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Advances in robotics and artificial intelligence (AI) technology have spurred a re-examin-
ation of technology’s impacts on jobs and the economy. This article reviews several key 
contributions to the current jobs/AI debate, discusses their limitations and offers a modified 
approach, analysing two quantitative models in tandem. One uses robot stock data from 
the International Federation of Robotics as the primary indicator of robot use, whereas the 
other uses online job postings requiring robot-related skills. Together, the models suggest 
that since the Great Recession ended, robots have contributed positively to manufacturing 
employment in the USA at the metropolitan level.
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Introduction

Researching how technological advances are 
changing the way we work is not a straight-
forward task. A major barrier to conducting 
this research is the deficit of appropriate data 
with which to do so. The seriousness of this 
deficit grows as the previously catch-all terms 
of “computer” and “information technology” 
give way to robotics, machine learning and 
artificial intelligence (AI). In this article, we 
examine how data deficiencies influence as-
sumptions behind contemporary estimates 
of impacts on employment, the most notable 
of which is that the relationship between 
robots and employment is invariant at the 
industry-region level. We also present alter-
native constructs for measuring robot im-
pact and apply them to a unique data set of 

online job postings, augmented by standard 
socio-economic data sources. Our findings 
suggest that the impacts of robotics vary 
across metropolitan areas, so discussions of 
these impacts should not be assumed to be 
generalisable across space.

Work and technology in the 20th century
While Braverman (1998) argued that craft 
skills were disappearing due to the adoption 
of 20th-century Fordist production methods, 
subsequent quantitative investigations suggest 
technology advances have been associated with 
increases in workers’ skill levels. For example, 
Autor, Levy and Katz (2003) found for the 
second half of the 20th century that increases 
in workers’ skills were directly attributable to 
computerisation.
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Models of skill-biased technical change 
(SBTC) or upskilling, however, do a poor job 
accounting for growing wage polarisation and 
growth in “low-skill” service jobs (Acemoglu 
and Autor, 2011). To address this, subsequent 
research, incorporating changing consumer 
preferences and offshoring susceptibility, finds 
computerisation to be a key factor in the redis-
tribution of middle-skill work towards the low- 
and high-skill ends of the labour market in the 
USA and Europe (Autor and Dorn, 2013; Goos 
et al., 2009).

While the econometric approach outlined 
above has been influential in policy debates 
about work and technology, it is one of many 
possible approaches to examining technology’s 
role in the changing nature of work. Sociology, 
management and organisational science re-
search highlights the social context of techno-
logical change by focussing on qualitative 
analyses, case studies and “microdynamics” 
(Adler, 1992, 7), often at the individual work-
place level. These approaches include critiques 
of the abstract conceptualisation of technology 
and re-emphasis on the physical nature of 
various workplace technologies—their “ma-
teriality”—and how they become incorporated 
into social systems (Leonardi, 2012; Orlikowski 
and Scott, 2008). This socially contingent per-
spective of technology generates nuanced sets 
of findings that differ from workplace to work-
place and complicate the generalised trends de-
scribed by statistical analysis.

A socially contingent perspective on technology’s 
influence on work at meso and macro scales im-
plies that machines are not the root “cause” of la-
bour market problems. Instead, problems of skill 
bias, wage polarisation and technology-induced 
unemployment are fundamentally political ra-
ther than technological problems (Grint and 
Woolgar, 2013). For example, what is interpreted 
as “upskilling” may actually be “up-credentialing”, 
driven by increased policy emphasis on degree-
seeking (Keep and Mayhew, 2010) and increased 
employer selectiveness (Cappelli, 2012, 2014).

Even if machines are merely vehicles for 
politically induced labour market failures, the 
question of whether “this time is different” re-
mains a pressing one. With the exception of 
Gordon (2012, 2014), who has been sceptical 
of the ability to innovate our way out of the 
long-term post-1973 period of economic stag-
nation, economists have generally and until 
recently been optimistic about the capacity of 
technological progress to generate a net surplus 
of jobs: the virtuous cycle of rising wages and 
increased demand should spur labour reallo-
cation to ever more useful functions. However, 
according to Brynjolfsson and McAfee (2014), 
we are now at an “inflection point”, whereby 
technological capabilities will outpace society’s 
ability to absorb the disruption that they cause, 
and radical changes in safety nets and educa-
tion policy are in order.

With these issues in mind, this article inquires 
whether robots are exerting pressures on labour 
markets above and beyond that seen in pre-
vious application of industrial automation. The 
answer we provide uses the case of industrial 
robots (those used in manufacturing operations), 
for two key reasons. First, even though the bulk 
of future disrupting technologies lie outside of 
manufacturing (for example, drones, autonomous 
vehicles, personal care robots), they will largely be 
based on the technology pioneered in industrial 
robotics. Second, industrial robots are already 
widely and systematically used in manufacturing, 
as opposed to service and consumer robots, which 
are in the early stages of adoption.

This article first summarises the sparse litera-
ture on robotics impacts on employment, fol-
lowed by the introduction of a new indicator 
of robotics presence in a regional economy, 
and employs it in an empirical model using a 
novel data source, real-time labour market 
information (RTLMI) that is derived from 
online job postings. We find that this new indi-
cator performs better than others in explaining 
manufacturing job growth and that the effect of 
robots is a slightly positive one.
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Robots and work: empirical evidence
In contrast to the substantial literature on the 
general impacts of information and communi-
cations technologies, the body of work to date 
on the specific economic impact of robots is 
scarce (Graetz and Michaels, 2018) and em-
ploys a variety of methods, time frames, geog-
raphies and data sources. We broadly categorise 
the current robot-impacts literature in terms of 
estimates of impacts to workers, distinguishing 
by whether robots (i) have neutral effects on 
numbers of workers or (ii) displace workers. 
The studies with neutral results, which we label 
“robots-as-status-quo” research, are Graetz and 
Michaels (2018) and Jäger et al. (2015). Those 
that link labour displacement to robots, which 
we label “robots-as-displacers”, are Acemoglu 
and Restrepo (2017) and Frey and Osborne 
(2017).

The assertion that robots increase labour 
productivity is uncontroversial, putting robot-
specific research in line with the SBTC con-
sensus that machines generally make human 
work more productive (Table 1). In accord-
ance with the current state of SBTC research 

is Graetz and Michaels’ (2018) finding that the 
availability of work is essentially a zero-sum 
game among workers. That is, while Graetz and 
Michaels do not find direct evidence of worker 
displacement, they do find that when additional 
hours of work become available, they go to 
workers with higher skill levels.

This robot-specific skill-biased pattern is 
similar to that associated with other types 
of automation technology (see, for example, 
Autor et  al., 2003, who find that workplace 
computerisation reallocates new jobs to those 
with more education). While rectifying these 
skill disparities has been a vexing policy 
problem for decades, these findings at least sug-
gest that the recent state of robotics technology 
does not portend the onset of mass techno-
logical unemployment. Jäger et al. (2015) sug-
gest robots may be locally job-preserving, as a 
high degree of robot use in an establishment 
is associated with a reduced likelihood of that 
establishment’s production relocating to an-
other country.

However, the “robots-as-displacers” results 
are more concerning because they suggest that, 

Table 1.  Summary of robot-impact research

Year Title Employment impacts Other results

Robots-as-status-
quo

    

  Graetz & 
Michaels (G&M)

2018 ‘Robots at Work’ No effect on overall production hours 
worked; slight reduction in hours 
worked by lower-skilled workers

Increase labour product-
ivity; Increase value added

  Jäger et al. 2015 ‘Analysis of the Impact 
of Robotics Systems on 
Employment in the EU’

No effect on number of production 
workers employed

Increase labour product-
ivity; decrease likelihood 
of offshoring production

Robots-as-
displacers

    

  Frey & Osborne 2013 ‘The Future of Employ-
ment: How Susceptible 
Are Jobs to Computer-
ization’

47% of current occupations at high 
risk of automation

Not tested

  Acemoglu & 
Restrepo (A&R)

2017 ‘Robots and Jobs: Evi-
dence from US Labour 
Markets’

One robot/thousand workers de-
creases employment by 3–6 workers 
and aggregate wages by 0.25%–0.75%

Increased labour product-
ivity (but of insufficient 
magnitude to mitigate 
displacement)
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rather than setting in motion a reallocation of 
skills within the human workforce, robotics 
(and AI more generally) is instead shrinking 
the size of  the labour market accessible to 
those who perform work that is more easily 
automatable.

As previously noted, the four studies re-
viewed here are not perfectly comparable. 
Unlike the others, Frey and Osborne (2013) is a 
probabilistic forecast of threats to current occu-
pations that can be expected in the near future 
based on mapping specific job tasks, as defined 
by the Standard Occupational Code (SOC), to 
experts’ assessments of technological capabil-
ities and trajectories. It applies to AI in general 
rather than robots specifically. So, while the 
model predicts significant continued displace-
ment to manufacturing jobs, it also includes lo-
gistics and administrative jobs that lie outside 
the purview of traditional industrial robots. 
According to the model, most non-supervisory 
production occupations have at least a 50% 
chance of being “computerized”, while the bulk 
has at least a 75% chance.

Acemoglu and Restrepo (2017) build on 
Graetz and Michaels (2018) by deriving a 
sub-national estimation of robot use (or “ex-
posure”) from International Federation of 
Robotics (IFR’s) industry and country tabu-
lations. Because the IFR only provides robot 
sales and stock data for countries and indus-
tries, Acemoglu and Restrepo map robot ex-
posure by industry onto US Commuting Zones, 
based on the concentration of each industry 
within each commuting zone. Their findings 
suggest that robots exert substantial downward 
pressure on local employment and wages and 
that this pressure becomes intensified when 
inter-regional trade is taken into account.

Despite the divergent findings of the nascent 
robotics-impact literature, they are not neces-
sarily contradictory. Differing results may be 
the result of the use of different methods, data 
sources, geographies and time periods in ques-
tion. For example, robots may simultaneously 

drive productivity growth with little job de-
struction when aggregated across the EU and 
OECD member states—as Jäger et  al. and 
Graetz and Michaels suggest—and displace 
workers and reduce salaries in the USA at the 
same time. While the geographic differential in 
robot uptake and impacts gets lost in the hyper-
bole of the media debate on the topic, Leigh 
and Kraft (2017) show that regions within the 
USA have substantial differences in their ro-
botics knowledge bases and that these differ-
ences will likely affect the quantity and quality 
of local automation capabilities.

Robotics data in perspective
The unavailability of data on robotics pene-
tration in industry remains a significant im-
pediment that accounts for the discrepancy in 
(and shortage of) robot-impact research. There 
is no North American Industrial Classification 
System (NAICS) code to single out robotics 
manufacturers or consulting firms. Nor is there 
a SOC to identify employees who work directly 
with robots.1 Consequently, there is no way to 
isolate robot users or makers in these com-
monly used, publicly available data sets.

One way to overcome the robotics data gap 
is to collect original data on robots. However, 
due in part to the time and expense involved 
in generating original data sets of this nature, 
these efforts have been scarce.

There are two examples to date of ori-
ginal robotics data collection. The first ex-
ample, a Fraunhofer Institute report to the 
European Commission (Jäger et  al., 2015), 
uses one question from the 2009 European 
Manufacturing Survey (EMS) about robot 
utilisation to estimate several related impacts 
(summarised above). The question regarding 
robot utilisation on the EMS asks respond-
ents to rate their use of robots on a three-
point “low-medium-high” scale, so exact 
robot-to-job or robot-to-output associations 
are not possible.
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The second example, Leigh and Kraft (2017), 
generated a robotics “census” by mining pro-
prietary business databases for robotics firms in 
the USA. The resulting data set demonstrates 
the uneven geography of robotics suppliers and 
service providers (called integrators, discussed 
below). While the census demonstrates that 
robotics-related employment is geographic-
ally correlated with the manufacturing sector, 
the actual use of robots cannot be determined 
from these data. Therefore, the census cannot 
be used to make definitive links to changes in 
employment, wages or productivity.

The other two studies (Graetz & Michaels 
[G&M] and Acemoglu & Restrepo [A&R]) 
use data from the IFR, which has been tracking 
robot sales since the early 1990s. The IFR sells 
a longitudinal data set of robot sales and robot 
stock (the latter is estimated by applying de-
preciation rates to previous years’ sales) by 
country and industry for each year from 1993 
to the present.

While the IFR data are the only of their 
type available, they present several problems. 
First, is that the concept of “robot stock” is an 
approximation based on annual robot sales. 
These stocks are inferred by depreciating accu-
mulated robot sales to each country based on 
the assumption of a 12-year working life of a 
robot—a number which the IFR itself acknow-
ledges is uncertain (2017). Robotics is a rapidly 
developing technology, so it is not unreason-
able to assume that the rate of obsolescence is 
increasing.2

In fact, robot sales in North America (the 
bulk of which the USA is responsible for) 
experienced an abrupt discontinuity be-
ginning in 2010, three years after the end 
of both Graetz and Michaels’ (2018) and 
Acemoglu and Restrepo’s (2017) time series 
(see Figure A1 in Supplementary Appendix). 
In North America, annual sales records were 
set every year from 2010 to 2018, while the 
price per unit has steadily declined (based 
on RIA data underlying Supplementary 
Figure A1, the price per robot unit in North 

America fell from just over $83,000 in 1999 
to $53,500 in 2018). However, the extent to 
which this period represents decisions to re-
place old robots or to add new robots where 
none had previously existed is unknown. Do 
these sales increases coincide with increases 
in robotics technology, declining costs, 
deepening of pent-up capital after the Great 
Recession, or some combination thereof? 
This sharp break in robotics sales patterns 
presents researchers with a difficult choice: 
limiting analyses to pre- or post-Great 
Recession robot diffusion trends satisfies an 
important condition for internal validity, but 
the results may not be generalisable to sub-
sequent periods.

Furthermore, reporting sources have 
changed over the course of the IFR’s data col-
lection efforts, so annual robot stock figures are 
not fully comparable over time. Most signifi-
cantly, no sales data were reported for North 
America until 2004 (International Federation 
of Robotics, 2017), so any estimates of US 
robots prior to that year must be derived from 
other nations’ diffusion patterns.

Alternative constructs of robot exposure 
and their limitations
Studies of the impacts of technology de-
fined broadly have sidestepped data prob-
lems by using expansive data sets in terms 
of both observations and time periods (for 
example, Autor, Katz and Kearney, 2008). 
These investigations are also afforded some 
leeway in conceptualising the primary vari-
able, technology, because “computerization” 
applies in the same general sense to all in-
dustries, from accounting and finance to 
manufacturing and agriculture. Furthermore, 
for at least the second half of the 20th cen-
tury, computers have been so ubiquitously 
interwoven into daily life in both work and 
leisure that it makes little sense to try to the-
orise one overarching mechanism for how 
they “affect” a person’s employment.
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However, researchers interested in specific 
technological niches such as robots cannot re-
sort to this rationale, and robot-specific impact 
studies must be more carefully operationalised. 
A&R’s term, “Robot Exposure”, is an intuitive 
and useful name for the concept at stake here, 
reflecting a concrete, epidemiological notion of 
exposure. However, as discussed above, avail-
able robot data do not necessarily provide 
ready analogues to epidemiological vectors.

Two approaches to measuring robot exposure 
have so far been used: Graetz and Michaels’ 
“robot density” and A&R’s aforementioned 
“robot exposure”. Both derive worker–robot 
contact measures by creating a ratio of robots 
to human labour in each industry. Both use 
the IFR’s robot stock estimates as the “robot” 
input. G&M’s robot density uses “millions of 
hours worked” as the labour input, while robot 
exposure uses “thousands of workers”.

In addition to underlying problems with 
robot data, both of these constructs, when op-
erationalised empirically, employ question-
able assumptions that threaten their construct 
validity. The first of these assumptions is that 
robots are uniformly diffused and employed, 
and the second is that their uses and impacts 
outside of the manufacturing sector are com-
parable to those within the sector.

Not all robots are “created” equal
Even if we accept that robot stock data are, on 
average, reasonable estimates of the number of 
robots in use each year, the more problematic 
assumption is that the number of robots in use is 
in fact the key determinant of other employment-
related outcomes. Robots have a wide variety of 
specifications and are used in a wide variety of 
applications. For example, some perform light-
weight repetitive tasks at high speeds, while 
others may manipulate, weld or cut large pieces 
of material more methodically. The number of 
possible combinations of relationships between 
robots, other automation equipment, workers 
and output is essentially limitless. Condensing 

the complexity of the human–robot relation-
ship to one simplified parameter is an out-
growth of the main problem of the task model 
upon which this research is based: generalisa-
tions that divide work—whether performed 
by humans or machines—into a few tractable 
categories break down at all but the most ab-
stract and aggregate levels of analysis.

Another problematic abstraction arising 
from the “robot stock” variable is that the pri-
mary mechanism for industrial robot diffusion, 
robot integration, is overlooked. Industrial ro-
botic systems are planned, engineered, installed 
and often sold by specialised engineering firms 
called robotics systems integrators. Integration is 
a substantial endeavour: Leigh and Kraft (2017) 
show that in the USA, integrators at specialised 
automation engineering firms account for two-
thirds of overall robotics-related employment.

Estimates for integration costs, however, 
are difficult to attain for several likely reasons. 
For one, integrators may not want to disclose 
costs publicly because they must routinely bid 
against other firms for new jobs. For another, 
the process of integration is highly variable 
and complex, preventing the establishment 
of standard pricing. Differing production pro-
cesses, automation goals and factory cap-
abilities ensure that engineering challenges 
presented to integrators remain novel.

Robotic hardware is not the sole deter-
minant of the costs and consequences of ro-
botic processes. An encouraging aspect of 
A&R’s analysis is that their results stand up 
well to controls for capital expenditures—both 
those from IT specifically and the US Bureau 
of Labor Statistics’ (BLS) account of general 
capital stocks—and Leigh and Kraft’s (2017) 
measure of local robot-related employment, 
suggesting that the purchase of robots is inde-
pendent, at the industry level, from other capital 
spending. However, it is far from clear how in-
tegrator costs are reported. Some of these costs 
are for software and computing (for example, 
machine vision), while some are for hardware 
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(for example, physical robots and end-of-arm-
tools). Some of these expenses are simply for 
the hourly costs of engineering services.

The high variability in robotic automation 
processes—and thus diffusion and depreci-
ation—confounds attempts to apply gener-
alised robotic diffusion patterns over time to 
geographically specific places. A&R’s model, 
which infers sub-national robot exposure pat-
terns from national-level data weighted by 
commuting zone industrial mixes, is particu-
larly vulnerable to this limitation. The “robot 
exposure” measure assumes that the nature 
and effects of robot use in a large auto plant in 
Michigan is essentially the same as it is in a large 
auto plant in South Carolina, and that small 
and medium-sized auto suppliers use robots in 
a fashion similar to their larger counterparts 
across the country. This is problematic not only 
because of the variability in the integration pro-
cess itself, but also because prior research sug-
gests that both plant size and geography are 
important and fundamental factors in adoption 
of technology. For example, intra-metropolitan 
differences in locations of metalworking firms 
are highly predictive of whether they chose to 
adopt programmable automation technology 
(Harrison et  al., 1996), and smaller firms are 
consistently found to be less likely to adopt ad-
vanced technology (Gomez and Vargas, 2009; 
Kelley and Helper, 1999). Additionally, national 
culture strongly shapes attitudes towards tech-
nology and technicians within firms, thereby 
influencing the ultimate performance and prod-
uctivity of the technology (Gertler, 1995).

Impacts of robots used outside of 
manufacturing
As it is applied in A&R, the “robot exposure” 
measure includes manufacturing subsectors at 
the three-digit NAICS level, and construction/
extraction, utilities and education/research sec-
tors at the two-digit level. However, outside of 
manufacturing, robots have minimal presence 
and are unlikely to have the same “effects” on 

workers as they do in manufacturing, where 
they have been systematically used for sev-
eral decades. For example, in 2007, the IFR re-
ported that 50 robots were used in the USA 
in the construction and extraction industry,3 
while workers in the industry, according to 
EUKLEMS, were about 7.8 million. Thus, we ar-
rive at a robot exposure figure of 0.0064 robots 
per thousand workers.

The assumption that this tiny number of 
robots meaningfully affects labour market out-
comes is untenable. The error compounds when 
the exposure factor is applied to all local US la-
bour markets. Fifty robots obviously cannot be 
distributed across 709 commuting zones; most 
will have no construction robots—and thus no 
exposure. Because construction employment is 
a locally traded industry and relatively constant 
as a percentage of employment across labour 
markets—whereas manufacturing varies sig-
nificantly—the “effect” of these 50 robots na-
tionwide will be disproportionately large in 
most labour markets, and disproportionately 
small in the one or several that actually have 
these robots. The same problem applies to the 
utility sector.

Moreover, the “education and research” 
sector should be excluded from the exposure 
measure for a different reason altogether, 
which is that educational robots do not fall 
within the same theoretical framework. Little, 
if any, robot-related displacement would be ex-
pected in the sector. Educators increasingly use 
robots as instructional tools as the demand for 
robotics skills in the workplace rises. While a 
limited number of robots may be used in bio-
medical research labs in place of technicians, 
technology researchers conduct research on the 
robots themselves, suggesting that increased 
numbers of robots in research would be driven 
by more researchers and teams engaged in 
this area.

To date, the most impactful and ubiquitous 
types of non-manufacturing robots are those 
used in warehouses and distribution centres. 

D
ow

nloaded from
 https://academ

ic.oup.com
/cjres/article/13/1/77/5648036 by G

eorgia Institute of Technology user on 02 O
ctober 2020



84

Leigh et al.

However, these robots were not commer-
cially available by the end of previous studies’ 
time series. Furthermore, their pattern of dif-
fusion today is highly skewed. E-commerce 
giant Amazon bought the first-mover firm in 
warehouse robots, Kiva, for its exclusive use. 
Consequently, Amazon’s estimated 100,000 
warehouse robots (Wingfield, 2017) are still not 
included in IFR statistics, since Amazon does 
not sell its robotic systems on the open market. 
Other warehouse robot makers are starting to 
emerge in the market and should eventually 
be part of IFR statistics, though the results will 
continue to under-represent warehouse robots 
until Amazon robots are incorporated.

Data and methods

We use two approaches to address the prob-
lems with IFR robot stock data outlined above. 
The first approach modifies A&R’s robot ex-
posure variable, confining both the construc-
tion of the variable and the estimated impacts 
to the manufacturing industry. We call this the 
Modified Robot Exposure (MRE) variable. 
The second approach uses an alternative data 
source, labour market data, to create an indi-
cator for robot exposure.

While our approaches may be compared on 
conceptual grounds to those in the previous 
studies discussed above, they are not replica-
tions because our labour market data (labelled 
RTLMI and explained below) begins in 2010 
and cannot support the investigation of prior 
time periods. Therefore, this article should be 
viewed primarily as a comparison of two new 
measurement constructs of robotics’ impacts.

Modified Robot Exposure
MRE limits the robot stock-derived exposure 
variable to the manufacturing industry, thereby 
eliminating the outsized influence of sectors 
that have minimal robot use but significant 
employment. Otherwise, it works similarly to 
the exposure measure created by A&R, with 

national-level industry concentrations of robots 
being applied at the local level. However, we 
use US Census-defined core-based statistical 
areas (CBSAs) instead of commuting zones 
as labour market boundaries. CBSAs include 
metropolitan and micropolitan statistical areas, 
but exclude counties that are not part of an 
urban cluster of 10,000 people.4 While com-
muting zones are more representative of actual 
labour markets and include more members 
of the US workforce, we use CBSAs for two 
reasons. The first is that non-metropolitan and 
non-micropolitan counties are subject to sub-
stantial suppression of employment data at the 
level of manufacturing subsectors, meaning 
that missing data would undermine accurate 
estimates for small counties. The second is that 
our labour market data are also biased towards 
urban areas (see subsequent section on Data 
Limitations), excluding non-metropolitan areas 
maintains relative consistency in the universes 
across independent and dependent variables.

Robotics Skill Demand Index
Using labour market data allows us to adjust, 
conceptually, the mechanism whereby jobs are 
impacted. With skill demand, the theorised im-
pact no longer stems directly from the robot. 
Rather, it comes from the skills required by the 
presence of a robot. This slight shift in where 
the causal burden is applied adds a new di-
mension to existing robot-impact research. We 
call the resulting measure the Robotics Skill 
Demand Index (RSDI).

The input for the RSDI comes from a novel 
source called RTLMI. RTLMI is labour market 
data that are extracted from internet job post-
ings on a continual basis. Of the several RTLMI 
vendors, we chose Burning Glass Technologies 
(BGT) for our study. Using proprietary al-
gorithms, BGT collects online job postings 
on a daily basis, cleans the raw data and for-
mats it into a structured data set. Although it 
has primarily been used by human resources 
departments and workforce and economic 
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development agencies, it has emerged as a 
useful tool for academic researchers. Recent 
RTLMI-based work analysed labour market 
skill demands (Deming and Kahn, 2017; Mason 
et al., 2016; Wardrip et al., 2017), the adoption 
of labour-saving technologies (Hershbein and 
Kahn, 2016), and job recruiting and searching 
activities (Banfi and Villena-Roldán, 2016; 
Modestino et al., 2016).

We utilise a variable created by BGT called 
“skill clusters” to derive our composite robot 
indicator. BGT defined these 559 skill clusters 
by subjecting the text of job ads to k-means 
cluster analysis and additional qualitative scru-
tiny (B. Taska, Personal Communication). Each 
job ad is, in turn, associated with one or more 
skill clusters based on the text of the ad. Out 
of BGT’s 559 clusters, there is one specifically 
called “robotics”. Although the robotics skill 
cluster appears in 91,214 job ads in our data 
set, this frequency is insufficient for regression 
analysis. Thus, to achieve enough robot-related 
skill observations for the RSDI, we developed 
a composite measure of skill clusters related 
to and including robotics. Skill clusters were 
selected for the RSDI by calculating the mag-
nitude of correlation between the robotics skill 
cluster and all other skill clusters in the data-
base for job ads in the manufacturing industry. 
The RSDI comprised 15 skill clusters with the 
highest correlation coefficients (>0.04) (see 
Table 1).

The RSDI is further divided into “broad” 
and “narrow” definitions because the skills 
contained in the index are themselves general 
and not uniquely applicable to robots.5 The 
broad definition includes all 15 skill clusters 
and the robotics skill cluster (16 total clus-
ters), while the narrow definition includes only 
the top five and the robotics skill cluster (six 
total clusters). Dividing the RSDI into these 
two versions enables us to gauge their relative 
performance in empirical tests, and thereby to 
assess whether the RSDI classification scheme 
is diluted by casting too wide of a net. In the 

first model presented in the “Results” section, 
the broad definition is statistically significant, 
while the narrow is not (although its T-value is 
1.4). This suggests that the construct sacrifices 
some fidelity capturing robotics work in ex-
change for better statistical power. However, 
in the second model, only the narrow definition 
achieves statistical significance, indicating that 
some precision can be gained by zeroing in on 
robot-specific jobs. Either way, the RSDI con-
struct unavoidably captures some jobs that are 
not directly related to robots.

The actual Robotics Skill Demand Index 
used in the regression analyses is calculated by 
dividing the number of job postings containing 
at least one skill cluster represented in Table 1 
by the total number of manufacturing industry 
job postings within each CBSA in the US. 
Separate RSDIs are calculated for broad and 
narrow definitions.

The low correlations between the skill clus-
ters (Table 2) are a methodological artefact. 
That is, since the k-means clustering process is 
used to establish unique groupings, high correl-
ation coefficients are not expected. This is par-
ticularly the case given the significant internal 
variation in the data set stemming from its 559 
skill clusters and 9,856,829 total manufacturing 
job-posting observations.

Despite low statistical correlations, the skill 
clusters included in both the broad and narrow 
robot skill demand indices are qualitatively re-
lated to industrial robot use and representative 
of advanced manufacturing in general.

Data limitations
As we have emphasised, no existing data set 
is ideal for examining the impact of robotics. 
While RTLMI correlates over time with the 
US BLS Job Openings and Labor Turnover 
Survey (JOLTS),6 it contains inherent biases. 
RTLMI data are not derived from standard-
ised or mandatory surveys, so they are subject 
to changes in posting strategies by employers 
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over time. Since RTLMI only contains on-
line postings, it provides better coverage of 
jobs with higher skill and education require-
ments (Carnevale et al., 2014), as well as jobs 
located in urbanised areas. As such, it misses 
word-of-mouth jobs, and most significant for 
the present study, internally advertised union 
positions.

We employ several strategies to minimise 
the effects of these biases, including designing 
an RSDI measure that internalises changes 
in overall job postings over time, and adding 
a unionisation variable to the model. We also 
limit our empirical test to only CBSAs with 
at least 1000 manufacturing job postings from 
2010 to 2015, to avoid potential bias caused by 
one or several large employers accounting for 
an outsized number of postings where online 
recruiting has limited penetration.

Empirical models
We employ two primary models to estimate 
the impact of robotics skill demand on re-
gional manufacturing labour markets. We call 
them the “Initial Conditions (IC) model” and 
the “Difference” model. The main difference 

between the two models is—as their names 
suggest—that the IC model uses starting con-
ditions in 2010 as independent variables, while 
the Difference model is a first difference model 
determined by changes in those conditions 
from 2010 to 2016. Both models are concep-
tually based on Glaeser et  al. (1992), where 
the outcomes are the ratio of log-transformed 
wages and employment in 2016 versus 2010.

To test the hypotheses that employment 
and wages grow faster when there is an initial 
condition of a high concentration of indus-
trial robots, we use RSDI and the “competing” 
measures of robot inputs as variables to explain 
the change in the ratio of manufacturing prod-
uctivity in 2016 to 2010.7 Control variables for 
the IC model include Census division dum-
mies, average employment and wage growth in 
metropolitan areas,8 the size and concentration 
of metropolitan manufacturing industry,9 the 
composition of durable manufacturing,10 and a 
“right-to-work” legislation dummy,11 since we 
expect union membership to exert a competing 
influence on our dependent variables. Control 
variables for the Difference model are change 
in metropolitan employment and wage, and a 

Table 2.  Robotics Skill Demand Index clusters ranked by correlation with Robotics Skill Cluster

Rank Skill Clusters Correlation Frequency % Posting RSDI definition

1 Computer-Aided Manufacturing 0.1351 487,373 5.0 Narrow
2 Mechanical Engineering 0.0954 560,776 5.7 Narrow
3 Welding 0.0878 373,363 3.8 Narrow
4 Drafting and Engineering Design 0.0858 703,780 7.2 Narrow
5 Engineering Software 0.0751 148,989 1.5 Narrow
6 Electrical Construction 0.0745 168,960 1.7 Narrow and Broad
7 Engineering Activities 0.0568 517,778 5.3 Narrow and Broad
8 Basic Electrical Systems 0.0567 373,693 3.8 Narrow and Broad
9 Schematic Diagrams 0.0532 239,218 2.4 Narrow and Broad

10 Electrical and Computer Engineering 0.0515 661,015 6.7 Narrow and Broad
11 Industrial Engineering 0.0492 380,644 3.9 Narrow and Broad
12 Machine Tools 0.0464 708,631 7.2 Narrow and Broad
13 Manufacturing Processes 0.0455 849,328 8.6 Narrow and Broad
14 Process Engineering 0.0437 405,092 4.1 Narrow and Broad
15 Machinery 0.0433 498,566 5.1 Narrow and Broad

N = 9,856,829. “Robotics” Skill Cluster, not shown, is also included in both narrow and broad definitions.
Source: BGT.

D
ow

nloaded from
 https://academ

ic.oup.com
/cjres/article/13/1/77/5648036 by G

eorgia Institute of Technology user on 02 O
ctober 2020



87

Robots, skill demand and manufacturing in USA

dummy representing change in right-to-work 
status. The Leigh and Kraft’s (2017) local robot 
industry explanatory variable is not included in 
the Difference model because it was only ob-
served for a single time period.

Further elaboration on these models 
including equations, assumptions and limita-
tions is included in the “Empirical Models” 
section of Supplementary Appendix.

Geography of robotics skill demand
The geographic distribution of robotics de-
mand defined by RSDI corresponds broadly 
with other indicators of robot penetration. 
Figures 1a and b show that robotics job demand 
is concentrated on the coasts and the Midwest 
region stretching south along the Interstate 75 
corridor.

Higher numbers of robotics job demand are 
on the coasts, but the higher concentrations are 
in the interior. This greater intensity of robot 
skill demand in the Midwest and Southeast 
regions reflects the skill needs of the more 
manufacturing-centric labour markets in these 
areas.

Results

We display two main sets of results: em-
ployment outcomes from both the IC and 
the “Difference” models. Only the models 
with employment outcomes are shown be-
cause none of the robot indicators register 
as statistically significant predictors of wage 
outcomes.

While the initial sample of metro areas in-
cludes 356 CBSAs based on the criterion of 
having at least 1000 job listings over the ana-
lysis period of the labour market data, four 
additional outlying CBSAs were removed from 
the analysis because they were detected as un-
usual and influential cases based on several cri-
teria, including Leverage (observations with 
extreme predictor values) and Cook’s Distance 
(influence of a case on the predicted mean), 

and Studentized residual values (difference be-
tween predicted and observed).

These outliers are all small metro areas, with 
relatively undiversified economies and less rep-
resentation in RTLMI. Factors such as a lack 
of industrial diversity, as well as plant openings 
or closings, will have outsized effects on input 
metrics for these communities. In general, our 
models were more accurate in predicting out-
comes for large metros than for small metros.

IC model
For this sample of 352 CBSAs, the average 
MRE value is slightly over 13 robots per thou-
sand workers (Table 3). The average metro-
wide value for the broad Robotics Skill Demand 
Index (RSDI) is 22.7% of job postings, while 
the more restrictive narrow RSDI is 9.3% of 
postings. With an average location quotient of 
1.26, and an average percentage of employment 
in durable manufacturing of 55.4% in 2010, this 
is a relatively manufacturing intensive group of 
CBSAs (by design, as previously explained).

For the IC model, the MRE variable and the 
RSDI both have significant, positive effects on 
employment (see Table 4). While the narrow 
RSDI has a slightly stronger relationship to 
the manufacturing employment ratio than does 
MRE, the broad RSDI has no discernible re-
lationship. Because the dependent variable is 
in natural log form, a unit change in either the 
narrow RSDI or MRE can be interpreted to 
predict a 0.2% increase in manufacturing em-
ployment ratio. In other words, a CBSA with 
either a one percent above average RSDI, or 
one more robot per thousand workers than 
average in 2010, can expect approximately 
0.2% more manufacturing employment growth 
than average by 2016 (with the understanding 
that growth is defined relative to size in 2010).

There is also a notable geographic difference in 
the regional manufacturing employment response 
to increased robotics skill demand in 2010. The East 
North Central census division, which is largely con-
tiguous with what is thought of as the historical US 
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Figure 1.  (a) Robotics skill demand (narrow definition) in CBSAs, 2015 (Magnitude). (b) Robotics skill demand (narrow 
definition) in CBSAs, 2015 (Concentration).
Source: Authors’ calculations of BGT.

D
ow

nloaded from
 https://academ

ic.oup.com
/cjres/article/13/1/77/5648036 by G

eorgia Institute of Technology user on 02 O
ctober 2020



89

Robots, skill demand and manufacturing in USA

manufacturing heartland, or the “rustbelt”, sees the 
largest employment increases when holding 2010 
robotics skill demand constant. There are likely 
regionally specific omitted variables contributing 
to these differences. The post-recession bailouts of 
the “Big 3” American auto companies and their 
subsequent employment rebounds (McNulty and 
Wisner, 2014) likely had some influence on the 
outsized manufacturing performance of the East 
North Central region, but would not have had as 
direct or significant of an effect on the East South 
Central and Pacific regions, each of which also 
showed strong manufacturing growth.

CBSAs with greater overall employment 
growth over the period had strong positive as-
sociations with robot skill demand (CBSA em-
ployment 2016/CBSA employment 2010), while 
those that paid higher initial manufacturing 
wages (average wage in manufacturing 
2010) experienced depressed growth. The pres-
ence of right-to-work (that is, anti-union) legis-
lation showed no significant effect.

Difference model
In contrast to the IC model, which uses only 
baseline 2010 values of explanatory robotics 

variables as predictors, the Difference model 
takes into account how these variables changed 
over the analysis period.

These changes were significant. The average 
change in robot exposure (MRE) nearly 
doubled over the time period, increasing from 
13.3 robots per thousand workers in 2010 to 
26.3 robots per thousand workers in 2015 (an 
increase of nearly 13 robots per thousand 
workers; see Table 5). This change significantly 
outpaced the RSDI, which grew by 5.8% and 
2.0% for broad and narrow definitions, re-
spectively, over the same time period. These 
differential growth rates are likely due to the 
underlying data sources. Recall that because 
the MRE measure is primarily a function of 
changes in industrial employment rather than 
robot use, the resulting robot exposure estimate 
could be inflated by the heavily robotised auto 
industry adding jobs after the Great Recession.

Results for the Difference model (see Table 6)  
show less agreement between the two pri-
mary explanatory variables. MRE’s effect on 
manufacturing employment change is neither 
statistically significant nor of any measurable 
magnitude. The change in the narrow RSDI 

Table 3.  Descriptive statistics, Initial Conditions (IC) model

Variables Mean Standard deviation Minimum Maximum

ln (manufacturing employment ratio (2016/2010)) 0.070 0.123 −0.233 0.419
Relative employment size of local robot industrya 2.980 10.613 0.000 123.213
MREb 2010 13.345 6.744 2.783 42.720
RSDIc Broad 22.697 8.829 0.000 58.824
RSDIc Narrow 9.309 5.824 0.000 32.787
ln (CBSA employment in 2016/CBSA employment in 2010) 0.105 0.075 −0.159 0.371
ln (average wage in manufacturing in 2010) 10.850 0.214 10.250 11.865
Average years of education (2010) 26.466 8.449 10.912 57.503
Employment size (in millions, 2010) 0.027 0.064 0.001 0.898
Location quotient in 2010 1.256 0.691 0.127 4.691
Percent durable manufacturing employment in 2010 55.422 17.764 7.195 93.716
Right-to-work legislation dummy 0.429 0.496 0.000 1.000

N = 352.
aLeigh and Kraft’s (2017) local robot industry variable.
bModified Robot Exposure (robots per 1000 workers).
cRobot Skill Demand Index; unit of measurement is percent.
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is the only robot-related variable that has 
an acceptably significant positive impact on 
growth in manufacturing employment in the 
Difference model.12 The magnitude of this ef-
fect in the Difference model, 0.2%, is roughly 
equivalent to its magnitude in the IC model.

Change in overall metro employment and 
the passage of right-to-work legislation have 
positive effects on employment, although 
only three Midwestern states—Michigan, 
Wisconsin and Indiana—changed their right-
to-work status (from non-right-to-work [RTW] 
to RTW) during the study period. As men-
tioned above, other regional idiosyncrasies, 
such as post-recession auto industry bailouts or 

concentrations of growing manufacturing sec-
tors, may also have contributed to the above-
average employment growth. As the IC model 
suggests, a state’s RTW status in 2010 had no 
impact on manufacturing employment five 
years later.

Discussion

These results broadly indicate for the post-
recession time period of 2010–2016 that robots 
and robotics-competent workers helped to 
bolster regional manufacturing employment. 
However, we may ask what exactly a 0.2% 
increase in the 2016–2010 manufacturing 

Table 5.  Descriptive statistics, Difference model

Variable Mean Standard deviation Minimum Maximum

Change in MREa (2010–2015) 12.981 6.458 −4.178 53.248
Change in RSDIb (broad, 2010–2015) 5.783 9.452 −22.745 42.308
Change in RSDIb (narrow, 2010–2015) 1.987 6.317 −20.960 23.896
Ln (CBSA employment in 2016/2010) 0.105 0.075 −0.159 0.371
Ln (CBSA average wage in 2016/2010) 0.130 0.041 −0.060 0.294
Change in years of education 0.213 0.149 −0.360 0.716
Change in RTW legislation (from non-RTW to RTW state) 0.105 0.307 0.000 1.000

N = 352.
aModified Robot Exposure (robots per 1000 workers).
bRobot Skill Demand Index; unit of measurement is percent.

Table 6.  Difference model, narrow RSDI definition; dependent variable = ln(manufacturing employment 2016/manufacturing 
employment 2010)

Variables Coefficient Standard error T-value Significance Beta

Constant −0.019 0.025 −0.750   
Change in MREa (2010–2015) 0.000 0.001 −0.540  0.026
Change in RSDIb (narrow, 2010–2015) 0.002 0.001 2.430 ** 0.113
Ln (CBSA employment in 2016/2010) 0.694 0.081 8.540 *** 0.423
Ln (CBSA average wage in 2016/2010) 0.176 0.151 1.160  0.058
Change in years of education −0.064 0.039 −1.630  0.077
Change in RTW legislation (from non-RTW to RTW state) 0.081 0.019 4.260 *** 0.202

Number of observations: 352; R2 (adjusted): 0.2621 (0.2493).
aModified Robot Exposure (robots per 1000 workers).
bRobot Skill Demand Index; unit of measurement is percent.
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employment ratio means. Insight into this ques-
tion can be gained from examining the mar-
ginal effects of the explanatory variables in 
several examples.

To do so, we first examine what happens to 
the theoretical mean case by applying coeffi-
cients from the IC model and increasing the 
initial stock of robots and demand for robot 
skills. Supplementary Table A2 in Appendix pre-
sents the descriptive statistics for the 352 metro 
areas included in the analysis, including average 
level of manufacturing employment, number 
of robots per thousand workers and percent of 
jobs requiring robot-related skills in 2010. The 
mean CBSA would have begun the period with 
26,929 manufacturing workers, 359 robots, and 
demand for robotics skills in 22.7% of its ad-
vertised manufacturing jobs. The model predicts 
this mean metro area would have added 1670 
manufacturing employees by the end of 2015, for 
a 2016–2010 employment ratio of 1.081. A metro 
area identical to the mean in all other aspects, but 
with one more initial robot per thousand workers 
(about 27 robots in this case), should see an in-
creased employment ratio of 1.083 (1.081*1.002), 
or about 65 additional manufacturing workers 
(Supplementary Table A3).

A one-standard deviation initial advan-
tage in robot stock (equal to a total of 541 
robots for a metro area of this size) predicts 
an employment advantage in 2016 of 436 jobs 
(Supplementary Table A3). Even though the 
unstandardised coefficients for MRE and RSDI 
are essentially equivalent, advantages in robot 
skill demand (RSDI) have a slightly better job 
payoff, as suggested by its higher beta coeffi-
cient (see Table 4). A  one-standard deviation 
initial advantage in robot skill demand (32% of 
metro-wide manufacturing job listings) should 
result in 487 more manufacturing jobs overall 
in 2016 (Supplementary Table A4). Thus, this 
one-standard deviation above average metro 
area would have generated 923 more jobs 
(436  +  487) in five years due to its initial ro-
botics advantage.

Note that these are the additional employees 
that are considered to be “due” to robots. In 
fact, the model suggests that promoting general 
regional economic growth, indicated by the 
all-sector employment ratio variable, remains 
the most impactful way to strengthen the 
manufacturing sector. In contrast, higher ini-
tial manufacturing wages depress future em-
ployment, a result not entirely unexpected as 
firms seek to locate in areas with lower labour 
costs. However, regions may not be able to rely 
on low wages as a business attraction feature 
for long, as the Difference model suggests that 
wage growth has a positive but not quite stat-
istically significant effect on manufacturing 
employment growth (Table 6). More competi-
tive—and more highly robotised—regional 
manufacturing sectors may require more highly 
skilled and better-compensated workers.

In reality, there is no such thing as a mean or 
average metropolitan area. Our model cannot 
capture all of the socio-political determinants 
that drive metro employment growth or de-
cline. Metro areas that did exceedingly well or 
poorly in stewarding their manufacturing econ-
omies may have done so for reasons that our 
models fail to reflect because of omitted vari-
ables or because the assumptions of linearity 
and normality in traditional ordinary least 
squares (OLS) modelling do not apply to re-
gional economic growth.

One way to account for these latent influences 
and problematic assumptions is to conduct a 
quantile regression, which fits data to specified 
quantile breakpoints of the dependent variable 
(2016–2010 employment ratio) rather than the 
mean, without discarding observations from 
other quantiles. Quantile regressions for the IC 
model at the 0.75 and median (0.5) levels gen-
erally agree with the OLS version of the model 
(see Supplementary Table A5). The agreement 
is strongest for the 0.75 model, where the pri-
mary explanatory variables maintain high 
levels of statistical power and see increases in 
magnitude over the general OLS IC model. 
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However, MRE does not appear to be an influ-
ential factor for those in the bottom quarter of 
manufacturing growth. Instead, RSDI (broad) 
maintains strong or moderate statistical power 
(>10%) for all quantiles. This difference across 
categories and the low correlations between 
the two indicators (see Supplementary Table 
A6 in Appendix) suggests that they are indeed 
measuring different aspects of robotics use.

Finally, we test our IC model against the ac-
tual employment changes in our sample metro 
areas. Using residuals, or differences in pre-
dicted versus observed values, we investigate 
qualitative patterns in the model’s accuracy. 
Some of the largest metro areas with important 
manufacturing economies are within the top 
20% of overall error (smaller residual abso-
lute value = smaller error) (see Supplementary 
Table A7). The model is very accurate in 
estimating San Francisco’s13 and Cincinnati’s 
growth and does reasonably well for other 
important manufacturing hubs such as Los 
Angeles, Philadelphia, Seattle, New York and 
Boston.14

To ground these predictions in terms of 
robots and employees, we use the Cincinnati 
metro area, for which our model predicts em-
ployment outcomes with a high degree of ac-
curacy. Here, its 2010 advantages of 2.5 robots 
per thousand workers and 0.75% higher ro-
botics skill demand are compared to a coun-
terfactual case where both indicators were 
equal to the sample average. Doing so suggests 
that Cincinnati’s initial robot stock (MRE) ac-
counted for an additional 622 manufacturing 
workers and its initial skill demand (RSDI 
broad) accounted for another 162, for a total 
of 783 manufacturing workers over the subse-
quent six years.

Specialised manufacturing metros are also on 
the list of CBSAs that fit closely to the model, 
including Milwaukee, Dayton, Rochester 
(NY), and Syracuse. The three primary US 
robotics research hubs—Boston, San Jose 
and Pittsburgh—also have small differences 

between actual and predicted values. These 
20  “well-fit” metro areas represented about 
29% of total US manufacturing employment 
in 2015.

The most notably absent metros (that is, 
metros where growth is poorly explained by 
the model) are four traditional “rust belt” 
communities: Buffalo, Cleveland, Detroit and 
Chicago. These omissions are confounding be-
cause based on previous research into metro-
level robotics-related employment (Leigh and 
Kraft, 2017), one could consider the stretch of 
Lake Erie shore from Buffalo to Detroit some-
what of a “Robotics Crescent”, due to its high 
concentration of robotics-related business es-
tablishments and employment. Although not 
geographically contiguous to the Lake Erie 
group, Chicago is second overall in number 
of robotics-related establishments. Including 
the smaller metro areas between Buffalo and 
Detroit, the Lake Erie robotics crescent and 
Chicago together account for 65% of robotics-
related employment (calculations based on un-
published data from Leigh and Kraft, 2017).

The fact that these key manufacturing econ-
omies do not conform to the model explains 
to a large extent why the local robotics in-
dustry variable derived from Leigh and Kraft 
(2017) does not exert any statistical power in 
predicting employment changes. However, 
the large errors for these metros remain con-
founding. None of them have exceedingly high 
or low robot exposure or robotics skill demand 
index values, nor did they experience drastic 
changes to their manufacturing economies 
during the period. These metros have high 
unionisation rates, meaning that some robotics 
jobs will be advertised internally through union 
channels (that is, not online) and thus not re-
flected in the RSDI metric. However, if in-
ternal union job advertising is the sole source 
of error, then we might expect the error to be 
in the same direction for all four of the rust belt 
metros. But this is not the case: the model over-
estimated impacts in Detroit and Buffalo and 
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underestimated Cleveland and Chicago. Like 
all statistical models, this one likely omits one 
or more key variables. The resulting discrepan-
cies suggest that there is a need for geograph-
ically informed qualitative research into the 
economic impact of robotics.

Even though the analyses presented in this 
article fall into the “robots-as-status-quo” side 
of the debate, they should not be viewed as 
contradictory to or irreconcilable with other 
analyses, such as Acemoglu and Restrepo (2017) 
and Frey and Osborne (2013). Notwithstanding 
the questionable assumptions in prior studies 
discussed here, it may be the case that robot 
adoption in the decade-and-a-half prior to the 
Great Recession did have a displacement ef-
fect, while at the same time better equipping 
those individual manufacturers and industrial 
ecosystems that more aggressively robotised to 
thrive during the recovery. This interpretation 
is consistent with other research that finds that 
regionally embedded innovative capacity pre-
vents “lock-in” and aids in resilience after nega-
tive shocks (Christopherson et al., 2014).

However, our research also strongly suggests 
that technology adoption may be a necessary 
but far from sufficient criterion for resilience, 
and that changing firm routines, industrial 
policy, corporate structures and labour rela-
tions are also important. A single-minded focus 
on technology upgrading is likely not helpful to 
firm or regional competitiveness. As has been 
apparent from previous rounds of “creative de-
struction”, overall growth measured at any scale 
tends to leave behind vulnerable workers with 
significant social costs.

Conclusion

This article’s unequivocal support for robots as 
supporting employment growth places it into 
the “robots-as-status-quo” category because 
it supports the traditional theory that tech-
nology leads to net job growth. Its other contri-
bution has been to critique and improve upon 

previously tested constructs for robot exposure. 
Three new constructs for measuring robot ex-
posure were tested, and two of them—a robot 
stock variable modified from Acemoglu and 
Restrepo (2017) and a Robot Skill Demand 
Index derived for online job postings—are as-
sociated with employment gains since 2010. 
Estimates of these gains can be quantified to 
the effect of an approximate 900 manufacturing 
employee gain over six years for a one-standard 
deviation above average level of robot use and 
demand for robotics-competent workers in 
manufacturing.

While these metrics are measuring different 
aspects of robot utilisation, they fall short of 
both a complete accounting of robots and a 
rigorously valid operationalisation of the con-
cept of robot exposure. Until better robotics 
data exist, the economic impact of robots will 
have to be estimated via inference and triangu-
lation, as well as more rigorously informed by 
how robots are used and diffused. Because of 
the limited diffusion of commercial robotics 
and other smart machines, geography must be 
closely considered before making generalisa-
tions. Regional economies in the USA demon-
strate significant variation in their response to 
technological change.

While econometric approaches have domin-
ated the “robots and jobs” debate so far, it is 
important to remember the value of qualitative 
and ethnographic approaches. Although they 
do not yield satisfying universal ratios relating 
robots to jobs, such approaches are able to con-
cretise the artefacts of workplace technology 
that large data sets render abstract. Qualitative 
and ethnographic methods can offer insights 
into how local and shop cultures, labour rela-
tions, and gender and ethnicity shape robot dif-
fusion and use. They can consider interactions 
between complex sets of variables that may 
lead to layoffs and wage stagnation, without 
needing to reductively operationalise them for 
statistical models. Importantly, qualitative in-
quiry can elicit workers’ perspectives on robot 
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adoption, which is an essential input into the 
current debate if the benefits of robotics diffu-
sion are to be shared broadly.

This article contributes to efforts to iden-
tify the economic impacts of robots by (i) re-
stricting analysis to the manufacturing sector, 
which is the only sector where robots are his-
torically and systematically used; (ii) triangu-
lating robot stocks and skill demand to derive 
a more holistic measure of robotics influence; 
and (iii) qualitatively disaggregating impacts 
according to geography. Data limitations con-
fine the analysis to a unique six-year period 
during which the USA recovered from a his-
toric recession. Thus, we cannot answer at this 
point in time whether the findings are unique 
to this period or are indicators of a long-term 
positive relationship between employment 
and robotics. Perhaps as robotics become both 
more user-friendly and “intelligent”, leading to 
easier integration and maintenance, another 
wave of displacement or upskilling will occur. 
This possibility underscores the imperative 
that advanced economies reduce labour pre-
cariousness through truly effective policies and 
programs for retraining and reskilling workers 
when upskilling is not possible. In conclusion, 
we observe that there is a clear need for more 
research, data and theory to answer critical 
questions about the future of work and all of 
the ensuing implications of that future for local 
and regional economies and society.

Supplementary material
Supplementary data are available at Cambridge 
Journal of Regions, Economy and Society online.

Endnotes

1	The Occupational Information Network (O*NET) 
taxonomy is based on the SOC taxonomy and con-
tains two expanded occupations that identify robot-
related work: robotics engineers (17–2199.08) and 
robotics technicians (17–3024.01). However, neither 

the US Census nor the Bureau of Labor Statistics 
(BLS) collects data at this level of disaggregation.
2	We note that Graetz and Michaels (2018) find no 
meaningful impacts on their results from the appli-
cation of different rates of depreciation to baseline 
1993 levels of robot stocks.
3	There are only 20 robots officially specified as 
being used in this industry, but if we distribute the 
remaining “unspecified” robots among the various 
industries at levels proportional to the distribution 
of “specified” robots, as A&R do, there should be 
roughly 30 more in this category.
4	We use the terms “metro” and “metro area” inter-
changeably with CBSA, even though CBSAs include 
“micro” areas (those with urban clusters of at be-
tween 10,000 and 50,000 residents). Since for ana-
lytical purposes we limit observations to those with 
a minimum level of job postings, we are effectively 
only considering metropolitan areas.
5	For example, welding, a cluster highly associated 
with robotics, is often performed manually (that is, 
without the aid of a robot). But welding is also one 
of the most highly robotised industrial applications 
(International Federation of Robotics, 2017), and 
based on ongoing qualitative research by the au-
thors, workers who operate welding robots generally 
must also be skilled welders.
6	Although they are not exactly comparable, JOLTS 
is the public time series that most closely resembles 
BGT. From January 2010 to January 2017, the two 
time series correlate closely, with a coefficient of 0.89 
(B. Taska, Personal Communication).
7	From Bureau of Economic Analysis.
8	From US Bureau of Labor Statistics Quarterly 
Census of Employment and Wages (QCEW).
9	From QCEW.
10	From QCEW.
11	Right-to-work (RTW) laws present barriers to union 
organising as part of a “business-friendly” strategy. 
With the exception of Kentucky’s county-specific 
laws, they are passed on a statewide basis. Since some 
metropolitan areas straddle more than one state, the 
core city was used to designate whether the CBSA 
was RTW or not during any part of the time frame, al-
though it is acknowledged that statewide RTW status 
may be a factor in intra-regional competition. RTW 
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status was derived from Peck (2016) and the National 
Conference of State Legislatures (2017) Right-to-
Work Resource webpage.
12	The broad RSDI, not shown, is significant at the 
0.1 level, but has a nearly negligible coefficient of 
0.0010072.
13	We use central city names to designate metro 
areas. For example, “San Francisco” represents 
the entire San Francisco–Oakland–Hayward, CA 
statistical area.
14	Boston did not make the “top 20%” list 
(Supplementary Table A6) but would be the next 
metro in line if the list were expanded.
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