ ¼ R xð Þ=I xð Þ
and T xð Þ ¼ T xð Þ=I xð Þ; cf. Fig. 1c) and 12. Note that e�xt kernel is
used for Fourier transform for consistency with e xt�kxð Þ representa-
tion of planar waves and retrieved constitutive parameters in
Section 2.2.

To computationally model the ambient zones on the left and
right sides of the unit cell in Fig. 1(a), the computational domain
is expanded beyond the unit cell on both reflection and transmis-
sion sides with ambient material. We use Silver-Müller condition
to terminate the extended ambient zones at the far left and right
sides of the computational domain. For the top and bottom sides
of the domain we can use periodic boundary condition, but for
the problems considered the unit cell is symmetric in the y-
direction, facilitating the use of simpler boundary conditions that
are implied by such symmetry. An alternative choice for bound-
aries of computational domain on the left and right based on
Aghighi et al. (2019) is used for FD analysis, where harmonic kine-
matic (or traction) excitations of the same frequency but indepen-
dent phases (and potentially different amplitudes) are applied.
Such choice will lead to non-zero flux through both left and right
boundaries. However, with 2 point measurements on either side
of the micro-structured domain the right and left traveling waves
on either side may be decomposed and the full scattering matrix
can be calculated numerically.

We use the total field/ scatter field (TF/SF) formulation to more
accurately measure the transmitted waves. This corresponds to the
use of total field formulation in the unit cell and transmission side,
and scatter formulation in reflection side of the unit cell. For more
details on TF/SF formulation and the interface conditions on the
incident side of the unit cell, we refer the reader to Busch et al.
(2011).

We solve the TD problem by the asynchronous Spacetime Discon-
tinuous Galerkin (aSDG) method (Abedi et al., 2006; Abedi et al.,
2006) for elastodynamics. The simulation of the 2D problem starts
from a triangular discretization of the spatial domain (unit cell and
ambient zones). The Tent Pitcher (Abedi et al., 2004) algorithm each
time pitches a vertex with local time coordinate in time to form a
patch (collection) of tetrahedral elements in spacetime. The time
advance of the vertices in time is limited by a special causality con-
straint. This results in a patch-by-patch solution scheme where the
entire spacetime domain is gradually filled by solving one patch at
a time.

The local and asynchronous solution scheme, satisfaction of bal-
ance laws at the element level, and high order of accuracy of the
method in time are a few of the favorable properties of the aSDG
method over other TD finite element and discontinuous Galerkin
methods. In addition, low numerical dispersion and dissipation
errors of the method, analyzed in Abedi and Mudaliar (2017), is
of utmost importance for the parameter retrieval method; other-
wise, numerical dissipation and dispersion errors accumulated
over the long simulation time 0; T

� �
would overshadow physical

dispersion of the effective properties. We refer the readers to
Abedi et al. (2006) and Abedi (2017) for more detailed overview
of the aSDG method, and the specific formulation of the parameter
retrieval method using the aSDG method.
3. 1D studies: damping vs. complex modulus

3.1. Problem description and dispersion relations

Consider the one-dimensional equation,

q€u� Cu;xx ¼ 0 ð14Þ
where q;C are homogeneous and real mass density and modulus
parameters, and u is the displacement field. As discussed in Sec-
tion 2.2, added loss to a unit cell can be used to choose the stable
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solution branch for a lossless unit cell. In Amirkhizi (2017), loss was
introduced by using complex modulus, whereas for the TD analyses
to be considered herein, we introduce loss by adding a damping
term to (14). In this section, we compare these two approaches
for adding loss to (14). A damped version of (14) is,

q€uþ d _u� Cu;xx ¼ 0 ð15Þ
where d P 0 is the real damping coefficient.

The dispersion equations for these media are obtained by using
the planar wave form introduced in Section 2.2 for displacement,

u x; tð Þ ¼ e xt�kxð Þ ¼ e xt�krxð Þekix ð16Þ
in Eqs. (14) and (15). In FD, loss is often introduced by considering a
complex modulus, resulting in the dispersion relation,

�qx2 þ 1þ g xð Þð Þk2 xð ÞC ¼ 0 ð17Þ
where g xð Þ :¼ Ci xð Þ=Cr P 0 is the ratio of imaginary to real parts of
the modulus. We will first study the effect of constant g on loss
characteristics and eventually propose a frequency-dependent
g xð Þ that approximates the response of (15) for low damping val-
ues. From hereon, we refer to materials and loss models corre-
sponding to (15) and (17) as d-model and g-model, respectively.

3.2. Loss characteristics for a slab of finite width

Once dispersion relation k xð Þ ¼ kr xð Þ þ ki xð Þ is determined for
the g- and d-models, the loss of a slab of length l can be character-
ized by,

D l;xð Þ :¼ �ki xð Þl dissipation exponent ð18aÞ
a l;xð Þ :¼ 1� e�2D � 2D as D ! 0 absorbance ð18bÞ
where a denotes how much the energy of the wave is dissipated
through the nondimensional exponent D. Note that a l;xð Þ matches
the absorbance defined from (5) for frequency x and a unit cell of
length l in an ambient medium with the same properties.

To facilitate the discussion of the dependence of D and a on l
and x we introduce new nondimensional frequency parameters,

xl :¼ c0
l

slab frequency ð19aÞ

x0
l :¼

x
xl

¼ xl
c0

frequency nondimensionalized by the

slab frequency ð19bÞ

x0
dl :¼

dl
qc0

nondimensional damping for the slab ð19cÞ

where c0 ¼ ffiffiffiffiffiffiffiffiffi
C=q

p
is the wave speed of the lossless model (14).

Using the dispersion relation of the g- and d-models and (18) a,
we obtain,

D l;xð Þ ¼ D g;x0
l

� � ¼ x0
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as evident, g and x0
dl control loss response of the g- and d-models,

respectively.
Fig. 3 compares the energy loss of the two model versus fre-
quency in terms of a for the simple problem of a single layer 1D
unit cell, embedded by the same ambient material. This form is
preferable over D for the analysis of the effect of added loss in
the parameter retrieval method. In (20) a, for the g-model D is lin-
early proportional to x0

l whereas in (20) b D is almost independent
from x0

l when x0
dl � x0

l. This explains rather linear dependence or
constant value of a for low x0

l in Fig. 3(b) for the g- and d-models,
respectively. The deviation of loss from x0

dl=2 and its limit to zero
in Fig. 3(b) as x0

l ! 0 corresponds to the solution branch x0
dl � x0

l

in (20) b, wherein D is simultaneously proportional to
ffiffiffiffiffiffiffi
x0

dl

p
andffiffiffiffiffiffi

x0
l

p
. Finally, it is noted that for low loss parameters D, hence a,

scale linearly versus g and x0
dl for the g- and d-models, respec-

tively. This would facilitate successive reduction of the loss param-
eter to reduce overall absorption below certain limit when
attempting to retrieve the parameters of a lossless unit cell.

Next, the discrepancy of the retrieved material parameters of
the lossy models is investigated with respect to those of the loss-
less model in (15). For both models the real parts of the constitu-
tive parameters exactly match those of the lossless medium. For
the d-model, Ci is exactly retrieved to be zero. However, clearly
the retrieved imaginary modulus is Ci ¼ gCr for the g-model. For
the mass density, qr is exactly zero for the g-model. In contrast,
qr ¼ �d=xq for the d-model. This error tends to infinity as fre-
quency tends to zero.

By comparing the previous results, it is concluded that the d-
model is preferred from energy perspectives in that a rather uni-
form energy loss is introduced across all frequencies. However, in
terms of retrieved constitutive material parameters, the accuracy
of this scheme reduces at low frequencies. Given that g- and d-
models are more naturally incorporated into FD and TD methods,
this observation suggests that a FD method and complex modulus
loss may be preferred for low frequencies. Similarly nonzero damp-
ing appears to be appropriate for a TD method at higher frequen-
cies. Interestingly, even from computational cost analysis of the
two methods, a TD method is preferable over a FD one, for the
retrieval of material properties at higher frequencies. This could
be the motivation of a hybrid FD-TD scheme, with added appropri-
ate loss, to characterize lossless unit cells over a wide range of fre-
quencies. Finally, it is noted that an g-model where g xð Þ / 1=x is
employed in Section 5.4 to resemble a d-model with low damping
values.

4. 1D unit cells: Use of loss in parameter retrieval method

We consider three different 1D multilayer unit cells. The two
loss models are first compared through the solution of a three-
layer unit cell in Section 4.1. Next, two variants of a five-layer unit
cell are presented in Sections 4.2 and 4.3. In the former example,
pass-bands and stop-bands of the unit cell and the form of disper-
sive properties within each band are discussed. In the latter exam-
ple, added loss is used to decide between double positive and
double negative solutions for the second pass-band of the lossless
unit cell. It is noted that for all these examples, the scattering
parameters are analytically derived from (4).

For lossy unit cells, one of the loss models is used for some or all
layers of the unit cell. When the g-model is used, g is specified for
some or all of the layers. For the d-model, the absolute value of
damping d, rather than x0

dl ¼ dl=qc0, is used. The reason is that
for a multilayer unit cell, it is not clear what mass density and
wave speeds should be used, due to the existence of multiple layers
and the fact the effective mass density and wave speed are often
dispersive.

The geometry of the unit cell is specified by l½ � ¼ l1; . . . ; lm½ �,
where as in Section 2.1, m is the number of layers and l1 to lm



Fig. 3. The added energy loss for the slab of length l through two different loss mechanisms for a range of frequencies.

40 R. Abedi, A.V. Amirkhizi / International Journal of Solids and Structures 200–201 (2020) 34–63
are the lengths of individual layers. The moduli and mass densities
of the layers are similarly represented by C½ � ¼ C1; . . . ; Cm½ � and
q½ � ¼ q1; . . . ;qm½ �, respectively. These values are real unless a com-
plex modulus is chosen for certain layers in g-model. Similarly, for
the d-model, nonzero damping can be considered for some
layers. Finally, we use the unit system mm;ls;mg½ � for length,

time, and mass. This results in the km=s;GPa; g=cm3
;M rad = s;

h
MHz;MRayl; g=cm3ls� units for velocity, stress, density, angular
frequency, frequency, impedance, and damping coefficient.
4.1. Three-layer slab

The three-layer example in this section is taken from Nemat-
Nasser et al. (2011) and Amirkhizi (2017). The material properties
and geometry of the problem are as follows: C½ � ¼ 8:68;320;8:68½ �;
q½ � ¼ 1:18;7:954;1:18½ �, and l½ � ¼ 1:5;0:8;1:5½ �. The ambient med-
ium properties are modulus C0 ¼ 10:2424 and q0 ¼ 1. Thus, the
impedance of the ambient material matches that of the outer lay-
ers of the unit cell. In the following loss is only added to the outer
layers of the unit cell, that is for layers one and three, to enable
unambiguous determination of the properties of the lossless unit
cell.

Fig. 4 shows some of the (intermediate) parameters of the
parameter retrieval method. From (10), retrieved k and Z are used
to compute C and q. We focus on k as its derivation involves the
determination of integer p in (9). Fig. 4(a) shows ki whose value
does not involve p. In Fig. 4(b), / ¼ p for x 2 1:24;2:82½ �. This is
a stop-band wherein ki < 0.

At the start of the stop band, the k solutions associated with
/ ¼ p and / ¼ �pþ 2pp with p ¼ 1 coincide, since ki ¼ 0 for the
lossless system. Furthermore, Z solutions associated with positive
and negative branches / ¼ �pþ 2pp are discontinuous at this
point. Therefore, continuity considerations (for Z) fail to determine
the branch at the beginning of the stop band for the lossless sys-
tem. In fact, both selection will again coincide at the end of the stop
band, through which / values do not change, and upon its end Z
values vanish (see Fig. 5) as well as ki values. In other words, due
to the behavior (poles and zeros) of the apparent impedance and
multi-valued nature of phase advance, it is not possible to deter-
mine these quantities as unique functions of frequency in idealized
lossless systems. See Amirkhizi (2017). Furthermore, at x ¼ 2:82þ

/ can either increase above or decrease below p. For a lossless unit
cell, both options are valid since ki ¼ 0 for x 2 2:82;3:36½ �. In this
range, /=2p can take values in 1=2;1½ � or 0;1=2½ �. In summary, if
one only considers lossless systems, continuity considerations are
insufficient to remove branch ambiguity both at the beginning
and ending of the stop bands.
In such case, however, the solutions of the lossy unit cells help
determine the stable branch; see Amirkhizi (2017). As shown Fig. 4
(a), ki < 0 forx 2 2:82;3:36½ � and only the branch /=2p 2 0:5;1½ � is
valid since /=2p ¼ 1=2 or �1=2þ p (where p = 1) can only occur
when ki is non-zero and different for the two branches; this facil-
itates choosing the stable branch for the lossless unit cell. Since
there is a discontinuity of h at / ¼ p in the log operation in (9),
to maintain the continuity of /; p jumps from zero to one in
Fig. 4(c) when / exceeds p in Fig. 4(b). As d increases, the fre-
quency for this transition transitions from 2:82 to 1:24. Finally,
Cr is shown in Fig. 4(d). As evident, added loss regularizes the sharp
corners of Cr and k spectra of the lossless unit cell. The use of loss in
choosing the stable solution branch is described more thoroughly
through the example in Section 4.3.

Fig. 6 shows the retrieved modulus and mass density parame-
ters. As x! 0, mass density tends to the quasi-static limit
q ¼ 2:60 which is the volumetric average of individual layer densi-
ties. The quasi-static limit of modulus is C ¼ 10:92, which corre-
sponds to the compliance obtained by the volumetric average of
compliance values of individual layers. Infinite and zero values of
C and q correspond to frequencies x ¼ 1:24;2:82;3:36. As evident,
the retrieved constitutive parameters for lossy unit cells smoothen
those of the lossless unit cell around these frequencies. In addition,
similar to the single-layer analysis in Section 3, we observe that the
error in retrieved qr grows as x ! 0 in Fig. 6(b) when using the d-
model.

To compare the two loss models, two retrieved parameters are
shown in Fig. 7. The retrieved constitutive parameters are very
similar for the two models in that they are more heavily regular-
ized near the boundaries of the stop-band, as shown for qr in
Fig. 7(a). More interesting observation is for a in Fig. 7(b). From
the single-layer analysis in Section 3.2, we observed that the
energy loss increases versus frequency for the g-model, whereas
it stayed relatively constant for the d-model. For this more complex
unit cell, while there are some similarities on how a is higher for
the d-model at low frequencies, overall there is no clear resem-
blance to the solutions of a single-layer unit cell. For example, a
varies considerably for the d-model. In terms of the effectiveness
of the two loss models, very similar solutions are obtained in Figs. 6
and 7(a). Thus, this example suggests that if the loss value is judi-
ciously chosen for either model and the limit of the retrieved solu-
tions is taken when the loss tends to zero, one can unambiguously
find the sable branches of solution for a lossless unit cell.
4.2. Five-layer slab A

In Nemat-Nasser and Srivastava (2011) a five-layer 1D unit cell
is considered with the formation P1P2P3P2P1, where P1; P2, and P3



Fig. 4. Quantities needed in the parameter retrieval method for choosing the right solution branch for the 3-layer unit cell.

Fig. 5. Retrieved impedance for the lossless 3-layer unit cell.
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are the phases of material in the unit cell and subscripts 1, 2, 3 are
used to decorate properties of each of these phases. The mid-layer
is a material of high density q3 ¼ 8 and modulus C3 ¼ 320. Mate-
rial properties of the outside layers P1 are q1 ¼ 1:18 and
C1 ¼ 8:7. The density of P2 is q2 ¼ 1:1, whereas its modulus, C2,
takes four different values. The thicknesses of these layers are
l1 ¼ 1:45; l2 ¼ 0:5, and l3 ¼ 0:435. Thus, the material and geometry
properties of the unit cell are: C½ � ¼ 8:7;C2;320;C2;8:7½ �; q½ � ¼
1:18;1:1;8;1:1;1:18½ �, and l½ � ¼ 1:45;0:5;0:435;0:5;1:45½ �.

The response of this unit cell is highly sensitive to the density of
P3 and compliance of P2 and much less on the length and proper-
ties of P1. As the mismatch between the moduli of P2 and P3

increases, the first and second pass-band and stop-bands move
to lower frequencies and for higher values of mismatch even dou-
ble negative properties are reported over a fraction of the second
pass-band, whose width increases with increasing compliance of
P2. The configuration A, denoted by 5LA, has the lowest mismatch
of the moduli of P2 and P3 by having C2 ¼ 2:2, whereas the highest
mismatch is achieved in configuration D, denoted by 5LD, with
C2 ¼ 0:02.

By using a higher modulus C2 ¼ 2:2 for the 5LA unit cell, the
stop-band and pass-bands are more evenly spread. This facilitates
the discussion on the solution features within each frequency band
in this section. In section Section 4.3, the most extreme configura-
tion, 5LD, is considered to investigate the possibility of achieving
double negative properties in the second pass-band. For both cases
the properties of the ambient layers in parameter retrieval method
are C0 ¼ 10 and q0 ¼ 1. For solutions that a lossy unit cell is consid-
ered, loss in the form of nonzero damping or imaginary modulus, is
only considered in P2. That is, the modulus and damping of P2 are
1þ gð ÞC2 and d, respectively. Clearly, for the lossless unit cells, g
and d are zero for all phases, including P2.

We first consider the lossless 5LA unit cell. For this unit cell,
there are two types of stop-bands. For the first type, phase angle
/ remains equal to 2p pþ 0:5ð Þ, where p is the number of full wave
cycles within a unit cell with equivalent properties and also the
number of stop-band of this kind. The start and end frequencies
for this stop-band are denoted by xpþ0:5l and xpþ0:5r , respectively.
These are called half-cycle stop-bands and are denoted by the red
color. For the second type of stop-band, the phase angle / remains
equal to 2p pþ 1ð Þ, where pþ 1 is the number of full wave cycles in
the unit cell with equivalent properties and p is the number of such
kind of stop-bands; e.g. in many cases for p = 1 is the first full cycle
stop band but the second stop band after a half cycle stop band at



Fig. 6. Retrieved constitutive parameters for the 3-layer unit cell.

Fig. 7. Comparison of the two loss models for the retrieved constitutive parameters and absorbance.

Table 1
End points of the stop-bands for the 5LA unit cell. The frequencies are accurate to
within 0.0025.

Cycle number p xpþ0:5l xpþ0:5r xpþ1l xpþ1r

0 1.0850 1.3825 1.9700 3.3175
1 3.5150 5.5200 5.6375 7.4575
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lower frequencies. The frequencies for the start and end of these
stop-bands are denoted by xpþ1l and xpþ1r , respectively. These
are called full-cycle stop-bands and are denoted by blue.

In all plots in this section and Section 4.3, the boundaries of
half- and full-cycle stop-bands are shown by red and blue lines,
respectively. Dot-dash and dash lines denote the start and end of
the stop-bands. The regions between blue and red lines are the
pass-bands. Table 1 lists the frequencies of the stop-bands for
the first two cycles of the 5LA unit cell. Since retrieved properties
in (10) depend on Z and k, we first study the form of these fields
in stop-bands and pass-bands.

Fig. 8 shows parameters n and d needed to determine Z from (8)
a. For half-cycle stop-bands the start frequencyxpþ0:5l corresponds

to d ¼ 0 and forxpþ0:5r we have n ¼ 0. This is reversed for full-cycle
stop-bands in that n ¼ 0 and d ¼ 0 at the start xpþ1l and end xpþ1r

of the stop-band, respectively. As a result, at the boundaries of
pass-bands between half and full cycles n ¼ 0 and at the bound-
aries of pass-bands between full and half cycles d ¼ 0. These
aspects can be observed in Fig. 8(a). While both n and d are com-
plex, as shown in Fig. 8(b), the ratio n=d remains real for this loss-
less unit cell.

Given that from (8) a, Z ¼ Z0
ffiffi
n
d

p
, and that n=d is real in (8(b)), Z

is real when n=d P 0 and imaginary when n=d < 0. In addition,



Fig. 8. The parameters n and d needed to determine Z from (8) a for the 5LA unit cell.
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from Fig. 8(a), Z ¼ 0 at the end of half-cycle and start of full-cycle
stop-bands, i.e.,when n ¼ 0. Moreover, jZj ! 1, at the start of half-
cycle and end of full-cycle stop-bands, that is when d ! 0; for the
side that d ! 0þ; Zr ! 1 and Zi ¼ 0, while for d ! 0�; Zr ¼ 0 and
Zi ! �1. These aspects can be observed in Fig. 9.

Next, the form of k is studied through f. From (7), jfj ¼ e�kil and
krl ¼ hþ 2pp; cf. (9). Since kr 6 0; jzj P 1. Thus, 1=f is more suitable
for the analysis in this section given that its absolute value remains
bounded by 1. Fig. 10 shows the real, imaginary, and absolute value
of 1=f as a function of x. As shown, jfj ¼ 1 and jfj > 1, in pass-
bands and stop-bands, respectively.

The form of 1=f in stop-bands and pass-bands can more clearly
be observed in Fig. 11, where the curve of 1=f with argument
x 2 0;x2r½ � is shown in the complex plane. In the first pass-band
for x 2 0;x0:5l

� �
; jfj ¼ 1 and its argument increases to p. This is

demonstrated by unit value of 1=f and decrease of its argument
from 0 to �p in Fig. 11(a). For the first half-cycle pass-band,
jfj ¼ 1 atx0:5l , the beginning of the band. From Fig. 10, through this
stop-band 1=f is real and negative; it starts with value �1 at x0:5l ,
increases above �1, and recovers the value �1 at x0:5r . Thus, the
phase of 1=f is �p and its amplitude decrease and then recover
back to 1 during this stop-band as shown in Fig. 11(b). For the sec-
ond pass-band between x0:5r and x1l ; jfj ¼ 1 and / increases from
Fig. 9. The retrieved Z from (8) a for the 5LA unit cell.
p to 2p; cf. Fig. 10. This corresponds to the unit value of 1=f and
decrease of its argument from �p to �2p in Fig. 11(c). Finally, as
shown in Fig. 10, for the first full-cycle stop-band
x 2 x1l ;x1r

� �
;1=f is real and positive, taking the value one at x1l

andx1r and smaller than one in between. This corresponds to con-
stant argument of �2p and decrease and then increase of magni-
tude of 1=f in Fig. 11(d).

In Fig. 11, the green lines show the connection from the last line
of a pass-band to a stop-band and vice versa and are a result of dis-
crete sampling of frequencies (3000 points with step size of 0.0025
for this problem). The complex plane plots for 1=f are useful to
examine the sufficiency of sampled frequencies to find the bound-
aries of the stop-bands. In short, for this lossless unit cell, jfj ¼ 1 in
pass-bands and it increases beyond one in half- and full-cycle stop-
bands for which the argument for f is p and zero, respectively. The
corresponding phase angle / ¼ krl is shown in Fig. 12(a), where p
increases at the end of half-cycle stop-bands to accommodate con-
tinuity of / ¼ arg fð Þ. As will be shown in Section 4.3, with the
assumption of continuity of k in x (or / in x), a necessary but
not sufficient condition to realize double negative properties is
for / to decrease, rather than increase, at the end of (the first)
stop-band. Finally, k is shown in Fig. 12, where kr ¼ /=l and
ki ¼ � log jfjð Þ=l; cf. (9). As implied by their names, in stop-bands
Fig. 10. The parameter 1=f needed to determine k for the 5LA unit cell.



Fig. 11. The phase space of 1=f at the end of pass-bands and stop-bands for / ¼ p�;pþ;2p�;2pþ. The red and blue segments on negative and positive real axes, correspond to
half- and full-cycle stop-bands, respectively. Arrows on the purple dotted-dashed line show the direction at whichx increases. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Quantities needed in (9) for choosing the right solution for / and k for the 5LA unit cell.
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ki < 0 implying an evanescent propagation mode; in contrast in
pass-bands ki ¼ 0.

The retrieved material properties for the lossless 5LA unit cell
are shown in Fig. 13. Since k is the same at the end points of
stop-bands, Cr increases in stop-bands in Fig. 13(a). Retrieved mass
density is shown in Fig. 13(b). In the first pass-band Zi ¼ 0 and as
x! x0:5l ; Zr ! 1; cf. Fig. 9. As a result, q is real and tends to infin-
ity asx! x0:5l ; cf. (10). In the first half-cycle stop-band Zr ¼ 0 and
qr ¼ Zikr=x; since Zi ! �1 and Zi ! 0 asx! x0:5l andx ! x0:5r ,
respectively, and kr is constant, qr tends to �1 at the start of this
stop-band and reaches zero at x0:5r . The negative ki tends to zero
with the same rate at which Zi tends to �1 as x ! x0:5l in this
stop-band; since qr ¼ �Ziki=x;qr takes a negative finite value
and zero at x0:5l and x0:5r , respectively. In the second pass-band



Fig. 13. Retrieved constitutive parameters for the 5LA unit cell. The boundaries of bands are defined in terms of / ¼ np, where n is an integer; cf. Table 1.
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for x 2 x0:5r ;x1l
� �

, similar to the first pass-band Zi ¼ 0. Thus,
qr ¼ 0 and qr takes a profile similar to Zr; that is, zero at the end
points and positive in between. Finally, in the first full-cycle
stop-band Zr ¼ 0 and Zi tends to 1 as x! x1r . By an argument
similar to that for the first half-cycle stop-band, we observe that
qr ! 1 and qr takes a finite positive value at x! x1r , and
q ¼ 0 at x1l . This profile of q repeats in the second cycle
x 2 x1r ;x2r½ �, where upon q starting from a positive infinite limit
at x1r , the same response of the first pass-band is observed in this
band and the in next corresponding bands between the first and
second cycles.

The retrieved compliance is shown in Fig. 13(c). Since D ¼ k=Zx
and q ¼ kZ=x, impedance plays a reverse role for D. That is, in the

half cycle pass-bands xpþ0:5r ;xpþ1l

h i
, real q and D take zero and

positive infinite values at the end points, while in full cycle pass-

bands xpþ1r ;xpþ1:5l

h i
the opposite occurs. By noting that jZj and

ki tend to zero with the same rate at xpþ0:5r and xpþ1l , finite posi-
tive and negative values for Dr are realized in stop-bands at these
points, respectively. Positive and negative infinite limits are real-
ized for Di at these points in the stop-bands. Finally, the retrieved
modulus is shown in Fig. 13(d). Since C ¼ Zx=k and q ¼ kZ=x,
retrieved C ¼ 1=D is similar to q; the difference is in nonzero pos-
itive and negative real values for Cr at xpþ0:5l and xpþ1r , respec-
tively, as opposed to opposite sign values for qr . This is due to
the appearance of k in denominator for C.

In short, material is single negative in stop-bands; Cr ;Dr P 0

and qr 6 0 in xpþ0:5l ;xpþ0:5r

h i
, and Cr ;Dr 6 0 and qr P 0 in

xpþ1l ;xpþ1r

h i
. Moreover, (qr ;Cr) and Dr take zero and infinite val-

ues at the limits of xpþ0:5r ;xpþ1l

h i
and xpþ1r ;xpþ1:5l

h i
pass-bands,

respectively. Material is double-positive in the pass-bands with
zero imaginary properties. The possibility of a double negative
material in pass-bands of these five-layer unit cells is discussed
in Section 4.3.

The effect of added loss is studied in subsequent figures. As
shown in Figs. 13(d) and 14(b), for lossy unit cells jnj and jdj no
longer become zero (at the boundaries of stop-bands of the lossless
unit cell). As a result, jZj does not tend to zero or infinity at any fre-
quencies. The real and imaginary parts of Z are shown in Fig. 14(b)
and (d).

Added loss has a similar smoothing effect on f; see Fig. 15(a); as
a result retrieved /; ki, and c in Fig. 15(b–d) are smoothened out at
the sharp corners by the added loss. Fig. 16 shows q as one of the
retrieved constitutive parameters. Since jZj no longer takes zero
and infinite values through the introduction of loss, retrieved prop-
erties such as q no longer tend to infinity and are continuous. The
difference between the retrieved Cr and qr in Figs. 15(d) and 16(b)
for lossy and lossless unit cells is relatively large as x! 0. This is
consistent with the analysis in Section 3. Finally, it is noted that as
higher values of loss are introduced some solution features are lost.
For example, in Figs. 15(d) and 16(b) and Fig. 16(a), retrieved Zr

and qr are convex rather than concave in x1r ;x1:5l
� �

for d ¼ 1.
4.3. Five-layer slab D

The 5LD unit cell has the smallest modulus value of C2 ¼ 0:02
in P2 among the four unit cells considered in Nemat-Nasser and
Srivastava (2011). Table 2 lists the start and end frequencies of
half-cycle and full-cycle stop-bands for four complete cycles. In
comparison to Table 1, it is observed that lowering C2 shifts all
end points of stop-bands to lower frequencies and significantly
shrinks half-cycle stop-bands. Fig. 17 shows retrieved properties
up to the second pass-band for the lossless 5LD unit cell, where
both qr and Dr are negative. These retrieved double negative (DN)
properties are reported in Nemat-Nasser and Srivastava (2011).
Below, we will demonstrate that while these solutions are consis-



Fig. 14. The departure of parameters n and d from zero, and continuity and nonzero value of Z as loss is added to the 5LA unit cell.

Fig. 15. The effect of loss on the phase angle / and consequently on k and c for the 5LA unit cell.
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Fig. 16. The effect of loss on the retrieved density for the 5LA unit cell.

R. Abedi, A.V. Amirkhizi / International Journal of Solids and Structures 200–201 (2020) 34–63 47
tent with the band structure of this unit cell, by adding damping to
the unit cell, a double positive solution is found as the stable solu-
tion, in the sense of the definition introduced in Section 2.2, i.e.,
that addition of an infinitesimal loss does not discontinuously
change the constitutive description. Furthermore, the overall con-
stitutive functions presented here, by construction, also reproduce
the scattering response of the micro-structured medium as well as
its band structure.

To investigate possible solutions in the second pass-band,
Iw :¼ x0:5r ;x1l

� � ¼ 0:145025; 0:209575½ �, and change in the
branches of the solution, we consider three alternative solutions
forx 2 0;x1l

� �
. These solutions are: 1) p ¼ 0 with the positive root
Table 2
End points of the stop-bands for the 5LD unit cell. The frequencies are accurate to
within 0.000025.

Cycle number p xpþ0:5l xpþ0:5r xpþ1l xpþ1r

0 0.143575 0.145025 0.209575 0.841175
1 0.867425 0.871975 0.896775 1.678800
2 1.692200 1.704100 1.717375 2.491275
3 2.499575 2.544275 2.553300 2.947275

Fig. 17. Possible double negative (DN) material in the second pass-band
Iw :¼ x0:5r ;x1l

� � ¼ 0:145025; 0:209575½ �.
of Z, that is the root for which Zr P 0, cf. (8) a; 2) p ¼ 1 with pos-
itive root for Zr; 3) p ¼ 0 and the negative root for Z, that is the root
for which Zr 6 0. These solutions, þ; p ¼ 0;þ; p ¼ 1, and �; p ¼ 0
are shown by colors black, gray, and green in the following figures.
As described in Section 2.2, the transformation Z ! �Z results in
f ! 1=f. By inspecting (9), one observes that if in addition �p
and p are chosen as the cycle numbers for �Z and Z, we have
k ! �k. Thus, from (10) all retrieved material properties will be
unchanged by the transformation Z ! �Z and p ! �p; the positive
and negative solutions generally correspond to forward and back-
ward propagating waves. Now, clearly �; p ¼ 0 and þ; p ¼ 0 have
such relation and they result in opposite signs for Z and k and equal
signs for retrieved parameters q;D, and C in subsequent discus-
sions, unless otherwise noted. As for þ; p ¼ 0 and þ; p ¼ 1, and in
general any p for positive Z solutions, Z and ki do not change and
only kr depends on p through / ¼ hþ 2pp; cf. (9).

The solutions for / and ki are shown in Fig. 18 from a frequency
range expanded beyond x0:5r ;x1l

� �
. In Fig. 18(a), for þ; p ¼ 0;/

grows from zero to p up to the beginning of the first half-cycle
stop-band atx0:5l ; phase angle takes the opposite value and a cycle
(2p) larger value for �; p ¼ 0 and þ; p ¼ 1 branches, respectively.
The stable solution branch in this pass-band is þ; p ¼ 0 (for a for-
ward moving wave). As shown in Fig. 18(b), ki ¼ 0 in this range.
In the first half-cycle stop-band x0:5l ;x0:5r

� �
, phase angle does

not change for any of the solution branches considered. That is,
for þ; p ¼ 0 and þ; p ¼ 1;/ ¼ p and 3p, respectively. For both solu-
tions, ki becomes negative and goes back to zero from the start to
the end of the stop-band, as shown in Fig. 18(b). Opposite sign k
(and /) for �; p ¼ 0 and þ; p ¼ 0 would result in / ¼ �p and posi-
tive ki for the �; p ¼ 0 solution branch in this stop-band. However,
for forward-moving waves considered, this solution is not accept-
able since ki becomes positive. As will be shown later, cf. Fig. 20(c),
Zr ¼ 0 in this stop-band and both positive and negative solutions
would coincide by requiring ki 6 0. Thus, to preserve the continuity
of k, solution stays in the þ; p ¼ 0 branch in this stop-band. Note
that branch �; p ¼ 1 (not shown) is also available as k is continuous
at the boundaries of the stop band and that Z being discontinuous
and vanishing at the left and right ends, respectively, does not pre-
clude it. However, by definition adopted earlier, it is not a forward
moving wave and is not considered. Note that as discussed further,
the ‘‘stability” criterion is not hindered by any such challenges.

In the pass-band Iw ¼ x0:5r ;x1l
� �

, as will be discussed both
þ; p ¼ 1 and �; p ¼ 0 are valid solution branches. In the onset of
this pass-band, / jumps to �p for þ; p ¼ 0. Phase for þ; p ¼ 1 drops
to p. Thus, this branch result in a continuous increase of / from p
for þ;1 branch at x0:5r to 2p at x1l . The solution branch �; p ¼ 0
has the opposite / of þ; p ¼ 0 in this pass-band and / jumps ini-



Fig. 18. Phase angle / and ki for the three branches of solution for the 5LD unit cell.
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tially from �p to p. Thus, this branch too can be an alternative con-
tinuous extension of / from that of þ; p ¼ 0 beyond x0r . Since
ki ¼ 0 for both þ; p ¼ 1 and �; p ¼ 0 branches, both solutions are
valid and have no loss in this pass-band. The difference is that
for þ; p ¼ 1;/ increases to 2p while for �; p ¼ 0 it decreases to 0
in Iw. Next, we will compare the other retrieved parameters for
þ; p ¼ 1 and �; p ¼ 0 in Iw.

The real part of the retrieved material properties for these three
solution branches are shown in Fig. 19. It is noted that since in
Iw; ki ¼ 0 (Fig. 18)(b) and Zi ¼ 0 (not shown), all retrieved material
properties are real. We will compare the solutions for þ; p ¼ 1 and
�; p ¼ 0 branches in Iw. While Cr does not considerably change for
þ; p ¼ 1 in Fig. 19(a), it tends to infinity for the �; p ¼ 0 branch.
This is due to the fact that k ¼ kr ¼ /=l decreases to zero as
x! x1l for �; p ¼ 0; cf. Fig. 18(a). As mentioned before, positive
and negative branches correspond to positive and negative Zr

(when Zr – 0). This can be observed in positive and negative values
Fig. 19. Retrieved properties for the three br
for Zr for þ; p ¼ 1 and �; p ¼ 0 in Fig. 19(b). As shown in Fig. 19(b)
and (d), positive and negative Dr and qr are retrieved for þ; p ¼ 1
and �; p ¼ 0 branches. This is expected, given that k ¼ kr > 0 and
Zr is positive and negative for þ; p ¼ 1 and �; p ¼ 0 branches; cf.
(10). In short, both double positive and double negative solutions
corresponding to þ; p ¼ 1 and �; p ¼ 0 are valid in Iw.

By introducing loss to the unit cell, between the þ; p ¼ 1 and
�; p ¼ 0 branches, one takes a positive and one takes a negative
ki in x0:5r ;x1l

� �
. For the lossless unit cell, while both branches

are valid, the branch that corresponds to negative ki for lossy unit
cells is the stable branch, as discussed in Section 2.2. The solutions
for lossy unit cells, with low, intermediate, and high damping and
complex modulus ratio values (in P2) are shown in Fig. 20. The neg-
ative values of ki for x 2 Iw in Fig. 20(a), in fact, correspond to the
þ; p ¼ 1 branch. As shown in Fig. 20(b), by increasing loss the fre-
quency at which the switch from þ; p ¼ 0 to þ; p ¼ 1 occurs shifts
from the right of the stop-band at x0:5r to roughly its center. The
anches of solution for the 5LD unit cell.
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choice of þ; p ¼ 1 solution branch manifests itself in positive val-
ues for Zr ;qr;Dr , and Cr in Iw in Fig. 20(c–f). Thus, þ; p ¼ 1 and
double-positive solutions in Figs. 18 and 19 are the stable solutions
in Iw. A few other arguments, based on the continuity retrieved
parameters, are provided in Appendix A on why þ; p ¼ 1 is the
stable solution branch in Iw. Taking the þ; p ¼ 1 solution branch
in the second pass-band, the double-positive retrieved parameters
for the lossless unit cell are shown in Fig. 21.

Fig. 22 shows k for four full cycles of wave. The high contrast
ratio of the moduli between P3 and P2 results in extremely nar-
rowed half-cycle stop-bands and pass-bands; see for example the
pass-bands on the two sides of the x3:5l ;x3:5r

� �
stop-band. As a

result, full-cycle stop-bands dominate the frequency response of
the 5LD unit cell.

Next, the energy parameters of the 5LD unit cell are shown in
Figs. 23 and 24. As expected, for the lossless unit cell a is identically
zero in Fig. 23(a). A more interesting observation for this particular
unit cell is that r ¼ 1 (t ¼ 0) for almost the entire widths of the full-
Fig. 20. The use of the solutions of unit cells with loss to determine the stable so
cycle stop-bands; it is only close to pass-bands and half-cycle stop-
bands that the unit cell is not a perfect reflector for the 5LD unit
cell. The energy parameters for the g- and d-models are shown in
Fig. 23(a) and (c), respectively. For both models, high energy
absorptions are observed in the half-cycle stop-bands and sur-
rounding pass-bands. This aspect can more clearly be observed in
Fig. 23(d), where a is plotted against the phase angle /. Since a var-
ies across the stop-bands, it does not take a unique value for
/ ¼ p 1þ 2pð Þ and / ¼ 2pp. However, it is clearly shown that high-
est values for a are achieved in half-cycle stop-bands
(/=p ¼ 0:5þ p) and pass-bands around them, and that a stays
around zero in full-cycle stop-bands. It should be emphasized that
high a values around half cycle stop bands is not true in general.
For example, this is not the case for the 5LA unit cell (not shown
here for brevity).

The energy loss characteristics of the two model can more
clearly be compared in Fig. 23(d). The low, intermediate, and high
loss parameters of the two models are chosen such that at high fre-
lution branch for retrieved material properties of the lossless 5LD unit cell.



Fig. 21. Retrieved constitutive parameters for the lossless 5LD unit cell.

Fig. 22. Wavenumber for the lossless 5LD unit cell for x 2 x0:5l ;x4l
� �

=
0:143575;2:947275½ �.
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quencies they result in very similar loss parameters and retrieved
constitutive parameters. This can be seen in the fourth half-cycle
stop-band and surrounding pass-bands in Fig. 23(d)
(3 < /=2p < 4), where the pairs of low, intermediate, and high loss
parameters results in almost the same a. However, as we shift to
lower frequencies, the d-model becomes more lossy by exhibiting
higher a values for each of the three pairs; see for example the
zones 2 < /=2p < 3 and 1 < /=2p < 2 in the figure.
5. 2D photonic crystal example

5.1. Problem description for the 2D unit cell

In this section we consider a 2D photonic crystal studied in
Nemat-Nasser (2019). The unit cell is a 10 mm	 10 mm aluminum
square, containing a circular inclusion of PMMA with diameter
4:46 mm. The properties of the Aluminum matrix are Young’s

modulus EM ¼ 68 GPa, mass density qM ¼ 2:7 g=cm3, and Poisson
ration mM ¼ 0:33. The properties of polymethyl methacrylate

(PMMA) inclusion are EI ¼ 3 GPa;qI ¼ 1:2 g=cm3, and mI ¼ 0:4.
The plane strain condition is assumed for this problem. We charac-
terize this unit cell from zero to frequency f ¼ 300kHz (corre-
sponding to x ¼ 1:88 M rad = s). The aSDG method and COMSOL
are used for the TD and FD analysis of this unit cell; cf. Section 2.3.

The problem description and initial spatial discretization used
for the TD analysis of this unit cell are shown in Fig. 25. The spatial
triangulation is comprised of 1321 nodes and 2519 triangles. The
domain is extended by 12 mm and 8 mm on the reflection and
transmission sides, respectively, to represent the infinite ambient
zones in the parameter retrieval method. Silver-Müller transmit-
ting boundary condition is used in the ambient zones to terminate
the computational domain. Material properties of the ambient
zone are chosen identical to those of the matrix to reduce the sim-
ulation time T , cf. Section 2.3, needed for the TD method. Symme-
try boundary condition is used on the top and bottom boundaries
of the domain. Since scatter field (SF) formulation is used in reflec-
tion side, and total field (TF) formulation is used in the unit cell and



Fig. 23. The effect of the loss model on energy parameters of the 5LD unit cell for the frequency range x 2 x0:5l ;x4l
� �

= 0:143575;2:947275½ �.

Fig. 24. The effect of loss model on sample retrieved parameters for the 5LD unit cell.
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transmission side, special matching conditions are used on the blue
interface between the two zones in the figure (Busch et al., 2011);
cf. Section 2.3.

The parameters for the TD incident wave I tð Þ are
xmin ¼ �0:5 M rad = s and xmax ¼ 2:5 M rad = s. This corresponds
to x0 ¼ 1 M rad = s and 1 ¼ 2=3 ls. The parameter n0 is chosen as
n0 ¼ 41 ¼ 8=3 ls. The final time of the TD simulation if
T ¼ 184:56 ls. As described in Section 2.3, the aSDG method grad-
ually fills the 3D spacetime domain by each time solving a patch of
tetrahedral elements. At the final time, the computational domain
contains about 36 million elements arranged in more than 6.3 mil-
lion patches.
5.2. Solution of the lossless 2D unit cell

The lossless unit cell is solved by the FD method with 3531 dis-
crete frequencies in the frequency range of interest, with finer fre-
quency steps around a narrow stop-band that will be discussed
later. About 3760 discrete frequencies are used in the inverse Four-
ier transform of TD results. As in the preceding sections, the stable
solution branches for the lossless unit cell are determined by using
the solutions of lossy unit cells. The form of added loss is further
discussed in Section 5.5. Due to the higher accuracy and adaptive
resolution of frequency steps of the FD approach, only the FD solu-
tions are presented here and in Section 5.4.



Fig. 26. The parameters / and (n; d) needed to determine k and Z from (9) and (8) a, respectively, for the lossless 2D unit cell.

Fig. 25. Problem description and spatial mesh for the 2D unit cell and ambient zones on reflection and transmission sides for the aSDG method.

Table 3
End points of the stop-bands for the 2D unit cell.

Description Symbol Line marker Value M rad = sð Þ
Start of the first half-cycle stop-band x0:5l 1.38104
End of the first half-cycle stop-band x0:5r 1.65059
Start of the first full-cycle stop-band x1l 1.67346
End of the first full-cycle stop-band x1r

1.67516Start of the second half-cycle stop-band x0
0:5l

End of the second half-cycle stop-band x0
0:5r 1.84349
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Fig. 28. Comparison of band structures constructed by the scattering and Bloch
eigenvalue analyses.
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Fig. 26 shows the retrieved k and Z for the lossless 2D unit cell.
As shown in Fig. 26(a), / increases to p at x0:5l ¼ 1:38104, the
beginning of the first half-cycle stop-band. This is followed by a
narrow pass-band from the end of this stop-band at
x0:5r ¼ 1:65059 to the beginning of a very narrow full-cycle stop-
band at x1l ¼ 1:67346. Interestingly, for this unit cell, / sharply
drops from 2p to p at the end of this stop-band at
x1r ¼ 1:67516. Thus, there is a secondary half-cycle stop-band
with again / ¼ p from x0

0:5l
¼ x1r to x0

0:5r ¼ 1:84349. These fre-
quencies and their corresponding line markers are shown in
Table 3. Since the narrow full-cycle stop-band in x1l ;x1r

� �
cannot

be clearly seen in these figures, the solution in this stop-band and
the nature of sudden decrease of / is further discussed in
Section 5.4.

Fig. 26(c) shows the relation between zero points of n and d and
the end points of the stop-bands. For all 1D unit cells presented in
Section 4, half-cycle stop-bands start when d ¼ 0 and end when
n ¼ 0. For full-cycle stop-bands this reverses in that the start and
end frequencies correspond to n ¼ 0 and d ¼ 0, respectively.
Clearly, the same trends are not observed for the 2D unit cell in
Fig. 26(c). For example, for the first half-cycle stop-band, n ¼ 0 at
x0:5l and d ¼ 0 at x0:5r ; this results in a similar variation of
retrieved parameters to those of the full-cycle stop-bands of 1D
unit cells in Section 4. It appears that having a lighter and more
compliant core for this example contributes to these features, pro-
viding the intriguing possibility of designing 1D systems with a
similar response; for some examples of designing 1D systems with
special properties, please refer to Mokhtari et al. (2019). Further-
more, while not clear in the figure, the first full-cycle stop-band
also starts with condition n ¼ 0 at x1l . As will be discussed in Sec-
Fig. 27. Retrieved constitutive parame
tion 5.4, neither n nor d are zero at the end of this stop-band, which
coincides start of the next half-cycle stop-band at x1r ¼ x0

0:5l
.

Finally, the second half-cycle stop-band ends with condition
d ¼ 0 at x0

0:5r , i.e., similar to the end condition of full-cycle stop-
bands in Section 4.

Fig. 26(d) shows the retrieved impedance for the lossless 2D
unit cell. While not shown, similar to Fig. 8(b), n=d is real positive
in pass-bands and real negative in stop-bands. This results in zero
Zr and Zi in stop-bands and pass-bands, respectively; cf. (8) a. At
ters for the lossless 2D unit cell.



Fig. 29. The appearance of the very narrow first full-cycle stop-band in x1l ;x1r
� �

and parameters contributing to the value of k for the 2D unit cell.
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the boundaries of stop-bands for which n ¼ 0; Z is zero. Finally, Zr

and Zi take infinite limits outside the stop-bound boundaries for
which d ¼ 0.

The retrieved constitutive parameters for the lossless 2D unit
cell are shown in Fig. 27. The real part of retrieved parameters
are finite and single negative in stop-bands (q versus D=C). More-
over, the zero and infinite limits of Z in Fig. 26(d) dictate infinite
limits of retrieved parameters; that is, infinite limits for qr and
Cr in pass-bands right after x0:5r and x0

0:5r , where d ! 0 and infi-
nite limit for Dr in pass-bands before x0:5l and x1l where n ! 0.

Finally, q and C tend to their quasi-static limits of 2:47 g=cm3

and 67:7 GPa, respectively, as x ! 0.
2 For oblique incident waves, while the solution of the two approaches match, as
own in Amirkhizi and Alizadeh (2018) the overall constitutive law need be spatially
ispersive. For 2D periodic media oblique waves also lead to diffraction and interface
aves (Willis, 2016; Mokhtari et al., 2020). Since only normal incident waves are

considered herein, these aspects are not further elaborated in this paper.
5.3. Comparison of scattering and Bloch eigenvalue analyses

In Section 1, the field averaging and parameter retrieval meth-
ods were presented as two methods that can characterize overall
dispersive properties of micro-structured media. The former is
generally based on the Bloch wave representation and the latter
relies on the scattering parameters of one or a number of unit cells
sandwiched by an ambient medium. The purpose of this section is
to compare the scattering approach used in this paper with the
Bloch wave solution for the considered 2D unit cell.

Fig. 28 compares the band structure obtained by the scattering
and Bloch eigenvalue analyses, where x is plotted against / ¼ krl
or the normalized wavenumber Q :¼ mod /;pð Þ. For the Bloch
analysis, as described in Aghighi et al. (2019), the band structure
is formed by solving discrete eigenvalues x for any given k in
the horizontal direction in Fig. 25. As shown in Fig. 28, there is a
very good agreement between the solutions along the longitudinal
acoustic branch and small deviations can only be observed right
before the start of the first stopband atx0:5l . Since in the scattering
approach, we have only considered the retrieval of material param-
eters pertained to longitudinal wave propagation, it cannot repro-
duce the shear mode solutions of the Bloch eigenvalue analysis in
the figure.

The eigenvalue band structure provides interesting insights that
may be quite complementary to scattering calculations. It must be
noted that while we deal with a discrete branch ambiguity in k, it is
still determined as a function of frequency in Fig. 26(b). In the scat-
tering phase data, there is a discontinuous drop after a sharp but
continuous rise in /. Around the same frequency, the eigen-
frequency calculations show a very feature-rich structure.

A few remarks are provided to conclude the comparison of scat-
tering and Bloch wave eigenvalue analysis methods. First, as
shown in Amirkhizi (2017) for 1D laminated systems there is a per-
fect match between the two approaches when normal incident
waves are considered. More recently, Amirkhizi and Alizadeh
(2018) shows a similar matching between the two methods for
1D laminated systems for oblique incidence of anti-plane shear
waves.2 This has been the rationale to compare the two methods
only for this 2D example, where the results can differ. Second, while
the matching is not perfect for 2D unit cells, our preliminary results
(not presented here) show that once the number of unit cells is
beyond a certain small limit (e.g., 5), the results of scattering of finite
sh
d
w
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thickness slabs, become very close to the eigen-analysis predictions
of an infinite domain, with most deviation occurring near reso-
nances. For very small number of unit cells, this difference is
observed even in long wavelength limit. Still, for this particular
example, as shown in Fig. 28, there is a good match between the
two methods for longitudinal modes even when one unit cell is used
in the scattering method.
5.4. A narrow full-cycle stop-band

The solution details in the short frequency range of x0:5r ;x1r½ � is
discussed in this section. To choose the stable solution branch for
Fig. 30. The phase space of 1=f at the end of pass-bands and stop-bands for / ¼ p�;pþ;
axes, correspond to half- and full-cycle stop-bands, respectively. Arrows on the purple d
the lossless unit cell, we introduce loss in the PMMA inclusion
phase. For the FD approach, we employ a frequency-dependent
model for g that resembles a constitutive model with nonzero
damping coefficient for PMMA. If in (15), the terms d _u and Cu;xx

are lumped to a complex modulus, the ratio g ¼ Ci=Cr is xd=k2C.
By first order approximation of c by

ffiffiffiffiffiffiffiffiffi
C=q

p
, the wave speed of loss-

less material, a damping-based g is approximated as g ¼ d=qx. The
rather constant and linear dependence of a on d and g in Section 3
also imply that g / 1=xwould resemble a damping model. A value

of d ¼ 0:001 g=cm3 ls is used for the lossy unit cell herein.
Fig. 29 is used to show the existence of a very narrow full-cycle

stop-band and the discontinuity of / at its end point. Fig. 29(a)
2p�;2pþ for 2D unit cell. The red and blue segments on negative and positive real
otted-dashed line show the direction at which x increases.
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shows how the lossy solution is used to determine p for the stable
solution, hence /, for the lossless unit cell. In the pass-band
[x0:5r ;x1l ] of 3.64 kHz range, phase angle quickly increases from
p to 2p. This is followed by the narrow stop-band x1l ;x1r

� �
of

width 28 Hz, for which / ¼ 2p. Similar to the examples in Section 4,
the lossy solution is used to choose an increasing, rather than
decreasing, / solution in the pass-band [x0:5r ;x1l ]. Moreover, a
unique feature of this unit cell is the abrupt change of / at x1r .
In contrast, / remains continuous for the lossy unit cell, though
if loss is reduced, the behavior will approach more and more to
the sharp discontinuous decrease in the lossless system. The
decrease of / for the lossy unit cell determines that / should also
decrease for the lossless unit cell at x1r . This rules out a nonphys-
ical solution for lossless unit cell for which / jumps up to 3p atx1r .
Note that in previous examples in this paper, / was always a
monotonously increasing function of x. The corresponding kr val-
ues are shown in Fig. 29(b).

Next, we discuss the special properties of retrieved properties at
x1r , where k is discontinuous. As expected, j1=fj takes a unit value
in the pass-band [x0:5r ;x1l ], resulting in ki ¼ 0; cf. 9. A more inter-
esting observation is the decrease of j1=fj from one to zero in the
stop-band. For the discrete set of frequencies the unit cell is ana-
lyzed, the value of j1=fj gets as small as 2:6	 10�4. As will be dis-
cussed next, Z is imaginary and nonzero at x1r ; cf. Fig. 32(b). Thus,
from (8) b, T must tend to zero at x1r to accommodate a zero limit
for j1=fj at this point. This is verified in the plot of T in Fig. 29(d).
Fig. 31. The effect of loss on phase space of 1=f for the 2D unit cell at comparable frequen
direction at which x increases.

Fig. 32. The parameters n and d needed to determine Z from (8) a,
To better demonstrate the nature of this jump, the evolution of
1=f up to x ¼ x0

0:5r is shown in complex plane in Fig. 30. At the
beginning of the first stop-band, 1=f ¼ �1 at x ¼ x0:5l in Fig. 30
(a). Through this stop-band negative real 1=f gets closer to zero
and recovers a unit value at the end of the first stop-band at
x ¼ x0:5r in Fig. 30(b). This corresponds to the dip in ki for
x 2 x0:5l ;x0:5r

� �
in Fig. 26(b). Past this frequency, both 1=f and k

smoothly vary until the start of the full-cycle stop-band at Fig. 30
(c). This is similar to the continuous change of both parameters for
1D unit cells in Section 4; cf. for example Fig. 11. The evolution of
1=f, however, is different for the first full-cycle stop-band. Through
this stop-band positive real 1=f tends from one to zero as shown in
Fig. 30(d) (as discussed in Section 4.2, the pass- and stop-band green
connecting segments demonstrate the discrete nature of sampled
frequencies). Unlike all previous examples of full-cycle stop-
bands, 1=fdoes not increase to one at the transition point to the next
pass-band. Rather, 1=f passes through zero to negative real axis at
the transition to the second half-cycle stop-band at x1r . f crossing
the 0 value, is equivalent to ki ! �1. The change of 1=f from zero
to �1 in the second half-cycle stop-band is shown in Fig. 30(e).
Fig. 31 shows how by adding loss, 1=f moves farther away from
the origin and its maximum attained argument decreases. These
result in lower values for jkij andmaximumvalue of kr , respectively,
for g ¼ 0:001=qIx around x1l ;x1r

� �
in Fig. 29(b).

In short, we believe that for the lossless unit cell, at the transi-
tion point between the full- and half-cycle stop-bands, T ¼ 0 and
cies. Arrows, shaded from light to dark purple fromx ¼ 0 to higher values show the

and Z around the first full-cycle stop-band for the 2D unit cell.



Fig. 33. Retrieved constitutive parameters for the 2D unit cell around the first full-cycle stop-band.

Fig. 34. Comparison of the effect of loss in retrieved / and Zr for the TD and FD methods.
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1=f transitions from positive to negative real axis. This example
demonstrate the inability of methods that are based on continuity
of k, e.g., (Arslanagić et al., 2013; Shi et al., 2016), in capturing the
stable solution branch in general. However, all retrieved properties
of lossy unit cells are continuous and their solution can be used to
determine the stable solution branch for lossless unit cells, even
when k is discontinuous (in this case the real part expressing a
finite jump, while the imaginary part becomes unbounded).

The retrieved jnj and jdj around the first full-cycle stop-band are
shown in Fig. 32(a). As mentioned before, the full-cycle stop-band
starts with n ¼ 0 at x1l . However, at x1r neither n nor d are zero.
Accordingly, unlike the other end points of stop-bands Z is finite
and nonzero at this point; as shown in Fig. 32(b), Z is imaginary
and continuous in this and subsequent stop-bands. The other
retrieved constitutive parameters for the lossless and lossy unit
cell are shown in Fig. 33. Since Z is nonzero and finite at x1r ;q;D
and q all are finite and nonzero at this frequency. However, the
jump in kr results in jumps in the slope and/or values of these
quantities; cf. for example jumps in qr and Cr atx1l in Fig. 33(b, d).
5.5. Comparison of TD and FD solutions for lossy unit cells

The use of the damping-based model of g ¼ d=qIx for the FD
simulations enables objective comparison of the FD method with
the aSDG TD method. For the TD approach, damping values of

d ¼ 0:003;0:01;0:03 g=cm3 ls are used in the PMMA phase. For
the FD method, beside the lossless solution, unit cells with

d ¼ 0:001 g=cm3 ls and d ¼ 0:01 g=cm3 ls are used for the PMMA
phase in g ¼ d=qIx.

Figs. 34 and 35 compare the two approaches in terms of the
retrieved parameters. As shown in 34(a), the FD solutions for /
are closer to that of the lossless unit cell. Even the solution for
Fig. 35. The effect of added loss for the TD and FD methods in smoot
the lossless TD solution is farther away than the lossy FD solutions
from the lossless FD solution. The same trends are observed in
Fig. 35, with the exception of more accurate solutions for
d ¼ 0:01 of the TD approach around x0:5r . This can be explained
with unusually closer to zero jdj value for this solution in 34(d).
This results in closer values to those of the lossless unit cell for
Zr and as a result qr and Cr for this solution aroundx0:5r . However,
aside from this region, TD solutions are farther away from the solu-
tions of lossless unit cell, even for comparable loss parameters (e.g.,
d ¼ 0:01). This implies that the numerical dissipation of TD solu-
tion dominates the effect of added loss on retrieved parameters
in such low loss systems.

Finally, two of the energy parameters of the unit cell are shown

in Fig. 36. As expected, t ¼ jTj2 moves away from zero around x1r ,
where T ¼ 0 was deemed to be the cause of discontinuity of k for
the lossless unit cell. The absorbance solutions are compared in
Fig. 36(b) for a wider frequency range. As in all previous examples,
largest losses are encountered in regions with fastest changes in
retrieved properties, that is around x0:5r ;x1l

� �
. For the lossless

and low damping TD solutions, a achieves large negative values
(energy gain) near the full-cycle stop-band. While the aSDG
method is energy dissipative (Abedi, 2010), the non-negative
energy loss is only guaranteed for an entire TD solution; thus,
numerical gains for individual frequency bands in Fig. 36(b) does
not violate the properties of the aSDG method.

Large energy errors (local frequency bands of gain) and relative
insensitivity of retrieved parameters to damping value for the TD
solutions suggest that this approach is not extremely efficient for
the parameter retrieval method when drastic changes occur over
very narrow frequency bands. However, for high frequencies, the
TD method demonstrates its computational value and efficiency.
Herein, to accurately capture the solution, a frequency step of
1 Hz is used around the narrow stop-band x1l ;x1r

� �
. We also note
hening the response of retrieved parameters for the 2D unit cell.



Fig. 36. The effect of added loss for the TD and FD methods on energy parameters of the 2D unit cell.
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that numerical difficulties were encountered when using the
retrieval method described in Section 2.2, given the very low trans-
mission values. Instead, the more robust parameter retrieval
method of Amirkhizi (2017), suitable for Willis-type constitutive
equations, was used in this frequency range.
6. Conclusions

We proposed the use of added loss as a means to determine
stable solution branches of dispersive properties of lossless unit
cells. The g- and d-models are more appropriate for FD and TD
methods, respectively, where loss is introduced through using
complex modulus and nonzero damping values. We draw distinc-
tion between constant g being bad and frequency-dependent g
being able to capture the physics somewhat more adequately.
The two models were first compared for a 1D homogeneous med-
ium. The two loss models are then compared for a finite length of
material. In terms of energy characteristics the d-model is more
appropriate in that beyond very small frequencies the absorbance
is rather constant, whereas for the g-model, absorption increases
linearly versus frequency. When retrieved constitutive parameters
are concerned, however, the g-model results in a uniform error
across frequencies, whereas for the d-model large errors are
encountered as frequency tends to zero. The two models were also
compared for more complex 1D and 2D unit cells.. Consistent with
earlier analyses, d-model resulted in larger losses and errors in
retrieved properties (relative to those of a lossless unit cell) as fre-
quency tended to zero.

For the lossless unit cells, the half- and full-cycle stop-bands
refer to regions for which / ¼ pþ 2pp and 2pþ 2pp, respectively.
For the 1D unit cells considered, impedance was infinite in the
beginning of half-cycle and end of full-cycle stop-bands and zero
at their other end points. This resulted in infinite limits for qr

and Cr before half-cycle and after full-cycle stop-bands and infinite
limits for Dr after half-cycle and before full-cycle stop-bands. As
discussed in Section 5.2, other designs of 1D systems may alter
the aforementioned structure of stop-bands; an aspect that is not
further investigated herein. As expected, retrieved materials were
single negative in stop-bands with finite values for their real com-
ponents. For a 5-layer unit cell, it was shown that both double-
positive and double-negative (DN) solutions were valid point-
wise in a pass-band. However, we used the lossy solutions to show
that only the double negative solution was stable. This was based
on achieving unstable (in the sense defined in Section 2.2) positive
value of ki for the DN solution. In addition, even for the lossy solu-
tions k; Z, and various retrieved constitutive parameters had to suf-
fer jump if the solution branch corresponding to the DN lossless
unit cell were to be used. As shown, both loss models were effec-
tive to determine the stable solution branches.

Several aspects of the 2D unit cell were different from the ana-
lyzed 1D unit cells. First, there was no consistency in terms of infi-
nite and zero limits of impedance at the end frequencies of half-
and full-cycle stop-bands. Second, the phase angle and conse-
quently wavenumber both suffered jumps at the end of a very nar-
row full-cycle stop-band. Third, / was not a non-decreasing
function of frequency given that a secondary stop-band with
/ ¼ p was observed right after this full-cycle stop-band with
/ ¼ 2p. Some of the special properties at the end of this stop-
band are having a finite and nonzero impedance value, as well as
a limiting zero transmission coefficient, and transition of
1=f ¼ e�kl from real positive to real negative axis. While existing
proposed methods to choose the stable solution branch by preserv-
ing the continuity of k fail for this problem, we demonstrated that
taking the limit of the solution of lossy-unit cells, when loss tends
to zero, can successfully capture all such solution features.
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Appendix A. Other arguments for choosing the stable branch for
5LD

In Section 4.3, taking the limit of the solution of lossy unit cells
was used to determine the stable branch in the frequency range
Iw :¼ x0:5r ;x1l

� � ¼ 0:145025; 0:209575½ � for the 5LD unit cell; cf.
Fig. 20. In this appendix, it is shown that the continuity of retrieved
parameters for lossy unit cells can also be used to determine the
stable branch in Iw.

First, solutions for ki are shown in Fig. 37 for the three branches
(solutions for þ; p ¼ 0 and þ; p ¼ 1 match) and zero and nonzero
loss parameters (damping in P2). The continuity of k can be used



Fig. 37. Demonstration that for a 5LD unit cell with loss, the negative branch is invalid in Iw given that the corresponding ki > 0 and transition between + and � branches
p ¼ 0ð Þ results in a jump in ki for lossy unit cells.

Fig. 38. Demonstration that for a 5LD unit cell with loss, Zr cannot continuously transition from positive to negative branches in Iw .
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Fig. 39. Demonstration that for a 5LD unit cell with loss, Dr suffers a jump if solution transitions from 0 positive to negative branch in Iw .

Fig. 40. Demonstration that for a 5LD unit cell with loss, qr suffers a jump if solution transitions from 0 positive to negative branch in Iw .
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to argue that þ; p ¼ 1 is the stable solution branch in Iw. Otherwise,
negative ki for þ; p ¼ 0 cannot undergo a jump and become posi-
tive to facilitate a switch to the �; p ¼ 0 branch at any frequency.

A similar argument can be made using Zr in Fig. 38. As shown in
Fig. 38(a), for the lossless unit cell, Zr suffers a jump at x0:5l ; pos-
itive and negative solution branches result in positive and negative
infinite limits for Zr in the preceding pass-band, while in the first
half-cycle stop-band Zr ¼ 0 for all solution branches. This jump is
shown by the dotted orange square in the figure. As discussed
before, the introduction of loss, smoothen outs Zr . As shown in
Fig. 20(b), the switch from þ; p ¼ 0 to þ; p ¼ 1 occurs somewhere
in the second half of the stop-band. As shown, þ; p ¼ 0 and
þ; p ¼ 1 share the same solution for Zr , thus upon the transition
between the branches, Zr remains continuous. In contrast, once
loss is added, while positive and negative branch solutions for Zr

get close (shown by dotted squares), the solution cannot continu-
ously transition from the þ;0 to �;0 branch.

Finally, in Figs. 39 and 40 the continuity of retrieved properties
for lossy unit cell is used to again argue that þ; p ¼ 1 is the stable
solution branch. In Fig. 39(a) and 40(a), Dr and qr are shown for the
lossless unit cell. From (10) and that jZj ! 1 and 0 at the start and
end of the stop-band, Dr and qr are discontinuous at the end and
start of the stop-band, respectively, as shown by dotted squares.
Once loss is introduced, these retrieved parameters are smooth-
ened out and become continuous. The retrieved parameters for
þ; p ¼ 0 and �; p ¼ 0 coincide and they suffer jumps around the
center of the stop-band, shown by dotted rectangles in Fig. 39(b–
d) and 40(b-d). Clearly, the retrieved parameters remain continu-
ous by switching fromþ; p ¼ 0 toþ; p ¼ 1 branches at these points,
the same locations where / exceeds p in Fig. 20(b).
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