

Robots, skill demand and manufacturing in US regional labour markets

Nancey Green Leigh,[®] Benjamin Kraft[®] and Heonyeong Lee[®]

College of Design, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA, nleigh@gatech.edu, Ben.Kraft@gatech.edu, Leehy@gatech.edu

Received on July 13, 2018; editorial decision on May 28, 2019; accepted on September 25, 2019

Advances in robotics and artificial intelligence (AI) technology have spurred a re-examination of technology's impacts on jobs and the economy. This article reviews several key contributions to the current jobs/AI debate, discusses their limitations and offers a modified approach, analysing two quantitative models in tandem. One uses robot stock data from the International Federation of Robotics as the primary indicator of robot use, whereas the other uses online job postings requiring robot-related skills. Together, the models suggest that since the Great Recession ended, robots have contributed positively to manufacturing employment in the USA at the metropolitan level.

Keywords: robotics, manufacturing, economic development, employment skills, technological change

Introduction

Researching how technological advances are changing the way we work is not a straightforward task. A major barrier to conducting this research is the deficit of appropriate data with which to do so. The seriousness of this deficit grows as the previously catch-all terms of “computer” and “information technology” give way to robotics, machine learning and artificial intelligence (AI). In this article, we examine how data deficiencies influence assumptions behind contemporary estimates of impacts on employment, the most notable of which is that the relationship between robots and employment is invariant at the industry-region level. We also present alternative constructs for measuring robot impact and apply them to a unique data set of

online job postings, augmented by standard socio-economic data sources. Our findings suggest that the impacts of robotics vary across metropolitan areas, so discussions of these impacts should not be assumed to be generalisable across space.

Work and technology in the 20th century

While [Braverman \(1998\)](#) argued that craft skills were disappearing due to the adoption of 20th-century Fordist production methods, subsequent quantitative investigations suggest technology advances have been associated with increases in workers’ skill levels. For example, [Autor, Levy and Katz \(2003\)](#) found for the second half of the 20th century that increases in workers’ skills were directly attributable to computerisation.

Models of skill-biased technical change (SBTC) or upskilling, however, do a poor job accounting for growing wage polarisation and growth in “low-skill” service jobs (Acemoglu and Autor, 2011). To address this, subsequent research, incorporating changing consumer preferences and offshoring susceptibility, finds computerisation to be a key factor in the redistribution of middle-skill work towards the low- and high-skill ends of the labour market in the USA and Europe (Autor and Dorn, 2013; Goos et al., 2009).

While the econometric approach outlined above has been influential in policy debates about work and technology, it is one of many possible approaches to examining technology’s role in the changing nature of work. Sociology, management and organisational science research highlights the social context of technological change by focussing on qualitative analyses, case studies and “microdynamics” (Adler, 1992, 7), often at the individual workplace level. These approaches include critiques of the abstract conceptualisation of technology and re-emphasis on the physical nature of various workplace technologies—their “materiality”—and how they become incorporated into social systems (Leonardi, 2012; Orlikowski and Scott, 2008). This socially contingent perspective of technology generates nuanced sets of findings that differ from workplace to workplace and complicate the generalised trends described by statistical analysis.

A socially contingent perspective on technology’s influence on work at meso and macro scales implies that machines are not the root “cause” of labour market problems. Instead, problems of skill bias, wage polarisation and technology-induced unemployment are fundamentally political rather than technological problems (Grint and Woolgar, 2013). For example, what is interpreted as “upskilling” may actually be “up-credentialing”, driven by increased policy emphasis on degree-seeking (Keep and Mayhew, 2010) and increased employer selectiveness (Cappelli, 2012, 2014).

Even if machines are merely vehicles for politically induced labour market failures, the question of whether “this time is different” remains a pressing one. With the exception of Gordon (2012, 2014), who has been sceptical of the ability to innovate our way out of the long-term post-1973 period of economic stagnation, economists have generally and until recently been optimistic about the capacity of technological progress to generate a net surplus of jobs: the virtuous cycle of rising wages and increased demand should spur labour reallocation to ever more useful functions. However, according to Brynjolfsson and McAfee (2014), we are now at an “inflection point”, whereby technological capabilities will outpace society’s ability to absorb the disruption that they cause, and radical changes in safety nets and education policy are in order.

With these issues in mind, this article inquires whether robots are exerting pressures on labour markets above and beyond that seen in previous application of industrial automation. The answer we provide uses the case of industrial robots (those used in manufacturing operations), for two key reasons. First, even though the bulk of future disrupting technologies lie outside of manufacturing (for example, drones, autonomous vehicles, personal care robots), they will largely be based on the technology pioneered in industrial robotics. Second, industrial robots are already widely and systematically used in manufacturing, as opposed to service and consumer robots, which are in the early stages of adoption.

This article first summarises the sparse literature on robotics impacts on employment, followed by the introduction of a new indicator of robotics presence in a regional economy, and employs it in an empirical model using a novel data source, real-time labour market information (RTLMI) that is derived from online job postings. We find that this new indicator performs better than others in explaining manufacturing job growth and that the effect of robots is a slightly positive one.

Robots and work: empirical evidence

In contrast to the substantial literature on the general impacts of information and communications technologies, the body of work to date on the specific economic impact of robots is scarce (Graetz and Michaels, 2018) and employs a variety of methods, time frames, geographies and data sources. We broadly categorise the current robot-impacts literature in terms of estimates of impacts to workers, distinguishing by whether robots (i) have neutral effects on numbers of workers or (ii) displace workers. The studies with neutral results, which we label “robots-as-status-quo” research, are Graetz and Michaels (2018) and Jäger et al. (2015). Those that link labour displacement to robots, which we label “robots-as-displacers”, are Acemoglu and Restrepo (2017) and Frey and Osborne (2017).

The assertion that robots increase labour productivity is uncontroversial, putting robot-specific research in line with the SBTC consensus that machines generally make human work more productive (Table 1). In accordance with the current state of SBTC research

is Graetz and Michaels’ (2018) finding that the availability of work is essentially a zero-sum game *among workers*. That is, while Graetz and Michaels do not find direct evidence of worker displacement, they do find that when additional hours of work become available, they go to workers with higher skill levels.

This robot-specific skill-biased pattern is similar to that associated with other types of automation technology (see, for example, Autor et al., 2003, who find that workplace computerisation reallocates new jobs to those with more education). While rectifying these skill disparities has been a vexing policy problem for decades, these findings at least suggest that the recent state of robotics technology does not portend the onset of mass technological unemployment. Jäger et al. (2015) suggest robots may be locally job-preserving, as a high degree of robot use in an establishment is associated with a reduced likelihood of that establishment’s production relocating to another country.

However, the “robots-as-displacers” results are more concerning because they suggest that,

Table 1. Summary of robot-impact research

	Year	Title	Employment impacts	Other results
Robots-as-status-quo				
Graetz & Michaels (G&M)	2018	‘Robots at Work’	No effect on overall production hours worked; slight reduction in hours worked by lower-skilled workers	Increase labour productivity; Increase value added
Jäger et al.	2015	‘Analysis of the Impact of Robotics Systems on Employment in the EU’	No effect on number of production workers employed	Increase labour productivity; decrease likelihood of offshoring production
Robots-as-displacers				
Frey & Osborne	2013	‘The Future of Employment: How Susceptible Are Jobs to Computerization’	47% of current occupations at high risk of automation	Not tested
Acemoglu & Restrepo (A&R)	2017	‘Robots and Jobs: Evidence from US Labour Markets’	One robot/thousand workers decreases employment by 3–6 workers and aggregate wages by 0.25%–0.75%	Increased labour productivity (but of insufficient magnitude to mitigate displacement)

rather than setting in motion a reallocation of skills within the human workforce, robotics (and AI more generally) is instead shrinking the size of the labour market accessible to those who perform work that is more easily automatable.

As previously noted, the four studies reviewed here are not perfectly comparable. Unlike the others, Frey and Osborne (2013) is a probabilistic forecast of threats to current occupations that can be expected in the near future based on mapping specific job tasks, as defined by the Standard Occupational Code (SOC), to experts' assessments of technological capabilities and trajectories. It applies to AI *in general* rather than robots specifically. So, while the model predicts significant continued displacement to manufacturing jobs, it also includes logistics and administrative jobs that lie outside the purview of traditional industrial robots. According to the model, most non-supervisory production occupations have at least a 50% chance of being "computerized" while the bulk has at least a 75% chance.

Acemoglu and Restrepo (2017) build on Graetz and Michaels (2018) by deriving a sub-national estimation of robot use (or "exposure") from International Federation of Robotics (IFR's) industry and country tabulations. Because the IFR only provides robot sales and stock data for countries and industries, Acemoglu and Restrepo map robot exposure by industry onto US Commuting Zones, based on the concentration of each industry within each commuting zone. Their findings suggest that robots exert substantial downward pressure on local employment and wages and that this pressure becomes intensified when inter-regional trade is taken into account.

Despite the divergent findings of the nascent robotics-impact literature, they are not necessarily contradictory. Differing results may be the result of the use of different methods, data sources, geographies and time periods in question. For example, robots may simultaneously

drive productivity growth with little job destruction when aggregated across the EU and OECD member states—as Jäger et al. and Graetz and Michaels suggest—and displace workers and reduce salaries in the USA at the same time. While the geographic differential in robot uptake and impacts gets lost in the hyperbole of the media debate on the topic, Leigh and Kraft (2017) show that regions within the USA have substantial differences in their robotics knowledge bases and that these differences will likely affect the quantity and quality of local automation capabilities.

Robotics data in perspective

The unavailability of data on robotics penetration in industry remains a significant impediment that accounts for the discrepancy in (and shortage of) robot-impact research. There is no North American Industrial Classification System (NAICS) code to single out robotics manufacturers or consulting firms. Nor is there a SOC to identify employees who work directly with robots.¹ Consequently, there is no way to isolate robot users or makers in these commonly used, publicly available data sets.

One way to overcome the robotics data gap is to collect original data on robots. However, due in part to the time and expense involved in generating original data sets of this nature, these efforts have been scarce.

There are two examples to date of original robotics data collection. The first example, a Fraunhofer Institute report to the European Commission (Jäger et al., 2015), uses one question from the 2009 European Manufacturing Survey (EMS) about robot utilisation to estimate several related impacts (summarised above). The question regarding robot utilisation on the EMS asks respondents to rate their use of robots on a three-point "low-medium-high" scale, so exact robot-to-job or robot-to-output associations are not possible.

The second example, [Leigh and Kraft \(2017\)](#), generated a robotics “census” by mining proprietary business databases for robotics firms in the USA. The resulting data set demonstrates the uneven geography of robotics suppliers and service providers (called *integrators*, discussed below). While the census demonstrates that robotics-related employment is geographically correlated with the manufacturing sector, the actual *use* of robots cannot be determined from these data. Therefore, the census cannot be used to make definitive links to changes in employment, wages or productivity.

The other two studies (Graetz & Michaels [G&M] and Acemoglu & Restrepo [A&R]) use data from the IFR, which has been tracking robot sales since the early 1990s. The IFR sells a longitudinal data set of robot sales and robot stock (the latter is estimated by applying depreciation rates to previous years’ sales) by country and industry for each year from 1993 to the present.

While the IFR data are the only of their type available, they present several problems. First, is that the concept of “robot stock” is an approximation based on annual robot sales. These stocks are inferred by depreciating accumulated robot sales to each country based on the assumption of a 12-year working life of a robot—a number which the IFR itself acknowledges is uncertain (2017). Robotics is a rapidly developing technology, so it is not unreasonable to assume that the rate of obsolescence is increasing.²

In fact, robot sales in North America (the bulk of which the USA is responsible for) experienced an abrupt discontinuity beginning in 2010, three years after the end of both [Graetz and Michaels’ \(2018\)](#) and [Acemoglu and Restrepo’s \(2017\)](#) time series (see [Figure A1 in Supplementary Appendix](#)). In North America, annual sales records were set every year from 2010 to 2018, while the price per unit has steadily declined (based on RIA data underlying [Supplementary Figure A1](#), the price per robot unit in North

America fell from just over \$83,000 in 1999 to \$53,500 in 2018). However, the extent to which this period represents decisions to replace old robots or to add new robots where none had previously existed is unknown. Do these sales increases coincide with increases in robotics technology, declining costs, deepening of pent-up capital after the Great Recession, or some combination thereof? This sharp break in robotics sales patterns presents researchers with a difficult choice: limiting analyses to pre- or post-Great Recession robot diffusion trends satisfies an important condition for internal validity, but the results may not be generalisable to subsequent periods.

Furthermore, reporting sources have changed over the course of the IFR’s data collection efforts, so annual robot stock figures are not fully comparable over time. Most significantly, no sales data were reported for North America until 2004 ([International Federation of Robotics, 2017](#)), so any estimates of US robots prior to that year must be derived from other nations’ diffusion patterns.

Alternative constructs of robot exposure and their limitations

Studies of the impacts of technology defined broadly have sidestepped data problems by using expansive data sets in terms of both observations and time periods (for example, Autor, Katz and Kearney, 2008). These investigations are also afforded some leeway in conceptualising the primary variable, technology, because “computerization” applies in the same general sense to all industries, from accounting and finance to manufacturing and agriculture. Furthermore, for at least the second half of the 20th century, computers have been so ubiquitously interwoven into daily life in both work and leisure that it makes little sense to try to theorise one overarching mechanism for how they “affect” a person’s employment.

However, researchers interested in specific technological niches such as robots cannot resort to this rationale, and robot-specific impact studies must be more carefully operationalised. A&R's term, "Robot Exposure", is an intuitive and useful name for the concept at stake here, reflecting a concrete, epidemiological notion of exposure. However, as discussed above, available robot data do not necessarily provide ready analogues to epidemiological vectors.

Two approaches to measuring robot exposure have so far been used: Graetz and Michaels' "robot density" and A&R's aforementioned "robot exposure". Both derive worker–robot contact measures by creating a ratio of robots to human labour in each industry. Both use the IFR's robot stock estimates as the "robot" input. G&M's robot density uses "millions of hours worked" as the labour input, while robot exposure uses "thousands of workers".

In addition to underlying problems with robot data, both of these constructs, when operationalised empirically, employ questionable assumptions that threaten their construct validity. The first of these assumptions is that robots are uniformly diffused and employed, and the second is that their uses and impacts outside of the manufacturing sector are comparable to those within the sector.

Not all robots are "created" equal

Even if we accept that robot stock data are, on average, reasonable estimates of the number of robots in use each year, the more problematic assumption is that *the number of robots in use is in fact the key determinant of other employment-related outcomes*. Robots have a wide variety of specifications and are used in a wide variety of applications. For example, some perform light-weight repetitive tasks at high speeds, while others may manipulate, weld or cut large pieces of material more methodically. The number of possible combinations of relationships between robots, other automation equipment, workers and output is essentially limitless. Condensing

the complexity of the human–robot relationship to one simplified parameter is an outgrowth of the main problem of the task model upon which this research is based: generalisations that divide work—whether performed by humans or machines—into a few tractable categories break down at all but the most abstract and aggregate levels of analysis.

Another problematic abstraction arising from the "robot stock" variable is that the primary mechanism for industrial robot diffusion, robot *integration*, is overlooked. Industrial robotic systems are planned, engineered, installed and often sold by specialised engineering firms called robotics systems integrators. Integration is a substantial endeavour: [Leigh and Kraft \(2017\)](#) show that in the USA, integrators at specialised automation engineering firms account for two-thirds of overall robotics-related employment.

Estimates for integration costs, however, are difficult to attain for several likely reasons. For one, integrators may not want to disclose costs publicly because they must routinely bid against other firms for new jobs. For another, the process of integration is highly variable and complex, preventing the establishment of standard pricing. Differing production processes, automation goals and factory capabilities ensure that engineering challenges presented to integrators remain novel.

Robotic hardware is not the sole determinant of the costs and consequences of robotic processes. An encouraging aspect of A&R's analysis is that their results stand up well to controls for capital expenditures—both those from IT specifically and the US Bureau of Labor Statistics' (BLS) account of general capital stocks—and [Leigh and Kraft's \(2017\)](#) measure of local robot-related employment, suggesting that the purchase of robots is independent, at the industry level, from other capital spending. However, it is far from clear how integrator costs are reported. Some of these costs are for software and computing (for example, machine vision), while some are for hardware

(for example, physical robots and end-of-arm-tools). Some of these expenses are simply for the hourly costs of engineering services.

The high variability in robotic automation processes—and thus diffusion and depreciation—confounds attempts to apply generalised robotic diffusion patterns over time to geographically specific places. A&R's model, which infers sub-national robot exposure patterns from national-level data weighted by commuting zone industrial mixes, is particularly vulnerable to this limitation. The “robot exposure” measure assumes that the nature and effects of robot use in a large auto plant in Michigan is essentially the same as it is in a large auto plant in South Carolina, *and* that small and medium-sized auto suppliers use robots in a fashion similar to their larger counterparts across the country. This is problematic not only because of the variability in the integration process itself, but also because prior research suggests that both plant size and geography are important and fundamental factors in adoption of technology. For example, intra-metropolitan differences in locations of metalworking firms are highly predictive of whether they chose to adopt programmable automation technology (Harrison et al., 1996), and smaller firms are consistently found to be less likely to adopt advanced technology (Gomez and Vargas, 2009; Kelley and Helper, 1999). Additionally, national culture strongly shapes attitudes towards technology and technicians within firms, thereby influencing the ultimate performance and productivity of the technology (Gertler, 1995).

Impacts of robots used outside of manufacturing

As it is applied in A&R, the “robot exposure” measure includes manufacturing subsectors at the three-digit NAICS level, and construction/extraction, utilities and education/research sectors at the two-digit level. However, outside of manufacturing, robots have minimal presence and are unlikely to have the same “effects” on

workers as they do in manufacturing, where they have been systematically used for several decades. For example, in 2007, the IFR reported that 50 robots were used in the USA in the construction and extraction industry,³ while workers in the industry, according to EUKLEMS, were about 7.8 million. Thus, we arrive at a robot exposure figure of 0.0064 robots per thousand workers.

The assumption that this tiny number of robots meaningfully affects labour market outcomes is untenable. The error compounds when the exposure factor is applied to all local US labour markets. Fifty robots obviously cannot be distributed across 709 commuting zones; most will have no construction robots—and thus no exposure. Because construction employment is a locally traded industry and relatively constant as a percentage of employment across labour markets—whereas manufacturing varies significantly—the “effect” of these 50 robots nationwide will be disproportionately large in most labour markets, and disproportionately small in the one or several that actually have these robots. The same problem applies to the utility sector.

Moreover, the “education and research” sector should be excluded from the exposure measure for a different reason altogether, which is that educational robots do not fall within the same theoretical framework. Little, if any, robot-related displacement would be expected in the sector. Educators increasingly use robots as instructional tools as the demand for robotics skills in the workplace rises. While a limited number of robots may be used in biomedical research labs in place of technicians, technology researchers conduct research on the robots themselves, suggesting that increased numbers of robots in research would be driven by more researchers and teams engaged in this area.

To date, the most impactful and ubiquitous types of non-manufacturing robots are those used in warehouses and distribution centres.

However, these robots were not commercially available by the end of previous studies' time series. Furthermore, their pattern of diffusion today is highly skewed. E-commerce giant Amazon bought the first-mover firm in warehouse robots, Kiva, for its exclusive use. Consequently, Amazon's estimated 100,000 warehouse robots (Wingfield, 2017) are still not included in IFR statistics, since Amazon does not sell its robotic systems on the open market. Other warehouse robot makers are starting to emerge in the market and should eventually be part of IFR statistics, though the results will continue to under-represent warehouse robots until Amazon robots are incorporated.

Data and methods

We use two approaches to address the problems with IFR robot stock data outlined above. The first approach modifies A&R's robot exposure variable, confining both the construction of the variable and the estimated impacts to the manufacturing industry. We call this the Modified Robot Exposure (MRE) variable. The second approach uses an alternative data source, labour market data, to create an indicator for robot exposure.

While our approaches may be compared on conceptual grounds to those in the previous studies discussed above, they are not replications because our labour market data (labelled RTLMI and explained below) begins in 2010 and cannot support the investigation of prior time periods. Therefore, this article should be viewed primarily as a comparison of two new measurement constructs of robotics' impacts.

Modified Robot Exposure

MRE limits the robot stock-derived exposure variable to the manufacturing industry, thereby eliminating the outsized influence of sectors that have minimal robot use but significant employment. Otherwise, it works similarly to the exposure measure created by A&R, with

national-level industry concentrations of robots being applied at the local level. However, we use US Census-defined core-based statistical areas (CBSAs) instead of commuting zones as labour market boundaries. CBSAs include metropolitan and micropolitan statistical areas, but exclude counties that are not part of an urban cluster of 10,000 people.⁴ While commuting zones are more representative of actual labour markets and include more members of the US workforce, we use CBSAs for two reasons. The first is that non-metropolitan and non-micropolitan counties are subject to substantial suppression of employment data at the level of manufacturing subsectors, meaning that missing data would undermine accurate estimates for small counties. The second is that our labour market data are also biased towards urban areas (see subsequent section on Data Limitations), excluding non-metropolitan areas maintains relative consistency in the universes across independent and dependent variables.

Robotics Skill Demand Index

Using labour market data allows us to adjust, conceptually, the mechanism whereby jobs are impacted. With skill demand, the theorised impact no longer stems directly from the robot. Rather, it comes from the skills required by the presence of a robot. This slight shift in where the causal burden is applied adds a new dimension to existing robot-impact research. We call the resulting measure the Robotics Skill Demand Index (RSDI).

The input for the RSDI comes from a novel source called RTLMI. RTLMI is labour market data that are extracted from internet job postings on a continual basis. Of the several RTLMI vendors, we chose Burning Glass Technologies (BGT) for our study. Using proprietary algorithms, BGT collects online job postings on a daily basis, cleans the raw data and formats it into a structured data set. Although it has primarily been used by human resources departments and workforce and economic

development agencies, it has emerged as a useful tool for academic researchers. Recent RTLMi-based work analysed labour market skill demands (Deming and Kahn, 2017; Mason et al., 2016; Wardrip et al., 2017), the adoption of labour-saving technologies (Hershbein and Kahn, 2016), and job recruiting and searching activities (Banfi and Villena-Roldán, 2016; Modestino et al., 2016).

We utilise a variable created by BGT called “skill clusters” to derive our composite robot indicator. BGT defined these 559 skill clusters by subjecting the text of job ads to k-means cluster analysis and additional qualitative scrutiny (B. Taska, Personal Communication). Each job ad is, in turn, associated with one or more skill clusters based on the text of the ad. Out of BGT’s 559 clusters, there is one specifically called “robotics”. Although the robotics skill cluster appears in 91,214 job ads in our data set, this frequency is insufficient for regression analysis. Thus, to achieve enough robot-related skill observations for the RSDI, we developed a composite measure of skill clusters related to and including robotics. Skill clusters were selected for the RSDI by calculating the magnitude of correlation between the robotics skill cluster and all other skill clusters in the database for job ads in the manufacturing industry. The RSDI comprised 15 skill clusters with the highest correlation coefficients (>0.04) (see Table 1).

The RSDI is further divided into “broad” and “narrow” definitions because the skills contained in the index are themselves general and not uniquely applicable to robots.⁵ The broad definition includes all 15 skill clusters and the robotics skill cluster (16 total clusters), while the narrow definition includes only the top five and the robotics skill cluster (six total clusters). Dividing the RSDI into these two versions enables us to gauge their relative performance in empirical tests, and thereby to assess whether the RSDI classification scheme is diluted by casting too wide of a net. In the

first model presented in the “Results” section, the broad definition is statistically significant, while the narrow is not (although its T -value is 1.4). This suggests that the construct sacrifices some fidelity capturing robotics work in exchange for better statistical power. However, in the second model, only the narrow definition achieves statistical significance, indicating that some precision can be gained by zeroing in on robot-specific jobs. Either way, the RSDI construct unavoidably captures some jobs that are not directly related to robots.

The actual Robotics Skill Demand Index used in the regression analyses is calculated by dividing the number of job postings containing at least one skill cluster represented in Table 1 by the total number of manufacturing industry job postings within each CBSA in the US. Separate RSDIs are calculated for broad and narrow definitions.

The low correlations between the skill clusters (Table 2) are a methodological artefact. That is, since the k-means clustering process is used to establish unique groupings, high correlation coefficients are not expected. This is particularly the case given the significant internal variation in the data set stemming from its 559 skill clusters and 9,856,829 total manufacturing job-posting observations.

Despite low statistical correlations, the skill clusters included in both the broad and narrow robot skill demand indices are qualitatively related to industrial robot use and representative of advanced manufacturing in general.

Data limitations

As we have emphasised, no existing data set is ideal for examining the impact of robotics. While RTLMi correlates over time with the US BLS Job Openings and Labor Turnover Survey (JOLTS),⁶ it contains inherent biases. RTLMi data are not derived from standardised or mandatory surveys, so they are subject to changes in posting strategies by employers

Table 2. *Robotics Skill Demand Index clusters ranked by correlation with Robotics Skill Cluster*

Rank	Skill Clusters	Correlation	Frequency	% Posting	RSDI definition
1	Computer-Aided Manufacturing	0.1351	487,373	5.0	Narrow
2	Mechanical Engineering	0.0954	560,776	5.7	Narrow
3	Welding	0.0878	373,363	3.8	Narrow
4	Drafting and Engineering Design	0.0858	703,780	7.2	Narrow
5	Engineering Software	0.0751	148,989	1.5	Narrow
6	Electrical Construction	0.0745	168,960	1.7	Narrow and Broad
7	Engineering Activities	0.0568	517,778	5.3	Narrow and Broad
8	Basic Electrical Systems	0.0567	373,693	3.8	Narrow and Broad
9	Schematic Diagrams	0.0532	239,218	2.4	Narrow and Broad
10	Electrical and Computer Engineering	0.0515	661,015	6.7	Narrow and Broad
11	Industrial Engineering	0.0492	380,644	3.9	Narrow and Broad
12	Machine Tools	0.0464	708,631	7.2	Narrow and Broad
13	Manufacturing Processes	0.0455	849,328	8.6	Narrow and Broad
14	Process Engineering	0.0437	405,092	4.1	Narrow and Broad
15	Machinery	0.0433	498,566	5.1	Narrow and Broad

N = 9,856,829. “Robotics” Skill Cluster, not shown, is also included in both narrow and broad definitions.

Source: BGT.

over time. Since RTLM1 only contains online postings, it provides better coverage of jobs with higher skill and education requirements (Carnevale et al., 2014), as well as jobs located in urbanised areas. As such, it misses word-of-mouth jobs, and most significant for the present study, internally advertised union positions.

We employ several strategies to minimise the effects of these biases, including designing an RSDI measure that internalises changes in overall job postings over time, and adding a unionisation variable to the model. We also limit our empirical test to only CBSAs with at least 1000 manufacturing job postings from 2010 to 2015, to avoid potential bias caused by one or several large employers accounting for an outsized number of postings where online recruiting has limited penetration.

Empirical models

We employ two primary models to estimate the impact of robotics skill demand on regional manufacturing labour markets. We call them the “Initial Conditions (IC) model” and the “Difference” model. The main difference

between the two models is—as their names suggest—that the IC model uses starting conditions in 2010 as independent variables, while the Difference model is a first difference model determined by changes in those conditions from 2010 to 2016. Both models are conceptually based on Glaeser et al. (1992), where the outcomes are the ratio of log-transformed wages and employment in 2016 versus 2010.

To test the hypotheses that employment and wages grow faster when there is an initial condition of a high concentration of industrial robots, we use RSDI and the “competing” measures of robot inputs as variables to explain the change in the ratio of manufacturing productivity in 2016 to 2010.⁷ Control variables for the IC model include Census division dummies, average employment and wage growth in metropolitan areas,⁸ the size and concentration of metropolitan manufacturing industry,⁹ the composition of durable manufacturing,¹⁰ and a “right-to-work” legislation dummy,¹¹ since we expect union membership to exert a competing influence on our dependent variables. Control variables for the Difference model are change in metropolitan employment and wage, and a

dummy representing change in right-to-work status. The [Leigh and Kraft's \(2017\)](#) local robot industry explanatory variable is not included in the Difference model because it was only observed for a single time period.

Further elaboration on these models including equations, assumptions and limitations is included in the "Empirical Models" section of [Supplementary Appendix](#).

Geography of robotics skill demand

The geographic distribution of robotics demand defined by RSDI corresponds broadly with other indicators of robot penetration. [Figures 1a and b](#) show that robotics job demand is concentrated on the coasts and the Midwest region stretching south along the Interstate 75 corridor.

Higher numbers of robotics job demand are on the coasts, but the higher concentrations are in the interior. This greater intensity of robot skill demand in the Midwest and Southeast regions reflects the skill needs of the more manufacturing-centric labour markets in these areas.

Results

We display two main sets of results: employment outcomes from both the IC and the "Difference" models. Only the models with employment outcomes are shown because none of the robot indicators register as statistically significant predictors of wage outcomes.

While the initial sample of metro areas includes 356 CBSAs based on the criterion of having at least 1000 job listings over the analysis period of the labour market data, four additional outlying CBSAs were removed from the analysis because they were detected as unusual and influential cases based on several criteria, including Leverage (observations with extreme predictor values) and Cook's Distance (influence of a case on the predicted mean),

and Studentized residual values (difference between predicted and observed).

These outliers are all small metro areas, with relatively undiversified economies and less representation in RTLMI. Factors such as a lack of industrial diversity, as well as plant openings or closings, will have outsized effects on input metrics for these communities. In general, our models were more accurate in predicting outcomes for large metros than for small metros.

IC model

For this sample of 352 CBSAs, the average MRE value is slightly over 13 robots per thousand workers ([Table 3](#)). The average metro-wide value for the broad Robotics Skill Demand Index (RSDI) is 22.7% of job postings, while the more restrictive narrow RSDI is 9.3% of postings. With an average location quotient of 1.26, and an average percentage of employment in durable manufacturing of 55.4% in 2010, this is a relatively manufacturing intensive group of CBSAs (by design, as previously explained).

For the IC model, the MRE variable and the RSDI both have significant, positive effects on employment (see [Table 4](#)). While the narrow RSDI has a slightly stronger relationship to the manufacturing employment ratio than does MRE, the broad RSDI has no discernible relationship. Because the dependent variable is in natural log form, a unit change in either the narrow RSDI or MRE can be interpreted to predict a 0.2% increase in manufacturing employment ratio. In other words, a CBSA with either a one percent above average RSDI, or one more robot per thousand workers than average in 2010, can expect approximately 0.2% more manufacturing employment growth than average by 2016 (with the understanding that growth is defined relative to size in 2010).

There is also a notable geographic difference in the regional manufacturing employment response to increased robotics skill demand in 2010. The East North Central census division, which is largely contiguous with what is thought of as the historical US

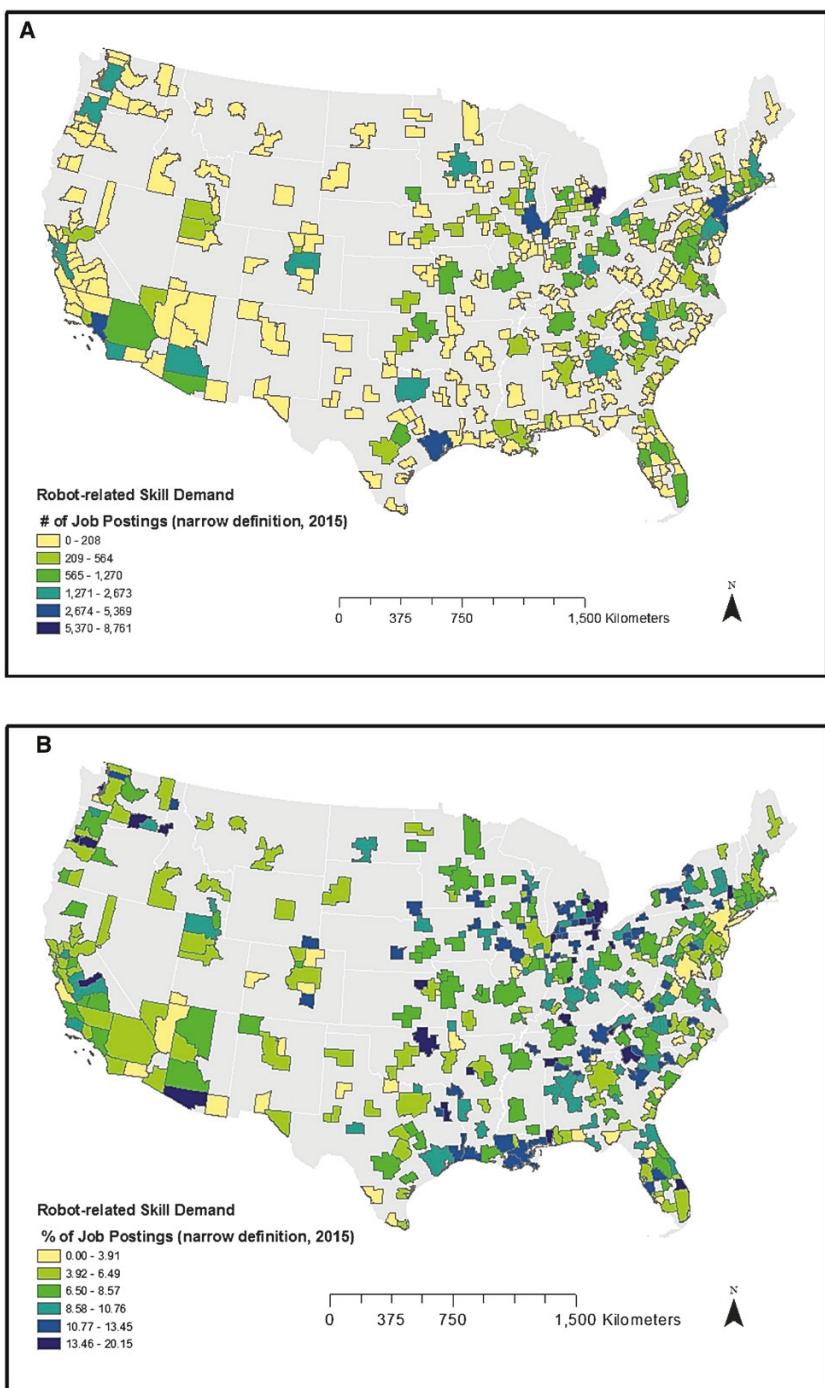


Figure 1. (a) Robotics skill demand (narrow definition) in CBSAs, 2015 (Magnitude). (b) Robotics skill demand (narrow definition) in CBSAs, 2015 (Concentration).
Source: Authors' calculations of BGT.

Table 3. Descriptive statistics, Initial Conditions (IC) model

Variables	Mean	Standard deviation	Minimum	Maximum
ln (manufacturing employment ratio (2016/2010))	0.070	0.123	-0.233	0.419
Relative employment size of local robot industry ^a	2.980	10.613	0.000	123.213
MRE ^b 2010	13.345	6.744	2.783	42.720
RSDI ^c Broad	22.697	8.829	0.000	58.824
RSDI ^c Narrow	9.309	5.824	0.000	32.787
ln (CBSA employment in 2016/CBSA employment in 2010)	0.105	0.075	-0.159	0.371
ln (average wage in manufacturing in 2010)	10.850	0.214	10.250	11.865
Average years of education (2010)	26.466	8.449	10.912	57.503
Employment size (in millions, 2010)	0.027	0.064	0.001	0.898
Location quotient in 2010	1.256	0.691	0.127	4.691
Percent durable manufacturing employment in 2010	55.422	17.764	7.195	93.716
Right-to-work legislation dummy	0.429	0.496	0.000	1.000

N = 352.

^aLeigh and Kraft's (2017) local robot industry variable.

^bModified Robot Exposure (robots per 1000 workers).

^cRobot Skill Demand Index; unit of measurement is percent.

manufacturing heartland, or the “rustbelt”, sees the largest employment increases when holding 2010 robotics skill demand constant. There are likely regionally specific omitted variables contributing to these differences. The post-recession bailouts of the “Big 3” American auto companies and their subsequent employment rebounds (McNulty and Wisner, 2014) likely had some influence on the outsized manufacturing performance of the East North Central region, but would not have had as direct or significant of an effect on the East South Central and Pacific regions, each of which also showed strong manufacturing growth.

CBSAs with greater overall employment growth over the period had strong positive associations with robot skill demand (CBSA employment 2016/CBSA employment 2010), while those that paid higher initial manufacturing wages (average wage in manufacturing 2010) experienced depressed growth. The presence of right-to-work (that is, anti-union) legislation showed no significant effect.

Difference model

In contrast to the IC model, which uses only baseline 2010 values of explanatory robotics

variables as predictors, the Difference model takes into account how these variables changed over the analysis period.

These changes were significant. The average change in robot exposure (MRE) nearly doubled over the time period, increasing from 13.3 robots per thousand workers in 2010 to 26.3 robots per thousand workers in 2015 (an increase of nearly 13 robots per thousand workers; see Table 5). This change significantly outpaced the RSDI, which grew by 5.8% and 2.0% for broad and narrow definitions, respectively, over the same time period. These differential growth rates are likely due to the underlying data sources. Recall that because the MRE measure is primarily a function of changes in industrial employment rather than robot use, the resulting robot exposure estimate could be inflated by the heavily robotised auto industry adding jobs after the Great Recession.

Results for the Difference model (see Table 6) show less agreement between the two primary explanatory variables. MRE's effect on manufacturing employment change is neither statistically significant nor of any measurable magnitude. The change in the narrow RSDI

Table 4. Initial Conditions model; dependent variable = $\ln(\text{manufacturing employment in CBSA 2016})$

Variable	RSIDI Broad skill definition				RSIDI Narrow skill definition					
	Coefficient	Standard error	T-value	Significance	Beta	Coefficient	Standard error	T-value	Significance	Beta
Constant	0.956	0.322	2.970	***		0.893	0.001	0.324	2.760	***
Relative employment size of local robot industry ^a	0.000	0.001	-0.220		-0.010	0.000	-0.001	-0.370		-0.017
MRF^b	0.002	0.001	2.430	**	0.121	0.002	0.001	2.390	**	0.120
RSDI^c	0.002	0.001	2.850	***	0.136	0.001	0.001	1.400		0.065
Census division dummies (New England is reference)										
Middle Atlantic	0.008	0.033	0.240		0.019	0.013	0.033	0.390		0.031
East North Central	0.110	0.031	3.530	***	0.332	0.111	0.032	3.510	***	0.334
West North Central	0.052	0.035	1.490		0.119	0.050	0.036	1.420		0.114
South Atlantic	0.028	0.034	0.820		0.093	0.024	0.035	0.700		0.079
East South Central	0.070	0.035	1.980	**	0.148	0.070	0.035	1.960	*	0.148
West South Central	-0.028	0.038	-0.740		-0.074	-0.038	0.038	-0.980		-0.099
Mountain	0.067	0.035	1.940	*	0.162	0.062	0.035	1.780	*	0.149
Pacific	0.078	0.033	2.360	***	0.205	0.085	0.033	2.560	***	0.223
Ln (CBSA employment in 2016/CBSA employment in 2010)	0.737	0.079	9.350	***	0.449	0.732	0.080	9.200	***	0.446
Ln (average wage in manufacturing 2010)	-0.095	0.032	-3.000	***	-0.164	-0.090	0.032	-2.830	***	-0.156
Average year of education (2010)	-0.003	0.011	-0.260		-0.015	0.000	0.011	-0.010		0.000
Employment size (in millions, 2010)	-0.150	0.090	-1.660	*	-0.078	-0.146	0.091	-1.600		-0.076
Location quotient 2010	-0.009	0.010	-0.910		-0.049	-0.004	0.010	-0.470		-0.025
Percent of durable manufacturing employment 2010	0.000	0.000	-0.230		-0.012	0.000	0.000	-0.300		-0.015
Right-to-work legislation dummy	0.004	0.019	0.220		0.017	0.012	0.019	0.640		0.049

Number of observations: 352; R^2 (adjusted): 0.3671 (0.3329), 0.3581 (0.3234).^a Leigh and Kraft's (2017) local robot industry variable.^b Modified Robot Exposure (robots per 1000 workers).^c Robot Skill Demand Index (RSIDI).

Table 5. Descriptive statistics, Difference model

Variable	Mean	Standard deviation	Minimum	Maximum
Change in MRE ^a (2010–2015)	12.981	6.458	-4.178	53.248
Change in RSDI^b (broad, 2010–2015)	5.783	9.452	-22.745	42.308
Change in RSDI^b (narrow, 2010–2015)	1.987	6.317	-20.960	23.896
Ln (CBSA employment in 2016/2010)	0.105	0.075	-0.159	0.371
Ln (CBSA average wage in 2016/2010)	0.130	0.041	-0.060	0.294
Change in years of education	0.213	0.149	-0.360	0.716
Change in RTW legislation (from non-RTW to RTW state)	0.105	0.307	0.000	1.000

N = 352.

^aModified Robot Exposure (robots per 1000 workers).

^bRobot Skill Demand Index; unit of measurement is percent.

Table 6. Difference model, narrow RSDI definition; dependent variable = $\ln(\text{manufacturing employment 2016}/\text{manufacturing employment 2010})$

Variables	Coefficient	Standard error	T-value	Significance	Beta
Constant	-0.019	0.025	-0.750		
Change in MRE^a (2010–2015)	0.000	0.001	-0.540		0.026
Change in RSDI^b (narrow, 2010–2015)	0.002	0.001	2.430	**	0.113
Ln (CBSA employment in 2016/2010)	0.694	0.081	8.540	***	0.423
Ln (CBSA average wage in 2016/2010)	0.176	0.151	1.160		0.058
Change in years of education	-0.064	0.039	-1.630		0.077
Change in RTW legislation (from non-RTW to RTW state)	0.081	0.019	4.260	***	0.202

Number of observations: 352; R^2 (adjusted): 0.2621 (0.2493).

^aModified Robot Exposure (robots per 1000 workers).

^bRobot Skill Demand Index; unit of measurement is percent.

is the only robot-related variable that has an acceptably significant positive impact on growth in manufacturing employment in the Difference model.¹² The magnitude of this effect in the Difference model, 0.2%, is roughly equivalent to its magnitude in the IC model.

Change in overall metro employment and the passage of right-to-work legislation have positive effects on employment, although only three Midwestern states—Michigan, Wisconsin and Indiana—changed their right-to-work status (from non-right-to-work [RTW] to RTW) during the study period. As mentioned above, other regional idiosyncrasies, such as post-recession auto industry bailouts or

concentrations of growing manufacturing sectors, may also have contributed to the above-average employment growth. As the IC model suggests, a state's RTW status in 2010 had no impact on manufacturing employment five years later.

Discussion

These results broadly indicate for the post-recession time period of 2010–2016 that robots and robotics-competent workers helped to bolster regional manufacturing employment. However, we may ask what exactly a 0.2% increase in the 2016–2010 manufacturing

employment ratio means. Insight into this question can be gained from examining the marginal effects of the explanatory variables in several examples.

To do so, we first examine what happens to the theoretical mean case by applying coefficients from the IC model and increasing the initial stock of robots and demand for robot skills. [Supplementary Table A2](#) in [Appendix](#) presents the descriptive statistics for the 352 metro areas included in the analysis, including average level of manufacturing employment, number of robots per thousand workers and percent of jobs requiring robot-related skills in 2010. The mean CBSA would have begun the period with 26,929 manufacturing workers, 359 robots, and demand for robotics skills in 22.7% of its advertised manufacturing jobs. The model predicts this mean metro area would have added 1670 manufacturing employees by the end of 2015, for a 2016–2010 employment ratio of 1.081. A metro area identical to the mean in all other aspects, but with one more initial robot per thousand workers (about 27 robots in this case), should see an increased employment ratio of 1.083 (1.081*1.002), or about 65 additional manufacturing workers ([Supplementary Table A3](#)).

A one-standard deviation initial advantage in robot stock (equal to a total of 541 robots for a metro area of this size) predicts an employment advantage in 2016 of 436 jobs ([Supplementary Table A3](#)). Even though the unstandardised coefficients for MRE and RSDI are essentially equivalent, advantages in robot skill demand (RSDI) have a slightly better job payoff, as suggested by its higher *beta* coefficient (see [Table 4](#)). A one-standard deviation initial advantage in robot skill demand (32% of metro-wide manufacturing job listings) should result in 487 more manufacturing jobs overall in 2016 ([Supplementary Table A4](#)). Thus, this one-standard deviation above average metro area would have generated 923 more jobs (436 + 487) in five years due to its initial robotics advantage.

Note that these are the additional employees that are considered to be “due” to robots. In fact, the model suggests that promoting *general* regional economic growth, indicated by the all-sector employment ratio variable, remains the most impactful way to strengthen the manufacturing sector. In contrast, higher initial manufacturing wages depress future employment, a result not entirely unexpected as firms seek to locate in areas with lower labour costs. However, regions may not be able to rely on low wages as a business attraction feature for long, as the Difference model suggests that wage *growth* has a positive but not quite statistically significant effect on manufacturing employment growth ([Table 6](#)). More competitive—and more highly robotised—regional manufacturing sectors may require more highly skilled and better-compensated workers.

In reality, there is no such thing as a mean or average metropolitan area. Our model cannot capture all of the socio-political determinants that drive metro employment growth or decline. Metro areas that did exceedingly well or poorly in stewarding their manufacturing economies may have done so for reasons that our models fail to reflect because of omitted variables or because the assumptions of linearity and normality in traditional ordinary least squares (OLS) modelling do not apply to regional economic growth.

One way to account for these latent influences and problematic assumptions is to conduct a quantile regression, which fits data to specified quantile breakpoints of the dependent variable (2016–2010 employment ratio) rather than the mean, without discarding observations from other quantiles. Quantile regressions for the IC model at the 0.75 and median (0.5) levels generally agree with the OLS version of the model (see [Supplementary Table A5](#)). The agreement is strongest for the 0.75 model, where the primary explanatory variables maintain high levels of statistical power and see increases in magnitude over the general OLS IC model.

However, MRE does not appear to be an influential factor for those in the bottom quarter of manufacturing growth. Instead, RSDI (broad) maintains strong or moderate statistical power ($>10\%$) for all quantiles. This difference across categories and the low correlations between the two indicators (see [Supplementary Table A6](#) in [Appendix](#)) suggests that they are indeed measuring different aspects of robotics use.

Finally, we test our IC model against the actual employment changes in our sample metro areas. Using residuals, or differences in predicted versus observed values, we investigate qualitative patterns in the model's accuracy. Some of the largest metro areas with important manufacturing economies are within the top 20% of overall error (smaller residual absolute value = smaller error) (see [Supplementary Table A7](#)). The model is very accurate in estimating San Francisco's¹³ and Cincinnati's growth and does reasonably well for other important manufacturing hubs such as Los Angeles, Philadelphia, Seattle, New York and Boston.¹⁴

To ground these predictions in terms of robots and employees, we use the Cincinnati metro area, for which our model predicts employment outcomes with a high degree of accuracy. Here, its 2010 advantages of 2.5 robots per thousand workers and 0.75% higher robotics skill demand are compared to a counterfactual case where both indicators were equal to the sample average. Doing so suggests that Cincinnati's initial robot stock (MRE) accounted for an additional 622 manufacturing workers and its initial skill demand (RSDI broad) accounted for another 162, for a total of 783 manufacturing workers over the subsequent six years.

Specialised manufacturing metros are also on the list of CBSAs that fit closely to the model, including Milwaukee, Dayton, Rochester (NY), and Syracuse. The three primary US robotics research hubs—Boston, San Jose and Pittsburgh—also have small differences

between actual and predicted values. These 20 “well-fit” metro areas represented about 29% of total US manufacturing employment in 2015.

The most notably absent metros (that is, metros where growth is poorly explained by the model) are four traditional “rust belt” communities: Buffalo, Cleveland, Detroit and Chicago. These omissions are confounding because based on previous research into metro-level robotics-related employment ([Leigh and Kraft, 2017](#)), one could consider the stretch of Lake Erie shore from Buffalo to Detroit somewhat of a “Robotics Crescent”, due to its high concentration of robotics-related business establishments and employment. Although not geographically contiguous to the Lake Erie group, Chicago is second overall in number of robotics-related establishments. Including the smaller metro areas between Buffalo and Detroit, the Lake Erie robotics crescent and Chicago together account for 65% of robotics-related employment (calculations based on unpublished data from [Leigh and Kraft, 2017](#)).

The fact that these key manufacturing economies do not conform to the model explains to a large extent why the local robotics industry variable derived from [Leigh and Kraft \(2017\)](#) does not exert any statistical power in predicting employment changes. However, the large errors for these metros remain confounding. None of them have exceedingly high or low robot exposure or robotics skill demand index values, nor did they experience drastic changes to their manufacturing economies during the period. These metros have high unionisation rates, meaning that some robotics jobs will be advertised internally through union channels (that is, not online) and thus not reflected in the RSDI metric. However, if internal union job advertising is the sole source of error, then we might expect the error to be in the same direction for all four of the rust belt metros. But this is not the case: the model overestimated impacts in Detroit and Buffalo and

underestimated Cleveland and Chicago. Like all statistical models, this one likely omits one or more key variables. The resulting discrepancies suggest that there is a need for geographically informed qualitative research into the economic impact of robotics.

Even though the analyses presented in this article fall into the “robots-as-status-quo” side of the debate, they should not be viewed as contradictory to or irreconcilable with other analyses, such as [Acemoglu and Restrepo \(2017\)](#) and Frey and Osborne (2013). Notwithstanding the questionable assumptions in prior studies discussed here, it may be the case that robot adoption in the decade-and-a-half prior to the Great Recession *did* have a displacement effect, while *at the same time* better equipping those individual manufacturers and industrial ecosystems that more aggressively robotised to thrive during the recovery. This interpretation is consistent with other research that finds that regionally embedded innovative capacity prevents “lock-in” and aids in resilience after negative shocks ([Christopherson et al., 2014](#)).

However, our research also strongly suggests that technology adoption may be a necessary but far from sufficient criterion for resilience, and that changing firm routines, industrial policy, corporate structures and labour relations are also important. A single-minded focus on technology upgrading is likely not helpful to firm or regional competitiveness. As has been apparent from previous rounds of “creative destruction”, overall growth measured at any scale tends to leave behind vulnerable workers with significant social costs.

Conclusion

This article’s unequivocal support for robots as supporting employment growth places it into the “robots-as-status-quo” category because it supports the traditional theory that technology leads to net job growth. Its other contribution has been to critique and improve upon

previously tested constructs for robot exposure. Three new constructs for measuring robot exposure were tested, and two of them—a robot stock variable modified from [Acemoglu and Restrepo \(2017\)](#) and a Robot Skill Demand Index derived for online job postings—are associated with employment gains since 2010. Estimates of these gains can be quantified to the effect of an approximate 900 manufacturing employee gain over six years for a one-standard deviation above average level of robot use and demand for robotics-competent workers in manufacturing.

While these metrics are measuring different aspects of robot utilisation, they fall short of both a complete accounting of robots and a rigorously valid operationalisation of the concept of robot exposure. Until better robotics data exist, the economic impact of robots will have to be estimated via inference and triangulation, as well as more rigorously informed by how robots are used and diffused. Because of the limited diffusion of commercial robotics and other smart machines, geography must be closely considered before making generalisations. Regional economies in the USA demonstrate significant variation in their response to technological change.

While econometric approaches have dominated the “robots and jobs” debate so far, it is important to remember the value of qualitative and ethnographic approaches. Although they do not yield satisfying universal ratios relating robots to jobs, such approaches are able to concretise the artefacts of workplace technology that large data sets render abstract. Qualitative and ethnographic methods can offer insights into how local and shop cultures, labour relations, and gender and ethnicity shape robot diffusion and use. They can consider interactions between complex sets of variables that may lead to layoffs and wage stagnation, without needing to reductively operationalise them for statistical models. Importantly, qualitative inquiry can elicit workers’ perspectives on robot

adoption, which is an essential input into the current debate if the benefits of robotics diffusion are to be shared broadly.

This article contributes to efforts to identify the economic impacts of robots by (i) restricting analysis to the manufacturing sector, which is the only sector where robots are historically and systematically used; (ii) triangulating robot stocks and skill demand to derive a more holistic measure of robotics influence; and (iii) qualitatively disaggregating impacts according to geography. Data limitations confine the analysis to a unique six-year period during which the USA recovered from a historic recession. Thus, we cannot answer at this point in time whether the findings are unique to this period or are indicators of a long-term positive relationship between employment and robotics. Perhaps as robotics become both more user-friendly and “intelligent”, leading to easier integration and maintenance, another wave of displacement or upskilling will occur. This possibility underscores the imperative that advanced economies reduce labour precariousness through truly effective policies and programs for retraining and reskilling workers when upskilling is not possible. In conclusion, we observe that there is a clear need for more research, data and theory to answer critical questions about the future of work and all of the ensuing implications of that future for local and regional economies and society.

Supplementary material

Supplementary data are available at *Cambridge Journal of Regions, Economy and Society* online.

Endnotes

¹ The Occupational Information Network (O*NET) taxonomy is based on the SOC taxonomy and contains two expanded occupations that identify robotics-related work: robotics engineers (17-2199.08) and robotics technicians (17-3024.01). However, neither

the US Census nor the Bureau of Labor Statistics (BLS) collects data at this level of disaggregation.

² We note that [Graetz and Michaels \(2018\)](#) find no meaningful impacts on their results from the application of different rates of depreciation to baseline 1993 levels of robot stocks.

³ There are only 20 robots officially specified as being used in this industry, but if we distribute the remaining “unspecified” robots among the various industries at levels proportional to the distribution of “specified” robots, as A&R do, there should be roughly 30 more in this category.

⁴ We use the terms “metro” and “metro area” interchangeably with CBSA, even though CBSAs include “micro” areas (those with urban clusters of at between 10,000 and 50,000 residents). Since for analytical purposes we limit observations to those with a minimum level of job postings, we are effectively only considering metropolitan areas.

⁵ For example, welding, a cluster highly associated with robotics, is often performed manually (that is, without the aid of a robot). But welding is also one of the most highly robotised industrial applications ([International Federation of Robotics, 2017](#)), and based on ongoing qualitative research by the authors, workers who operate welding robots generally must also be skilled welders.

⁶ Although they are not exactly comparable, JOLTS is the public time series that most closely resembles BGT. From January 2010 to January 2017, the two time series correlate closely, with a coefficient of 0.89 (B. Taska, Personal Communication).

⁷ From Bureau of Economic Analysis.

⁸ From US Bureau of Labor Statistics Quarterly Census of Employment and Wages (QCEW).

⁹ From QCEW.

¹⁰ From QCEW.

¹¹ Right-to-work (RTW) laws present barriers to union organising as part of a “business-friendly” strategy. With the exception of Kentucky’s county-specific laws, they are passed on a statewide basis. Since some metropolitan areas straddle more than one state, the core city was used to designate whether the CBSA was RTW or not during any part of the time frame, although it is acknowledged that statewide RTW status may be a factor in intra-regional competition. RTW

status was derived from Peck (2016) and the National Conference of State Legislatures (2017) Right-to-Work Resource webpage.

¹²The broad RSDI, not shown, is significant at the 0.1 level, but has a nearly negligible coefficient of 0.0010072.

¹³We use central city names to designate metro areas. For example, “San Francisco” represents the entire San Francisco–Oakland–Hayward, CA statistical area.

¹⁴Boston did not make the “top 20%” list (Supplementary Table A6) but would be the next metro in line if the list were expanded.

Acknowledgements

This research was supported by National Science Foundation Award No. 1637737, NRI: Workers, Firms and Industries in Robotic Regions. We thank Professor Bill Drummond for his helpful comments and suggestions and Sian Llewellyn for her research assistance.

References

Acemoglu, D. and Autor, D. (2011) Skills, tasks, and technologies: implications for employment and earnings. In D. Card and O. Ashenfelter (eds.) *Handbook of Labour Economics*, vol. 4, pp. 1043–1171. New York: Elsevier.

Acemoglu, D. and Restrepo, P. (2017) *Robots and Jobs: Evidence from US Labour Markets*. Working Paper. Cambridge, MA: National Bureau of Economic Research.

Adler, P. S. (1992) Introduction. In P. S. Adler (ed.) *Technology and the Future of Work*. Oxford: Oxford University Press.

Autor, D. H. and Dorn, D. (2013) The growth of low-skill service jobs and the polarization of the US labour market, *The American Economic Review*, **103**: 1553–1597.

Autor, D. H., Levy, F. and Murnane, R. J. (2003) The skill content of recent technological change: an empirical exploration. *The Quarterly Journal of Economics*, **118**: 1279–1333.

Banfi, S. and Villena-Roldán, B. (2019) Do high-wage jobs attract more applicants? Directed search evidence from the online labor market. *Journal of Labor Economics*, **37**: 715–746.

Braverman, H. (1998) *Labour and Monopoly Capital: The Degradation of Work in the Twentieth Century*. New York: NYU Press.

Brynjolfsson, E. and McAfee, A. (2014) *The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies*. New York: W. W. Norton & Company.

Cappelli, P. (2012) *Why Good People Can't Get Jobs: The Skills Gap and What Companies Can Do About It*. Philadelphia: Wharton Digital Press.

Cappelli, P. (2014) *Skill Gaps, Skill Shortages and Skill Mismatches: Evidence for the US*. Cambridge, MA: National Bureau of Economic Research.

Carnevale, A. P., Jayasundera, T. and Repnikov, D. (2014) *Understanding Online Job Ads Data*. Technical Report (April). Washington, DC: Georgetown University, Center on Education and the Workforce.

Christopherson, S., Martin, R., Sunley, P. and Tyler, P. (2014) Reindustrialising regions: rebuilding the manufacturing economy?, *Cambridge Journal of Regions, Economy and Society*, **7**: 351–358.

David, H., Katz, L. F. and Kearney, M. S. (2006) The polarization of the US labor market. *American Economic Review*, **96**: 189–194.

Deming, D. and Kahn, L. B. (2018) Skill requirements across firms and labor markets: Evidence from job postings for professionals. *Journal of Labor Economics*, **36**: S337–S369.

Frey, C. B. and Osborne, M. A. (2017) The future of employment: How susceptible are jobs to computerisation? *Technological forecasting and social change*, **114**: 254–280.

Gertler, M. S. (1995) “Being there”: proximity, organization, and culture in the development and adoption of advanced manufacturing technologies, *Economic Geography*, **71**: 1–26.

Glaeser, E. L., Kallal, H. D., Scheinkman, J. A. and Shleifer, A. (1992) Growth in cities, *Journal of Political Economy*, **100**: 1126–1152.

Gomez, J. and Vargas, P. (2009) The effect of financial constraints, absorptive capacity and complementarities on the adoption of multiple process technologies, *Research Policy*, **38**: 106–119.

Goos, M., Manning, A. and Salomons, A. (2009) Job polarization in Europe, *The American Economic Review*, **99**: 58–63.

Gordon, R. J. (2012) *Is US Economic Growth Over? Faltering Innovation Confronts the Six Headwinds*. NBER Working Paper Series. Cambridge, MA: National Bureau of Economic Research.

Gordon, R. J. (2014) *The Demise of US Economic Growth: Restatement, Rebuttal, and Reflections*. Cambridge, MA: National Bureau of Economic Research Working Paper Series.

Graetz, G. and Michaels, G. (2018) Robots at work, *Review of Economics and Statistics*, **100**: 753–768.

Grint, K. and Woolgar, S. (2013) *The Machine at Work: Technology, Work and Organization*. Malden, MA: John Wiley & Sons.

Harrison, B., Kelley, M. R. and Gant, J. (1996) Innovative firm behavior and local milieu: exploring the intersection of agglomeration, firm effects, and technological change, *Economic Geography*, **72**: 233–258.

Hershbein, B. and Kahn, L. B. (2018) Do recessions accelerate routine-biased technological change? Evidence from vacancy postings, *American Economic Review*, **108**: 1737–1772.

International Federation of Robotics. (2017) *World Robotics: Industrial Robots 2017*. Frankfurt, Germany: IFR Statistical Department.

Jäger, A., Moll, C., Som, O. and Zanker C. (2015) *Analysis of the Impact of Robotic Systems on Employment in the European Union*. Fraunhofer Institute for Systems and Innovation Research. Available at: <http://publica.fraunhofer.de/dokumente/N-366982.html>.

Keep, E. and Mayhew, K. (2010) Moving beyond skills as a social and economic panacea, *Work, Employment & Society*, **24**: 565–577.

Kelley, M. R. and Helper, S. (1999) Firm size and capabilities, regional agglomeration, and the adoption of new technology, *Economics of Innovation and New Technology*, **8**: 79–103.

Leigh, N. G. and Kraft, B. R. (2017) Emerging robotic regions in the United States: insights for regional economic evolution, *Regional Studies*, **52**: 1–13. doi:10.1080/00343404.2016.1269158

Leonardi, P. M. (2012) Materiality, sociomateriality, and socio-technical systems: what do these terms mean? How are they different? Do we need them? In M. Paul, J. K. Leonardi and B. A. Nardi (eds.) *Materiality and Organizing: Social Interaction in a Technological World*, pp. 25–48. Oxford: Oxford University Press.

Mason, J. L., Johnston, E., Berndt, S., Segal, K., Lei, M. ad Wiest, J. S. (2016) Labour and skills gap analysis of the biomedical research workforce. *The FASEB Journal*, **30**, 2673–2683.

McNulty, P. A. and Wisner, J. D. (2014) The impacts of the 2008 government bailouts on the US automobile industry, *The Journal of Human Resource and Adult Learning*, **10**: 20.

Modestino, A. S., Shoag, D. and Ballance, J. (2016) Downskilling: changes in employer skill requirements over the business cycle, *Labour Economics*, **41**: 333–347.

National Conference of State Legislatures. (2017) Right-to-Work Resources. Available at: <http://www.ncsl.org/research/labour-and-employment/right-to-work-laws-and-bills.aspx>.

Orlikowski, W. J. and Scott, S. V. (2008) Chapter 10: sociomateriality: challenging the separation of technology, work and organization, *Academy of Management Annals*, **2**: 433–474. Available at: <http://prx.library.gatech.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=39786577&site=ehost-live>.

Peck, J. (2016) The right to work, and the right at work, *Economic Geography*, **92**: 4–30.

Wardrip, K., Andreason, S. and De Zeeuw, M. (2017) *Uneven Opportunity: Exploring Employers' Educational Preferences for Middle-Skills Jobs*. Philadelphia: Federal Reserve Bank of Philadelphia & Federal Reserve Bank of Atlanta.

Wingfield, N. (2017) As Amazon pushes forward with robots, workers find new roles. *New York Times*, September 10. Available at: <https://www.nytimes.com/2017/09/10/technology/amazon-robots-workers.html>.