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Synopsis Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology.

Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems.

Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering

mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other

emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision

paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and compar-

ative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby gener-

ating predictive frameworks across biological scales. Key recommendations include promoting the development of

minimum “best practices” for the experimental design and collection of data; fostering sustained and long-term data

repositories; promoting programs that recruit, train, and retain a diversity of talent; and providing funding to effectively

support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative

research opportunities that will be advanced by these efforts.

Introduction

Deciphering the mechanisms by which genotypes

generate phenotypes is a central mission of biology.

Historically, this mission was hampered by a lack of

sequence and expression data. Now, we are hindered

by the daunting task of integrating large amounts of

disparate data across multiple areas of expertise.

Fully realizing these mechanisms will facilitate the

integration of enormous datasets in organismal di-

versity research across molecular, morphological, be-

havioral, and ecosystem scales (Fig. 1).

Comprehensive, multi-scale data integration will im-

pact broad reaching, interdisciplinary and integrative

goals across biological disciplines (National Research

Council 2009). Although not a comprehensive list,

some of these programs and goals include (1) un-

derstanding the rules for signaling; (2) deciphering

mechanisms underlying robustness and resilience; (3)

predicting and ameliorating the impact of anthropo-

genic change to preserve biodiversity and ecosystem

services; (4) integrating data across scale; (5) pro-

moting proactive and personalized medicine

designed around wellness instead of treating disease;

and (6) effective deployment of synthetic biology

approaches for health, energy, and environmental re-

mediation applications.

Advance Access publication June 3, 2020

� The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

All rights reserved. For permissions please email: journals.permissions@oup.com.

Integrative and Comparative Biology
Integrative and Comparative Biology, volume 60, number 2, pp. 385–396

doi:10.1093/icb/icaa055 Society for Integrative and Comparative Biology

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/60/2/385/5850862 by C

ollege of C
harleston user on 02 O

ctober 2020

http://orcid.org/0000-0002-3575-8298
http://orcid.org/0000-0002-7426-7328
https://academic.oup.com/


While this unification of datasets has long been

the goal of researchers, only now in the big data

era are tools emerging that hold promise to augment

human efforts (Camacho et al. 2018). Machine learn-

ing approaches now demonstrate their ability to

make connections and find patterns at a pace that

better aligns with the exponentially increasing rates

of data collection. To fully exploit these advance-

ments, the biological research community will need

to invest significant resources toward (1) the devel-

opment of data collection and storage standards; (2)

the development of tools to overcome key bottle-

necks in data acquisition and analysis; and (3) train-

ing initiatives and collaborative outreach to a diverse

pool of existing and emerging talent (Hulsen et al.

2019). Here we discuss how sustained efforts in these

areas can further catalyze biology’s big data era for

cracking the genotype to phenotype code. We follow

this discussion by highlighting a few specific trans-

formative research opportunities that will be ad-

vanced by these efforts.

Context

This vision paper resulted from the authors’ partic-

ipation in the Reintegrating Biology Jumpstart

Workshop held in Austin, TX, in December of

2019. Reintegrating Biology is funded by the

National Science Foundation through a grant to

the University Corporation for Atmospheric

Research (UCAR) and Knowinnovation (KI). The

workshop consisted of virtual town halls, micro

labs, and jumpstart meetings designed to engage di-

verse participation from across the biological com-

munity. The primary objectives of Reintegrating

Biology were to solicit input on key challenges and

exciting opportunities on both long-standing and

emerging biological research directions. After evalu-

ating roughly 50 different proposals generated during

the initial phase of the workshop, our working group

(a structural biologist, an ecologist, a biomechanist,

an integrative animal behaviorist, and two evolution-

ary developmental biologists) coalesced around the

challenge of utilizing big data to elucidate the ge-

nome to phenome discovery pathway. This vision

paper is the result of on-site discussions and group

writing sessions followed by off-site collaborative

writing. Our paper complements the focus of the

Integrative and Comparative Biology Building

Bridges Special Issue on questions that cross multiple

scales from molecules to whole organisms while of-

fering the perspective of a suite of integrative and

comparative biologists.

Challenges and their solutions

Effective deployment of high throughput data to de-

code genotype to phenotype mechanisms will require

extensive modification and resource allocation all

Fig. 1 A molecular cascade largely encoded by the genome (top row) generates observed phenotypic variation on multiple scales from

cells to ecosystems (bottom row). Inter-organismal phenotype refers to holobiont, populations, and communities in this context.

Environmental factors can have epigenetic impacts on the genetic program (dashed arrows). Although high-throughput sequencing has

led to a rapid increase in available genomes and transcriptomes (large diameter pipelines), the ability to leverage these data to

understand the emergence of diverse phenotypes is extremely limited (smaller diameter pipelines). Deciphering the genome to

phenome pathway necessitates a multidisciplinary approach including scientists with expertise at each of these scales. Integration of

skilled data scientists will be critical for increasing the rate of productive analyses at each of these choke points. Image credits:

Sequencing image—Health Education England’s Genomic Education Program: www.genomicseducation.hee.nhs.uk/, DNA strand-Tracey

Saxby, Integration and Application Network, Proteome image—modified from Shen et al. (2018), Gene network—modified from Chen

et al. (2012), Epidermis—http://blogs.ubc.ca/biol343/cell-tissue-types-2, Wild flower filled prairie—Grace Hirzel, by permission. All

other images are by authors.
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along the pipeline from data collection to publica-

tion and storage. In this section, we provide an over-

view of some key challenges and potential solutions.

These approaches align with the principles of making

data Findable, Accessible, Interoperable, and

Reusable (Wilkinson et al. 2016).

Data collection and quality

For a tool or repository to be useful there needs to

be community defined and driven standards regard-

ing experimental design, data collection, and anno-

tation. One example regards proper alignment of

sequencing techniques (RadSeq, SNP arrays, or

whole genome resequencing) to match specific re-

search goals. Whole genome resequencing provides

complete genomic data for relatively few individuals,

making it optimal for gene discovery (Xu and Bai

2015). In contrast, because RadSeq and SNP arrays

exploit widely spaced markers, they can be used to

characterize and compare relatively large numbers of

individuals, but with less information for each sam-

ple (Tam et al. 2019). Thus these techniques are

optimal for high throughput characterization of pop-

ulations. Additionally, experimental design tools,

such as GWAPower (Feng et al. 2011), can be used

to facilitate optimal selection of sample sizes and

sequencing type (average distance between SNP and

candidate gene) for new candidate gene identifica-

tion projects. Another major difficulty involves

proper annotation of functionally characterized

genes. Many gene products are highly pleiotropic,

shifting their function in a context-dependent man-

ner within the same organism (Wagner and Zhang

2011). Furthermore, orthologous genes are fre-

quently re-deployed, leading to highly variable func-

tions in different organisms. Overcoming these

challenges will require a highly versatile system of

annotation that can encompass functional variability

without compromising overall utility.

Data storage

Currently, the tools and data associated with high

throughput sequencing are inaccessible and unstable

(i.e., often poorly maintained due to lack of sup-

port). The National Center for Biotechnology

Information (NCBI; https://www.ncbi.nlm.nih.gov),

is an excellent, supported repository for genomic

and transcriptomic data (Coordinators 2018), how-

ever, it is designed for biomedical research, making it

somewhat limited for non-model organisms. While

international resources designed specifically for

housing non-model organism genomic and tran-

scriptomic data and tools, such as Lepbase (http://

lepbase.org), can suffer from limited financial sup-

port. Solutions will involve creating centralized,

community edited (possibly open source), sustain-

able data, and tool repositories (potentially modeled

on ImageJ or the Brain Initiative). Additionally, ro-

bust infrastructures must be in place to maintain and

oversee these repositories as they expand. There are

already systems in place (da Veiga Leprevost et al.

2017; Barnett et al. 2019) from which we can learn

best practices. Finally, establishing close links be-

tween research groups collecting and research groups

analyzing data will be essential. A “hub and spoke”

approach, as exemplified by data coordination cen-

ters used extensively in clinical research, may be an

efficient model to foster this, with constant feedback

from all stakeholders and advisory groups.

Data transparency

Methods for data collection, management, and anal-

ysis are often opaque, making it difficult to critically

evaluate datasets or efficiently redeploy them in dif-

ferent contexts. Agreement across fields on proper

annotation of methodology, data, and metadata

could help overcome this issue. Data Carpentry

(https://datacarpentry.org/semester-biology/syllabus/)

may provide a framework to teach standard methods

for data collection and management across biology.

Data analysis and development platforms such as

GitHub (https://github.com) can also be excellent

public repositories for code, as they allow others to

easily recreate analyses and results. While open data

challenges, such as Critical Assessment of Massive

Data Analysis, Critical Assessment of Genome

Interpretation, and DREAM Challenges can facilitate

opportunities for researchers to compare analysis

methods and develop best practices.

Datasets are often incomplete

Next generation sequencing is poised to promote the

comprehensive collection of genomic data along with

transcriptional and chromatin dynamics in organ-

isms, tissues, and cells. High throughput mass spec-

trometry will allow comprehensive profiling of

protein expression. Advances in imaging will enable

pervasive characterization of cellular, organismal,

and population level phenotypes. For example, high

throughput imaging approaches applied to classify-

ing interspecific diversity (Lytle et al. 2010; Valan

et al. 2019) may be improved over time to charac-

terize intraspecific morphological or phenotypic di-

versity linked to genotypes. Tool development must

keep pace with these technologies in order to pro-

vide efficient high throughput solutions for gathering
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and analyzing data at critical bottlenecks. These bot-

tlenecks include candidate gene identification, map-

ping connections in gene regulatory and protein

interaction networks, precise quantification of rele-

vant biochemical processes such as signaling ligand

diffusion, phenotypic profiling, and mapping cross-

species interactions. To fill in these gaps, new tools

and data-collection efforts must be promoted, per-

haps in the model of some existing “big science”

initiatives from ecology or ecosystem science like

the Long Term Ecological Research network

(Hobbie et al. 2003), the National Ecological

Observatory Network (Barnett et al. 2019), or

hypothesis-driven coordinated distributed experi-

ments (Fraser et al. 2013). Research that seeks to

bridge the difficult divide from genotype to pheno-

type in situ and for non-model organisms may be

more successful if leveraging data and researcher ex-

pertise from well-studied “model” ecosystems.

Data are exponentially increasing, unwieldy and

noisy

The potential benefits of high-throughput sequenc-

ing data and other large datasets are greatly limited

by inherent difficulties in extracting signal from

noise. Machine learning approaches could be

employed as a possible solution. We define machine

learning as the science of training a model from data,

enabling the machine to perform specific tasks and

generate predictions (Camacho et al. 2018). The de-

velopment of such machine learning tools will re-

quire a highly interdisciplinary approach, engaging

computer scientists, mathematicians, and teams of

biologists with wide-ranging expertise.

Existing tools are often limited in applicability

It is essential to provide resources and motivation to

modify tools so they are more generally applicable.

Decreasing barriers and increasing accessibility to

tools and databases will provide resources to a

broader user base that may not have developer or

technical expertise. One component of increasing

tool applicability is the development of clearly de-

fined and annotated instructions regarding the types

of data taken as inputs, definitions of parameters

(and how they can be tuned), the assumptions un-

derlying the algorithms, and what is generated as

output. This will often be most readily achieved by

providing, along with the tool, a use-case, sample

data, or vignette to serve as a tutorial for use and

to exemplify performance.

Biologists using big data should share best practices

across subdisciplines

Scientists may apply machine learning approaches to

resolve big data questions across the biological sci-

ences, from mapping genotypes to phenotypes or

structure to function, to predicting relationships be-

tween the distribution of species and their environ-

ments (Olden et al. 2008). These subfields working

independently likely encounter some of the same

challenges in applying and interpreting machine

learning approaches: Are the big data sources we

use reliable and well-maintained (Barnes et al.

2014)? Do machine learning predictions have mech-

anistic meaning, or are they occasionally over-fitting

to noise (Walsh et al. 2016)? Biologists applying ma-

chine learning to big data questions across levels of

the biological hierarchy might share experiences on

best practices or discoveries, while also being aware

that conventional statistical approaches can be more

appropriate and interpretable for some purposes

(Royle et al. 2012; Rudin 2019). Shared challenges

may include identifying cases of model over-fitting

(Okser et al. 2014), improving interpretability of

“black box” machine learning output (Olden and

Jackson 2002), quantifying or identifying uncertainty

in predictions (Willcock et al. 2018), and sharing

practices for independence of training and testing

data (Kegerreis et al. 2019). Biologists undoubtedly

would benefit from more interactions with computer

scientists and mathematicians in these fields, but

may also have high potential to learn from innova-

tions or experiences in other fields in biology using

similar tools. For example, do ecologist’s concerns

about the independence of machine learning testing

and training data, and associated implications for

model transferability or generalizability (Wenger

and Olden 2012; Bahn and McGill 2013), relate to

machine learning in other fields of biology (Walsh

et al. 2016; Kegerreis et al. 2019)? Furthermore, ma-

chine learning results are often not reincorporated

into subsequent models. Solutions would involve

providing efficient avenues for scientists to identify

models that are relevant to their datasets and vice

versa and motivate them to incorporate relevant

data.

Exciting opportunities

Here we detail a few exciting research opportunities

across molecular, morphological, behavioral, and

ecosystem scales that will be advanced by sustained

big data and machine learning approaches.
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Using big data to solve problems in molecular

structure

A key part of solving the genotype to phenotype

code is investigation of molecular structure, espe-

cially developing a better understanding of struc-

tural dynamics. Biomolecular structures are often

envisioned as static; we generate structural maps

from snapshots of biomolecules in specific condi-

tions. We know, however, that the biochemical

reactions that occur at a molecular level are dy-

namic. Parameters of a protein’s environment

(pH, temperature, physical location in the cell,

presence/absence of binding partners, signaling

molecules, or ligands) can influence the fold and

function of a protein. Similarly, ribonucleicacid

(RNA) molecules can have different secondary

structure folds despite the same nucleotide se-

quence. These dynamic modulations in structure

can impact function and generate phenotypic

changes at the cellular or organismal level

(Nussinov et al. 2019). A fundamental problem is

that while we are interested in generating movies of

the molecular machinery in action, we typically

cannot access these ensemble dynamics. The pre-

dominant method used to investigate molecular

structure is X-ray crystallography, which accounts

for �90% of the structural models available.

These structures form the basis for generating ques-

tions about models for ligand binding, protein fold-

ing, and enzymatic function. These methods,

however, depend on crystallizing the biomolecule,

which necessitates finding chemical conditions in

which a biomolecule will crystallize; this is a fun-

damental bottleneck in structural biology experi-

ments, limiting our ability to structurally explore

the dynamic ensemble of protein functional space.

While advances have recently been made in devel-

oping a convolutional neural network to classify

crystallization outcomes (Bruno et al. 2018), we

currently have no working models for predicting

what conditions will generate a crystal despite ex-

tensive attempts to use information about genetic

sequences, homology modeling, and biomolecular

parameter space to make predictions (Abrahams

and Newman 2019; Lynch, et al. 2020). Leveraging

a big data and machine learning framework of data

organization and annotation coupled with develop-

ing accessible repositories for full experimental

details (including what does not work) and tools

for using these data are critical for making predic-

tive models. These big data approaches to molecular

structural biology questions would enable a fuller

exploration of the dynamics of protein function.

Comprehensive mapping and analysis of gene

regulatory networks

The developmental processes that generate diverse

phenotypes (morphological, physiological, and be-

havioral) are largely encoded by densely intercon-

nected gene networks (Davidson and Erwin 2006).

Next generation sequencing is poised to identify

nearly all of the components in these networks (cod-

ing genes, non-coding regulatory elements, and asso-

ciated chromatin states) in a wide range of

organisms and cell types (Banf and Rhee 2017;

Lowe et al. 2017; Rebeiz and Tsiantis 2017; Das

Gupta and Tsiantis 2018). However, we currently

cannot leverage these sequencing data to accurately

map the regulatory connections that link these ele-

ments in a high throughput manner (Thompson

et al. 2015; Fiers et al. 2018; Huynh-Thu and

Sanguinetti 2019; Skinnider et al. 2019; Siahpirani

et al. 2019). Network mapping is particularly critical

for efforts to characterize dynamic shifts in gene net-

work connections that drive the temporal unfolding

of developing patterning programs and mediate en-

vironmentally dependent variability in morphology

or physiology. These mapping efforts may be supple-

mented by single cell sequencing, which can be used

to enhance our understanding of cell fate and to

connect transcriptional and epigenetic heterogeneity

(Angermueller et al. 2016; Grün and Grün 2020).

Mapping will also facilitate characterization of key

differences in network architecture or dynamics

that generate diverse phenotypes at various biological

scales from cells to super-organisms (Rebeiz et al.

2015). Additionally, mapping can promote charac-

terization of genetically encoded intra and inter-

specific interactions particularly within holobiont

communities including microbe/metazoan, symbi-

otic, or parasite/host interactions (Ferreiro et al.

2018). Mapping will also provide a productive

framework for comparative approaches or targeted

perturbations (such as CRISPR gene editing) used

to test hypotheses regarding fundamental structure/

function questions. In particular, these approaches

can be used to elucidate architectural features or

modules that are targeted by selection to produce

novel phenotypes (Nocedal and Johnson 2015;

Rebeiz et al. 2015). These maps can also be used

to identify key differences within heterologous cell

populations within an individual that are associated

with disease states (Chiquet et al. 2019). Broad char-

acterization of these functionally critical network fea-

tures or modules can then be used to search for

shared properties which may facilitate predictive

models or formulation of underlying principles. It
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is also possible that tools used to map or analyze

gene network connections can be deployed in rela-

tion to other biological networks at different scales

and thus exploit other poorly utilized data reposito-

ries (Yan et al. 2016).

A deep learning approach to gene expression

analysis

In the continued aim to “reverse engineer” the gene

regulatory networks (GRNs) that generate organis-

mal diversity (Cussat-Blanc et al. 2019), researchers

produce vast amounts of gene expression data. The

literature is full of microscopy generated images of

in situ hybridization assays for genes of interest, in

both wild-type and experimental systems, across an

ever-expanding range of organisms (Davis 2013;

Puniyani and Xing 2013; Wu et al. 2016). In situ

hybridization assays are open to subjective interpre-

tation (Yang et al. 2019), and expression domain

similarities, differences, and/or variation are rarely

quantified within or across datasets (see excellent

exceptions such as Mace et al. 2010; Patrushev

et al. 2018). With the more recent practical avail-

ability of RNA-seq, tissue, and cellular level tran-

scriptomics provides a more quantitative approach

for testing hypotheses about gene–gene interactions.

However, transcriptomics has in no way replaced in

situ assays. In particular, in situ assays validate ex-

pression data for genes of interest identified in

high-throughput transcriptomic analysis. In situ

assays also provide essential details on spatial and

temporal patterns of expression. In well-

characterized systems such as Drosophila, we are

beginning to see intriguing synergies of these data-

sets (Karaiskos et al. 2017). How then do we con-

tinue this trend and bring a community’s concerted

efforts into a data pool to fully leverage the goal of

understanding gene–gene interactions across organ-

ismal diversity?

Some deep learning approaches are demonstrating

impressive abilities to recognize patterns within and

between large datasets and to make connections be-

tween visual and molecular datasets (Mobadersany

et al. 2018). Deep learning algorithms are networked

computational models that mimic the layered node-

like, neuronal structure of organic brains

(Goodfellow et al. 2016). Early variants of these algo-

rithms relied on heavy processing of data before it

went into the model in order for results to be mean-

ingful. However, as big data gets even bigger, con-

tinued improvements in these algorithms have led to

autonomous learning, in which the model itself is

capable of finding meaningful patterns in the data

(Webb 2018). In particular, convoluted neural net-

works (CNNs), the form of deep neural networks

behind rapid advancements in computer vision

(Khan et al. 2018), hold significant promise for bi-

ology. CNNs are ideal for processing data with two

or more dimensions, such as -omics or image data-

sets (Camacho et al. 2018). Some of the ways in

which CNN algorithms can be employed are already

emerging, as recent studies yield promising returns

in the automatic detection of positive in situ staining

results (Dong et al. 2015), the screening of develop-

mental stages and phenotypes (Ishaq et al. 2017;

Cordero-Maldonado et al. 2019), the construction

of “in silico embryos” (Shen et al. 2020) and the

generation of GRN predictive models using expres-

sion data (Yang et al. 2019). Sustained progress in

these areas will require community initiatives that

(1) promote tool/algorithm development and shar-

ing; and (2) foster long-term pan-taxa repositories

for gene expression and associated transcriptomic

datasets.

Characterizing complex phenotypes

If a phenotype is broadly defined, or influenced by a

large number of genes with small effects, it can be

incredibly difficult to have enough power to identify

all, or any, of the genes involved.

One way to circumvent this problem is to design

experiments that allow for the detection of genes

associated with relatively simple, specific aspects of

biologically relevant complex phenotypes. For exam-

ple, if interested in the genes underlying mate selec-

tion, identify the genes associated with visual

preference, olfactory preference, or vibratory prefer-

ence separately, instead of searching for genes asso-

ciated with a broadly characterized mate preference

(Fig. 2). This technique, of distilling complex phe-

notypes down to many simple phenotypes, has

proven fruitful for identifying genes associated with

behavior in model animals. The genes of large effect

for conspecific pheromone detection and olfactory

mate preference in Drosophila were identified by test-

ing individual responses to the specific components

of conspecific and heterospecific pheromones, with

an array of gene knock-out lines (Xu et al. 2005;

Datta et al 2008; Jin et al. 2008; Billeter and Levine

2013). The different genes associated with positive

and negative memory formation in Drosophila fruit

flies and Aedes aegypti mosquitoes were identified

using highly controlled experiments, with well-

defined phenotypes (Schwaerzel et al. 2003;
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Vinauger et al. 2018). The same can be said for the

genes involved in the circadian clock, and for genes

involved in sex-specific responses to male phero-

mones in Drosophila (Curtin et al. 1995; Suri et al.

1999; Sarov-Blat et al. 2000; Demir and Dickson

2005; Drapeau et al. 2006; Ruta et al. 2010).

Indeed, the reason we know so much about the ge-

netics of mate preference in Drosophila is because of

decades of phenotype dissection and careful study of

specific elements of the mate selection process

(Keene and Waddell 2007; Dickson 2008). As illus-

trated by Drosophila mate preference genetics, these

narrowly defined phenotypes are often the building

blocks of the larger phenotype of interest, and once

characterized, may scale up. While one can argue

that this approach will only work for model animals,

recent work on butterfly wing pattern genetics sug-

gests otherwise. This approach has proven extremely

fruitful for the identification of genes controlling

specific color patterning elements of complex butter-

fly wing patterns in wild populations (Reed et al.

2011; Martin et al. 2012; Kronforst and Papa 2015;

Nadeau et al. 2016; Westerman et al. 2018), and may

also prove useful for identifying genes associated

with other complex traits in wild populations, such

as habitat selection and mate choice.

Identifying the genetic basis of behavior

One of the major hurdles of behavioral ecology has

been identifying the genetic basis of evolutionary and

ecologically important behaviors. Scientists have

spent decades carefully characterizing a vast array

of behaviors using ethograms, from foraging to mat-

ing to habitat selection, in a wide range of species.

These carefully characterized phenotypes are ripe for

genotype–phenotype discovery, and the last decade

has seen an uptick in behavioral genetics studies in

a range of taxa and natural and semi-natural popu-

lations (Bubac et al. 2020). Importantly, the ecolog-

ical and evolutionary underpinnings of these

phenotypes are often known, so identifying the ge-

netic basis of these traits will facilitate a dramatic

advance in our understanding of how selective forces

on whole organisms translates to genomic change (as

discussed in Bengston et al. 2018; Merlin and

Liedvogel 2019; Westerman 2019). Additionally,

many of the scientists studying these well-

characterized behavioral traits are familiar enough

with their study system that they can identify the

most interesting and most accessible traits for gene

identification. This drops the number of individuals

that need to be sequenced for high quality candidate

Fig. 2 Complex phenotypes such as mate preference and color pattern are often a mosaic of smaller, simpler elements, whose genetic

underpinnings are easier to identify independently than when assessed as a group. This approach has proven quite fruitful for identifying

causative genes for color patterning elements, and can be used for other complex traits such as mate preference, as illustrated here.

Once the genetic underpinnings of these elements are known, their combinatorial effects can be explored, as well as pleiotropic effects

of genetic background and any effects of environment.

Cracking the genotype to phenotype code 391

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/60/2/385/5850862 by C

ollege of C
harleston user on 02 O

ctober 2020



gene identification from the thousands needed in

model animals and human populations to 70–120

individuals. This is primarily because we are looking

for new genes of large effect in non-model animals

(e.g., Westerman et al. 2018) instead of for new

genes of small effect (which is what we are looking

for in model animals and humans, e.g., Agrawal

et al. 2016). These new genes of large effect are likely

to be most relevant and tractable for management of

responses to global change for non-model organisms

(below). The genomic and translational tools neces-

sary for identifying the genes underlying these behav-

iors now exist (Bentley 2006; Visscher et al. 2012;

Ran et al. 2013) and are starting to be incorporated

into the study of behavior in a small set of species

(Bubac et al. 2020). The challenge is to integrate

genomic, proteomic, and network approaches (and

scientists) more broadly into the study of behavior,

and to expose data scientists to the wealth of behav-

ioral phenotypic data and associated behavioral ecol-

ogists that can be utilized in our efforts to better

understand the genotype to phenotype pathway.

Improved predictions for global change

Bridging the genotype to phenotype divide has high

potential to improve management of species, com-

munities, and ecosystems in response to global

change challenges (climate, land use, invasive spe-

cies), whether human-managed (e.g., agriculture;

Abberton et al. 2016) or natural (e.g., endangered

species, protected areas; Hoffmann et al. 2015).

Importantly, data deficiencies and uncertainties are

likely to be most severe for wild species or remote

ecosystems, relative to those upon which human so-

cieties are more dependent (Bland et al. 2015;

Donaldson et al. 2017). As knowledge of genotypes

has outpaced knowledge of phenotypes, researchers

have called for high throughput phenotyping to keep

pace with genomic data (Kültz et al. 2013). Both

phenotype and genotype data are urgently needed

to guide adaptation and mitigation of global change

effects on species and ecosystems. For example, cur-

rent correlation-based predictions of species response

to global change (i.e., relating presence or distribu-

tions to environment conditions) inaccurately pre-

dict these relationships because they (1) lack

mechanism; (2) ignore biotic interactions; (3) omit

potential for evolutionary response to change (Urban

et al. 2016). Big data (both genetic and phenotypic)

can improve these predictions by improving our un-

derstanding of organismal physiology, dispersal abil-

ity, or evolutionary potential. Phenotypic big data is

being generated and improved through trait

databases like TRY (Kattge et al. 2011), FishTraits

(Frimpong and Angermeier 2009), and others.

However, some specific data priorities to improve

predictions of species, community, and ecosystem

response to global change (land use, climate, and

invasive species) include thermal, desiccation, and

chemical tolerances; body mass; water and light

requirements; life history traits; trophic position or

diet; seed or larval size or dispersal traits; intra- and

inter-specific interactions (mediated by behavior);

and evolutionary or adaptive potential (Urban

et al. 2016). Ecological genetic big data (transcrip-

tomic and genomic) is being generated in field and

common garden studies of increasingly diverse taxa

under different climatic regimes (Pespeni et al. 2013;

Smith et al. 2013; Hübner et al. 2015; Maor-Landaw

et al. 2017). Increasing the taxonomic and ecological

breadth of these data will enhance our understanding

of genome to phenotype while improving the pre-

dictive power of our ecological models.

Calls to reintegrate organismal biology by collecting

high throughput phenotypic data to compliment high

throughput genomic data (Kültz et al. 2013) can le-

verage management and conservation needs for some

similar data to guide more mechanistic models of

species responses to climate change (Urban et al.

2016). Both needs and applications share a depen-

dency on: (1) big data (e.g., van den Hoogen et al.

2019), often analyzed by (2) machine learning

approaches (e.g., Olden et al. 2008). Researchers

might leverage funding opportunities by combining

basic science questions in mapping the genotype to

phenotype with applied science needs for both data

sources to inform conservation and management of

commercially important, invasive, or endangered spe-

cies in natural ecosystems. This integration of basic

and applied science requires choosing which organ-

isms provide the most return on investment for both

basic and applied science questions concurrently.

Further, there are too many populations, species,

and ecosystems to collect genotype and phenotype

data for all biological entities that need management;

rather, scientists and resource managers will need to

prioritize representative systems that can generalize to

similar taxa or ecosystems (Urban et al. 2016)—these

may not be classical model organisms, but will still be

surrogates or proxies for related organisms and eco-

systems (Caro and O’Doherty 1999).

Creating the human infrastructure for a big data and

machine learning approach

Ironically, leveraging big data approaches and ma-

chine learning tools to crack the genotype to
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phenotype code will be about supporting people.

There has been recognition that lack of data science

proficiency and expertise is a fundamental roadblock

in scientific research (Barone et al. 2017). Currently,

exciting pioneering efforts are underway—in tool

and research development—and in fundamental re-

search. However, these efforts will likely remain in-

sular, underutilized, and unavailable to the whole

community—an inequitable situation—without

broader development initiatives. Systematic top-

down and bottom-up support structures are needed

to: (1) attract, recruit, incentivize, and train a diverse

group of students to these questions, many of which

may never identify as biologists (i.e., they will remain

data scientists, statisticians, etc.); (2) support and

retrain biologists who are interested in developing

these approaches; (3) develop sustained pan-

disciplinary collaborations with experts in data sci-

ence, mathematics, computer science, and related

fields. These sustained pan-disciplinary collabora-

tions can be particularly fruitful for pushing the

boundaries of non-model organism research, as illus-

trated by recent scientific advancements using

Heliconius butterflies, most of which were achieved

via multi-year collaborations between field biologists,

bioinformaticians, developmental biologists, and

population geneticists (as well as other sub-

disciplines; Kronforst and Papa 2015; Merrill et al.

2015). Addressing some of these challenges may in-

volve the development of interdisciplinary courses,

programs, and degrees along with associated out-

reach to community colleges or other institutions

that do not currently have access to resources.

Formation of interdisciplinary teams who commit

to attending and hosting each other’s conferences

will help build common languages and interest in

the key questions in their fields. Programs such as

NSF’s Research Coordination Network (RCN) pro-

vide support pathways for human infrastructure and

workforce development to achieve this goal.

Ultimately, the results of these efforts can be seen

as more than a reintegration—but instead the emer-

gence of an augmented biology.

Recommendations

• Promote the development of minimum “best

practices” for the experimental design and collec-

tion of data—especially when these data are

expected to be utilized as part of a community

pool.

• Foster sustained and long-term initiatives for tool

development and sharing.

• Promote data standards and annotations.

• Foster sustained and long-term data repositories,

preferably those that would promote data sharing

across scales and taxa.

• Support funding agency and publisher require-

ments that new datasets, tools, and code be shared

and made easily accessible to the community.

• Promote programs that recruit, train, and retain a

diversity of talent—both new students and

retrained biologists—that are interested in the

use of these approaches.

• Promote collaborative pan-disciplinary exchange

between biologists and data scientists and related

fields.

• Identify opportunities where funding can be lev-

eraged for basic and applied questions concur-

rently, including in response to management of

natural and human-dependent species or ecosys-

tems in response to global change.
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