
UAV Access Point Placement for Connectivity to a
User with Unknown Location Using Deep RL

Enes Krijestorac, Samer Hanna, Danijela Cabric
Electrical and Computer Engineering Department,

University of California, Los Angeles
enesk@ucla.edu, samerhanna@ucla.edu, danijela@ee.ucla.edu

Abstract—In recent years, unmanned aerial vehicles (UAVs)
have been considered for telecommunications purposes as relays,
caches, or IoT data collectors. In addition to being easy to deploy,
their maneuverability allows them to adjust their location to
optimize the capacity of the link to the user equipment on the
ground or of the link to the basestation. The majority of the
previous work that analyzes the optimal placement of such a
UAV makes at least one of two assumptions: the channel can be
predicted using a simple model or the locations of the users on
the ground are known. In this paper, we use deep reinforcement
learning (deep RL) to optimally place a UAV serving a ground
user in an urban environment, without the previous knowledge
of the channel or user location. Our algorithm relies on signal-
to-interference-plus-noise ratio (SINR) measurements and a 3D
map of the topology to account for blockage and scatterers.
Furthermore, it is designed to operate in any urban environment.
Results in conditions simulated by a ray tracing software show
that with the constraint on the maximum number of iterations
our algorithm has a 90% success rate in converging to a target
SINR.

Index Terms—UAV, relay, IoT, reinforcement learning

I. INTRODUCTION

Due to their high mobility and low cost, unmanned aerial
vehicles (UAVs) have found their way to many applications
in recent years, including package delivery, law enforcement,
search and rescue, etc. Following this trend, UAVs are get-
ting an increased attention in the telecommunications sector.
Deploying UAVs as aerial basestations has recently emerged
as an idea to respond to high localized traffic demands in
the next-generation cellular networks [1]–[3]. Using UAVs in
such way provides the opportunity to exploit their agility of
motion to improve the air-to-ground link capacity by optimal
air placement. UAVs can also be utilized for data harvesting
in IoT or as data caches and in these applications it is also
important to maximize the air-to-ground capacity by optimal
placement.

In this paper, we are interested in optimizing the capacity of
the channel between the UAV and a ground user in an urban
environment. This is a challenging problem considering that
the environment between the UAV and the ground equipment
can be abundant in scatterers and therefore hard to account
for analytically and numerically. Nevertheless, the said prob-
lem has been addressed in literature before, under different

This work was supported in part by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

assumptions. In most cases, however, the solutions are based
on the assumptions that the ground user locations are known
and that the wireless channel can be predicted with a simple
model.

The problem of a UAV relay placement has been con-
sidered mostly for line-of-sight (LOS) channels. In [4]–[6]
transmit power and placement of a UAV relay are jointly
optimized. However, the authors’ solutions apply only to a
LOS propagation channel, which makes this approach less
applicable in the environments with scattering and obstacles,
such as cities. Furthermore, all of [4]–[6] assume that the
locations of the users and channel propagation characteristics
are known. In [7], a method for optimizing the location of
a ground unmanned vehicle is proposed. The approach relies
on user location and assumes a fading channel. The algorithm
predicts the channel quality across the entire map from a small
number of measurements and then using stochastic dynamic
programming an unmanned vehicle is optimally routed. While
this paper considers ground vehicles, it is relevant to our work
since their approach can apply to aerial vehicles flying at a
fixed altitude.

In addition to statistical models, some of the previous
approaches have also utilized topology maps. The work in [8]
considers a UAV swarm that relays communication between
users on the ground in an urban environment. The approach
relies on known user locations and topology maps to perform
swarm particle optimization of placement. Works [9]–[11]
utilize 3D topology maps to help UAV placement optimization.
Additionally, [9] uses a statistical channel model and the
user location to perform optimization. While [10] does rely
on user locations, it does not need to know the channel
model parameters as these are learned. The algorithm in [11]
simultaneously learns user locations and parameters, but as a
result, the approach has an extensive learning phase.

Seeking to develop an exploration algorithm that performs
learning and placement optimization simultaneously we turned
to reinforcement learning. Reinforcement learning has been
previously applied to similar problems. [12] uses table-based
Q-learning for optimal placement of aerial basestations with
the knowledge of user locations. However, since the inputs
to this algorithm are only user and UAV locations, it cannot
perform outside of the environment it has been trained on.
Similarly, [13] uses received signal strength at the UAV and
the UAV location to track indoor users with a shallow Q-



learning algorithm. However, the paper only considers two
indoor scenarios and the training and testing dataset are the
same. Therefore, it is not clear whether the algorithm could
perform in a new environment.

We address the problem of optimal UAV placement assum-
ing that the user location is not known. Algorithms that rely on
statistical models of the channel may fail to generalize to all
environments since the local topology can significantly differ
from statistical predictions. To that end, we use deep rein-
forcement learning to obtain a model-free algorithm for UAV
positioning. The proposed algorithm relies on the knowledge
of local topology and does not require the knowledge of the
user location. Deep reinforcement learning allows us to take
a high-dimensional input that is the topology map and use it
alongside SINR measurements collected on the trajectory of
the UAV to predict the optimal direction of motion. We test
our performance in a realistic environment that emulates the
wireless channel using a ray-tracing software. Furthermore,
the training and the testing dataset are different.

The rest of this paper is organized as follows. In Section II
we introduce the relevant reinforcement learning background,
define our problem and describe how reinforcement learning
can be used to tackle it. In Section III, we describe the
simulation environment. Sections IV and V are dedicated to
results and conclusions, respectively.

II. UAV PLACEMENT USING Q-LEARNING

In this section, we first introduce the necessary background
in reinforcement learning in part II-A. Next, in subsection II-B,
we formulate our problem as a partially observable Markov
decision process (PO-MDP) and in subsection II-C we discuss
how we apply Q-learning to this PO-MDP.

A. Reinforcement learning background

Reinforcement learning (RL) is the branch of machine
learning that is concerned with making sequences of decisions.
It is mainly concerned with problems that can be casted as a
Markov decision process (MDP). In an MDP, an agent A is
situated in an environment E . At each timestep t, the agent is
in a state st and takes an action at, it receives a reward rt while
moving into the state st+1. In a partially observable MDP (PO-
MDP), the full knowledge of the state of the environment is not
known to the agent and in that case it will only have access to
an observation of the state. This observation then replaces the
function of the state in the reinforcement learning algorithms.

The objective function in reinforcement learning is often
the expectation of the discounted reward, E

∑∞
t=0 γ

trt, where
γ is the discount factor. Reinforcement learning methods can
broadly be classified into two categories: policy learning and
Q-learning. In policy learning methods, the goal is to learn
the optimal policy function that defines π(a|s), which is the
probability of taking the action a in the state s. The policy
is often deterministic and in that case π(a|s) defines a single

action in each state. In Q-learning methods, the goal is to learn
the Q-value function

Q(s, a) = E[
∞∑
t=0

γtrt|s0 = s, a0 = a],

that defines the expected reward in a state s, after taking the
action a. If the Q-value function is known, the optimal action
in a state s is then argmaxa Q(s, a). Deep Q-learning is an
extension to the Q-learning paradigm that uses deep learning
models, such as convolutional neural networks and recurrent
neural networks to approximate Q(s, a). Furthermore, Q-
learning is a model-free reinforcement learning technique,
meaning that it does not rely on known dynamics of the
system.

One of the first deep Q-learning algorithms was proposed by
Deepmind and was successfully demonstrated on Atari video
games [14]. The algorithm was named the deep Q-network
(DQN) algorithm. In it, the Q-value function is parametrized
by a neural network Qθ, with parameters θ. An estimate of the
true Q-value at time t, Qt, can be obtained by using a single
sample estimate of the Bellman backup operator

T̂ Qt = rt + max
at+1

γQθ(st+1, at+1) (1)

This is called a single sample estimate because only the reward
rt at the current time instant t is used to approximate the
infinite horizon Q-value function.

In order to approximate Q by Qθ the following minimiza-
tion is done over sample data,

minimize
θ

∑
t

∣∣∣∣∣∣T̂ Qt −Qθ(st, at)∣∣∣∣∣∣2 (2)

In the DQN algorithm, the training and the interaction of
the agent with the environment happen in parallel. As the
agent gathers experience, samples of that experience are stored
and the minimization in the Equation 2 is done periodically,
every τL steps, by randomly sampling a batch of BL recorded
samples and applying gradient descent. This is referred to as
experience replay. Samples are arrays of data (st, at, rt, st+1)
and these are stored in the replay buffer.

The agent interacts with the environment following the ε-
greedy policy, where at any time t the agent either takes a
random action at probability ε or the Q-value optimal action
argmaxa Qθ(s, a) at probability (1 − ε). Over the course of
the training, the value of epsilon decreases from 1 to 0. In the
implementation of DQN, there is an additional Qθ, called the
target Q-network. The target Q-network is used in the Bellman
backup operator but it is not optimized over. Instead, it is
periodically copied from the main Q-network. The target Q-
network is included to improve the stability during training.

The original vanilla DQN algorithm has been improved
upon over the years. The two expansions that we will use
are double Q-learning [15] and dueling networks [16]. For the
sake of brevity we omit the details of these algorithms and the
reader is referred to the cited works for more information.



Fig. 1. Example observation for an agent moving according to a random
exploration policy. Note that the SINR values of areas that are obstructed
and therefore unreachable are set to a very low value (-150 dB), while the
areas that have not yet been visited are set to a very high value outside of
the possible range of SINR values (50 dB).

B. UAV placement problem as a PO-MDP

We now formulate the UAV placement problem as PO-
MDP. We consider the scenario of a UAV located in an urban
environment communicating to a radio device on the ground.
The area topology is such that LOS connection to the ground
user is not always possible, and the communication will often
occur over non-line-of-sight paths. At time zero, the UAV and
the ground device are located at random positions and the goal
of the UAV is to adjust its position so as to increase the SINR
at the UAV. We assume that the UAV receives some signal
power from the user on the ground to begin with. The UAV
moves until an SINR threshold is reached or until maximum
time for optimization expires.

In the following, we describe the mechanics according to
which the UAV moves around. Since exploring the entire 3D
space is a complex task, we restrict the motion of the UAV
to the horizontal plane and assume that its altitude is kept
constant. We do this as a relaxation but it is worth pointing
out that the optimal position for a UAV will often be at the
lowest allowed altitude since this brings it closest to the ground
user. The UAV can only move around buildings or fly above
buildings that are below its altitude and it makes adjustments
in its position at discrete time steps. We restrict the directions
of the motion of the UAV to the four orthogonal horizontal
directions and the motion step size dS is fixed. We impose
this constraint because Q-learning lends itself better to tasks
with a discrete set of actions. With these restrictions on the
motion, the UAV effectively moves in a uniform plane grid
space that spans the environment.

We assume that the UAV location is known. Furthermore,
the UAV has access to a 3D map of the environment that maps
all the buildings, which can be drawn from a database. 3D
maps of major urban areas are generally available and easy
to acquire. We also make the assumptions that the channel
is slow fading and that the user location does not change
significantly over the course of optimization. Furthermore, we
assume that there is a sufficient backhaul capacity between the
UAV and the core basestation, so we only focus on optimizing
the capacity between the UAV and the ground device.

1) Observation space: Since the full state of the system
in which the UAV operates is not available, the agent in

32 Feature 
maps
Shape 16x16

64 Feature 
maps
Shape 8x8

64 Feature 
maps
Shape 8x8

Dense layer
Shape 512

State-action 
Q-values

Input
Area map, 
SINR values
Shape 61x61

Fig. 2. Neural network model used as the Q-network.

our algorithm relies on two types of observations of the
environment to drive its decision making. The first type of
observation is the 3D map of the local area. The local area
in our case is a square area of side lO centered at the current
location of the UAV. The 3D map information is compressed
into a 2D array representation, where each entry represents
a grid point in the local area and the value of each entry
corresponds to the height of the terrain at that point relative to
the UAV altitude. We use heights relative to the UAV altitude
to make the algorithm adjustable to different starting UAV
flying heights.

The second type of observation that the agent uses are the
SINR measurements at previously visited locations in the local
area. These are also stored in a 2D array with grid point
locations matching the locations of the grid points in the
topology observation. The value of each entry is the measured
SINR value. To complete the array, we populate the entries
with unknown SINR values with a high value PH outside of
the regular range. Furthermore, the points that are blocked
by buildings and cannot be visited are populated with low
values PL outside of the span of possible SINR values. With
successful training, the algorithm will learn the significance of
PH and PL. Example observations are shown in Figure 1.

2) Action space: Since the action is the motion of the UAV
at each time step, it can take on the values (0, dS), (0, -dS),
(dS , 0), (-dS ,0), where each vector represents the displacement
in the x- and y-coordinates.

3) Reward: The UAV receives a reward equal to the dif-
ference between the SINR in the next state and the SINR
in the current state. This incentivizes the agent to move
towards higher SINR. Furthermore, we assign a constant
exploration reward cE which the agent receives for visiting
a new location. We empirically established that an exploration
reward incentivizes the agent to explore further away from
its starting location, which results in better performance. The
reward is mathematically expressed as

rt = SINRt+1 − SINRt + cEδ
E
t ,

where δEt is an indicator function activated when the UAV
visits a new location.

C. Deep Q-learning implementation

With our problem casted as a PO-MDP, we can apply the
deep Q-learning algorithm. For our application, we utilize
double Q-learning [15] and dueling networks [16] extensions



to the base DQN algorithm. The choice of the neural network
model used as the Q-network depends on the application
and therefore it needs to be carefully selected for optimal
performance. The neural network model we used is shown in
Figure 2. At the input, there are two 2D arrays, corresponding
to the SINR and topology observations described in the
previous subsection. As displayed, we use 3 convolutional
layers with varying number of filters and with each layer
having a different filter size. There are two fully connected
layers, with the final layer output corresponding to the Q-
value for each of the possible actions. We use ReLU as the
activation function after each layer prior to the last layer. The
layer enabling the dueling networks extension is located before
the final layer, however we do not show it in the figure for
clearer presentation. Additionally, we used batch normalization
and dropout with probability pD to accelerate the training of
the neural network and for regularization purposes.

III. SIMULATION ENVIRONMENT

We use two separate environments for the training and
the testing of our algorithm, shown in Figure 3 and Figure
4, respectively. Both spaces are meant to resemble a typical
medium-elevation urban area.

In order to create realistic conditions to train our Deep RL
model, we used a ray-tracing software called Wireless InSite
[17] to emulate the wireless channel. For a given user on the
ground we measure the SINR across a uniform grid of points at
a fixed height that corresponds to the UAV flying altitude. The
grid points are separated by 4 meters and they span the entire
environment. The UAV altitude is set to 10 meters. To generate
the training data, the user radio was placed at 27 locations
uniformly spanning the training environment, while for the
testing data we placed the user at 25 different locations in the
testing environment. The numbers were decided such that user
locations uniformly cover the entire space, while still taking
a feasible amount of time to make calculations for in the ray
tracing software. The users transmit a narrow-band signal of
20 dBm power using a frequency of 800 MHz. We introduce a
Gaussian noise and a Gaussian background interference across
the space with the average combined power of -104 dBm.
Half-wave dipole antennas with vertical orientation are used
at the user and the UAV.

The SINR measurements were then exported and used to
build a training and a testing environment in software that
the DQN algorithm can interact with. At each realization or
episode of the environment we use the SINR measurements
for a random user location and the UAV is placed at a
random location on the grid. The locations that the UAV can
visit correspond to the ones where SINR measurements were
recorded. The episode finishes if the UAV reaches the required
SINR or the maximum number of steps that the UAV can take
is exceeded.

IV. RESULTS

In the first part of this section we describe the details of the
training of our algorithm and demonstrate that it learns how to

Fig. 3. The training urban environment. Approximate size: 550x500 m.

Fig. 4. The testing urban environment. Approximate size: 400x500 m.

move the UAV in order to increase SINR. In the second part,
we validate the performance of the algorithm in the testing
environment and compare it to a genie algorithm in terms of
steps made until convergence to the required SINR.

A. Training

We train the DQN algorithm in the training environment
described in the previous section. The maximum number of
steps during an episode tMAX was set to 800 and the target
SINR PT , was set to 5 dB. When deploying the UAV on
the map we ensure that it is not placed in a dead zone with
no signal reception, as this would be outside of our problem
statement. In the ray-tracing simulator, these regions occur
when there are no direct or reflected paths that can reach the
UAV. For regularization purposes, we rotate the coordinate
system of the map by a random multiple of 90◦ every training
episode. This ensures that the algorithm does not become
biased towards moving in any particular direction over the
course of the training.

We use the ε-greedy policy for exploration, however the
agent’s random actions are steered. Namely, the agent never
takes a random action that would lead to it leaving the map
or colliding with a building. Furthermore, the agent repeats
the action it has taken in the previous step at probability 0.4ε
and takes any random allowed action at probability 0.6ε. The
repeated movements lead to the agent exploring a larger area
through random walk in the early training stage, instead of
staying confined to the local space around the starting location.
The optimal action argmaxa Qθ(s, a) is taken at probability
1− ε. We also ensure that the agent never leaves the map or
collides with a building when taking actions according to the
DQN. This is done by choosing an action that gives the highest
Q-value while still being a legal movement in the environment.
As the UAV moves around, its experience samples are stored
in a replay buffer that can store up to 5 × 105 samples and



Fig. 5. The training results for the proposed model and blind model that does
not rely on topology information.

when this limit is reached the oldest samples are thrown out
to make space for the new ones.

The parameter values used for the training of the DQN
algorithm are shown in Table I. They were selected after
tuning for best performance. During minimization we employ
gradient clipping and also anneal the learning rate. The width
and length of the observation is 61 grid points or 244 m. The
movement step size dS was 4 m.

The training results are shown in Figure 5. To keep track
of the progress of training, we measure the average SINR
increase from the SINR at the start of the episode to the SINR
at the end of the episode, over the most recent 100 episodes.

To demonstrate the benefits of using 3D maps we evaluate
a DQN algorithm that doesn’t rely on the 3D map but is
otherwise identical to our proposed algorithm. We refer to this
algorithm as the ‘blind’ algorithm. The blind algorithm only
has a 2D SINR array as an input and the regions blocked by
buildings are not populated by PL but instead left as PH . In
training, we use the same parameter settings for the blind and
the proposed algorithm.

Furthermore, we include an upper bound on the mean SINR
increase in the training stage. It is calculated by taking the
average of the SINR differences between the SINR at all
possible starting UAV locations and PT , for all user locations.
This is an upper bound on the mean performance across a
large number of episodes.

The results in Fig. 5 show that the learning capacity of our
proposed algorithm is larger than that of the blind algorithm.
The intuitive explanation for this is that the algorithm with the
knowledge of the topology is more efficient in exploring the

TABLE I
DQN PARAMETER VALUES USED IN TRAINING

Description Parameter

Exploration reward cE = 1.2

Discount factor γ = 0.99

Training batch size BL = 20

Training interval τL = 3

Dropout probability pD = 0.4

space because it can eliminate obstructed areas and because
the building knowledge combined with SINR measurements
can give it indication where to move to find better SINR. The
performance curves are noisy due to the nature of training
through experience replay and due to the fact that over a
100 episodes the algorithm only experiences a subset of the
training environment, which makes the difficulty vary as some
user locations are harder to find optimal paths for than others.

B. Testing

In the testing stage, the algorithm is placed in an entirely
new environment and relies only on the trained neural network
Qθ to guide the movement of the UAV. We use the copy of
Qθ that had the highest performance during training. We also
introduce a small amount of randomness in decision making,
which we found to lead to a better performance. The agent
takes a random action at probability 0.096. The value of PT
for the testing case was again set to 5 dB and the maximum
number of steps tMAX was reduced to 500, since the testing
environment is smaller than the training environment.

In Fig. 6, we show a number of trajectories of the UAV
moving according to our algorithm, where the target SINR
was reached in less than tMAX steps. The upper figure shows
the building height relative to the UAV altitude and the lower
figure shows the heatmap of the SINR across the map. The user
location is the same in each episode, and we place the UAV at
random locations. We can see that the algorithm is capable of
following the direction that leads it to improving the SINR and
it is also capable of correcting itself when realizing that the
current direction of motion is not leading it to better SINR. In
the instances where the UAV loops around its location, we can
infer that the algorithm explores several path options before
settling on the one it deems optimal. Buildings are avoided
by the algorithm and it can be inferred that the algorithm
eliminates path options because of them. An evidence for the
latter is that the UAV tends to move parallel to the building
edges, for example.

Finally, we analyze the performance of our algorithm over
many realizations. To get a reference on how fast our algorithm
converges to an optimal point we used a genie algorithm
for optimal placement. The genie algorithm has a complete
knowledge of the SINR distribution and building topology,
and uses dynamic programming to find the shortest path to
a location with sufficient SINR. We run the proposed and
the blind algorithm for 1000 realizations across the entire
testing data set over different user positions. The results for
the number of steps made until convergence to the sufficient
SINR for all three algorithms are shown in Fig. 7. The median
number of steps until convergence for the proposed algorithm
is 44 and 69 for the blind algorithm. Furthermore, the proposed
algorithm is 90% successful in under tMAX steps compared
to 66% of the blind algorithm. Therefore, we show that the
knowledge of topology map assists our algorithm even in a
novel environment. The median number of steps required for
the genie algorithm is 14. The difference in the number of
steps required relative to the proposed algorithm is due to the



Fig. 6. Successful trajectories of the UAV moving according to our algorithm.
The upper figure shows the building height relative to the UAV altitude and
the lower figure shows the heatmap of the SINR across the map. The green
triangle markers represent the starting positions of the UAV. The blue marker
represents the location of the user on the ground.

Fig. 7. The CDF of the number of steps until convergence to the sufficient
SINR for the proposed approach, the blind approach and the genie algorithm.

fact that our algorithm has to explore the space to find good
SINR since it does not where the points with sufficient SINR
are a priori.

V. CONCLUSIONS

In this paper, we used deep reinforcement learning methods
to optimize the placement of a UAV communicating to the
user on the ground. We consider the case where the ground

user location is not known and use topology data to replace
statistical models of the channel. We were able to achieve
90% success rate in moving the UAV to a location that has a
sufficient SINR within a limited number of steps. Moreover,
our reinforcement learning approach stands out in that it
can be applied in any urban environment. Our future work
will focus on the scenario where the ground user is moving
over the course of optimization. Furthermore, we will explore
how the deep reinforcement learning techniques can be used
to simultaneously optimize the locations of multiple UAVs
serving multiple users on the ground.

REFERENCES

[1] Y. Li and L. Cai, “UAV-assisted dynamic coverage in a heterogeneous
cellular system,” IEEE Network, vol. 31, no. 4, pp. 56–61, 2017.

[2] Q. Wu, J. Xu, and R. Zhang, “UAV-enabled aerial base station (BS)
III/III: Capacity characterization of UAV-enabled two-user broadcast
channel,” arXiv preprint arXiv:1801.00443, 2018.

[3] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient de-
ployment of multiple unmanned aerial vehicles for optimal wireless
coverage.,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–
1650, 2016.

[4] H. Wang, G. Ren, J. Chen, G. Ding, and Y. Yang, “Unmanned
aerial vehicle-aided communications: Joint transmit power and trajectory
optimization,” IEEE Wireless Communications Letters, vol. 7, no. 4,
pp. 522–525, 2018.

[5] Y. Jin, Y. D. Zhang, and B. K. Chalise, “Joint optimization of relay po-
sition and power allocation in cooperative broadcast wireless networks,”
in 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2493–2496, Mar. 2012.

[6] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-
enabled mobile relaying systems,” IEEE Transactions on Communica-
tions, vol. 64, pp. 4983–4996, Dec. 2016.

[7] A. Muralidharan and Y. Mostofi, “Path planning for a connectivity
seeking robot,” in 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–
6, IEEE, 2017.

[8] P. Ladosz, H. Oh, and W.-H. Chen, “Optimal positioning of commu-
nication relay unmanned aerial vehicles in urban environments,” in
2016 International Conference on Unmanned Aircraft Systems (ICUAS),
pp. 1140–1147, IEEE, 2016.

[9] J. Chen and D. Gesbert, “Optimal positioning of flying relays for
wireless networks: A los map approach,” in 2017 IEEE International
Conference on Communications (ICC), pp. 1–6, IEEE, 2017.

[10] O. Esrafilian, R. Gangula, and D. Gesbert, “Learning to communicate
in uav-aided wireless networks: Map-based approaches,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1791–1802, 2018.

[11] O. Esrafilian, R. Gangula, and D. Gesbert, “UAV-relay placement with
unknown user locations and channel parameters,” in 2018 52nd Asilomar
Conference on Signals, Systems, and Computers, pp. 1075–1079, IEEE,
2018.

[12] X. Liu, Y. Liu, and Y. Chen, “Deployment and movement for multiple
aerial base stations by reinforcement learning,” in 2018 IEEE Globecom
Workshops (GC Wkshps), pp. 1–6, IEEE, 2018.

[13] M. M. U. Chowdhury, F. Erden, and I. Guvenc, “RSS-based Q-learning
for indoor uav navigation,” arXiv preprint arXiv:1905.13406, 2019.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[15] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI Conference on Artificial
Intelligence, pp. 2094–2100, 2016.

[16] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[17] “Wireless EM propagation software - Wireless InSite.” URL:
https://www.remcom.com/wireless-insite-em-propagation-software.




