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Advances in robotics and artificial intelligence (AI) technology have spurred a re-examin-
ation of technology’s impacts on jobs and the economy. This article reviews several key
contributions to the current jobs/Al debate, discusses their limitations and offers a modified
approach, analysing two quantitative models in tandem. One uses robot stock data from
the International Federation of Robotics as the primary indicator of robot use, whereas the
other uses online job postings requiring robot-related skills. Together, the models suggest
that since the Great Recession ended, robots have contributed positively to manufacturing
employment in the USA at the metropolitan level.
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Introduction

Researching how technological advances are
changing the way we work is not a straight-
forward task. A major barrier to conducting
this research is the deficit of appropriate data
with which to do so. The seriousness of this
deficit grows as the previously catch-all terms
of “computer” and “information technology”
give way to robotics, machine learning and
artificial intelligence (Al). In this article, we
examine how data deficiencies influence as-
sumptions behind contemporary estimates
of impacts on employment, the most notable
of which is that the relationship between
robots and employment is invariant at the
industry-region level. We also present alter-
native constructs for measuring robot im-
pact and apply them to a unique data set of

online job postings, augmented by standard
socio-economic data sources. Our findings
suggest that the impacts of robotics vary
across metropolitan areas, so discussions of
these impacts should not be assumed to be
generalisable across space.

Work and technology in the 20" century

While Braverman (1998) argued that craft
skills were disappearing due to the adoption
of 20"-century Fordist production methods,
subsequent quantitative investigations suggest
technology advances have been associated with
increases in workers’ skill levels. For example,
Autor, Levy and Katz (2003) found for the
second half of the 20™ century that increases
in workers’ skills were directly attributable to
computerisation.
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Models of skill-biased technical change
(SBTC) or upskilling, however, do a poor job
accounting for growing wage polarisation and
growth in “low-skill” service jobs (Acemoglu
and Autor, 2011). To address this, subsequent
research, incorporating changing consumer
preferences and offshoring susceptibility, finds
computerisation to be a key factor in the redis-
tribution of middle-skill work towards the low-
and high-skill ends of the labour market in the
USA and Europe (Autor and Dorn, 2013; Goos
et al.,2009).

While the econometric approach outlined
above has been influential in policy debates
about work and technology, it is one of many
possible approaches to examining technology’s
role in the changing nature of work. Sociology,
management and organisational science re-
search highlights the social context of techno-
logical change by focussing on qualitative
analyses, case studies and “microdynamics”
(Adler, 1992, 7), often at the individual work-
place level. These approaches include critiques
of the abstract conceptualisation of technology
and re-emphasis on the physical nature of
various workplace technologies—their “ma-
teriality” —and how they become incorporated
into social systems (Leonardi, 2012; Orlikowski
and Scott, 2008). This socially contingent per-
spective of technology generates nuanced sets
of findings that differ from workplace to work-
place and complicate the generalised trends de-
scribed by statistical analysis.

Associally contingent perspective ontechnology’s
influence on work at meso and macro scales im-
plies that machines are not the root “cause” of la-
bour market problems. Instead, problems of skill
bias, wage polarisation and technology-induced
unemployment are fundamentally political ra-
ther than technological problems (Grint and
Woolgar, 2013). For example, what is interpreted
as “upskilling” may actually be “up-credentialing’
driven by increased policy emphasis on degree-
seeking (Keep and Mayhew, 2010) and increased
employer selectiveness (Cappelli,2012,2014).

Even if machines are merely vehicles for
politically induced labour market failures, the
question of whether “this time is different” re-
mains a pressing one. With the exception of
Gordon (2012, 2014), who has been sceptical
of the ability to innovate our way out of the
long-term post-1973 period of economic stag-
nation, economists have generally and until
recently been optimistic about the capacity of
technological progress to generate a net surplus
of jobs: the virtuous cycle of rising wages and
increased demand should spur labour reallo-
cation to ever more useful functions. However,
according to Brynjolfsson and McAfee (2014),
we are now at an “inflection point’; whereby
technological capabilities will outpace society’s
ability to absorb the disruption that they cause,
and radical changes in safety nets and educa-
tion policy are in order.

With these issues in mind, this article inquires
whether robots are exerting pressures on labour
markets above and beyond that seen in pre-
vious application of industrial automation. The
answer we provide uses the case of industrial
robots (those used in manufacturing operations),
for two key reasons. First, even though the bulk
of future disrupting technologies lie outside of
manufacturing (for example, drones, autonomous
vehicles, personal care robots), they will largely be
based on the technology pioneered in industrial
robotics. Second, industrial robots are already
widely and systematically used in manufacturing,
as opposed to service and consumer robots, which
are in the early stages of adoption.

This article first summarises the sparse litera-
ture on robotics impacts on employment, fol-
lowed by the introduction of a new indicator
of robotics presence in a regional economy,
and employs it in an empirical model using a
novel data source, real-time labour market
information (RTLMI) that is derived from
online job postings. We find that this new indi-
cator performs better than others in explaining
manufacturing job growth and that the effect of
robots is a slightly positive one.
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Robots and work: empirical evidence

In contrast to the substantial literature on the
general impacts of information and communi-
cations technologies, the body of work to date
on the specific economic impact of robots is
scarce (Graetz and Michaels, 2018) and em-
ploys a variety of methods, time frames, geog-
raphies and data sources. We broadly categorise
the current robot-impacts literature in terms of
estimates of impacts to workers, distinguishing
by whether robots (i) have neutral effects on
numbers of workers or (ii) displace workers.
The studies with neutral results, which we label
“robots-as-status-quo” research, are Graetz and
Michaels (2018) and Jager et al. (2015). Those
that link labour displacement to robots, which
we label “robots-as-displacers’; are Acemoglu
and Restrepo (2017) and Frey and Osborne
(2017).

The assertion that robots increase labour
productivity is uncontroversial, putting robot-
specific research in line with the SBTC con-
sensus that machines generally make human
work more productive (Table 1). In accord-
ance with the current state of SBTC research

is Graetz and Michaels’ (2018) finding that the
availability of work is essentially a zero-sum
game among workers. That is, while Graetz and
Michaels do not find direct evidence of worker
displacement, they do find that when additional
hours of work become available, they go to
workers with higher skill levels.

This robot-specific skill-biased pattern is
similar to that associated with other types
of automation technology (see, for example,
Autor et al., 2003, who find that workplace
computerisation reallocates new jobs to those
with more education). While rectifying these
skill disparities has been a vexing policy
problem for decades, these findings at least sug-
gest that the recent state of robotics technology
does not portend the onset of mass techno-
logical unemployment. Jager et al. (2015) sug-
gest robots may be locally job-preserving, as a
high degree of robot use in an establishment
is associated with a reduced likelihood of that
establishment’s production relocating to an-
other country.

However, the “robots-as-displacers” results
are more concerning because they suggest that,

Table 1. Summary of robot-impact research

Year Title Employment impacts Other results
Robots-as-status-
quo
Graetz & 2018  ‘Robots at Work’ No effect on overall production hours  Increase labour product-
Michaels (G&M) worked; slight reduction in hours ivity; Increase value added
worked by lower-skilled workers
Jager et al. 2015  ‘Analysis of the Impact ~ No effect on number of production Increase labour product-
of Robotics Systems on  workers employed ivity; decrease likelihood
Employment in the EU’ of offshoring production
Robots-as-
displacers
Frey & Osborne 2013  “The Future of Employ-  47% of current occupations at high Not tested

ment: How Susceptible
Are Jobs to Computer-
ization’

‘Robots and Jobs: Evi-
dence from US Labour
Markets’

Acemoglu & 2017
Restrepo (A&R)

One robot/thousand workers de-
creases employment by 3-6 workers
and aggregate wages by 0.25%-0.75%

risk of automation

Increased labour product-
ivity (but of insufficient
magnitude to mitigate
displacement)
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rather than setting in motion a reallocation of
skills within the human workforce, robotics
(and AI more generally) is instead shrinking
the size of the labour market accessible to
those who perform work that is more easily
automatable.

As previously noted, the four studies re-
viewed here are not perfectly comparable.
Unlike the others, Frey and Osborne (2013) is a
probabilistic forecast of threats to current occu-
pations that can be expected in the near future
based on mapping specific job tasks, as defined
by the Standard Occupational Code (SOC), to
experts’ assessments of technological capabil-
ities and trajectories. It applies to Al in general
rather than robots specifically. So, while the
model predicts significant continued displace-
ment to manufacturing jobs, it also includes lo-
gistics and administrative jobs that lie outside
the purview of traditional industrial robots.
According to the model, most non-supervisory
production occupations have at least a 50%
chance of being “computerized’; while the bulk
has at least a 75% chance.

Acemoglu and Restrepo (2017) build on
Graetz and Michaels (2018) by deriving a
sub-national estimation of robot use (or “ex-
posure”) from International Federation of
Robotics (IFR’s) industry and country tabu-
lations. Because the IFR only provides robot
sales and stock data for countries and indus-
tries, Acemoglu and Restrepo map robot ex-
posure by industry onto US Commuting Zones,
based on the concentration of each industry
within each commuting zone. Their findings
suggest that robots exert substantial downward
pressure on local employment and wages and
that this pressure becomes intensified when
inter-regional trade is taken into account.

Despite the divergent findings of the nascent
robotics-impact literature, they are not neces-
sarily contradictory. Differing results may be
the result of the use of different methods, data
sources, geographies and time periods in ques-
tion. For example, robots may simultaneously

drive productivity growth with little job de-
struction when aggregated across the EU and
OECD member states—as Jiager et al. and
Graetz and Michaels suggest—and displace
workers and reduce salaries in the USA at the
same time. While the geographic differential in
robot uptake and impacts gets lost in the hyper-
bole of the media debate on the topic, Leigh
and Kraft (2017) show that regions within the
USA have substantial differences in their ro-
botics knowledge bases and that these differ-
ences will likely affect the quantity and quality
of local automation capabilities.

Robotics data in perspective

The unavailability of data on robotics pene-
tration in industry remains a significant im-
pediment that accounts for the discrepancy in
(and shortage of) robot-impact research. There
is no North American Industrial Classification
System (NAICS) code to single out robotics
manufacturers or consulting firms. Nor is there
a SOC to identify employees who work directly
with robots.! Consequently, there is no way to
isolate robot users or makers in these com-
monly used, publicly available data sets.

One way to overcome the robotics data gap
is to collect original data on robots. However,
due in part to the time and expense involved
in generating original data sets of this nature,
these efforts have been scarce.

There are two examples to date of ori-
ginal robotics data collection. The first ex-
ample, a Fraunhofer Institute report to the
European Commission (Jager et al., 2015),
uses one question from the 2009 European
Manufacturing Survey (EMS) about robot
utilisation to estimate several related impacts
(summarised above). The question regarding
robot utilisation on the EMS asks respond-
ents to rate their use of robots on a three-
point “low-medium-high” scale, so exact
robot-to-job or robot-to-output associations
are not possible.
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The second example, Leigh and Kraft (2017),
generated a robotics “census” by mining pro-
prietary business databases for robotics firms in
the USA. The resulting data set demonstrates
the uneven geography of robotics suppliers and
service providers (called integrators, discussed
below). While the census demonstrates that
robotics-related employment is geographic-
ally correlated with the manufacturing sector,
the actual use of robots cannot be determined
from these data. Therefore, the census cannot
be used to make definitive links to changes in
employment, wages or productivity.

The other two studies (Graetz & Michaels
[G&M] and Acemoglu & Restrepo [A&R])
use data from the IFR, which has been tracking
robot sales since the early 1990s. The IFR sells
a longitudinal data set of robot sales and robot
stock (the latter is estimated by applying de-
preciation rates to previous years’ sales) by
country and industry for each year from 1993
to the present.

While the IFR data are the only of their
type available, they present several problems.
First, is that the concept of “robot stock” is an
approximation based on annual robot sales.
These stocks are inferred by depreciating accu-
mulated robot sales to each country based on
the assumption of a 12-year working life of a
robot—a number which the IFR itself acknow-
ledges is uncertain (2017). Robotics is a rapidly
developing technology, so it is not unreason-
able to assume that the rate of obsolescence is
increasing.’

In fact, robot sales in North America (the
bulk of which the USA is responsible for)
experienced an abrupt discontinuity be-
ginning in 2010, three years after the end
of both Graetz and Michaels’ (2018) and
Acemoglu and Restrepo’s (2017) time series
(see Figure Al in Supplementary Appendix).
In North America, annual sales records were
set every year from 2010 to 2018, while the
price per unit has steadily declined (based
on RIA data underlying Supplementary
Figure A1, the price per robot unit in North

America fell from just over $83,000 in 1999
to $53,500 in 2018). However, the extent to
which this period represents decisions to re-
place old robots or to add new robots where
none had previously existed is unknown. Do
these sales increases coincide with increases
in robotics technology, declining costs,
deepening of pent-up capital after the Great
Recession, or some combination thereof?
This sharp break in robotics sales patterns
presents researchers with a difficult choice:
limiting analyses to pre- or post-Great
Recession robot diffusion trends satisfies an
important condition for internal validity, but
the results may not be generalisable to sub-
sequent periods.

Furthermore, reporting sources have
changed over the course of the IFR’s data col-
lection efforts, so annual robot stock figures are
not fully comparable over time. Most signifi-
cantly, no sales data were reported for North
America until 2004 (International Federation
of Robotics, 2017), so any estimates of US
robots prior to that year must be derived from
other nations’ diffusion patterns.

Alternative constructs of robot exposure
and their limitations

Studies of the impacts of technology de-
fined broadly have sidestepped data prob-
lems by using expansive data sets in terms
of both observations and time periods (for
example, Autor, Katz and Kearney, 2008).
These investigations are also afforded some
leeway in conceptualising the primary vari-
able, technology, because “computerization”
applies in the same general sense to all in-
dustries, from accounting and finance to
manufacturing and agriculture. Furthermore,
for at least the second half of the 20" cen-
tury, computers have been so ubiquitously
interwoven into daily life in both work and
leisure that it makes little sense to try to the-
orise one overarching mechanism for how
they “affect” a person’s employment.
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However, researchers interested in specific
technological niches such as robots cannot re-
sort to this rationale, and robot-specific impact
studies must be more carefully operationalised.
A&R’s term, “Robot Exposure’, is an intuitive
and useful name for the concept at stake here,
reflecting a concrete, epidemiological notion of
exposure. However, as discussed above, avail-
able robot data do not necessarily provide
ready analogues to epidemiological vectors.

Two approaches to measuring robot exposure
have so far been used: Graetz and Michaels’
“robot density” and A&R’s aforementioned
“robot exposure” Both derive worker—robot
contact measures by creating a ratio of robots
to human labour in each industry. Both use
the IFR’s robot stock estimates as the “robot”
input. G&M’s robot density uses “millions of
hours worked” as the labour input, while robot
exposure uses “thousands of workers”

In addition to underlying problems with
robot data, both of these constructs, when op-
erationalised empirically, employ question-
able assumptions that threaten their construct
validity. The first of these assumptions is that
robots are uniformly diffused and employed,
and the second is that their uses and impacts
outside of the manufacturing sector are com-
parable to those within the sector.

Not all robots are “created” equal

Even if we accept that robot stock data are, on
average, reasonable estimates of the number of
robots in use each year, the more problematic
assumption is that the number of robots in use is
in fact the key determinant of other employment-
related outcomes. Robots have a wide variety of
specifications and are used in a wide variety of
applications. For example, some perform light-
weight repetitive tasks at high speeds, while
others may manipulate, weld or cut large pieces
of material more methodically. The number of
possible combinations of relationships between
robots, other automation equipment, workers
and output is essentially limitless. Condensing

the complexity of the human-robot relation-
ship to one simplified parameter is an out-
growth of the main problem of the task model
upon which this research is based: generalisa-
tions that divide work—whether performed
by humans or machines—into a few tractable
categories break down at all but the most ab-
stract and aggregate levels of analysis.

Another problematic abstraction arising
from the “robot stock” variable is that the pri-
mary mechanism for industrial robot diffusion,
robot integration, is overlooked. Industrial ro-
botic systems are planned, engineered, installed
and often sold by specialised engineering firms
called robotics systems integrators. Integration is
a substantial endeavour: Leigh and Kraft (2017)
show that in the USA, integrators at specialised
automation engineering firms account for two-
thirds of overall robotics-related employment.

Estimates for integration costs, however,
are difficult to attain for several likely reasons.
For one, integrators may not want to disclose
costs publicly because they must routinely bid
against other firms for new jobs. For another,
the process of integration is highly variable
and complex, preventing the establishment
of standard pricing. Differing production pro-
cesses, automation goals and factory cap-
abilities ensure that engineering challenges
presented to integrators remain novel.

Robotic hardware is not the sole deter-
minant of the costs and consequences of ro-
botic processes. An encouraging aspect of
A&R’s analysis is that their results stand up
well to controls for capital expenditures—both
those from IT specifically and the US Bureau
of Labor Statistics’ (BLS) account of general
capital stocks—and Leigh and Kraft’s (2017)
measure of local robot-related employment,
suggesting that the purchase of robots is inde-
pendent, at the industry level, from other capital
spending. However, it is far from clear how in-
tegrator costs are reported. Some of these costs
are for software and computing (for example,
machine vision), while some are for hardware
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(for example, physical robots and end-of-arm-
tools). Some of these expenses are simply for
the hourly costs of engineering services.

The high variability in robotic automation
processes—and thus diffusion and depreci-
ation—confounds attempts to apply gener-
alised robotic diffusion patterns over time to
geographically specific places. A&R’s model,
which infers sub-national robot exposure pat-
terns from national-level data weighted by
commuting zone industrial mixes, is particu-
larly vulnerable to this limitation. The “robot
exposure” measure assumes that the nature
and effects of robot use in a large auto plant in
Michigan is essentially the same as itisin a large
auto plant in South Carolina, and that small
and medium-sized auto suppliers use robots in
a fashion similar to their larger counterparts
across the country. This is problematic not only
because of the variability in the integration pro-
cess itself, but also because prior research sug-
gests that both plant size and geography are
important and fundamental factors in adoption
of technology. For example, intra-metropolitan
differences in locations of metalworking firms
are highly predictive of whether they chose to
adopt programmable automation technology
(Harrison et al., 1996), and smaller firms are
consistently found to be less likely to adopt ad-
vanced technology (Gomez and Vargas, 2009;
Kelley and Helper, 1999). Additionally, national
culture strongly shapes attitudes towards tech-
nology and technicians within firms, thereby
influencing the ultimate performance and prod-
uctivity of the technology (Gertler, 1995).

Impacts of robots used outside of
manufacturing

As it is applied in A&R, the “robot exposure”
measure includes manufacturing subsectors at
the three-digit NAICS level, and construction/
extraction, utilities and education/research sec-
tors at the two-digit level. However, outside of
manufacturing, robots have minimal presence
and are unlikely to have the same “effects” on

workers as they do in manufacturing, where
they have been systematically used for sev-
eral decades. For example, in 2007 the IFR re-
ported that 50 robots were used in the USA
in the construction and extraction industry,’
while workers in the industry, according to
EUKLEMS, were about 7.8 million. Thus, we ar-
rive at a robot exposure figure of 0.0064 robots
per thousand workers.

The assumption that this tiny number of
robots meaningfully affects labour market out-
comes is untenable. The error compounds when
the exposure factor is applied to all local US la-
bour markets. Fifty robots obviously cannot be
distributed across 709 commuting zones; most
will have no construction robots—and thus no
exposure. Because construction employment is
a locally traded industry and relatively constant
as a percentage of employment across labour
markets—whereas manufacturing varies sig-
nificantly—the “effect” of these 50 robots na-
tionwide will be disproportionately large in
most labour markets, and disproportionately
small in the one or several that actually have
these robots. The same problem applies to the
utility sector.

Moreover, the “education and research”
sector should be excluded from the exposure
measure for a different reason altogether,
which is that educational robots do not fall
within the same theoretical framework. Little,
if any, robot-related displacement would be ex-
pected in the sector. Educators increasingly use
robots as instructional tools as the demand for
robotics skills in the workplace rises. While a
limited number of robots may be used in bio-
medical research labs in place of technicians,
technology researchers conduct research on the
robots themselves, suggesting that increased
numbers of robots in research would be driven
by more researchers and teams engaged in
this area.

To date, the most impactful and ubiquitous
types of non-manufacturing robots are those
used in warehouses and distribution centres.
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However, these robots were not commer-
cially available by the end of previous studies’
time series. Furthermore, their pattern of dif-
fusion today is highly skewed. E-commerce
giant Amazon bought the first-mover firm in
warehouse robots, Kiva, for its exclusive use.
Consequently, Amazon’s estimated 100,000
warehouse robots (Wingfield, 2017) are still not
included in IFR statistics, since Amazon does
not sell its robotic systems on the open market.
Other warehouse robot makers are starting to
emerge in the market and should eventually
be part of IFR statistics, though the results will
continue to under-represent warehouse robots
until Amazon robots are incorporated.

Data and methods

We use two approaches to address the prob-
lems with IFR robot stock data outlined above.
The first approach modifies A&R’s robot ex-
posure variable, confining both the construc-
tion of the variable and the estimated impacts
to the manufacturing industry. We call this the
Modified Robot Exposure (MRE) variable.
The second approach uses an alternative data
source, labour market data, to create an indi-
cator for robot exposure.

While our approaches may be compared on
conceptual grounds to those in the previous
studies discussed above, they are not replica-
tions because our labour market data (labelled
RTLMI and explained below) begins in 2010
and cannot support the investigation of prior
time periods. Therefore, this article should be
viewed primarily as a comparison of two new
measurement constructs of robotics’ impacts.

Modified Robot Exposure

MRE limits the robot stock-derived exposure
variable to the manufacturing industry, thereby
eliminating the outsized influence of sectors
that have minimal robot use but significant
employment. Otherwise, it works similarly to
the exposure measure created by A&R, with

national-level industry concentrations of robots
being applied at the local level. However, we
use US Census-defined core-based statistical
areas (CBSAs) instead of commuting zones
as labour market boundaries. CBSAs include
metropolitan and micropolitan statistical areas,
but exclude counties that are not part of an
urban cluster of 10,000 people.* While com-
muting zones are more representative of actual
labour markets and include more members
of the US workforce, we use CBSAs for two
reasons. The first is that non-metropolitan and
non-micropolitan counties are subject to sub-
stantial suppression of employment data at the
level of manufacturing subsectors, meaning
that missing data would undermine accurate
estimates for small counties. The second is that
our labour market data are also biased towards
urban areas (see subsequent section on Data
Limitations), excluding non-metropolitan areas
maintains relative consistency in the universes
across independent and dependent variables.

Robotics Skill Demand Index

Using labour market data allows us to adjust,
conceptually, the mechanism whereby jobs are
impacted. With skill demand, the theorised im-
pact no longer stems directly from the robot.
Rather, it comes from the skills required by the
presence of a robot. This slight shift in where
the causal burden is applied adds a new di-
mension to existing robot-impact research. We
call the resulting measure the Robotics Skill
Demand Index (RSDI).

The input for the RSDI comes from a novel
source called RTLMI. RTLMI is labour market
data that are extracted from internet job post-
ings on a continual basis. Of the several RTLMI
vendors, we chose Burning Glass Technologies
(BGT) for our study. Using proprietary al-
gorithms, BGT collects online job postings
on a daily basis, cleans the raw data and for-
mats it into a structured data set. Although it
has primarily been used by human resources
departments and workforce and economic
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development agencies, it has emerged as a
useful tool for academic researchers. Recent
RTLMI-based work analysed labour market
skill demands (Deming and Kahn, 2017; Mason
et al., 2016; Wardrip et al., 2017), the adoption
of labour-saving technologies (Hershbein and
Kahn, 2016), and job recruiting and searching
activities (Banfi and Villena-Roldan, 2016;
Modestino et al., 2016).

We utilise a variable created by BGT called
“skill clusters” to derive our composite robot
indicator. BGT defined these 559 skill clusters
by subjecting the text of job ads to k-means
cluster analysis and additional qualitative scru-
tiny (B. Taska, Personal Communication). Each
job ad is, in turn, associated with one or more
skill clusters based on the text of the ad. Out
of BGT’s 559 clusters, there is one specifically
called “robotics” Although the robotics skill
cluster appears in 91,214 job ads in our data
set, this frequency is insufficient for regression
analysis. Thus, to achieve enough robot-related
skill observations for the RSDI, we developed
a composite measure of skill clusters related
to and including robotics. Skill clusters were
selected for the RSDI by calculating the mag-
nitude of correlation between the robotics skill
cluster and all other skill clusters in the data-
base for job ads in the manufacturing industry.
The RSDI comprised 15 skill clusters with the
highest correlation coefficients (>0.04) (see
Table 1).

The RSDI is further divided into “broad”
and “narrow” definitions because the skills
contained in the index are themselves general
and not uniquely applicable to robots.’> The
broad definition includes all 15 skill clusters
and the robotics skill cluster (16 total clus-
ters), while the narrow definition includes only
the top five and the robotics skill cluster (six
total clusters). Dividing the RSDI into these
two versions enables us to gauge their relative
performance in empirical tests, and thereby to
assess whether the RSDI classification scheme
is diluted by casting too wide of a net. In the

first model presented in the “Results” section,
the broad definition is statistically significant,
while the narrow is not (although its 7-value is
1.4). This suggests that the construct sacrifices
some fidelity capturing robotics work in ex-
change for better statistical power. However,
in the second model, only the narrow definition
achieves statistical significance, indicating that
some precision can be gained by zeroing in on
robot-specific jobs. Either way, the RSDI con-
struct unavoidably captures some jobs that are
not directly related to robots.

The actual Robotics Skill Demand Index
used in the regression analyses is calculated by
dividing the number of job postings containing
at least one skill cluster represented in Table 1
by the total number of manufacturing industry
job postings within each CBSA in the US.
Separate RSDIs are calculated for broad and
narrow definitions.

The low correlations between the skill clus-
ters (Table 2) are a methodological artefact.
That is, since the k-means clustering process is
used to establish unique groupings, high correl-
ation coefficients are not expected. This is par-
ticularly the case given the significant internal
variation in the data set stemming from its 559
skill clusters and 9,856,829 total manufacturing
job-posting observations.

Despite low statistical correlations, the skill
clusters included in both the broad and narrow
robot skill demand indices are qualitatively re-
lated to industrial robot use and representative
of advanced manufacturing in general.

Data limitations

As we have emphasised, no existing data set
is ideal for examining the impact of robotics.
While RTLMI correlates over time with the
US BLS Job Openings and Labor Turnover
Survey (JOLTS),® it contains inherent biases.
RTLMI data are not derived from standard-
ised or mandatory surveys, so they are subject
to changes in posting strategies by employers
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Table 2. Robotics Skill Demand Index clusters ranked by correlation with Robotics Skill Cluster

Rank Skill Clusters Correlation Frequency % Posting RSDI definition

1 Computer-Aided Manufacturing 0.1351 487373 5.0 Narrow

2 Mechanical Engineering 0.0954 560,776 5.7 Narrow

3 Welding 0.0878 373,363 3.8 Narrow

4 Drafting and Engineering Design 0.0858 703,780 72 Narrow

5 Engineering Software 0.0751 148,989 15 Narrow

6 Electrical Construction 0.0745 168,960 1.7 Narrow and Broad

7 Engineering Activities 0.0568 517778 53 Narrow and Broad

8 Basic Electrical Systems 0.0567 373,693 3.8 Narrow and Broad

9 Schematic Diagrams 0.0532 239,218 2.4 Narrow and Broad
10 Electrical and Computer Engineering 0.0515 661,015 6.7 Narrow and Broad
11 Industrial Engineering 0.0492 380,644 3.9 Narrow and Broad
12 Machine Tools 0.0464 708,631 72 Narrow and Broad
13 Manufacturing Processes 0.0455 849,328 8.6 Narrow and Broad
14 Process Engineering 0.0437 405,092 4.1 Narrow and Broad
15 Machinery 0.0433 498,566 5.1 Narrow and Broad

N =9,856,829. “Robotics” Skill Cluster, not shown, is also included in both narrow and broad definitions.

Source: BGT.

over time. Since RTLMI only contains on-
line postings, it provides better coverage of
jobs with higher skill and education require-
ments (Carnevale et al., 2014), as well as jobs
located in urbanised areas. As such, it misses
word-of-mouth jobs, and most significant for
the present study, internally advertised union
positions.

We employ several strategies to minimise
the effects of these biases, including designing
an RSDI measure that internalises changes
in overall job postings over time, and adding
a unionisation variable to the model. We also
limit our empirical test to only CBSAs with
at least 1000 manufacturing job postings from
2010 to 2015, to avoid potential bias caused by
one or several large employers accounting for
an outsized number of postings where online
recruiting has limited penetration.

Empirical models

We employ two primary models to estimate
the impact of robotics skill demand on re-
gional manufacturing labour markets. We call
them the “Initial Conditions (IC) model” and
the “Difference” model. The main difference

between the two models is—as their names
suggest—that the IC model uses starting con-
ditions in 2010 as independent variables, while
the Difference model is a first difference model
determined by changes in those conditions
from 2010 to 2016. Both models are concep-
tually based on Glaeser et al. (1992), where
the outcomes are the ratio of log-transformed
wages and employment in 2016 versus 2010.
To test the hypotheses that employment
and wages grow faster when there is an initial
condition of a high concentration of indus-
trial robots, we use RSDI and the “competing”
measures of robot inputs as variables to explain
the change in the ratio of manufacturing prod-
uctivity in 2016 to 2010.” Control variables for
the IC model include Census division dum-
mies, average employment and wage growth in
metropolitan areas,® the size and concentration
of metropolitan manufacturing industry,’ the
composition of durable manufacturing,'’ and a
“right-to-work” legislation dummy," since we
expect union membership to exert a competing
influence on our dependent variables. Control
variables for the Difference model are change
in metropolitan employment and wage, and a

86

0202 1290190 Z0 uo Jasn ABojouyoa] Jo aynsu| eibioss) Aq 9808195/.2/1/E L/ejonie/saifo/woo dno-olwapeoe//:sdiy Wwoll papeojumoc]



Robots, skill demand and manufacturing in USA

dummy representing change in right-to-work
status. The Leigh and Kraft’s (2017) local robot
industry explanatory variable is not included in
the Difference model because it was only ob-
served for a single time period.

Further elaboration on these models
including equations, assumptions and limita-
tions is included in the “Empirical Models”
section of Supplementary Appendix.

Geography of robotics skill demand

The geographic distribution of robotics de-
mand defined by RSDI corresponds broadly
with other indicators of robot penetration.
Figures 1a and b show that robotics job demand
is concentrated on the coasts and the Midwest
region stretching south along the Interstate 75
corridor.

Higher numbers of robotics job demand are
on the coasts, but the higher concentrations are
in the interior. This greater intensity of robot
skill demand in the Midwest and Southeast
regions reflects the skill needs of the more
manufacturing-centric labour markets in these
areas.

Results

We display two main sets of results: em-
ployment outcomes from both the IC and
the “Difference” models. Only the models
with employment outcomes are shown be-
cause none of the robot indicators register
as statistically significant predictors of wage
outcomes.

While the initial sample of metro areas in-
cludes 356 CBSAs based on the criterion of
having at least 1000 job listings over the ana-
lysis period of the labour market data, four
additional outlying CBSAs were removed from
the analysis because they were detected as un-
usual and influential cases based on several cri-
teria, including Leverage (observations with
extreme predictor values) and Cook’s Distance
(influence of a case on the predicted mean),

and Studentized residual values (difference be-
tween predicted and observed).

These outliers are all small metro areas, with
relatively undiversified economies and less rep-
resentation in RTLMI. Factors such as a lack
of industrial diversity, as well as plant openings
or closings, will have outsized effects on input
metrics for these communities. In general, our
models were more accurate in predicting out-
comes for large metros than for small metros.

IC model

For this sample of 352 CBSAs, the average
MRE value is slightly over 13 robots per thou-
sand workers (Table 3). The average metro-
wide value for the broad Robotics Skill Demand
Index (RSDI) is 22.7% of job postings, while
the more restrictive narrow RSDI is 9.3% of
postings. With an average location quotient of
1.26, and an average percentage of employment
in durable manufacturing of 55.4% in 2010, this
is a relatively manufacturing intensive group of
CBSAs (by design, as previously explained).
For the IC model, the MRE variable and the
RSDI both have significant, positive effects on
employment (see Table 4). While the narrow
RSDI has a slightly stronger relationship to
the manufacturing employment ratio than does
MRE, the broad RSDI has no discernible re-
lationship. Because the dependent variable is
in natural log form, a unit change in either the
narrow RSDI or MRE can be interpreted to
predict a 0.2% increase in manufacturing em-
ployment ratio. In other words, a CBSA with
either a one percent above average RSDI, or
one more robot per thousand workers than
average in 2010, can expect approximately
0.2% more manufacturing employment growth
than average by 2016 (with the understanding
that growth is defined relative to size in 2010).
There is also a notable geographic difference in
the regional manufacturing employment response
to increased robotics skill demand in 2010.The East
North Central census division, which is largely con-
tiguous with what is thought of as the historical US
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Figure 1.

Robot-related Skill Demand

# of Job Postings (narrow definition, 2015)
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(a) Robotics skill demand (narrow definition) in CBSAs, 2015 (Magnitude). (b) Robotics skill demand (narrow

definition) in CBSAs, 2015 (Concentration).
Source: Authors’ calculations of BGT.
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Table 3. Descriptive statistics, Initial Conditions (IC) model

Variables Mean Standard deviation =~ Minimum  Maximum
In (manufacturing employment ratio (2016/2010)) 0.070 0.123 -0.233 0.419
Relative employment size of local robot industry* 2.980 10.613 0.000 123.213
MRE" 2010 13.345 6.744 2.783 42.720
RSDI® Broad 22.697 8.829 0.000 58.824
RSDI* Narrow 9.309 5.824 0.000 32.787
In (CBSA employment in 2016/CBSA employment in 2010) 0.105 0.075 -0.159 0.371
In (average wage in manufacturing in 2010) 10.850 0.214 10.250 11.865
Average years of education (2010) 26.466 8.449 10.912 57503
Employment size (in millions, 2010) 0.027 0.064 0.001 0.898
Location quotient in 2010 1.256 0.691 0.127 4.691
Percent durable manufacturing employment in 2010 55422 17764 7195 93.716
Right-to-work legislation dummy 0.429 0.496 0.000 1.000

N =352.

aLeigh and Kraft’s (2017) local robot industry variable.
®Modified Robot Exposure (robots per 1000 workers).
‘Robot Skill Demand Index; unit of measurement is percent.

manufacturing heartland, or the “rustbelt’sees the
largest employment increases when holding 2010
robotics skill demand constant. There are likely
regionally specific omitted variables contributing
to these differences. The post-recession bailouts of
the “Big 3” American auto companies and their
subsequent employment rebounds (McNulty and
Wisner, 2014) likely had some influence on the
outsized manufacturing performance of the East
North Central region, but would not have had as
direct or significant of an effect on the East South
Central and Pacific regions, each of which also
showed strong manufacturing growth.

CBSAs with greater overall employment
growth over the period had strong positive as-
sociations with robot skill demand (CBSA em-
ployment 2016/CBSA employment 2010), while
those that paid higher initial manufacturing
wages (average wage in manufacturing
2010) experienced depressed growth. The pres-
ence of right-to-work (that is, anti-union) legis-
lation showed no significant effect.

Difference model

In contrast to the IC model, which uses only
baseline 2010 values of explanatory robotics

variables as predictors, the Difference model
takes into account how these variables changed
over the analysis period.

These changes were significant. The average
change in robot exposure (MRE) nearly
doubled over the time period, increasing from
13.3 robots per thousand workers in 2010 to
26.3 robots per thousand workers in 2015 (an
increase of nearly 13 robots per thousand
workers; see Table 5). This change significantly
outpaced the RSDI, which grew by 5.8% and
2.0% for broad and narrow definitions, re-
spectively, over the same time period. These
differential growth rates are likely due to the
underlying data sources. Recall that because
the MRE measure is primarily a function of
changes in industrial employment rather than
robot use, the resulting robot exposure estimate
could be inflated by the heavily robotised auto
industry adding jobs after the Great Recession.

Results for the Difference model (see Table 6)
show less agreement between the two pri-
mary explanatory variables. MRE’s effect on
manufacturing employment change is neither
statistically significant nor of any measurable
magnitude. The change in the narrow RSDI
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Table 5. Descriptive statistics, Difference model

Variable Mean Standard deviation Minimum Maximum
Change in MRE® (2010-2015) 12.981 6.458 -4.178 53.248
Change in RSDI" (broad, 2010-2015) 5.783 9.452 —22.745 42.308
Change in RSDI’ (narrow, 2010-2015) 1.987 6.317 -20.960 23.896
Ln (CBSA employment in 2016/2010) 0.105 0.075 -0.159 0.371
Ln (CBSA average wage in 2016/2010) 0.130 0.041 -0.060 0.294
Change in years of education 0.213 0.149 -0.360 0.716
Change in RTW legislation (from non-RTW to RTW state) 0.105 0.307 0.000 1.000

N =352.
“Modified Robot Exposure (robots per 1000 workers).

"Robot Skill Demand Index; unit of measurement is percent.

Table 6. Difference model, narrow RSDI definition; dependent variable = In(manufacturing employment 2016/manufacturing

employment 2010)

Variables Coefficient ~Standard error 7-value Significance Beta
Constant -0.019 0.025 -0.750

Change in MRE*® (2010-2015) 0.000 0.001 -0.540 0.026
Change in RSDI" (narrow, 2010-2015) 0.002 0.001 2430  k* 0.113
Ln (CBSA employment in 2016/2010) 0.694 0.081 8.540  Hw* 0.423
Ln (CBSA average wage in 2016/2010) 0.176 0.151 1.160 0.058
Change in years of education —0.064 0.039 -1.630 0.077
Change in RTW legislation (from non-RTW to RTW state)  0.081 0.019 4260  EE 0.202

Number of observations: 352; R? (adjusted): 0.2621 (0.2493).
“Modified Robot Exposure (robots per 1000 workers).

"Robot Skill Demand Index; unit of measurement is percent.

is the only robot-related variable that has
an acceptably significant positive impact on
growth in manufacturing employment in the
Difference model.'””? The magnitude of this ef-
fect in the Difference model, 0.2%, is roughly
equivalent to its magnitude in the IC model.
Change in overall metro employment and
the passage of right-to-work legislation have
positive effects on employment, although
only three Midwestern states—Michigan,
Wisconsin and Indiana—changed their right-
to-work status (from non-right-to-work [RTW]
to RTW) during the study period. As men-
tioned above, other regional idiosyncrasies,
such as post-recession auto industry bailouts or

concentrations of growing manufacturing sec-
tors, may also have contributed to the above-
average employment growth. As the IC model
suggests, a state’s RTW status in 2010 had no
impact on manufacturing employment five
years later.

Discussion

These results broadly indicate for the post-
recession time period of 2010-2016 that robots
and robotics-competent workers helped to
bolster regional manufacturing employment.
However, we may ask what exactly a 0.2%
increase in the 20162010 manufacturing
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employment ratio means. Insight into this ques-
tion can be gained from examining the mar-
ginal effects of the explanatory variables in
several examples.

To do so, we first examine what happens to
the theoretical mean case by applying coeffi-
cients from the IC model and increasing the
initial stock of robots and demand for robot
skills. Supplementary Table A2 in Appendix pre-
sents the descriptive statistics for the 352 metro
areas included in the analysis, including average
level of manufacturing employment, number
of robots per thousand workers and percent of
jobs requiring robot-related skills in 2010. The
mean CBSA would have begun the period with
26,929 manufacturing workers, 359 robots, and
demand for robotics skills in 22.7% of its ad-
vertised manufacturing jobs. The model predicts
this mean metro area would have added 1670
manufacturing employees by the end of 2015, for
a 20162010 employment ratio of 1.081. A metro
area identical to the mean in all other aspects, but
with one more initial robot per thousand workers
(about 27 robots in this case), should see an in-
creased employment ratio of 1.083 (1.081*1.002),
or about 65 additional manufacturing workers
(Supplementary Table A3).

A one-standard deviation initial advan-
tage in robot stock (equal to a total of 541
robots for a metro area of this size) predicts
an employment advantage in 2016 of 436 jobs
(Supplementary Table A3). Even though the
unstandardised coefficients for MRE and RSDI
are essentially equivalent, advantages in robot
skill demand (RSDI) have a slightly better job
payoff, as suggested by its higher beta coeffi-
cient (see Table 4). A one-standard deviation
initial advantage in robot skill demand (32% of
metro-wide manufacturing job listings) should
result in 487 more manufacturing jobs overall
in 2016 (Supplementary Table A4). Thus, this
one-standard deviation above average metro
area would have generated 923 more jobs
(436 + 487) in five years due to its initial ro-
botics advantage.

Note that these are the additional employees
that are considered to be “due” to robots. In
fact, the model suggests that promoting general
regional economic growth, indicated by the
all-sector employment ratio variable, remains
the most impactful way to strengthen the
manufacturing sector. In contrast, higher ini-
tial manufacturing wages depress future em-
ployment, a result not entirely unexpected as
firms seek to locate in areas with lower labour
costs. However, regions may not be able to rely
on low wages as a business attraction feature
for long, as the Difference model suggests that
wage growth has a positive but not quite stat-
istically significant effect on manufacturing
employment growth (Table 6). More competi-
tive—and more highly robotised—regional
manufacturing sectors may require more highly
skilled and better-compensated workers.

In reality, there is no such thing as a mean or
average metropolitan area. Our model cannot
capture all of the socio-political determinants
that drive metro employment growth or de-
cline. Metro areas that did exceedingly well or
poorly in stewarding their manufacturing econ-
omies may have done so for reasons that our
models fail to reflect because of omitted vari-
ables or because the assumptions of linearity
and normality in traditional ordinary least
squares (OLS) modelling do not apply to re-
gional economic growth.

One way to account for these latent influences
and problematic assumptions is to conduct a
quantile regression, which fits data to specified
quantile breakpoints of the dependent variable
(2016-2010 employment ratio) rather than the
mean, without discarding observations from
other quantiles. Quantile regressions for the IC
model at the 0.75 and median (0.5) levels gen-
erally agree with the OLS version of the model
(see Supplementary Table AS). The agreement
is strongest for the 0.75 model, where the pri-
mary explanatory variables maintain high
levels of statistical power and see increases in
magnitude over the general OLS IC model.
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However, MRE does not appear to be an influ-
ential factor for those in the bottom quarter of
manufacturing growth. Instead, RSDI (broad)
maintains strong or moderate statistical power
(>10%) for all quantiles. This difference across
categories and the low correlations between
the two indicators (see Supplementary Table
A6 in Appendix) suggests that they are indeed
measuring different aspects of robotics use.

Finally, we test our IC model against the ac-
tual employment changes in our sample metro
areas. Using residuals, or differences in pre-
dicted versus observed values, we investigate
qualitative patterns in the model’s accuracy.
Some of the largest metro areas with important
manufacturing economies are within the top
20% of overall error (smaller residual abso-
lute value = smaller error) (see Supplementary
Table A7). The model is very accurate in
estimating San Francisco’s® and Cincinnati’s
growth and does reasonably well for other
important manufacturing hubs such as Los
Angeles, Philadelphia, Seattle, New York and
Boston."

To ground these predictions in terms of
robots and employees, we use the Cincinnati
metro area, for which our model predicts em-
ployment outcomes with a high degree of ac-
curacy. Here, its 2010 advantages of 2.5 robots
per thousand workers and 0.75% higher ro-
botics skill demand are compared to a coun-
terfactual case where both indicators were
equal to the sample average. Doing so suggests
that Cincinnati’s initial robot stock (MRE) ac-
counted for an additional 622 manufacturing
workers and its initial skill demand (RSDI
broad) accounted for another 162, for a total
of 783 manufacturing workers over the subse-
quent six years.

Specialised manufacturing metros are also on
the list of CBSAs that fit closely to the model,
including Milwaukee, Dayton, Rochester
(NY), and Syracuse. The three primary US
robotics research hubs—Boston, San Jose
and Pittsburgh—also have small differences

between actual and predicted values. These
20 “well-fit” metro areas represented about
29% of total US manufacturing employment
in 2015.

The most notably absent metros (that is,
metros where growth is poorly explained by
the model) are four traditional “rust belt”
communities: Buffalo, Cleveland, Detroit and
Chicago. These omissions are confounding be-
cause based on previous research into metro-
level robotics-related employment (Leigh and
Kraft, 2017), one could consider the stretch of
Lake Erie shore from Buffalo to Detroit some-
what of a “Robotics Crescent’, due to its high
concentration of robotics-related business es-
tablishments and employment. Although not
geographically contiguous to the Lake Erie
group, Chicago is second overall in number
of robotics-related establishments. Including
the smaller metro areas between Buffalo and
Detroit, the Lake Erie robotics crescent and
Chicago together account for 65% of robotics-
related employment (calculations based on un-
published data from Leigh and Kraft, 2017).

The fact that these key manufacturing econ-
omies do not conform to the model explains
to a large extent why the local robotics in-
dustry variable derived from Leigh and Kraft
(2017) does not exert any statistical power in
predicting employment changes. However,
the large errors for these metros remain con-
founding. None of them have exceedingly high
or low robot exposure or robotics skill demand
index values, nor did they experience drastic
changes to their manufacturing economies
during the period. These metros have high
unionisation rates, meaning that some robotics
jobs will be advertised internally through union
channels (that is, not online) and thus not re-
flected in the RSDI metric. However, if in-
ternal union job advertising is the sole source
of error, then we might expect the error to be
in the same direction for all four of the rust belt
metros. But this is not the case: the model over-
estimated impacts in Detroit and Buffalo and
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underestimated Cleveland and Chicago. Like
all statistical models, this one likely omits one
or more key variables. The resulting discrepan-
cies suggest that there is a need for geograph-
ically informed qualitative research into the
economic impact of robotics.

Even though the analyses presented in this
article fall into the “robots-as-status-quo” side
of the debate, they should not be viewed as
contradictory to or irreconcilable with other
analyses,such as Acemoglu and Restrepo (2017)
and Frey and Osborne (2013). Notwithstanding
the questionable assumptions in prior studies
discussed here, it may be the case that robot
adoption in the decade-and-a-half prior to the
Great Recession did have a displacement ef-
fect, while at the same time better equipping
those individual manufacturers and industrial
ecosystems that more aggressively robotised to
thrive during the recovery. This interpretation
is consistent with other research that finds that
regionally embedded innovative capacity pre-
vents “lock-in” and aids in resilience after nega-
tive shocks (Christopherson et al., 2014).

However, our research also strongly suggests
that technology adoption may be a necessary
but far from sufficient criterion for resilience,
and that changing firm routines, industrial
policy, corporate structures and labour rela-
tions are also important. A single-minded focus
on technology upgrading is likely not helpful to
firm or regional competitiveness. As has been
apparent from previous rounds of “creative de-
struction’; overall growth measured at any scale
tends to leave behind vulnerable workers with
significant social costs.

Conclusion

This article’s unequivocal support for robots as
supporting employment growth places it into
the “robots-as-status-quo” category because
it supports the traditional theory that tech-
nology leads to net job growth. Its other contri-
bution has been to critique and improve upon

previously tested constructs for robot exposure.
Three new constructs for measuring robot ex-
posure were tested, and two of them—a robot
stock variable modified from Acemoglu and
Restrepo (2017) and a Robot Skill Demand
Index derived for online job postings—are as-
sociated with employment gains since 2010.
Estimates of these gains can be quantified to
the effect of an approximate 900 manufacturing
employee gain over six years for a one-standard
deviation above average level of robot use and
demand for robotics-competent workers in
manufacturing.

While these metrics are measuring different
aspects of robot utilisation, they fall short of
both a complete accounting of robots and a
rigorously valid operationalisation of the con-
cept of robot exposure. Until better robotics
data exist, the economic impact of robots will
have to be estimated via inference and triangu-
lation, as well as more rigorously informed by
how robots are used and diffused. Because of
the limited diffusion of commercial robotics
and other smart machines, geography must be
closely considered before making generalisa-
tions. Regional economies in the USA demon-
strate significant variation in their response to
technological change.

While econometric approaches have domin-
ated the “robots and jobs” debate so far, it is
important to remember the value of qualitative
and ethnographic approaches. Although they
do not yield satisfying universal ratios relating
robots to jobs, such approaches are able to con-
cretise the artefacts of workplace technology
that large data sets render abstract. Qualitative
and ethnographic methods can offer insights
into how local and shop cultures, labour rela-
tions, and gender and ethnicity shape robot dif-
fusion and use. They can consider interactions
between complex sets of variables that may
lead to layoffs and wage stagnation, without
needing to reductively operationalise them for
statistical models. Importantly, qualitative in-
quiry can elicit workers’ perspectives on robot
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adoption, which is an essential input into the
current debate if the benefits of robotics diffu-
sion are to be shared broadly.

This article contributes to efforts to iden-
tify the economic impacts of robots by (i) re-
stricting analysis to the manufacturing sector,
which is the only sector where robots are his-
torically and systematically used; (ii) triangu-
lating robot stocks and skill demand to derive
a more holistic measure of robotics influence;
and (iii) qualitatively disaggregating impacts
according to geography. Data limitations con-
fine the analysis to a unique six-year period
during which the USA recovered from a his-
toric recession. Thus, we cannot answer at this
point in time whether the findings are unique
to this period or are indicators of a long-term
positive relationship between employment
and robotics. Perhaps as robotics become both
more user-friendly and “intelligent’, leading to
easier integration and maintenance, another
wave of displacement or upskilling will occur.
This possibility underscores the imperative
that advanced economies reduce labour pre-
cariousness through truly effective policies and
programs for retraining and reskilling workers
when upskilling is not possible. In conclusion,
we observe that there is a clear need for more
research, data and theory to answer critical
questions about the future of work and all of
the ensuing implications of that future for local
and regional economies and society.

Supplementary material

Supplementary data are available at Cambridge
Journal of Regions, Economy and Society online.

Endnotes

! The Occupational Information Network (O*NET)
taxonomy is based on the SOC taxonomy and con-
tains two expanded occupations that identify robot-
related work: robotics engineers (17-2199.08) and
robotics technicians (17-3024.01). However, neither

the US Census nor the Bureau of Labor Statistics
(BLS) collects data at this level of disaggregation.

> We note that Graetz and Michaels (2018) find no
meaningful impacts on their results from the appli-
cation of different rates of depreciation to baseline
1993 levels of robot stocks.

3 There are only 20 robots officially specified as
being used in this industry, but if we distribute the
remaining “unspecified” robots among the various
industries at levels proportional to the distribution
of “specified” robots, as A&R do, there should be
roughly 30 more in this category.

* We use the terms “metro” and “metro area” inter-
changeably with CBSA, even though CBSAs include
“micro” areas (those with urban clusters of at be-
tween 10,000 and 50,000 residents). Since for ana-
lytical purposes we limit observations to those with
a minimum level of job postings, we are effectively
only considering metropolitan areas.

> For example, welding, a cluster highly associated
with robotics, is often performed manually (that is,
without the aid of a robot). But welding is also one
of the most highly robotised industrial applications
(International Federation of Robotics, 2017), and
based on ongoing qualitative research by the au-
thors, workers who operate welding robots generally
must also be skilled welders.

¢ Although they are not exactly comparable, JOLTS
is the public time series that most closely resembles
BGT. From January 2010 to January 2017 the two
time series correlate closely, with a coefficient of 0.89
(B. Taska, Personal Communication).

7 From Bureau of Economic Analysis.

8 From US Bureau of Labor Statistics Quarterly
Census of Employment and Wages (QCEW).

° From QCEW.
YFrom QCEW.

1Right-to-work (RTW) laws present barriers to union
organising as part of a “business-friendly” strategy.
With the exception of Kentucky’s county-specific
laws, they are passed on a statewide basis. Since some
metropolitan areas straddle more than one state, the
core city was used to designate whether the CBSA
was RTW or not during any part of the time frame, al-
though it is acknowledged that statewide RTW status
may be a factor in intra-regional competition. RTW
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status was derived from Peck (2016) and the National
Conference of State Legislatures (2017) Right-to-
Work Resource webpage.

2The broad RSDI, not shown, is significant at the
0.1 level, but has a nearly negligible coefficient of
0.0010072.

BWe use central city names to designate metro
areas. For example, “San Francisco” represents
the entire San Francisco-Oakland-Hayward, CA
statistical area.

“Boston did not make the “top 20%” list
(Supplementary Table A6) but would be the next
metro in line if the list were expanded.
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