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Synopsis Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology.
Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems.
Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering
mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other
emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision
paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and compar-
ative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby gener-
ating predictive frameworks across biological scales. Key recommendations include promoting the development of
minimum “best practices” for the experimental design and collection of data; fostering sustained and long-term data
repositories; promoting programs that recruit, train, and retain a diversity of talent; and providing funding to effectively
support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative
research opportunities that will be advanced by these efforts.

Introduction goals across biological disciplines (National Research

Deciphering the mechanisms by which genotypes Council 2009). Although not a comprehensive list,

generate phenotypes is a central mission of biology.
Historically, this mission was hampered by a lack of
sequence and expression data. Now, we are hindered
by the daunting task of integrating large amounts of
disparate data across multiple areas of expertise.
Fully realizing these mechanisms will facilitate the
integration of enormous datasets in organismal di-
versity research across molecular, morphological, be-
havioral, and ecosystem scales (Fig. 1).
Comprehensive, multi-scale data integration will im-
pact broad reaching, interdisciplinary and integrative
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some of these programs and goals include (1) un-
derstanding the rules for signaling; (2) deciphering
mechanisms underlying robustness and resilience; (3)
predicting and ameliorating the impact of anthropo-
genic change to preserve biodiversity and ecosystem
services; (4) integrating data across scale; (5) pro-
moting proactive and personalized medicine
designed around wellness instead of treating disease;
and (6) effective deployment of synthetic biology
approaches for health, energy, and environmental re-
mediation applications.
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Fig. 1 A molecular cascade largely encoded by the genome (top row) generates observed phenotypic variation on multiple scales from
cells to ecosystems (bottom row). Inter-organismal phenotype refers to holobiont, populations, and communities in this context.
Environmental factors can have epigenetic impacts on the genetic program (dashed arrows). Although high-throughput sequencing has
led to a rapid increase in available genomes and transcriptomes (large diameter pipelines), the ability to leverage these data to
understand the emergence of diverse phenotypes is extremely limited (smaller diameter pipelines). Deciphering the genome to
phenome pathway necessitates a multidisciplinary approach including scientists with expertise at each of these scales. Integration of
skilled data scientists will be critical for increasing the rate of productive analyses at each of these choke points. Image credits:
Sequencing image—Health Education England’s Genomic Education Program: www.genomicseducation.hee.nhs.uk/, DNA strand-Tracey
Saxby, Integration and Application Network, Proteome image—modified from Shen et al. (2018), Gene network—modified from Chen
et al. (2012), Epidermis—http://blogs.ubc.ca/biol343/cell-tissue-types-2, Wild flower filled prairie—Grace Hirzel, by permission. All

other images are by authors.

While this unification of datasets has long been
the goal of researchers, only now in the big data
era are tools emerging that hold promise to augment
human efforts (Camacho et al. 2018). Machine learn-
ing approaches now demonstrate their ability to
make connections and find patterns at a pace that
better aligns with the exponentially increasing rates
of data collection. To fully exploit these advance-
ments, the biological research community will need
to invest significant resources toward (1) the devel-
opment of data collection and storage standards; (2)
the development of tools to overcome key bottle-
necks in data acquisition and analysis; and (3) train-
ing initiatives and collaborative outreach to a diverse
pool of existing and emerging talent (Hulsen et al.
2019). Here we discuss how sustained efforts in these
areas can further catalyze biology’s big data era for
cracking the genotype to phenotype code. We follow
this discussion by highlighting a few specific trans-
formative research opportunities that will be ad-
vanced by these efforts.

Context

This vision paper resulted from the authors’ partic-
ipation in the Reintegrating Biology Jumpstart
Workshop held in Austin, TX, in December of
2019. Reintegrating Biology is funded by the
National Science Foundation through a grant to
the University Corporation for Atmospheric

Research (UCAR) and Knowinnovation (KI). The
workshop consisted of virtual town halls, micro
labs, and jumpstart meetings designed to engage di-
verse participation from across the biological com-
munity. The primary objectives of Reintegrating
Biology were to solicit input on key challenges and
exciting opportunities on both long-standing and
emerging biological research directions. After evalu-
ating roughly 50 different proposals generated during
the initial phase of the workshop, our working group
(a structural biologist, an ecologist, a biomechanist,
an integrative animal behaviorist, and two evolution-
ary developmental biologists) coalesced around the
challenge of utilizing big data to elucidate the ge-
nome to phenome discovery pathway. This vision
paper is the result of on-site discussions and group
writing sessions followed by off-site collaborative
writing. Our paper complements the focus of the
Integrative and Comparative Biology Building
Bridges Special Issue on questions that cross multiple
scales from molecules to whole organisms while of-
fering the perspective of a suite of integrative and
comparative biologists.

Challenges and their solutions

Effective deployment of high throughput data to de-
code genotype to phenotype mechanisms will require
extensive modification and resource allocation all
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along the pipeline from data collection to publica-
tion and storage. In this section, we provide an over-
view of some key challenges and potential solutions.
These approaches align with the principles of making
data Findable, Accessible, Interoperable, and
Reusable (Wilkinson et al. 2016).

Data collection and quality

For a tool or repository to be useful there needs to
be community defined and driven standards regard-
ing experimental design, data collection, and anno-
tation. One example regards proper alignment of
sequencing techniques (RadSeq, SNP arrays, or
whole genome resequencing) to match specific re-
search goals. Whole genome resequencing provides
complete genomic data for relatively few individuals,
making it optimal for gene discovery (Xu and Bai
2015). In contrast, because RadSeq and SNP arrays
exploit widely spaced markers, they can be used to
characterize and compare relatively large numbers of
individuals, but with less information for each sam-
ple (Tam et al. 2019). Thus these techniques are
optimal for high throughput characterization of pop-
ulations. Additionally, experimental design tools,
such as GWAPower (Feng et al. 2011), can be used
to facilitate optimal selection of sample sizes and
sequencing type (average distance between SNP and
candidate gene) for new candidate gene identifica-
tion projects. Another major difficulty involves
proper annotation of functionally characterized
genes. Many gene products are highly pleiotropic,
shifting their function in a context-dependent man-
ner within the same organism (Wagner and Zhang
2011). Furthermore, orthologous genes are fre-
quently re-deployed, leading to highly variable func-
tions in different organisms. Overcoming these
challenges will require a highly versatile system of
annotation that can encompass functional variability
without compromising overall utility.

Data storage

Currently, the tools and data associated with high
throughput sequencing are inaccessible and unstable
(i.e., often poorly maintained due to lack of sup-
port). The National Center for Biotechnology
Information (NCBI; https://www.ncbi.nlm.nih.gov),
is an excellent, supported repository for genomic
and transcriptomic data (Coordinators 2018), how-
ever, it is designed for biomedical research, making it
somewhat limited for non-model organisms. While
international resources designed specifically for
housing non-model organism genomic and tran-
scriptomic data and tools, such as Lepbase (http://

387

lepbase.org), can suffer from limited financial sup-
port. Solutions will involve creating centralized,
community edited (possibly open source), sustain-
able data, and tool repositories (potentially modeled
on Image] or the Brain Initiative). Additionally, ro-
bust infrastructures must be in place to maintain and
oversee these repositories as they expand. There are
already systems in place (da Veiga Leprevost et al.
2017; Barnett et al. 2019) from which we can learn
best practices. Finally, establishing close links be-
tween research groups collecting and research groups
analyzing data will be essential. A “hub and spoke”
approach, as exemplified by data coordination cen-
ters used extensively in clinical research, may be an
efficient model to foster this, with constant feedback
from all stakeholders and advisory groups.

Data transparency

Methods for data collection, management, and anal-
ysis are often opaque, making it difficult to critically
evaluate datasets or efficiently redeploy them in dif-
ferent contexts. Agreement across fields on proper
annotation of methodology, data, and metadata
could help overcome this issue. Data Carpentry
(https://datacarpentry.org/semester-biology/syllabus/)
may provide a framework to teach standard methods
for data collection and management across biology.
Data analysis and development platforms such as
GitHub (https://github.com) can also be excellent
public repositories for code, as they allow others to
easily recreate analyses and results. While open data
challenges, such as Critical Assessment of Massive
Data Analysis, Critical Assessment of Genome
Interpretation, and DREAM Challenges can facilitate
opportunities for researchers to compare analysis
methods and develop best practices.

Datasets are often incomplete

Next generation sequencing is poised to promote the
comprehensive collection of genomic data along with
transcriptional and chromatin dynamics in organ-
isms, tissues, and cells. High throughput mass spec-
trometry will allow comprehensive profiling of
protein expression. Advances in imaging will enable
pervasive characterization of cellular, organismal,
and population level phenotypes. For example, high
throughput imaging approaches applied to classify-
ing interspecific diversity (Lytle et al. 2010; Valan
et al. 2019) may be improved over time to charac-
terize intraspecific morphological or phenotypic di-
versity linked to genotypes. Tool development must
keep pace with these technologies in order to pro-
vide efficient high throughput solutions for gathering
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and analyzing data at critical bottlenecks. These bot-
tlenecks include candidate gene identification, map-
ping connections in gene regulatory and protein
interaction networks, precise quantification of rele-
vant biochemical processes such as signaling ligand
diffusion, phenotypic profiling, and mapping cross-
species interactions. To fill in these gaps, new tools
and data-collection efforts must be promoted, per-
haps in the model of some existing “big science”
initiatives from ecology or ecosystem science like
the Long Term Ecological Research network
(Hobbie et al. 2003), the National Ecological
Observatory Network (Barnett et al. 2019), or
hypothesis-driven coordinated distributed experi-
ments (Fraser et al. 2013). Research that seeks to
bridge the difficult divide from genotype to pheno-
type in situ and for non-model organisms may be
more successful if leveraging data and researcher ex-
pertise from well-studied “model” ecosystems.

Data are exponentially increasing, unwieldy and
noisy

The potential benefits of high-throughput sequenc-
ing data and other large datasets are greatly limited
by inherent difficulties in extracting signal from
noise. Machine learning approaches could be
employed as a possible solution. We define machine
learning as the science of training a model from data,
enabling the machine to perform specific tasks and
generate predictions (Camacho et al. 2018). The de-
velopment of such machine learning tools will re-
quire a highly interdisciplinary approach, engaging
computer scientists, mathematicians, and teams of
biologists with wide-ranging expertise.

Existing tools are often limited in applicability

It is essential to provide resources and motivation to
modify tools so they are more generally applicable.
Decreasing barriers and increasing accessibility to
tools and databases will provide resources to a
broader user base that may not have developer or
technical expertise. One component of increasing
tool applicability is the development of clearly de-
fined and annotated instructions regarding the types
of data taken as inputs, definitions of parameters
(and how they can be tuned), the assumptions un-
derlying the algorithms, and what is generated as
output. This will often be most readily achieved by
providing, along with the tool, a use-case, sample
data, or vignette to serve as a tutorial for use and
to exemplify performance.

E. L. Westerman et al.

Biologists using big data should share best practices
across subdisciplines

Scientists may apply machine learning approaches to
resolve big data questions across the biological sci-
ences, from mapping genotypes to phenotypes or
structure to function, to predicting relationships be-
tween the distribution of species and their environ-
ments (Olden et al. 2008). These subfields working
independently likely encounter some of the same
challenges in applying and interpreting machine
learning approaches: Are the big data sources we
use reliable and well-maintained (Barnes et al.
2014)? Do machine learning predictions have mech-
anistic meaning, or are they occasionally over-fitting
to noise (Walsh et al. 2016)? Biologists applying ma-
chine learning to big data questions across levels of
the biological hierarchy might share experiences on
best practices or discoveries, while also being aware
that conventional statistical approaches can be more
appropriate and interpretable for some purposes
(Royle et al. 2012; Rudin 2019). Shared challenges
may include identifying cases of model over-fitting
(Okser et al. 2014), improving interpretability of
“black box” machine learning output (Olden and
Jackson 2002), quantifying or identifying uncertainty
in predictions (Willcock et al. 2018), and sharing
practices for independence of training and testing
data (Kegerreis et al. 2019). Biologists undoubtedly
would benefit from more interactions with computer
scientists and mathematicians in these fields, but
may also have high potential to learn from innova-
tions or experiences in other fields in biology using
similar tools. For example, do ecologist’s concerns
about the independence of machine learning testing
and training data, and associated implications for
model transferability or generalizability (Wenger
and Olden 2012; Bahn and McGill 2013), relate to
machine learning in other fields of biology (Walsh
et al. 2016; Kegerreis et al. 2019)? Furthermore, ma-
chine learning results are often not reincorporated
into subsequent models. Solutions would involve
providing efficient avenues for scientists to identify
models that are relevant to their datasets and vice
versa and motivate them to incorporate relevant
data.

Exciting opportunities

Here we detail a few exciting research opportunities
across molecular, morphological, behavioral, and
ecosystem scales that will be advanced by sustained
big data and machine learning approaches.
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Using big data to solve problems in molecular
structure

A key part of solving the genotype to phenotype
code is investigation of molecular structure, espe-
cially developing a better understanding of struc-
tural dynamics. Biomolecular structures are often
envisioned as static; we generate structural maps
from snapshots of biomolecules in specific condi-
tions. We know, however, that the biochemical
reactions that occur at a molecular level are dy-
namic. Parameters of a protein’s environment
(pH, temperature, physical location in the cell,
presence/absence of binding partners, signaling
molecules, or ligands) can influence the fold and
function of a protein. Similarly, ribonucleicacid
(RNA) molecules can have different secondary
structure folds despite the same nucleotide se-
quence. These dynamic modulations in structure
can impact function and generate phenotypic
changes at the cellular or organismal level
(Nussinov et al. 2019). A fundamental problem is
that while we are interested in generating movies of
the molecular machinery in action, we typically
cannot access these ensemble dynamics. The pre-
dominant method used to investigate molecular
structure is X-ray crystallography, which accounts
for ~90% of the structural models available.
These structures form the basis for generating ques-
tions about models for ligand binding, protein fold-
ing, and enzymatic function. These methods,
however, depend on crystallizing the biomolecule,
which necessitates finding chemical conditions in
which a biomolecule will crystallize; this is a fun-
damental bottleneck in structural biology experi-
ments, limiting our ability to structurally explore
the dynamic ensemble of protein functional space.
While advances have recently been made in devel-
oping a convolutional neural network to classify
crystallization outcomes (Bruno et al. 2018), we
currently have no working models for predicting
what conditions will generate a crystal despite ex-
tensive attempts to use information about genetic
sequences, homology modeling, and biomolecular
parameter space to make predictions (Abrahams
and Newman 2019; Lynch, et al. 2020). Leveraging
a big data and machine learning framework of data
organization and annotation coupled with develop-
ing accessible repositories for full experimental
details (including what does not work) and tools
for using these data are critical for making predic-
tive models. These big data approaches to molecular
structural biology questions would enable a fuller
exploration of the dynamics of protein function.
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Comprehensive mapping and analysis of gene
regulatory networks

The developmental processes that generate diverse
phenotypes (morphological, physiological, and be-
havioral) are largely encoded by densely intercon-
nected gene networks (Davidson and Erwin 2006).
Next generation sequencing is poised to identify
nearly all of the components in these networks (cod-
ing genes, non-coding regulatory elements, and asso-
ciated chromatin states) in a wide range of
organisms and cell types (Banf and Rhee 2017;
Lowe et al. 2017; Rebeiz and Tsiantis 2017; Das
Gupta and Tsiantis 2018). However, we currently
cannot leverage these sequencing data to accurately
map the regulatory connections that link these ele-
ments in a high throughput manner (Thompson
et al. 2015; Fiers et al. 2018; Huynh-Thu and
Sanguinetti 2019; Skinnider et al. 2019; Siahpirani
et al. 2019). Network mapping is particularly critical
for efforts to characterize dynamic shifts in gene net-
work connections that drive the temporal unfolding
of developing patterning programs and mediate en-
vironmentally dependent variability in morphology
or physiology. These mapping efforts may be supple-
mented by single cell sequencing, which can be used
to enhance our understanding of cell fate and to
connect transcriptional and epigenetic heterogeneity
(Angermueller et al. 2016; Grin and Grin 2020).
Mapping will also facilitate characterization of key
differences in network architecture or dynamics
that generate diverse phenotypes at various biological
scales from cells to super-organisms (Rebeiz et al.
2015). Additionally, mapping can promote charac-
terization of genetically encoded intra and inter-
specific interactions particularly within holobiont
communities including microbe/metazoan, symbi-
otic, or parasite/host interactions (Ferreiro et al.
2018). Mapping will also provide a productive
framework for comparative approaches or targeted
perturbations (such as CRISPR gene editing) used
to test hypotheses regarding fundamental structure/
function questions. In particular, these approaches
can be used to elucidate architectural features or
modules that are targeted by selection to produce
novel phenotypes (Nocedal and Johnson 2015;
Rebeiz et al. 2015). These maps can also be used
to identify key differences within heterologous cell
populations within an individual that are associated
with disease states (Chiquet et al. 2019). Broad char-
acterization of these functionally critical network fea-
tures or modules can then be used to search for
shared properties which may facilitate predictive
models or formulation of underlying principles. It
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is also possible that tools used to map or analyze
gene network connections can be deployed in rela-
tion to other biological networks at different scales
and thus exploit other poorly utilized data reposito-
ries (Yan et al. 2016).

A deep learning approach to gene expression
analysis

In the continued aim to “reverse engineer” the gene
regulatory networks (GRNs) that generate organis-
mal diversity (Cussat-Blanc et al. 2019), researchers
produce vast amounts of gene expression data. The
literature is full of microscopy generated images of
in situ hybridization assays for genes of interest, in
both wild-type and experimental systems, across an
ever-expanding range of organisms (Davis 2013;
Puniyani and Xing 2013; Wu et al. 2016). In situ
hybridization assays are open to subjective interpre-
tation (Yang et al. 2019), and expression domain
similarities, differences, and/or variation are rarely
quantified within or across datasets (see excellent
exceptions such as Mace et al. 2010; Patrushev
et al. 2018). With the more recent practical avail-
ability of RNA-seq, tissue, and cellular level tran-
scriptomics provides a more quantitative approach
for testing hypotheses about gene—gene interactions.
However, transcriptomics has in no way replaced in
situ assays. In particular, in situ assays validate ex-
pression data for genes of interest identified in
high-throughput transcriptomic analysis. In situ
assays also provide essential details on spatial and
temporal patterns of expression. In  well-
characterized systems such as Drosophila, we are
beginning to see intriguing synergies of these data-
sets (Karaiskos et al. 2017). How then do we con-
tinue this trend and bring a community’s concerted
efforts into a data pool to fully leverage the goal of
understanding gene—gene interactions across organ-
ismal diversity?

Some deep learning approaches are demonstrating
impressive abilities to recognize patterns within and
between large datasets and to make connections be-
tween visual and molecular datasets (Mobadersany
et al. 2018). Deep learning algorithms are networked
computational models that mimic the layered node-
like, neuronal structure of organic brains
(Goodfellow et al. 2016). Early variants of these algo-
rithms relied on heavy processing of data before it
went into the model in order for results to be mean-
ingful. However, as big data gets even bigger, con-
tinued improvements in these algorithms have led to
autonomous learning, in which the model itself is

E. L. Westerman et al.

capable of finding meaningful patterns in the data
(Webb 2018). In particular, convoluted neural net-
works (CNNs), the form of deep neural networks
behind rapid advancements in computer vision
(Khan et al. 2018), hold significant promise for bi-
ology. CNNs are ideal for processing data with two
or more dimensions, such as -omics or image data-
sets (Camacho et al. 2018). Some of the ways in
which CNN algorithms can be employed are already
emerging, as recent studies yield promising returns
in the automatic detection of positive in situ staining
results (Dong et al. 2015), the screening of develop-
mental stages and phenotypes (Ishaq et al. 2017;
Cordero-Maldonado et al. 2019), the construction
of “in silico embryos” (Shen et al. 2020) and the
generation of GRN predictive models using expres-
sion data (Yang et al. 2019). Sustained progress in
these areas will require community initiatives that
(1) promote tool/algorithm development and shar-
ing; and (2) foster long-term pan-taxa repositories
for gene expression and associated transcriptomic
datasets.

Characterizing complex phenotypes

If a phenotype is broadly defined, or influenced by a
large number of genes with small effects, it can be
incredibly difficult to have enough power to identify
all, or any, of the genes involved.

One way to circumvent this problem is to design
experiments that allow for the detection of genes
associated with relatively simple, specific aspects of
biologically relevant complex phenotypes. For exam-
ple, if interested in the genes underlying mate selec-
tion, identify the genes associated with visual
preference, olfactory preference, or vibratory prefer-
ence separately, instead of searching for genes asso-
ciated with a broadly characterized mate preference
(Fig. 2). This technique, of distilling complex phe-
notypes down to many simple phenotypes, has
proven fruitful for identifying genes associated with
behavior in model animals. The genes of large effect
for conspecific pheromone detection and olfactory
mate preference in Drosophila were identified by test-
ing individual responses to the specific components
of conspecific and heterospecific pheromones, with
an array of gene knock-out lines (Xu et al. 2005;
Datta et al 2008; Jin et al. 2008; Billeter and Levine
2013). The different genes associated with positive
and negative memory formation in Drosophila fruit
flies and Aedes aegypti mosquitoes were identified
using highly controlled experiments, with well-
defined phenotypes (Schwaerzel et al. 2003;
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Fig. 2 Complex phenotypes such as mate preference and color pattern are often a mosaic of smaller, simpler elements, whose genetic
underpinnings are easier to identify independently than when assessed as a group. This approach has proven quite fruitful for identifying
causative genes for color patterning elements, and can be used for other complex traits such as mate preference, as illustrated here.
Once the genetic underpinnings of these elements are known, their combinatorial effects can be explored, as well as pleiotropic effects

of genetic background and any effects of environment.

Vinauger et al. 2018). The same can be said for the
genes involved in the circadian clock, and for genes
involved in sex-specific responses to male phero-
mones in Drosophila (Curtin et al. 1995; Suri et al.
1999; Sarov-Blat et al. 2000; Demir and Dickson
2005; Drapeau et al. 2006; Ruta et al. 2010).
Indeed, the reason we know so much about the ge-
netics of mate preference in Drosophila is because of
decades of phenotype dissection and careful study of
specific elements of the mate selection process
(Keene and Waddell 2007; Dickson 2008). As illus-
trated by Drosophila mate preference genetics, these
narrowly defined phenotypes are often the building
blocks of the larger phenotype of interest, and once
characterized, may scale up. While one can argue
that this approach will only work for model animals,
recent work on butterfly wing pattern genetics sug-
gests otherwise. This approach has proven extremely
fruitful for the identification of genes controlling
specific color patterning elements of complex butter-
fly wing patterns in wild populations (Reed et al.
2011; Martin et al. 2012; Kronforst and Papa 2015;
Nadeau et al. 2016; Westerman et al. 2018), and may
also prove useful for identifying genes associated
with other complex traits in wild populations, such
as habitat selection and mate choice.

Identifying the genetic basis of behavior

One of the major hurdles of behavioral ecology has
been identifying the genetic basis of evolutionary and
ecologically important behaviors. Scientists have
spent decades carefully characterizing a vast array
of behaviors using ethograms, from foraging to mat-
ing to habitat selection, in a wide range of species.
These carefully characterized phenotypes are ripe for
genotype—phenotype discovery, and the last decade
has seen an uptick in behavioral genetics studies in
a range of taxa and natural and semi-natural popu-
lations (Bubac et al. 2020). Importantly, the ecolog-
ical and evolutionary underpinnings of these
phenotypes are often known, so identifying the ge-
netic basis of these traits will facilitate a dramatic
advance in our understanding of how selective forces
on whole organisms translates to genomic change (as
discussed in Bengston et al. 2018; Merlin and
Liedvogel 2019; Westerman 2019). Additionally,
many of the scientists studying these well-
characterized behavioral traits are familiar enough
with their study system that they can identify the
most interesting and most accessible traits for gene
identification. This drops the number of individuals
that need to be sequenced for high quality candidate
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gene identification from the thousands needed in
model animals and human populations to 70-120
individuals. This is primarily because we are looking
for new genes of large effect in non-model animals
(e.g., Westerman et al. 2018) instead of for new
genes of small effect (which is what we are looking
for in model animals and humans, e.g., Agrawal
et al. 2016). These new genes of large effect are likely
to be most relevant and tractable for management of
responses to global change for non-model organisms
(below). The genomic and translational tools neces-
sary for identifying the genes underlying these behav-
iors now exist (Bentley 2006; Visscher et al. 2012;
Ran et al. 2013) and are starting to be incorporated
into the study of behavior in a small set of species
(Bubac et al. 2020). The challenge is to integrate
genomic, proteomic, and network approaches (and
scientists) more broadly into the study of behavior,
and to expose data scientists to the wealth of behav-
ioral phenotypic data and associated behavioral ecol-
ogists that can be utilized in our efforts to better
understand the genotype to phenotype pathway.

Improved predictions for global change

Bridging the genotype to phenotype divide has high
potential to improve management of species, com-
munities, and ecosystems in response to global
change challenges (climate, land use, invasive spe-
cies), whether human-managed (e.g., agriculture;
Abberton et al. 2016) or natural (e.g., endangered
species, protected areas; Hoffmann et al. 2015).
Importantly, data deficiencies and uncertainties are
likely to be most severe for wild species or remote
ecosystems, relative to those upon which human so-
cieties are more dependent (Bland et al. 2015;
Donaldson et al. 2017). As knowledge of genotypes
has outpaced knowledge of phenotypes, researchers
have called for high throughput phenotyping to keep
pace with genomic data (Kiiltz et al. 2013). Both
phenotype and genotype data are urgently needed
to guide adaptation and mitigation of global change
effects on species and ecosystems. For example, cur-
rent correlation-based predictions of species response
to global change (i.e., relating presence or distribu-
tions to environment conditions) inaccurately pre-
dict these relationships because they (1) lack
mechanism; (2) ignore biotic interactions; (3) omit
potential for evolutionary response to change (Urban
et al. 2016). Big data (both genetic and phenotypic)
can improve these predictions by improving our un-
derstanding of organismal physiology, dispersal abil-
ity, or evolutionary potential. Phenotypic big data is
being generated and improved through trait
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databases like TRY (Kattge et al. 2011), FishTraits
(Frimpong and Angermeier 2009), and others.
However, some specific data priorities to improve
predictions of species, community, and ecosystem
response to global change (land use, climate, and
invasive species) include thermal, desiccation, and
chemical tolerances; body mass; water and light
requirements; life history traits; trophic position or
diet; seed or larval size or dispersal traits; intra- and
inter-specific interactions (mediated by behavior);
and evolutionary or adaptive potential (Urban
et al. 2016). Ecological genetic big data (transcrip-
tomic and genomic) is being generated in field and
common garden studies of increasingly diverse taxa
under different climatic regimes (Pespeni et al. 2013;
Smith et al. 2013; Hiibner et al. 2015; Maor-Landaw
et al. 2017). Increasing the taxonomic and ecological
breadth of these data will enhance our understanding
of genome to phenotype while improving the pre-
dictive power of our ecological models.

Calls to reintegrate organismal biology by collecting
high throughput phenotypic data to compliment high
throughput genomic data (Kiltz et al. 2013) can le-
verage management and conservation needs for some
similar data to guide more mechanistic models of
species responses to climate change (Urban et al
2016). Both needs and applications share a depen-
dency on: (1) big data (e.g., van den Hoogen et al.
2019), often analyzed by (2) machine learning
approaches (e.g., Olden et al. 2008). Researchers
might leverage funding opportunities by combining
basic science questions in mapping the genotype to
phenotype with applied science needs for both data
sources to inform conservation and management of
commercially important, invasive, or endangered spe-
cies in natural ecosystems. This integration of basic
and applied science requires choosing which organ-
isms provide the most return on investment for both
basic and applied science questions concurrently.
Further, there are too many populations, species,
and ecosystems to collect genotype and phenotype
data for all biological entities that need management;
rather, scientists and resource managers will need to
prioritize representative systems that can generalize to
similar taxa or ecosystems (Urban et al. 2016)—these
may not be classical model organisms, but will still be
surrogates or proxies for related organisms and eco-
systems (Caro and O’Doherty 1999).

Creating the human infrastructure for a big data and
machine learning approach

Ironically, leveraging big data approaches and ma-
chine learning tools to crack the genotype to
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phenotype code will be about supporting people.
There has been recognition that lack of data science
proficiency and expertise is a fundamental roadblock
in scientific research (Barone et al. 2017). Currently,
exciting pioneering efforts are underway—in tool
and research development—and in fundamental re-
search. However, these efforts will likely remain in-
sular, underutilized, and unavailable to the whole
community—an  inequitable  situation—without
broader development initiatives. Systematic top-
down and bottom-up support structures are needed
to: (1) attract, recruit, incentivize, and train a diverse
group of students to these questions, many of which
may never identify as biologists (i.e., they will remain
data scientists, statisticians, etc.); (2) support and
retrain biologists who are interested in developing
these approaches; (3) develop sustained pan-
disciplinary collaborations with experts in data sci-
ence, mathematics, computer science, and related
fields. These sustained pan-disciplinary collabora-
tions can be particularly fruitful for pushing the
boundaries of non-model organism research, as illus-
trated by recent scientific advancements using
Heliconius butterflies, most of which were achieved
via multi-year collaborations between field biologists,
bioinformaticians, developmental biologists, and
population geneticists (as well as other sub-
disciplines; Kronforst and Papa 2015; Merrill et al.
2015). Addressing some of these challenges may in-
volve the development of interdisciplinary courses,
programs, and degrees along with associated out-
reach to community colleges or other institutions
that do not currently have access to resources.
Formation of interdisciplinary teams who commit
to attending and hosting each other’s conferences
will help build common languages and interest in
the key questions in their fields. Programs such as
NSF’s Research Coordination Network (RCN) pro-
vide support pathways for human infrastructure and
workforce development to achieve this goal.
Ultimately, the results of these efforts can be seen
as more than a reintegration—but instead the emer-
gence of an augmented biology.

Recommendations

o Promote the development of minimum “best
practices” for the experimental design and collec-
tion of data—especially when these data are
expected to be utilized as part of a community
pool.

« Foster sustained and long-term initiatives for tool
development and sharing.

o Promote data standards and annotations.
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o Foster sustained and long-term data repositories,
preferably those that would promote data sharing
across scales and taxa.

e Support funding agency and publisher require-
ments that new datasets, tools, and code be shared
and made easily accessible to the community.

o Promote programs that recruit, train, and retain a
diversity of talent—both new students and
retrained biologists—that are interested in the
use of these approaches.

e Promote collaborative pan-disciplinary exchange
between biologists and data scientists and related
fields.

o Identify opportunities where funding can be lev-
eraged for basic and applied questions concur-
rently, including in response to management of
natural and human-dependent species or ecosys-
tems in response to global change.
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