
A Makespan Lower Bound for the Tiled
Cholesky Factorization Based on ALAP

Schedule

Olivier Beaumont1(B) , Julien Langou2 , Willy Quach3 ,
and Alena Shilova1

1 Inria Bordeaux – Sud-Ouest and Université de Bordeaux, Bordeaux, France
olivier.beaumont@inria.fr

2 University of Colorado Denver, Denver, USA
3 Northeastern University, Boston, USA

Abstract. Due to the advent of multicore architectures and mas-
sive parallelism, the tiled Cholesky factorization algorithm has recently
received plenty of attention and is often referenced by practitioners as a
case study. However, we note that a theoretical study of the parallelism
of this algorithm is currently lacking. In this paper, we present new the-
oretical results about the tiled Cholesky factorization in the context of a
parallel homogeneous model without communication costs. By a careful
analysis on the number of tasks of each type that run simultaneously in
the ALAP (As Late As Possible) schedule without resource limitation,
we are able to determine precisely an upper bound on the number of busy
processors at any time (as degree 2 polynomials). We then use this infor-
mation to find a closed form formula for a lower bound on the minimum
time to schedule a tiled Cholesky factorization of size n on P processors.
We show that this lower bound outperforms (is larger than) classical
lower bounds from the literature. We also demonstrate that ALAP(P),
an ALAP-based schedule where the number of resources is limited to P ,
has a makespan extremely close to the lower bound, thus establishing
both the effectiveness of ALAP(P) schedule and of our new lower bound
on the makespan.

Keywords: Scheduling · Cholesky factorization · CPU · GPU · Lower
bounds

1 Introduction

A large fraction of time-consuming tasks performed on supercomputers are linear
algebra operations. With the advent of multicore architectures and massive par-
allelism, it is therefore of particular interest to optimize and understand their
parallel behavior. In this paper, we consider the problem of the dense tiled
Cholesky factorization. The algorithm first splits the initial matrix into square

J. Langou—Supported by NSF award #1645514.

c© Springer Nature Switzerland AG 2020
M. Malawski and K. Rzadca (Eds.): Euro-Par 2020, LNCS 12247, pp. 134–150, 2020.
https://doi.org/10.1007/978-3-030-57675-2_9

ALAP Schedule Analysis of Cholesky Factorization 135

sub-matrices, or tiles of the same size. The tile size is chosen so as to achieve a
good efficiency on the target architecture.

The tiled Cholesky factorization algorithm has recently received plenty of
attention, either as an algorithm in itself [16,19] or as a case study for task-
based schedulers [1,2,5,12,20,23]. Examples of task-based schedulers which
have considered the scheduling of tiled Cholesky factorization are DAGuE [9],
StarPU [4,13], SMPSs [21], and SuperMatrix [22]. Let us also note that OpenMP
since 3.1 supports task-based parallelism. The tiled Cholesky factorization algo-
rithm is also used in practice and is implemented in Dense Linear Algebra state
of the art libraries, for example DPLASMA [8], FLAME [15], and PLASMA [10].
Recently, the practical design of good static schedule for heterogeneous resources
has been considered in [3] and extensions to incomplete factorization [18], sparse
matrices [17] have also been proposed.

One of our main goals in this paper is to obtain a tight theoretical lower
bound on the parallel time to achieve a Cholesky factorization, based on the
individual costs of the different kernels on a homogeneous architecture without
communication cost. Trivial lower bounds can be derived from general bounds
of the literature on scheduling. Specifically, the time to process Cholesky factor-
ization is trivially bounded both by the length of the critical path (the longest
path in the task graph from the source node to the sink node) and by the overall
work divided by P , the number of available resources. To our best knowledge,
no theoretical study on the execution time of any schedule for the tiled Cholesky
factorization have been determined beyond these trivial bounds. Therefore, in
many situations, it is impossible to assess the efficiency of a given schedule or
implementation, because of the low quality of available lower bounds. This moti-
vates this paper.

In this paper, we assume homogeneous processing units. While the hetero-
geneous setting is more general, establishing theoretical bounds in the heteroge-
neous case is much more difficult (see [6] for a recent survey in the case of two
types of resources). We also make the assumption that communication cost is
zero. We justify this assumption (no communication cost) in two ways. First, if
the tile size is large enough, it is possible to overlap communications and com-
putations. Indeed, if the dimension of the tile is s × s, the tile (memory) size
is s2 while all kernels involved in Cholesky factorization have a complexity s3.
It has been shown experimentally using task-based schedulers [1,2,5,12,20] that
it is possible to almost completely overlap communications and computations.
Secondly, we note that the lower bound on the execution time also holds true in
the case when communication costs are taken into account, so that any practical
implementations will execute slower than this model. The lower bounds that
we exhibit are not trivial and are relevant for practical applications, as demon-
strated in Sect. 5. Another technical assumption is that we are assuming that the
time to perform the SYRK operation is not larger than the time to perform the
GEMM operation. This is a mild assumption. It is very likely to be true. One
reason being that, if not, one can replace the SYRK kernels by GEMM kernels.

136 O. Beaumont et al.

We can relate our work to the recent work of Agullo et al. [2] where the
authors provide lower bound as well. The authors consider a more compli-
cated model (heterogeneous) but rely on the linear programming formulation
to find the schedule. We consider a simpler model (homogeneous) but we pro-
vide closed-form solutions and a tighter analysis. We are considering comparing
both approaches as future work. We can also relate our work to the work of
Cosnard, Marrakchi, Robert, and Trystram [14]. In this work, the authors study
the scheduling of Gaussian elimination. A minor difference is that they work on
LU while we work on Cholesky. The main difference is that they concentrate
on an algorithm that works on the columns of the matrix, while our algorithm
works on tiles.

In addition, it is of great interest to better understand how to efficiently
schedule the parallel execution of the tiled Cholesky factorization algorithm.
Indeed, even if a dynamic runtime scheduler is used, its behavior can be guided by
priorities corresponding to a good static schedule in order to efficiently perform
the parallel factorization, as shown in [3] in the context of StarPU. A contribution
of our paper is to advocate the use of the ALAP (As Late As Possible) schedule
where tasks are scheduled from the end as opposed from the start. We show
that this simple heuristic turns out to provide results that are very close to the
lower bound, therefore proving that it can be used in practice, for instance to
fix priorities in a task based runtime scheduler.

The rest of the paper is organized as follows. In Sect. 2, tiled Cholesky fac-
torization is presented. More specifically, we consider two different settings that
correspond to different relative costs of the different kernels involved in tiled
Cholesky factorization. We prove that these two cases are enough to cover all
possible settings and typically correspond to the CPU and GPU settings and
we provide the analysis of the critical path for each task. Then, in the case of
the CPU case (Sect. 3.1) and to the GPU case (Sect. 3.2), we carefully analyze
the number of tasks for every kernel at any instant of the factorization, when
assuming an infinite number of processing resources. In turn, in Sect. 4, we prove
that in the case of P processors, this analysis can be used to design a tight lower
bound. In Sect. 5, we show using simulations that the makespan (the length) of
the ALAP schedule with P processors is close to the theoretical bound, even for
a small number of tiles, this demonstrates that the ALAP schedule is efficient
and that the bound is tight. Concluding remarks and perspectives are finally
proposed in Sect. 6.

2 Cholesky Factorization

2.1 Cholesky Algorithm

Given a Symmetric Positive Definite (SPD) matrix A, the Cholesky factorization
computes a (lower) triangular matrix L such that A = LLT . It is a core operation
to solve linear systems in the case of SPD matrices as it allows to solve systems
of the form Ax = b by reducing it to computing solutions of Ly = b, and then
LTx = y. In order to compute the Cholesky factorization when using many

ALAP Schedule Analysis of Cholesky Factorization 137

processing units, the matrix A is split into n × n square tiles of size s, where s
is chosen so as to perform kernels efficiently (as it improves data locality) and
to allow to overlap communications and computations. Algorithm1 depicts tiled
Cholesky factorization.

Algorithm 1. Tiled Cholesky Factorization
for k = 0 to n − 1 do

Ak,k ← POTRF (Ak,k) {POTRFk}
for i = k + 1 to n − 1 do

Ai,k ← TRSM(Ak,k, Ai,k) {TRSMi,k}
end for
for j = k + 1 to n − 1 do

Aj,j ← SY RK(Aj,k, Aj,j) {SYRKj,k}
for i = j + 1 to n − 1 do

Ai, j ← GEMM(Ai,k, Aj,k) {GEMMi,j,k}
end for

end for
end for

In Algorithm1 and in the remainder of this paper, the tasks corresponding
to POTRF kernels will be denoted as POTRFi with 1 ≤ i ≤ n and correspond
themselves to the Cholesky factorization of a real symmetric positive definite
block of the matrix. The tasks corresponding to TRSM kernels will be denoted
as TRSMi,j with 1 ≤ j < i ≤ n and correspond to the resolution of a triangular
linear system of size s. The tasks corresponding to SYRK kernels will be denoted
as SYRKi,j with 1 ≤ j < i ≤ n and correspond to a matrix multiplication with
symmetric matrices, whereas the tasks corresponding to GEMM kernels, denoted
as GEMMi,j,k with 1 ≤ k < j < i ≤ n correspond to general matrix product.
Therefore, since we can always replace SYRK by GEMM, we will assume in
the rest of the paper that the time to perform SYRK is at most the time to
perform GEMM. The dependencies between the tasks are given by

– POTRFj → TRSMi,j , j < i ≤ n;
– TRSMi,j → SYRKi,j , j < i ≤ n; TRSMi,j → GEMMi,k,j , j < k < i ≤ n;
– TRSMi,j → GEMMk,i,j , j < i < k ≤ n;
– SYRKi,j → SYRKi,j+1, j+1 < i ≤ n; SYRKi,i−1 → POTRFi, 1 < i ≤ n;
– GEMMi,j,j−1 → TRSMi,j , 1 < j < i ≤ n;
– GEMMi,j,k → GEMMi,j,k+1, k + 1 < j < i ≤ n.

Table 1. Number of tasks of each type

Type of task POTRF SYRK TRSM GEMM

Number of tasks n n(n−1)
2

n(n−1)
2

n(n−1)(n−2)
6

138 O. Beaumont et al.

Fig. 1. DAG of a 6 × 6 Cholesky factorization

Fig. 2. ALAP schedule without resource limitation on 8×8 tiles with 1, 3, 3, 6 weights

Table 2. Kernel Performance (absolute and relative)

POTRF SYRK TRSM GEMM

GPU 11.55 1.277 3.420 1.733

CPU 11.27 47.76 44.02 87.60

POTRF SYRK TRSM GEMM

GPU 1.00 0.11 0.30 0.15

CPU 1.00 4.24 3.91 7.77

time in ms ratio wrt POTRF

Figure 1 depicts the Directed Acyclic Graph (DAG) of the dependencies
between the tasks of a 6 × 6 tiled Cholesky Factorization and the number of
tasks for each kernel is given in the Table 1.

2.2 Kernel Performance

Table 2 (left part) describes the duration of individual tasks when s = 960 on
an Intel Xeon E5-2680 (CPU) and an Nvidia GK110BGL GPU unit (GPU). All
measurements were performed using Chameleon library [11], version 0.9.1.

ALAP Schedule Analysis of Cholesky Factorization 139

We can observe that, with respect to CPU, GPUs are typically very fast
for GEMM (an improvement of 50 with respect to CPU), fast for SYRK and
TRSM (a respective improvement of 37 and 13) but relatively slow for POTRF
(a slight slowdown). In Table 2 (right part), we give the relative duration of
POTRF,TRSM, SYRK and GEMM with respect to POTRF. Note that
throughout the paper, the results are stated in general terms and expressed
as C, T, S and G respectively and we stress that our theoretical analysis below is
valid for any values of (C,S, T,G). Nevertheless, by analyzing the critical paths
as in Sects. 2.3 and 2.4, we can observe (with the additional trivial assumption
S ≤ G discussed above) that there are only two different situations, depending
on the respective values of S+C and G. These two cases will be analyzed sepa-
rately in the following. For convenience, we will denote them as CPU case (when
S+C ≤ G) and GPU case (when S+C > G) because each of these cases is quite
emblematic of what can be encountered on a core or on an accelerator. In the
same way, for convenience, for numerical illustrations, we will use (1, 3, 3, 6) for
(C, T, S,G) as emblematic values for a CPU and (12, 3, 1, 2) for a GPU. These
values are close to our experimental values and have also been used in the lit-
erature. Typically, (1, 3, 3, 6) corresponds exactly to the ratios of the number of
floating point operations for the different cores.

2.3 Critical Paths in the CPU Case, S + C ≤ G

Based on the above described dependencies, we can compute the critical path for
each task involved in the Cholesky factorization, i.e. the longest path from this
node (itself included) to the end of the last task of the graph, i.e. POTRF(n) if
n×n is the size of the matrix (expressed in number of tiles). Let us assume that
S +C ≤ G, this is the CPU case. In this case, in particular S +C + T ≤ G+ T ,
so that the edges SYRK(i+ 1, i) → POTRF(i+ 1) are not part of the critical
paths (except those starting at SYRK(i+ 1, i) nodes). Due to lack of space, we
refer the reader to the companion research report [7] for the proofs and only
detail the case of POTRF tasks in the CPU case.

– Case of POTRF(i), 1 ≤ i ≤ n node: the critical path from POTRF(i), i < n
is given by POTRF(i) → (TRSM(i, n) → GEMM(i + 1, n, i)) → . . . →
(TRSM(n − 2, n) → GEMM(n − 1, n, n − 2)) → TRSM(n − 1, n) →
SYRK(n, n− 1) → POTRF(n). Its length is given by L(C, i) = C+(n− i−
1)(T +G) + T + S + C. Therefore, the overall Critical Path CP is given by
CP = 2C + T + S + (n − 2)(T +G) and L(C, i) = CP − (i − 1)(T +G).

– Case of TRSM(i, j), 1 ≤ i < j ≤ n: L(T, i, j) = CP − C − (i − 1)(T +G).
– Case of SYRK(i, j), 1 ≤ j < i < n: L(S, i, j) = CP−(i−1)(T +G)+(i−j)S.
– Case of SYRK(n, j), 1 ≤ j < n: L(S, n, j) = (n − j)S + C.
– Case of GEMM(i, j, k), 1 ≤ k < i < j ≤ n:

L(G, i, j, k) = CP − C +G+ T − iT − kG.

140 O. Beaumont et al.

2.4 Critical Paths in the GPU Case, S + C ≥ G

Let us now consider the case when C + S ≥ G, which corresponds to GPU
situation. In this case, in particular S+C+T ≥ G+T , so that SYRK(i+1, i) →
POTRF(i+ 1) are now used in critical paths.

– Case of POTRF(i), 1 ≤ i < n:
L(C, i) = C+(n− i)(T +S+C). In particular, CP = C+(n−1)(T +S+C).

– Case of TRSM(i, j), 1 ≤ i < j ≤ n:
L(T, i, j) = (j − i − 1)(T +G) + (n − j + 1)(T + S + C).

– Case of SYRK(i, j), 1 ≤ j < i ≤ n:
L(S, i, j) = (i − j)S + C + (n − i)(T + S + C).

– Case of GEMM(i, j, k), 1 ≤ k < i < j ≤ n:
L(G, i, j, k) = (i − k)G+ (j − i − 1)(T +G) + (n − j + 1)(T + S + C).

2.5 ALAP Schedule

Let us now define the ALAP schedule for the n× n tiled Cholesky factorization
without resource limitation (the case with resource limitation will be considered
in Sect. 5). In the ALAP schedule without resource limitation, we consider the
Cholesky graph from the end, i.e. we reverse the task graph depicted in Fig. 1
and we schedule tasks in this order as soon as they are available. Therefore,
ALAP on the original graph is simply the inverse of the ASAP schedule on the
reversed graph. A first observation that can be made is that using the ALAP
schedule without resource limitation, then every task starts its execution at a
instant that differs from the makespan by exactly its critical path (as defined in
Sects. 2.3 and 2.4) to the end of the schedule. We will denote in what follows the
difference between the starting time of a task and the makespan as the distance
of this task. Therefore, the ALAP schedule is optimal with an infinite number of
processing resources and more specifically as soon as the number of processors is
larger than a given threshold. Indeed, without resource limitation, the distance
of the initial task is by construction the critical path of the Cholesky graph.
In Sects. 3.1 (CPU case) and 3.2 (GPU case), we precisely evaluate the number
of tasks of each type running at any instant of the ALAP schedule without
resource limitation, and then we use these bounds to compute a lower bound
on the execution time of any schedule in Sect. 4. Figure 2 depicts the execution
of an ALAP schedule (without resource limitation) on a 8 × 8 tiled Cholesky
factorization, with the time on the x-axis.

3 ALAP Schedule Analysis Without Resource Limitation

3.1 Case S + C ≤ G

In the ALAP Schedule without resource limitation, each task T starts at time
CP − tT , where CP denotes the Critical Path of Cholesky factorization and tT
denotes the critical path from task T . In what follows, given an instant CP− d,

ALAP Schedule Analysis of Cholesky Factorization 141

our goal is to determine an upper bound on the number of tasks of each type
and an upper bound on the work performed by the tasks of each type and whose
execution terminates after the instant CP − d.

We will denote respectively by

– #GEMM(d),#TRSM(d),#SYRK(d) and #POTRF(d) as upper bounds
on the number of tasks of each type that are being processed at this instant
CP − d using the ALAP schedule

– WGEMM(d),WTRSM(d),WSYRK(d) and WPOTRF(d) as upper bounds on the
work performed by tasks of each type whose execution terminates after the
instant CP − d

Both the number of tasks and the overall work will be used later in Theorem1
to prove a lower bound. Due to the length of derivations, we refer the interested
reader to [7] for complete formulas (in terms of n,C, S, T,G) and proofs. In
the present paper, we provide the detailed analysis for #GEMM(d). For the
other cases, whose proofs are based on the same techniques, we only provide the
explicit the explicit formulas.

Case of GEMM Tasks. Let us now establish the result for GEMM tasks.
GEMM(i, j, k) runs at all instants such that CP−C+T − iT −kG ≤ d ≤ CP−
C+T−iT−kG+G, so that in particular CP−d−C+T−iT

G ≤ k ≤ CP−d−C+T−iT
G +1

so that at most one value of k is possible, for a fixed pair (i, d), where k =⌈
CP−d−C+T

G − iT
G

⌉
.

In order to determine how many triplets (i, j, k) correspond to a tasks
GEMM(i, j, k) running at time CP − d, we need to check to consider the con-
straints on (i, j, k) valid triplets, i.e. 1 ≤ k < i < j ≤ n.

– The first constraint states that k ≥ 1. Using the above defined value for k,
we can rewrite the condition

k ≥ 1 ⇔ CP − d − C + T

G
≥ iT

G
⇔ i ≤ CP − d − C + T

T
.

This constraint can be rewritten as i ≤ n + nG+C+S−2G−d
T . Note that in

particular, when d is small enough, i.e. d ≤ nG+C+S−2G, then above con-
straint becomes trivial and can be replaced by i ≤ n. Otherwise, if d ≥ nG+
C+S−2G, then the constraint becomes i ≤ n−'d − (nG+ C + S − 2G)/T (.

– The second constraint states that

k < i ⇔ CP − d − C + T

G
− iT

G
≤ (i− 1) ⇔ CP− d−C +T +G ≤ i(G+T).

This constraint can be rewritten as

(n−i−2)(T+G) ≤ d−(C+G+S+2T) ⇔ i ≥ n−'d − (C + S + T)/T +G(.

Due to these constraints, we will obtain different formulas for the number of
GEMMs, depending on the value of d.

142 O. Beaumont et al.

– If d ≤ (n − 2)G + C + S + T = dG, then the only constraints are i ≥
n − 'd−(C+S+T)

T+G (and i < j ≤ n so that

#GEMM(d) =

" d−(C+S+T)
T+G #∑

l=1

l = ($d − (C + S + T)
T +G

%)($d − (C + S + T)
T +G

% + 1)/2,

#GEMM(d) ≤ BGEMM
1 d2 + CGEMM

1 d+DGEMM
1 ,

where BGEMM
1 = 1

2(G+T)2 , CGEMM
1 = (3G+T−2C−2S)

2(G+T)2 and DGEMM
1 =

(G−C−S)(2G+T−C−S)
2(G+T)2 .

In order to estimate WGEMM(d), we rely on the integral of #GEMM(t)
between 0 and d so that WGEMM(d) ≤ AGEMM,W

1 d3 + BGEMM,W
1 d2 +

CGEMM,W
1 d, where AGEMM,W

1 = BGEMM
1
3 , BGEMM,W

1 = CGEMM
1
2 and CGEMM,W

1 =
DGEMM

1 .
– If d ≥ CP − C − T , then there is no GEMM task to perform (only TRSMs

and one POTRF remain) and in this case, #GEMM(d) = 0.
– If dG = (n − 2)G + C + S + T ≤ d ≤ CP − C − T , then the constraints are
n − 'd−(C+S+T)

T+G (≤ i ≤ n − 'd−(nG+C+S−2G)
T (and i < j ≤ n, so that

#GEMM(d) ≤ (BGEMM
2 d2 + CGEMM

2 d+DGEMM
2),

where BGEMM
2 = 1

2(G+T)2 − 1
2T 2 , CGEMM

2 = 1
2(T+G) + 1

2T − C+S−G
(T+G)2 +

(n−2)G+C+S
T 2 and DGEMM

2 = 1 − C+S+T
2(T+G) − (n−2)G+C+S

2T + (C+S−G)2

2(T+G)2 −
((n−2)G+C+S)2

2T 2

In order to estimate WGEMM(d), we rely on the integral of #GEMM(t)
between dG and d plus WGEMM(dG) so that

WGEMM(d) ≤ AGEMM,W
2 d3 +BGEMM,W

2 d2 + CGEMM,W
2 d+DGEMM,W

2 ,

where AGEMM,W
2 = BGEMM

2
3 , BGEMM,W

2 = CGEMM
2
2 , CGEMM,W

2 = DGEMM
2 and

DGEMM,W
2 = (AGEMM,W

1 − AGEMM,W
2)d3G + (BGEMM,W

1 − BGEMM,W
2)d2G +

(CGEMM,W
1 − CGEMM,W

2)dG.

Case of POTRF Tasks. Clearly, at any instant, at most one POTRF task can
be running since there is a dependency path POTRF(i) −→ TRSM(i, i+1) −→
SYRK(i + 1, i) −→ POTRF(i + 1), therefore ∀d ≥ 0, #POTRF(d) ≤ 1
and the total amount of work done after CP − d is defined by ∀d ≥ 0,
WPOTRF(d) ≤ CPOTRF,W d + DPOTRF,W , where CPOTRF,W = C

T+G and
DPOTRF,W = C(2G+T−S−C)

T+G .

Case of TRSM Tasks. TRSM(i, j) runs at all instants such that CP − C −
(i− 1)(T +G)− T ≤ d ≤ CP−C − (i− 1)(T +G). From above inequalities, we

ALAP Schedule Analysis of Cholesky Factorization 143

can prove [7] that the amount of the TRSM tasks running at the time CP − d

is either 0 or #TRSM(d) =
⌈
d−S−C+G

T+G

⌉
≤ CTRSMd+DTRSM, where CTRSM =

1
T+G and DTRSM = 2G−S−C+T

T+G . and WTRSM(d) ≤ BTRSM,W d2 + CTRSM,W d +
DTRSM,W , where BTRSM,W = T

2(T+G)2 , CTRSM,W = T (3T+3G−2S−2C)
2(T+G)2 and

DTRSM,W = T (T+G−S−C)(2T+2G−S−C)
2(T+G)2 .

Case of SYRK Tasks. Clearly, at any instant, at most one SYRK(n, j) task
can be running since there is a dependency path SYRK(n, j) −→ SYRK(n, j+
1), so that ∀d ≥ 0, #SYRK(n, j, d) ≤ 1.

Let us now consider the case of tasks SYRK(i, j) for 1 ≤ j < i < n.
SYRK(i, j) runs at all instants such that CP+(T+G)−i(T+G−S)−jS−S ≤
d ≤ CP+(T +G)− i(T +G−S)− jS From above inequalities, we can prove [7]
that

– If d ≤ (n− 1)S +2C +T = dS , then #SYRK(d) ≤ CSYRK
1 d+DSYRK

1 , where
CSYRK

1 = 1
T+G and DSYRK

1 = G−2C−S
T+G . Similarly, we obtain thatWSYRK(d) ≤

BSYRK,W
1 d2 + CSYRK,W

1 d+DSYRK,W
1 , where BSYRK,W

1 = CSYRK
1
2 , CSYRK,W

1 =
DSYRK

1 + 1 and DSYRK,W
1 = −C.

– If d > (n − 1)S + 2C + T = dS , then ∀d > nS + 2C − G,#SYRK(d) ≤
CSYRK

2 d + DSYRK
2 , where CSYRK

2 = −S
(T+G)(T+G−S) and DSYRK

2 = 1 +
S((n−1)(T+G)−G+2C+S)

(T+G)(T+G−S) . Similarly, WSYRK(d) ≤ BSYRK,W
2 d2 + CSYRK,W

2 d +

DSYRK,W
2 , where BSYRK,W

2 = CSYRK
2
2 , CSYRK,W

2 = DSYRK
2 and DSYRK,W

2 =
(BSYRK,W

1 − BSYRK,W
2)d2S + (CSYRK,W

1 − CSYRK,W
2)dS + (n − 1)S.

3.2 Case S + C ≥ G

We can establish the same results in the GPU case, using the same type of
proof techniques than in the case of GEMM tasks when S + C ≤ G. We refer
the interested reader to [7], where all detailed proofs are presented, and we just
summarize results below.

Case of POTRF Tasks. ∀d ≥ 0, #POTRF(d) ≤ 1. and ∀d ≥ 0,
WPOTRF(d) ≤ CPOTRF,W d + DPOTRF,W , where CPOTRF,W = C

T+S+C and
DPOTRF,W = C.

Case of TRSM Tasks. Let dT ≤ (n − 1)(T +G) + C + S − G. Then

– When d ≤ dT , then #TRSM(d) =
⌊
d+G−C−S
C+S+T

⌋
+ 1 ≤ d+G+T

C+S+T = CTRSM
1 d +

DTRSM
1 where CTRSM

1 = 1
C+S+T and DTRSM

1 = G+T
C+S+T and WTRSM(d) ≤

CTRSM
1
2 d2 +DTRSM

1 d.

144 O. Beaumont et al.

– When d ≥ dT , then #TRSM(d) =≤ CTRSM
2 d + DTRSM

2 where CTRSM
2 =

− T+G
(C+S−G)(C+S+T) and DTRSM

2 = 2+ (n−1)(T+G)
C+S−G − C+S−G

C+S+T and WTRSM(d) ≤

BTRSM,W d2 +CTRSM,W d+DTRSM,W where BTRSM,W = CTRSM
2
2 , CTRSM,W =

DTRSM
2 and DTRSM,W = CTRSM

1 −CTRSM
2

2 d2T + (DTRSM
1 − DTRSM

2)dT .

Case of SYRK Tasks. ∀d ≥ 0, #SYRK(d) ≤ CSYRKd + DSYRK,

where CSYRK = −S
(C+S+T)(C+T) and DSYRK = 1 + (n−1)S

(C+T) + CS
(C+S+T)(C+T) and

WSYRK ≤ CSYRK

2 d2 + CSYRKd.

Case of GEMM Tasks. Let dG ≤ nG+ S + C − 2G. Then

– When d ≥ dG, then #GEMM(d) ≤ BGEMM
1 d2 + CGEMM

1 + DGEMM
1 , and

WGEMM ≤ BGEMM
1
3 d3 + CGEMM

1
2 d2 +DGEMM

1 d, where BGEMM
1 = 1

2(G+S+T)(T+G) ,
CGEMM

1 = 3T+4G+S
2(G+S+T)(T+G) and DGEMM

1 = 1
– When dG ≤ d ≤ n(G + T) + S + C − 2G, then #GEMM(d) ≤
BGEMM

2 d2 + CGEMM
2 + DGEMM

2 , where BGEMM
2 = 1

2(G+S+T)(T+G) −
1

2(T+S+C−G)(T) , C
GEMM
2 = 3T+4G+S

2(G+S+T)(T+G) − nG
2(T+S+C−G)(T) and DGEMM

2 =

1 − n2G2

2(T+S+C−G)(T) and WGEMM ≤ BGEMM
2
3 (d3 − d31) + CGEMM

2
2 (d2 − d21) +

DGEMM
2 (d − d1) +

BGEMM
1
3 d31 +

CGEMM
1
2 d21 + DGEMM

1 d1, where d1 = nG + S +
C − 2G.

4 Lower Bound for Cholesky with P Resources

4.1 CPU Case, S + C ≤ G

Using the above bounds on the number of tasks, we can bound, for any distance
d to CP the number of tasks that would be processed simultaneously using the
ALAP schedule without resource limitation. The upper bound on the overall
number of tasks f#(t) processed at any instant t, 0 ≤ t ≤ CP is therefore given
as a degree 2 polynomial, whose coefficients depend on whether t ≤ CP − dG,
CP − dG < t ≤ CP − dS and t > CP − dS (where dG and dS are defined in
Sect. 3.1). Similarly, let us denote by fW (t) the upper bound on the work per-
formed by ALAP schedule after instant t. fW (t) is given as a degree 3 polynomial,
whose coefficients depend on whether t ≤ CP − dG, CP − dG < t ≤ CP − dS
and t > CP − dS .

Figure 3 displays the upper bound on the overall number of tasks processed
at any instant t, 0 ≤ t ≤ CP, and the same information for each type of
task, GEMM, TRSM, SYRK. All plots correspond to the case where G = 6,
T = S = 3 and C = 1, that corresponds to our sample model for a CPU
node. Due to lack of space, we refer the interested reader to companion research
report [7] to find the counterparts of Fig. 3 in the GPU case.

ALAP Schedule Analysis of Cholesky Factorization 145

Fig. 3. Evolution of the number of tasks of each type with d, n = 20, CPU case, for
all instants between 0 and 170 (the length of the critical path). Subfigures depict the
overall number of tasks (left, up), GEMM tasks (right, up), TRSM tasks (left, down)
and SYRK tasks (right, down)

4.2 Lower Bounds

Let us define tP as the largest instant such that f#(t) ≤ P for any t ≥ tP ,
or tP = CP if the number of resources is large enough. This instant can be
determined easily by studying f#(t), which is described as a degree 2 polynomial
on several intervals. As we have seen above, both f#(t) and the set of intervals
to be considered depend only whether S + C ≤ G (CPU case) or S + C ≥ G
(GPU case).

Lemma 1. Let us denote by S any valid schedule with P processors.
Then, S cannot perform more work between Makespan(S) − (CP − tP) and
Makespan(S) than ALAP(P) and this amount of work is upper bounded by
fW (tP).

Proof. Intuitively, no schedule can perform more tasks during the last CP − tP
instants. Indeed, during these instants, all the tasks whose critical path is less
than tP are processed using ALAP. Moreover, no other task can start as close
to the CP in any schedule. f#(t) (resp. fW (t)) and is an upper bound on the
number of tasks (resp. the overall work) processed simultaneously at time t by
ALAP schedule without resource limitation. Moreover CP − tP is the largest
instant where the ALAP schedule without resource limitation and with at most
P processors coincide, so that we can upper bound the work performed by any
schedule (by optimality of ALAP after CP − tP) by fW (tP). This finishes the
proof of the lemma. *+

146 O. Beaumont et al.

Theorem 1. A makespan lower bound for any schedule is (CP − tP) +
W−fW (tP)

P .

Proof. The overall work W to perform for Cholesky factorization is given by
W = nC + n(n−1)

2 (S + T) + n(n−1)(n−2)
6 G. In any schedule S, we have proved

in Lemma1 that an upper bound for the amount of work Wend that can be
processed during the last CP−tP time units is fW (tP). Similarly, a trivial upper
bound for the amount of work Wbegin processed during the first Makespan(S)−
(CP − Tp) time units is P (Makespan(S) − (CP − Tp)), so that W = nC +
n(n − 1)/2 ∗ (S + T) + n(n − 1)(n − 2)/6 ∗ G = Wbegin + Wend ≤ fW (tP) +
P (Makespan(S) − (CP − Tp)) and

Makespan(S) ≤ W − fW (tP)
P

+ (CP − Tp) *+

*+

5 Simulation Results

In the above sections, we have established a theoretical lower bound on the
time necessary to achieve a Cholesky factorization on an homogeneous platform
consisting of P GPUs or P CPUs. This lower bound was established using a
detailed analysis of the ALAP schedule and we expect this bound to be close to
the makespan achieved by ALAP. Our goal in this section is to establish through
simulation our intuition.

We performed simulations with different problem sizes (n = 30 or 40 and two
different configurations of tasks lengths corresponding either to the CPU case
(G = 6, C = 1, S = T = 3) or to the GPU case (G = 2, C = 12, S = 1 and
T = 3) in Fig. 4. In this simulation, we plot the speedup achieved by the different
heuristics against theoretical bounds. The first theoretical (trivial) bound on the
achievable speedup on P processors is min(P,W/CP) (red). The second bound
is the one established in Sect. 4, based on a detailed analysis of ALAP schedule
for Cholesky factorization (green).

We consider the following heuristics:

– ALAP (blue) is the heuristic that we described in Sect. 2.5 when there is no
resource limitation. In the presence of resource limitations, when at a given
moment, the number of available tasks is greater than the number of available
resources, we define the highest priority task as the one that maximizes the
length of the longest path between POTRF(1) and this task.

– ASAP (yellow) As Soon As Possible, is the dual heuristic with respect to
ALAP. Tasks are processed as soon as they become ready when there is no
resource limitation. In the presence of resource limitations, when at a given
moment, the number of available tasks is greater than the number of available
resources, we define the highest priority task as the one that maximizes the
length of the longest path between this task and POTRF(n).

ALAP Schedule Analysis of Cholesky Factorization 147

– LAPACK (purple) corresponds to the Cholesky factorization implemented
in the LAPACK library. It consists in n bulk-synchronized steps. During step
i, POTRF(i) is first performed, then all TRSM(i, j) tasks and finally all
SYRK(j, i) tasks and all GEMM(j, k, i) tasks can be interleaved and can be
executed concurrently if enough resources are available.

n = 30, CPU n = 40, CPU

n = 30, GPU n = 40, GPU

Fig. 4. Evolution of speedup with the number of processors P with CPU weights:
(C = 1, S = 3, T = 3, G = 6) on the top, and GPU weights: (C = 12, S = 1, T = 3,
G = 2) on the bottom. (Color figure online)

We note that, since we plot speedup, our lower bounds on the makespan
become upper bounds on the speedup. We see that our new upper bound on the
speedup (green) is lower than the trivial bound (red). Another observation is that
the length of the ALAP schedule (blue) and our new lower bound (green) are
always extremely close. This confirms the tightness of our analysis and the excel-
lent performance of the ALAP schedule. In the companion research report [7],
the reader will find more results (n = 20 in particular) and also an asymptotic
analysis which suggests that ALAP is uniformly asymptotically optimal as the
problem size becomes larger. In other words, as n increases, the maximum ratio
over all P between the ALAP schedule makespan and our lower bound uni-
formly tends to 1. For example, we can observe that, using either our model
GPU weights or our model CPU weights as soon as n gets larger than 40, for
any processor count P , ALAP is at least 5% optimal. And, as n increases, ALAP
approaches optimality (for any processor count P).

148 O. Beaumont et al.

6 Conclusion and Perspectives

In this paper, we have studied in detail the makespan of Cholesky’s factorization
on a homogeneous platform. For example, this platform can be made of GPUs
only, or CPUs only, or anything really. We have obtained a sharp lower bound
on the completion time of the factorization, regardless of the scheduling used,
which is based on a detailed study of the ALAP schedule. In particular, this
bound requires determining the number of simultaneous tasks of each type at
any instant in the ALAP schedule.

This lower bound allows us to make several observations. First of all, ALAP
scheduling behaves remarkably well in the case of CPUs as in the case of GPUs,
always significantly better than the LAPACK schedule and better than ASAP
scheduling in the case of CPUs. The proximity between the ALAP completion
time and the lower bound, in all the scenarios, allows us to accurately estimate
the time required for Cholesky factorization. Indeed, the ALAP completion time
provides an upper bound on the time needed whereas the theoretical lower bound
provides a lower bound. The proximity between the two thus guarantees both the
quality of the approximation of the time needed to perform the factorization, the
quality of the theoretical lower bound and the quality of the ALAP scheduling
which provides the upper bound.

This work opens many perspectives. From a theoretical point of view, the
generalization of the technique used in the case of Cholesky factorization to other
types of task graphs, in linear algebra and elsewhere, is open. The techniques
used in this paper are highly computational and the results are technically quite
complex, but generalization and automation may be envisaged. Another inter-
esting issue is the possibility to extend these results to heterogeneous platforms.
Indeed, it has been observed using dynamic runtime schedulers, typically on
Cholesky factorization, that heterogeneity allows an “optimal” use of resources,
by executing tasks on the most suitable type of resources. Unfortunately, in the
heterogeneous case, the known lower bounds are extremely coarse and do not
allow to assess the closeness to optimality of a schedule. This raises the question
on whether our approach can help.

References

1. Agullo, E., Hadri, B., Ltaief, H., Dongarra, J.: Comparative study of one-
sided factorizations with multiple software packages on multi-core hardware. In:
ACM/IEEE Conference on Supercomputing, Portland, OR, SC 2009, November
2009. https://doi.org/10.1145/1654059.1654080

2. Agullo, E., et al.: Bridging the gap between performance and bounds of Cholesky
factorization on heterogeneous platforms. In: HCW 2015 (2015). https://doi.org/
10.1109/IPDPSW.2015.35

3. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on Cholesky factorization. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1021–1030. IEEE (2016).
https://doi.org/10.1109/IPDPS.2016.90

ALAP Schedule Analysis of Cholesky Factorization 149

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exp. 23, 187–198 (2011). https://doi.org/10.1002/cpe.1631. Special
Issue: Euro-Par 2009

5. Badia, R.M., Herrero, J.R., Labarta, J., Pérez, J.M., Quintana-Ort́ı, E.S.,
Quintana-Ort́ı, G.: Parallelizing dense and banded linear algebra libraries using
SMPSs. Concurr. Comput. Pract. Exp. 21(18), 2438–2456 (2009). https://doi.org/
10.1002/cpe.1463

6. Beaumont, O., et al.: Scheduling on two types of resources: a survey. arXiv preprint
arXiv:1909.11365 (2019)

7. Beaumont, O., Langou, J., Quach, W., Shilova, A.: A Makespan Lower Bound
for the Scheduling of the Tiled Cholesky Factorization based on ALAP Schedule,
February 2020. https://hal.inria.fr/hal-02487920, working paper or preprint

8. Bosilca, G., et al.: Flexible development of dense linear algebra algorithms on
massively parallel architectures with DPLASMA. In: IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops, pp. 1432–1441, May 2011.
https://doi.org/10.1109/IPDPS.2011.299

9. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
Parallel Comput. 38(1–2), 37–51 (2012). https://doi.org/10.1016/j.parco.2011.10.
003

10. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–
53 (2009). https://doi.org/10.1016/j.parco.2008.10.002. http://www.sciencedirect.
com/science/article/pii/S0167819108001117

11. Chameleon: a dense linear algebra software for heterogeneous architectures (2014).
https://project.inria.fr/chameleon. Accessed June 2020

12. Chan, E., Van Zee, F.G., Bientinesi, P., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.,
van de Geijn, R.: SuperMatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks. In: PPoPP 2008, pp. 123–132. ACM (2008). https://doi.org/
10.1145/1345206.1345227

13. Cojean, T., Guermouche, A., Hugo, A., Namyst, R., Wacrenier, P.A.: Resource
aggregation for task-based Cholesky factorization on top of modern architectures.
Parallel Comput. 83, 73–92 (2019). https://doi.org/10.1016/j.parco.2018.10.007

14. Cosnard, M., Marrakchi, M., Robert, Y., Trystram, D.: Parallel Gaussian elimina-
tion on an MIMD computer. Parallel Comput. 6(3), 275–296 (1988). https://doi.
org/10.1016/0167-8191(88)90070-1

15. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: Flame: formal
linear algebra methods environment. ACM Trans. Math. Softw. 27(4), 422–455
(2001). https://doi.org/10.1145/504210.504213

16. Gustavson, F., Karlsson, L., K̊agström, B.: Distributed SBP Cholesky factorization
algorithms with near-optimal scheduling. ACM Trans. Math. Softw. 36(2), 1–25
(2009). https://doi.org/10.1145/1499096.1499100

17. Jacquelin, M., Zheng, Y., Ng, E., Yelick, K.: An asynchronous task-based fan-both
sparse Cholesky solver. SIAM J. Sci. and Stat. Comput. 9(2), 327–340 (2016).
https://doi.org/10.1137/1.9781611975215.8

18. Kim, K., Rajamanickam, S., Stelle, G., Edwards, H.C., Olivier, S.L.: Task par-
allel incomplete Cholesky factorization using 2D partitioned-block layout. arXiv
preprint arXiv:1601.05871 (2016)

150 O. Beaumont et al.

19. Kurzak, J., Buttari, A., Dongarra, J.: Solving systems of linear equations on the
CELL processor using Cholesky factorization. IEEE Trans. Parallel Distrib. Syst.
19(9), 1175–1186 (2008). https://doi.org/10.1109/TPDS.2007.70813

20. Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.M.: Scheduling dense linear algebra
operations on multicore processors. Concurr. Comput. Pract. Exp. 22(1), 15–44
(2010). https://doi.org/10.1002/cpe.1467

21. Pérez, J.M., Badia, R.M., Labarta, J.: A flexible and portable programming model
for SMP and multi-cores. Technical report, Barcelona Supercomputing Center -
Centro Nacional de Supercomputacioń, June 2007

22. Quintana-Ort́ı, E.S., Quintana-Ort́ı, G., van de Geijn, R.A., Van Zee, F.G., Chan,
E.: Programming matrix algorithms-by-blocks for thread-level parallelism. ACM
Trans. Math. Softw. 36(3) (2009). https://doi.org/10.1145/1527286.1527288

23. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra
algorithms on distributed-memory multicore systems. In: SC 2009 (2009). https://
doi.org/10.1145/1654059.1654079

