q

Check for
updates

1

In many application domains, where users are not proficient in computer pro-
gramming, it is of the utmost importance to be able to communicate the results
of a computation in an easily understandable way, e.g., using text rather than
a complex data structure or mathematic formulae. The problem of generating
natural language explanations has been explored in several research efforts. For
example, the problem has been studied in the context of question-answering sys-

tems,' recommendation systems,? etc. With the proliferation of spoken dialogue

Natural Language Generation
from Ontologies

Van Nguyen®™, Tran Cao Son®), and Enrico Pontelli®

New Mexico State University, Las Cruces, NM 88003, USA
{vnguyen,tson,epontell}@cs.nmsu.edu

Abstract. This paper addresses the problem of automatic generation of
natural language descriptions for ontology-described artifacts. The orig-
inal motivation for the work is the challenge of providing textual nar-
ratives of automatically generated scientific workflows (e.g., paragraphs
that scientists can include in their publications). The paper presents
two systems which generate descriptions of sets of atoms derived from a
collection of ontologies. The first system, called nlgPhylogeny, demon-
strates the feasibility of the task in the Phylotastic project, providing evo-
lutionary biologists with narrative for automatically generated analysis
workflows. nlgPhylogeny utilizes the fact that the Grammatical Frame-
work (GF) is suitable for the natural language generation (NLG) task;
the paper shows how elements of the ontologies in Phylotastic, such as
web services and information artifacts, can be encoded in GF for the
NLG task. The second system, called nlgOntology”, is a generalization
of nlgPhylogeny. It eliminates the requirement that a GF needs to be
defined and proposes the use of annotated ontologies for NLG. Given a
set of annotated ontologies, nlgOntology” generates a GF suitable for
the creation of natural language descriptions of sets of atoms derived
from these ontologies. The paper describes the algorithms used in the
development of nlgPhylogeny and nlgOntology” and discusses poten-
tial applications of these systems.

Keywords: Natural language generation + Ontologies
Web service - Grammatical Framework - Attempto Controlled English

Introduction

1

! http://coherentknowledge.com.
2 http://gem.med.yale.edu/ergo/default.htm.
© Springer Nature Switzerland AG 2019

J. J. Alferes and M. Johansson (Eds.): PADL 2019, LNCS 11372, pp. 64-81, 2019.
https://doi.org/10.1007/978-3-030-05998-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05998-9_5&domain=pdf
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
https://doi.org/10.1007/978-3-030-05998-9_5

Natural Language Generation from Ontologies 65

systems and conversational agents, verbal interfaces such as Amazon Echo and
Google Home for human-robot-interaction, and the availability of text-to-speech
programs, such as the TTSReader Extension,® the application arena of systems
capable of generating natural language representations will continue growing. In
this paper, we describe two systems for generating natural language descriptions
of collections of atoms derived from a set of ontologies.

The first system, called nlgPhylogeny, is used to generate natural language
descriptions of automatically generated workflows, obtained by composing web
services. This is motivated by the needs of the Phylotastic project [1]; the project
provides tools for the automated construction of workflows that allow evolution-
ary biologists, teachers, and students to extracts phylogenies relevant to given
sets of species. The automated construction of workflows is justified by the exis-
tence of a large number of web services that perform parts of a desired analysis
protocol, and the complexity of effectively interfacing the services (e.g., due to
the lack of data format standardization). A typical Phylotastic workflow is com-
posed of operations to collect list of species names (e.g., from a scientific paper),
“clean” them to ensure that the proper scientific names are used, extract a sub-
tree of a reference phylogeny that covers the desired species and visualize it.
Phylotastic has been implemented using an Answer Set Programming (ASP)
backend for reasoning about ontologies and for web service composition [6]. The
web services are described by an ontology, the Phylotastic ontology (PO). PO
is composed of two parts: an ontology that describes the artifacts manipulated
by the services (e.g., alignments, phylogenetic trees, species names) [7] and an
ontology to describe the operations performed by the services (the WSO).

Figure 2 displays a sample output of n1gPhylogenygiven the workflow in Fig. 1.
The workflow in this example is a plan generated by the ASP-based web service
composition component of the Phylotastic project [6], and consists of a sequence
of steps (green rectangles). The boxes before and after each green rectangle
represent input(s) and output(s) of the service, respectively. As the inputs of
one service might require some format different from the format of the previous
outputs, data conversions might be necessary (the double arrows). Each step
corresponds to a processing step on data provided by one of the preceding steps.
Specifically, the workflow is composed of three steps:

e Extracting the set of organisms from the input text;

e Resolving the names of the identified organisms (e.g., correct spelling, identify
proper scientific names); and

e Deriving the corresponding phylogenetic tree.

Figure 2 shows the description of the workflow as generated by nlgPhylogeny.
Since the fact that to illustrate a workflow, an graphical version is approxi-
mately good enough, but to put the workflow in a biological paper, sometimes,
authors would need to write some explanations for the workflow. We find that
it would be helpful to generate the textural version as a complement to the
graphical version, and provide them as a package. So, the authors are free to

3 https:/ /ttsreader.com.

https://ttsreader.com

66 V. Nguyen et al.

resource_FreeText

‘ ic_Fi ientif romFreeText GNRD_GET ‘

l

resource_SetOfSciName
AND

Text is phy >_findscientificr t_gnrd_get's input
resource_SetOfNames and both a set of scientific names and a set of names are
phylotastic_findscientificnamesfromfreetext_gnrd_get's output. Text

uses plain text format. A set of scientific names is input of
resource_SetOfSciName phylotastic_resolvedscientificnames_ot_tnrs_get and a set of names ,

a set of taxon and a set of resolved names are

phylotastic_resolvedscientificnames_ot_tnrs_get's output. A set of

‘ ic_i ionti . OT_TNRS_GET ‘ scientific names uses names_format_resolved_ot format.
[o_resource_httpcode] use integer format. A set of resolved names

l uses list of strings format. A set of names uses list of strings format. A

set of taxon uses list of strings format.

Phylotastic_getphylogenetictree_ot_get requires a set of taxon and it

resource_SetOfTaxon returns species tree and tree. A set of taxon uses list of strings format.

Figure 1 illustrates the extracted tree.

Bamona_ott4596590

resource_SetOfSciName

resource_SetOfResolvedName

Acrolophidae_ott474404
resource_SetOfTaxon Anthelidae_ott705300

Ic

Cimelioidea_ott626083

‘ phylotastic_GetPhylogeneticTree_OT_GET ‘
l Aglossata_ott66328

Adelidae_ott557830
3285

resource_speciesTree

resource_Tree Fig.1 - Extracted tree.

Fig.1. An automatically gener- Fig. 2. Description generated for workflow
ated workflow (Color figure online) in Fig.1 by nlgPhylogeny (Color figure
online)

choose which versions to include in their paper. Moreover, we recognize that our
general idea can be a bridge between ontology developers and ontology users
or engineers who use the ontology in question-answering system. While ontol-
ogy developers just need to add a little more annotations on their work, the
benefit for ontology users is huge because they will no longer need to develop
the answering module from scratch. The answer generated from our idea will
mimic the grammar structure of annotations provided by ontology developers,
but different in content corresponding to the queried data.

As discussed in detail later, nlgPhylogeny exploits the NLG capabilities of the
Grammatical Framework (GF) [8]. This requires the development of a GF for
the entities in the Phylostatic projects (described by the ontology). For small
ontologies, the manual development of the GF for the NLG task is feasible,
but it is an improbable task for large ontologies. Furthermore, nlgPhylogeny
will not be applicable for other ontologies. It is, however, feasible to consider
a situation where an ontology engineer has the necessary domain knowledge to
explicitly add meta-information to the concepts as they are progressively added
to the ontology. The nlgOntology* system demonstrates that, as long as meta-
information is added in the ontology following proper guidelines, it is possible to
generate the description for the atoms derived from annotated ontologies without
the manual creation of a GF.

Natural Language Generation from Ontologies 67

The project critically relies on logic programming. ASP is employed by
the composition system and to manage the connection with the ontology. The
Attempto Parsing Engine is available in GitHub? and it is written in SWI-Prolog.
The program to convert lexicon extracted from annotations in the ontologies to
lexicon to generate the GF concrete syntax is also a Prolog-based program.

The rest of the paper is organized as follows. We begin with a brief review of
the Grammatical Framework and Attempto Controlled English, the two frame-
works used in this paper. The following two sections describe nlgPhylogeny and
nlgOntology, respectively. We conclude the paper with a discussion of poten-
tial uses of nlgOntology? and of the proposed technologies developed in this

paper.

2 Background

2.1 Grammatical Framework

The Grammatical Framework (GF) [8] is a system used for working with gram-
mars; it is composed of a programming language used to design grammars along
with a theory about grammars and languages. GF also comes with a GF Resource
Grammar Library and a GF runtime API for working with GF programs.

A GF program has two main parts. The first part is the Abstract syntax which
defines what meanings can be expressed by a grammar. The abstract syntax
defines categories (i.e., types of meaning) and functions (i.e., meaning-building
components). The following is an example of an abstract syntax component:

abstract Food = {

flags startcat = Phrase ;

cat
Phrase ; Item ; Kind ; Quality ;

fun
Is : Item -> Quality -> Phrase ;
This : Kind -> Item ;
QKind : Quality -> Kind -> Kind ;
Cheese, Fish : Kind ;
Very : Quality -> Quality ;
Warm, Italian, Delicious : Quality ;

}

In this syntax, Phrase, Item, Kind and Quality are types of meanings. The
startcat flag declaration states that Phrase is the default start category for
parsing and generation. Is is a function accepting two parameters, of type Item
and Quality. This function returns a meaning of Phrase category.

4 https://github.com/Attempto/APE.

https://github.com/Attempto/APE

68 V. Nguyen et al.

The second part is composed of one or more concrete syntax specifications.
Each concrete syntax defines the representation of meanings in each output
language. For example, the corresponding concrete syntax that maps functions
in the abstract Food grammar above to strings in English is:

concrete FoodEng of Food = {

lincat
Phrase, Item, Kind, Quality = {s : Str} ;

lin
Is item quality = {s = item.s ++ "is" ++ quality.s} ;
This kind = {s = "this" ++ kind.s} ;
QKind quality kind = {s = quality.s ++ kind.s} ;
Cheese = {s = "cheese"} ;
Fish = {s = "fish"} ;
Very quality = {s = "very" ++ quality.s} ;

Warm = {s = "warm"} ;
Italian = {s = "Italian"} ;
Delicious = {s = "delicious"} ;

}

In this concrete syntax, the linearization type definition (lincat) states that
Phrase, Item, Kind and Quality are strings (s). Linearization definitions (1in)
indicate what strings are assigned to each of the meanings defined in the abstract
syntax. Various types of linearization type definitions are considered in GF (e.g.,
string, table). Some functions represent a simple string but some functions (e.g.,
Is or This) defines a concatenation of strings.

Intuitively, each function in the
abstract syntax represents a rule Is: Phrase
in a grammar. The combination of /\
rules used to construct a mean- This: Item Very: Quality
ing type can be seen as a syntax
tree. The visualization of the tree))
representing the Phrase “this deli- Qkind: Kind ltalian: Quality
ctous cheese is very Italian” is illus- /\
trated in Fig.3. GF has been used
in a variety of applications, such
as query-answering systems, voice
communication, language learning, Fig. 3. Example syntax tree
text analysis and translation, and natural language generation [3,9]. GF has been
used extensively in automated translation and it is the main vehicle behind the
MOLTO project, that aims at developing a set of tools for high-quality and real-
time translation of text between multiple languages®. To see how it works, let
us augment our program with a concrete syntax for Italian as follows:

Delicious: Quality Cheese: Kind

concrete FoodIta of Food = {
lincat

5 http://www.molto-project.eu.

http://www.molto-project.eu

Natural Language Generation from Ontologies 69

Phrase, Item, Kind, Quality = {s : Str} ;
lin
Is item quality = {s = item.s ++ "e’" ++ quality.s} ;
This kind = {s = "questo" ++ kind.s} ;
QKind quality kind = {s = kind.s ++ quality.s} ;
Cheese = {s = "formaggio"} ;
Fish = {s = "pesce"} ;
Very quality = {s = "molto" ++ quality.s} ;
Warm = {s = "caldo"} ;
Italian = {s = "italiano"} ;
Delicious = {s = "delizioso"} ;

}

The translation from English to Italian can be performed as follows in the
GF APIL:

> parse -lang=FoodEng "this fish is warm" | linearize -lang=FoodIta
questo pesce e’ caldo

We use a pipe which includes the parse and linearize commands to find the
syntax tree of the sentence “this fish is warm” then turn that tree into a FoodIta
sentence. The last line is the result of the translation process. The translation
process is very similar to currency exchange in the old days, when exchange was
done only in gold. Assume we want to exchange US Dollars for Euros; we first
exchange US Dollars for gold, then, exchange gold for Euros. Correspondingly,
in GF the intermediate result in the translation process is the syntax tree which
contains the meaning of the translated sentence.

2.2 Attempto Controlled English

A GF program produces sentences whose syntax is specified by its abstract syn-
tax; this structure also determines the quality of its output. Developing a GF
syntax (abstract or concrete) requires understanding functional programming;
this is a level of knowledge that might not be suitable for users who are not
familiar with programming—as is the case of biologists using Phylotastic to cre-
ate and execute phylogenetic workflows. As we will see in the next section, our
nlgPhylogeny system can utilize GF to generate descriptions of Phylotastic work-
flows. It requires, however, a considerable amount of domain-specific knowledge.
To alleviate this problem, we investigate a combination of annotated ontologies
and the Attempto Controlled English (ACE) [4] for the same task, which results
in the system nlgOntology“.

ACE is a controlled natural language, i.e., a subset of standard English with
a restricted syntax and restricted semantics, described by a small set of construc-
tion and interpretation rules. ACE sentences are normal English sentences and
can be read and understood by any English speaker. However, ACE is a formal
language that can be used for knowledge representation; ACE texts are computer-
processable and can be unambiguously translated into discourse representation

70 V. Nguyen et al.

structures, a syntactic variant of first-order logic. An ACE grammar consists of
construction rules for both simple and composite sentences, interrogative and
imperative sentences. ACE can be encoded in GF and used for NLG.

3 Generating Sentences from GF

In this section, we describe the nlgPhylogeny system. Figure 4 shows the overall
architecture of nlgPhylogeny. The main component of the system is the GF gen-
erator whose inputs are the Phylotastic ontology and the elements necessary for
the NLG task (i.e., the set of linearizations, the set of pre-defined conjunctives,
the set of vocabularies, and the set of sentence models). The output of the GF
generator is a GF program, i.e., a pair of GF abstract and concrete syntax. This
GF program is used for generating the descriptions of workflows via the GF
runtime API. The adapter provides the GF generator with the information from
the ontology, such as the classes, instances, and relations. We will describe in
more details the elements of nlgPhylogenyin Sect. 3.2.

3.1 Web Service Ontology (WSO)

Phylotastic uses web service composition to generate workflows for the extrac-
tion/construction of phylogenetic trees. It makes use of two ontologies: WSO
and PO. WSO encodes information about the registered web services, classified
in a taxonomy of classes of services. In the following discussion, we refer to a
simplified version of the ASP encoding of the ontologies used in [6], to facilitate
readability.

In WSO, a service has a name and is associated with a list of inputs and
outputs. For example, the service named FindScientificNamesFromWeb_GET in
the ontology is an instance of the class names_extraction_web. The outputs and
inputs of FindScientificNamesFromWeb_GET are encoded by the three atoms:

Ontolo Linearization Pre-defined | | Pre-defined Sentence
9y Conjunctive | | Vocabulary Model
Adapter GF Generator
Abstract English concrete
syntax syntax

Portable
grammar

format

77777777777 >

GF Runtime API English
Description

Workflow Atoms

Sentence generator

Fig. 4. Overview of nlgPhylogeny.

Natural Language Generation from Ontologies 71

has_input (FindScientificNamesFromWeb_GET,resource_WebURL,url_format).

has_output (FindScientificNamesFromWeb_GET,resource_Set0fSciName,
scientific_names_format) .

has_output (FindScientificNamesFromWeb_GET,resource_SetOfNames,
list_of_strings).

In the above atoms, the first argument is the name of the service, the second is
the service input or output, and the last argument is the data type of the second
argument.

The web service ontology of the Phylotastic project is exported to an ASP
program (from its original OWL encoding) and enriched with a collection of ASP
rules to draw inferences about classes, inheritance, etc. nlgPhylogeny employs
these rules to identify information related to the set of atoms whose description
is requested by a user—e.g., What are the inputs of a service? What is the data
type of an input x of a service y?

3.2 GF Generator

Each Phylotastic workflow is an acyclic directed graph, where the nodes are web
services, each consumes some resources (inputs) and produces some resources
(outputs). An example of the specification of a workflow is as follows.°

occur_concrete (GenerateGeneTree From_Genes,0) .
occur_concrete (ExtractSpeciesNames _From Gene _Tree GET,1).
occur_concrete(GeneTree_Scaling,2).

occur_concrete (ResolvedScientificNames_OT_TNRS_GET,3).

This set of atoms is a partial description of the result of a web service composi-
tion process, as described in [6]. Intuitively, this set of atoms represents a plan
consisting of 4 steps. At each step, a concrete instance of the service class named
by the first argument of the atom occur_concrete/2 is executed.

To generate the description of a workflow, we adapt the general theoretical
framework proposed in [10]. This framework consists of three major processing
phases: (1) Document planning (content determination), (2) Microplanning,
and (3) Surface realization. The document planning phase is used to determine
the structure of the text to be generated. Based on the structure determined in
the document planning phase, the microplanner makes lexical/syntatic choices
to generate the content of the sentences, and the realization phase generates
the actual sentences. In our work, we combine the microplanning and surface
realization phase into a single phase due to the nature of the grammar definition
and the capability of GF in sentence generation.

In the document planning step, we create, for each occurrence atom, a sen-
tence which specifies the input(s) and output(s) of the service mentioned in the
first argument of the atom. Optionally, users can choose to describe the service
in more details, one or two more sentences about the data type of the service’s

5 For simplicity, we use examples which are linear sequences of services. We also trim
the names of services for readability.

72 V. Nguyen et al.

inputs or outputs can be included. As we have mentioned in the previous sub-
section, the information about the inputs, outputs, and data types of the inputs
and outputs of a service can be obtained via the ASP reasoning engine of the
Phylotastic system. In general, we identify the document planning structure
described in Table 1.

Table 1. Document planning structure

message 1

argument_1: instance or class in ontology
argument_2: list of service inputs
argument_3: list of service outputs

message 2 (optional)

argument_1: name of input or output of service
argument_2: data type of argument_1
message 3 (optional)

argument: actual data involved in the workflow

The document planning phase determines three messages for the sentence
generation phase. Each message will be constructed using the arguments as men-
tioned in Table 1. While the first message is mandatory, the other two messages
are optional.

In the microplanning step, we focus on developing a GF generator that can
produce a portable grammar format (pgf) file [2]. This file is able to encode
and generate 3 types of sentences as mentioned above. The GF generator (see
Fig.4) accepts two flows of input data. The first one is the flow of data from
the ontology, which is maintained by an adapter. The adapter is the glue code
that connects the ontology to the GF generator. Its main function is to extract
classes and properties from the ontology.

The second flow is the flow of data from predefined resources that cannot be
automatically obtained from the ontology—instead they require manual effort
from both the ontology experts and the linguistic developers.

— A list of linearizations: the translations of ontology entities into linguistic
terms. This translation is performed by experts who have knowledge of the
ontology domain. An important reason for the existence of this component
is that some classes or terms used in the ontology might not be directly
understandable by the end user. This may be the result of very special-
ized strings used in the encoding of the ontology. For example, the class
phylotastic_ResolvedScientificNames_.OT_-TNRS_POST can be meaningfully
linearized to Name Resolution service provided by OpenTree in Phylotastic
ontology.

Natural Language Generation from Ontologies 73

— Some sentence models which are principally Grammatical Framework syntax
trees with meta-information. The meta-information denotes which part of
syntax tree can be replaced by some vocabulary or linearization. As indicated
above, we decided that each occurrence atom in a workflow will be described
by at most three sentences. For example, if we consider the first message in
the document planning structure, the generated sentence will have the inputs
and the outputs of a service; the second message indicates a sentence about
the data type of its first argument (input or output); the third message is
about the actual data used during the execution of the workflow. However,
the messages do not specify how many inputs and outputs should be included
in the generated sentence. This means that sentences have different structures,
i.e., the structure of a sentence representing a service that requires one input
and one output is different from the structure of a sentence representing a
service that does not require any inputs. These variations in sentences are
recorded in the model sentence component.

— A list of pre-defined vocabularies which are domain-specific components for
the ontology. A pre-defined vocabulary is different from linearizations, in the
sense that some lexicon may not be present in the ontology but might be
needed in the sentence construction. The predefined vocabulary is also useful
to bring variety in word choices when parts of a model sentence are replaced
by the GF generator. For example, we would not want the system to keep
generating a sentence of the form “The service A has input X” given an atom
of the form occur_concrete(A,T), but sometimes “The service A requires
input X7, or “The service A needs input X”, etc. To achieve this, we keep
“have”, “require” and “need” in the set of pre-defined vocabularies and ran-
domly select a verb to replace the verb in model sentence.

— A configuration of pre-defined conjunctives, which depend on the docu-
ment planning result. Basically, this configuration defines which sentences
accept a conjunctive adverb in order to provide generated text transition and
smoothness.

To encode sentences, the GF generator defines 3 categories: Input, Output and
Format in the abstract syntax. The corresponding English concrete syntax is as
follows:

concrete PhyloEng of Phylo = open SyntaxEng, ParadigmsEng,

ConstructorsEng
in {
lincat
Message = S; Input = NP; Output = NP; Format = NP;
.}

SyntaxEng, ParadigmsEng, ConstructorsEng are GF Resources Grammar
libraries” providing constructors for sentence components like Verb, Noun
Phrase, etc. in English.

" http://www.grammaticalframework.org/lib/doc/synopsis.html.

http://www.grammaticalframework.org/lib/doc/synopsis.html

74 V. Nguyen et al.

The GF generator obtains information about the services (e.g., how many
inputs/outputs has the service? what are the data types of the inputs/outputs?
etc.) by querying the ontology (via the adapter). Based on the number of inputs
and outputs of a service, the GF generator determines how many parameters
will be included in the GF abstraction function corresponding to the service.
Furthermore, for each input or output of a service, the GF generator includes
an Input or Output in the GF abstract function. For example, the encoding of
occur _concrete(FindScienti ficNamesFromWeb_GET,1) in the GF abstract
syntax is

f_FindScientificNamesFromWeb_GET: Input -> Output -> Message;
i_resource_WebURL: Input;
o_resource_Set0fNames: Output;

Next, the GF generator looks up in the sentence models a model syntax tree
whose structure is suitable for the number of inputs and outputs of the service.
If such syntax tree exists, the GF generator will replace parts of the syntax tree
with the GF service input and output functions, to create a new GF syntax
tree which can be appended to the GF concrete function. The functions in the
abstract syntax correspond to the following functions in the GF concrete syntax:

f_phylotastic_FindScientificNamesFromWeb_GET i_resource_WebURL
o_resource_Set0OfNames = mkS and_Conj
(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_in
(mkV2 "require") i_resource_WebURL))
(mkS (mkCl phylotastic_FindScienticNamesFromWeb_GET_out
(mkV2 "return") o_resource_Set0fSciName));
i_resource_WebURL = mkNP(mkCN (mkN "webURL"));
i_resource_SetOfNames = mkNP(mkCN (mkN "asetof names"));

The above functions consist of several syntactic construction functions which are
implemented in the GF Resources Grammar:

mkN which creates a noun from a string;

mkCN which creates a common noun from a noun;

mkNP which creates a noun phrase from a common noun;

mkV2 which creates a verb from a string;

mkCl which creates a clause. A clause can be constructed from sequence of a
noun phrase, a verb and another noun phrase (NP V2 NP);

e mkS which creates a sentence. A sentence can be constructed from a clause
(C]) or from 2 other sentences and a conjunction word (and_Conj S S).

From the abstract and concrete syntax specifications built by the GF generator,
the atom

occur_concrete(phylotastic FindScientificNamesFromWeb GET, 1)
is translated into the sentence

Natural Language Generation from Ontologies 75

The input of phylotastic_FindScientificNamesFromWeb_GET is a web link,
and its outputs are a set of species names and a set of scientific names.

We use the same technique to encode the other types of sentences indicated by
the document planning structure. This is how the GF generator has been imple-
mented. Figure 1 is an example output of the current version of nlgPhylogeny.

4 Automatic Natural Language Generation
from Annotated Ontology: nlgOntology“

Annotated
Ontology

The previous section shows that, with suf-
ficient knowledge about the ontology and

pre-defined descriptions about elements in — Attempto Controlled
the ontology, we can utilize the current e e [l ST
technology in NLG to generate a descrip- (APE) (ACE-in-GF)
tion of a set of atoms derived from the <

!
ontology. It also highlights that the process oater” H Cenaraor
requires manual labor and domain exper- L.
tise. Such approach is feasible only in small ‘ Mappings (
ontologies related to uncomplicated gram- \
mars and elementary lexicons. The appli-
cation of the same process to medium or o
large ontologies is likely to be too costly Atoms
or time consuming. On the other hand, we
can observe that ontologies often include
meta-data encoding of their elements. Fur-
thermore, information extracted from the meta-data of an ontology is often suf-
ficient for a basic understanding of the concepts that can be derived from the
ontology. Motivated by this observation, we develop an automatic natural lan-
guage generation method for ontologies whose meta-data can be understood by
an ACE parser. We will refer to ontologies satisfying this assumption simply as
annotated ontology. A simple annotated ontology is as following.

Abstract
syntax

English
concrete syntax

\

Portable
grammar format

/

English
Description

GF Runtime API

Sentence generator

Fig. 5. Overview of nlgOntology”

%% @lin: Beats is a company of Apple_Inc

Apple, B
%% @n: Company own(Apple, Beats)

class {(Com) %% @pn: Silicon_Grail_Corp_Chalice

instance0f (Com, Sgcc)
%% ©@pn: Apple_Inc

inst £ Appl
instance0f (Com, Apple) %% @pn: Silicon_Grail

% Gpn: Beats instance0f (Com, Sg)

instance0f (Com, Beats o . .
() %% @lin: Apple_Inc acquires Beats

acquire(Apple, Beats)

76 V. Nguyen et al.

In the above ontology, Com is a class, Apple, Beats, Sgcc and Sg are instances
of the class Com, and acquire and own are two properties. The tags

e 7% @n marks a noun
e 7% @pn denotes a proper noun
e 7% @lin signals a translation of an atom to an Attempto English sentence

Ontologies annotated in this way can be understood by nlgOntology”. We now
describe the nlgOntology” system.

4.1 Overall Architecture

Figure 5 shows the overall structure of nlgOntology”. The GF generator
described in Fig. 5 uses data and functions from three main components:

e A wocabulary extractor, which is responsible for collecting nouns, proper
nouns, adjectives and verbs from the ontology. The vocabulary extractor also
creates a mapping of classes or instances in the ontology to their lineariza-
tions. Moreover, in the case of adjectives and verbs, the vocabulary extractor
will query some vocabulary dictionaries to collect information like type of
verbs (transitive, intransitive) and verbs in different forms (finite singular,
infinite, etc.).

e The Attempto Controlled English Parser (APE), which analyzes sentences
extracted from the ontology. The parser translates ACE text into discourse
representation structures (DRS) [5].

Algorithm 1. Generation of portable grammar format
Require: annotated ontology, some annotations are ACE parable sentences
: n «<extract nouns and proper nouns from ontology
. s «—extract sentences from ontology
a < empty, v <+ empty
add n to APE lexicon
for 7 in n do
n/,a’,v’ «parse i using APE
n:=nuUn,a:=alUd,v:=vU?

end for

9: for ¢ in n do

10: find singular and plural form of i

11: end for

12: for i in a do

13: find comparative and supercomparative form of i
14: end for

15: for ¢ in v do

16: find transitive and intransitive form of i

17: end for
18: generate vocabulary, generate mappings
19: convert vocabulary to GF syntax
20: compile grammar in ACE-in-GF and generated syntax

PP W

Natural Language Generation from Ontologies 7

o Attempto Controlled English in Grammatical Framework (ACE-in-GF),
which is an implementation of the Attempto Controlled English grammar
in the Grammatical Framework syntax.

The outputs of the generator are a portable grammar format (pgf) file, a map-
ping of annotated atoms in the ontology into GF syntax trees, and a mapping
of concepts used in the ontology into GF functions. These data will be used in
the re-construction sentence progress which is described next.

4.2 Generation of Portable Grammar Format

To generate the pgf file, the GF generator performs the procedure shown in
Procedure 1. Lines 1-2 extract annotations from the ontology. Lines 3 initialize
variables holding adjectives and verbs. Line 4 enriches the APE lexicon with
the nouns and proper nouns. This allows the APE to recognize proper nouns
that are possibly present in the sentences extract in s. Furthermore, it helps
increase the accuracy when a sentence is parsed by APE. Next, the for-loop in
lines 5-8 iterates through all sentences to collect new lexicon. Lines 9-17 find
all possible forms of words. Line 18 creates the vocabulary file and mapping file
from information obtained from previous steps. The vocabulary file is written
in Prolog. For example, a portion of the vocabulary file extracted from the
annotations from the ontology in the beginning of this section looks as follows:

noun_pl(’companies’, company, neutr).

noun_sg(’company’, company, neutr).

pn_sg(’Apple_Inc’, ’Apple_Inc’, neutr).

pn_sg(’Beats’, ’Beats’, neutr).

pn_sg(’Silicon_Grail_Corp_Chalice’, ’Silicon_Grail_Corp_Chalice’,
neutr).

pn_sg(’Silicon_Grail’, ’Silicon_Grail’, neutr).

tv_finsg(acquires, acquire).

iv_finsg(is, be).

Line 19 converts the vocabulary file to GF syntax. As an example, the conversion
produces the GF concrete syntax file:

lin
company_N = aceN "company" ;
Apple_Inc_PN = acePN "Apple_Inc" ;
Beats_PN = acePN "Beats" ;
Silicon_Grail_Corp_Chalice_PN = acePN "Silicon_Grail_Corp_Chalice"

Silicon_Grail_PN = acePN "Silicon_Grail" ;
acquire_V2 = aceV2 "acquire" "acquires" "acquire";

Finally, line 20 uses ACE-in-GF to compile the Attempto grammar and the
vocabulary extracted from the ontology into a portable grammar format.

78 V. Nguyen et al.

4.3 Sentence Construction

Given an input atom, the generated pgf file and a mapping file, the sentence
generator implements the algorithm presented in Procedure 2. Lines 1-3 initialize
variables as well as load the information in the pgf and mapping files. Line 4
finds the atom in the mapping file that has the same name as the input atom. We
call it model _atom. Line 5 finds the syntaz_tree of the model_atom. The for-loop
in lines 6-12 replaces parts of the syntax tree with the mapping of arguments
of atom. This process creates a new syntax tree which keeps the same structure
as the model_atom’s syntax tree. Finally, line 13 converts the new syntax tree
back to a sentence.

Algorithm 2. Sentence re-construction

Require: an atom
Require: portable grammar format file, mapping file

1: a «—atom

2: pgf «load pgf

3: map «—mapping
4: model_atom «— map.keys. find(name(a))
5: syntazx_tree «— map(model_atom)
6: for part is a part of syntax_tree do
7 for arg, arg_index in arguments(model_atom) do
8 if part == map(arg) then

9: syntaz_tree[part] = map(arguments(a)larg-indez])
10: end if

11: end for

12: end for

13: sentence = pgf(syntax_tree)

As an example, given an annotated ontology describing Apple Inc. and its
acquired companies as mentioned in Sect. 4, from the set of atoms:

acquire(Apple,Sg). own(Sg,Sgcc). acquire(Apple,Sgcc).
we are able to generate the following sentences:

Apple_Inc acquires Silicon_Grail .
Silicon_Grail_Corp_Chalice is a company of Silicon_Grail .
Apple_Inc acquires Silicon_Grail_Corp_Chalice .

The above example illustrates the feature of nlgOntology“; it emulates
the annotations in the ontology to generate sentences. From the annotations
provided for the specific case “Apple acquires Beats”, nlgOntology” can gen-
erate sentences for other cases that have similar meaning but with different
objects. The repetition of narration can be seen in many question-answering
systems. In particular, nlgOntology” uses the annotation of acquire(Apple,
Beats) to generate the sentences for acquire (Apple, Sg) and acquire(Apple,
Sgcc). The sentence generation for own(Sg,Sgcc) provides the annotation for
own(Apple, Beats).

Natural Language Generation from Ontologies 79

5 Related Work and Analysis

The closest effort to what proposed here is the work in [3], which reports on gen-
erating natural language text from class diagrams. In [3], the author developed
a system to generate specifications for UML class design while the present work
focuses on natural language text generation for a given ontology and a Gram-
matical Framework, which is manually encoded or automatically generated from
the annotations of the ontology.

The work in [11] targets generating an ASP program from controlled natu-
ral language, and vice versa. The author uses a bi-directional grammar as the
intermediate conversion in combination with reordering atoms for aggregation.
There is a correlation between our work and the work in [11] in terms of pro-
cessing the controlled input format and generating the natural language text.
The key difference between our work and that work in [11] is that our system
only relies on the structure of the annotated sentences (for nlgOntology“) in
the text generation and thus could potentially be more flexible.

In order to assess the feasibility of our approach to automatically gener-
ate text based on an ontology, we performed an experiment using the Soft-
ware ontology,® which is apart of The Open Biological and Biomedical Ontology
(OBO) Foundry.” We annotated some concepts in the ontology using the tag
oboInOwl:comment as in the following example:

<!-- http://edamontology.org/operation_0244 -->
<owl:Class rdf:about="http://edamontology.org/operation_0244">
<rdfs:subClass0f rdf:resource="http://edamontology.org/operation_0243
||/>

<rdfs:label>
Protein flexibility and motion analysis
</rdfs:label>
<oboInOwl:comment rdf:datatype="http://www.w3.org/2001/XMLSchemastring
">
%% @n: protein_flexibility_and_motion_analysis
</oboIn0wl:comment>
<oboInOwl:comment rdf:datatype="http://www.w3.org/2001/XMLSchemastring
">
%% @lin: a protein_flexibility_and_motion_analysis is a
molecular_dynamics_simulation .
</oboIn0wl:comment>
</owl:Class>

We implicitly bind the annotations with the relation subclass0f due to the
simplicity of the Software ontology. Given the annotated Software ontology,
nlgOntology is able to generate some sentences like

8 http://theswo.sourceforge.net.
9 http://www.obofoundry.org.

http://theswo.sourceforge.net
http://www.obofoundry.org

80 V. Nguyen et al.

A DNA_substitution_modelling is a Modelling_and_simulation_operation .
A Molecular_dynamics_simulation is a Modelling_and_simulation_operation .
A Protein_flexibility_and_motion_analysis is a Modelling_and_simulation .

6 Conclusions, Discussions, and Future Work

In this paper, we presented two NLG systems, nlgPhylogeny and nlgOntology*,
for automatic generation of English descriptions for a set of atoms derived from
ontologies. Both achieve the goal by creating a GF program and relying on
the ability to generate sentences of the Grammatical Framework. nlgPhylogeny
uses pre-defined resources (e.g., linearizations, vocabularies, etc.) to build the
sentence generator (GF program), while nlgOntology” extracts and manipu-
lates information directly from an annotated ontology. Observe that the struc-
ture of the generated text in nlgPhylogeny is richer than that in the current
nlgOntology” due to the fact that the pre-defined resources are hand-crafted
and nlgOntology” employs a very simple grammar for its sentence structure.
For this reason, nlgPhylogeny can generate sentences that are more complex than
the sentences generated by nlgOntology“. On the other hand, nlgOntology*
relies on meta-information in the ontologies and can be used in any ontology
that is annotated and can be parsed by an Attempto Controlled English parser.
As such, nlgOntology“ can save significant efforts before it can be deployed in
an application.

We conclude the paper with a short discussion about the applications and
possible extensions of n1gOntology®. It is easy to see that the current system can
be very useful in applications that require shallow explanations. We envision the
possibility of using nlgOntology? for query-answering or information retrieval
systems that, at the end of their complex computations, need to present the
result—a set of atoms—to their users and do not need to explain the computation
process. In such systems, the answers are often crafted manually or using some
templates. This is certainly achievable with n1gOntology* as such templates can
be provided as annotations for instances in the ontologies. n1gOntology” can
add some flexibility to such system if multiple linearizations for an instance are
provided in the ontologies, since they are translated to potentially different syn-
tax trees. This will result in different sentences during the generation phase. The
current system is, on the other hand, not as good, compared to nlgPhylogeny, in
dealing with ordered sets of atoms, i.e., the explanation needs to be presented in
a certain order. For example, n1gPhylogeny needs to present a plan which is a set
of atoms with an ordering in the second parameter of the atoms occur_concrete/2
to the users. The implementation of this feature in nlgOntology“ will be our
main immediate future work. This will allow nlgOntology* to provide natural
language explanation detailing the steps involved in the computation of a result
(e.g., the steps of a procedure or workflow).

Natural Language Generation from Ontologies 81

To improve the usability of nlgOntology“, we intend to extend the sys-

tem to consider the problem when the ontology comes with annotations in nat-
ural language, i.e., to remove the restrictions that the ontology is annotated
using controlled natural language. Interestingly, this idea is closely related to
the idea proposed in a Blue Sky Ideas of the 17th International Semantic Web
Conference [12].

Acknowledgement. We thank the reviewers for the comments and the references,
especially [12]. We would like to acknowledge the partial support of the NSF grants
1458595, 1401639, and 1345232.

References

10.

11.

12.

. Stoltzfus, A., et al.: Phylotastic! making tree-of-life knowledge accessible, reusable

and convenient. BMC Bioinform. 14, 158 (2013)

Angelov, K., Bringert, B., Ranta, A.: PGF: a portable run-time format for type-
theoretical grammars. J. Logic Lang. Inf. 19, 201-228 (2010)

Burden, H., Heldal, R.: Natural language generation from class diagrams. In: Pro-
ceedings of the 8th International Workshop on Model-Driven Engineering, Verifi-
cation and Validation (MoDeVVa 2011), Wellington, New Zealand. ACM (2011)
Fuchs, N.E., Schwitter, R.: Attempto controlled English (ACE). CoRR cmp-
1g/9603003 (1996)

Kamp, H., Reyle, U.: From Discourse to Logic. Springer, Dordrecht (1993). https://
doi.org/10.1007/978-94-017-1616-1

Nguyen, T.H., Son, T.C., Pontelli, E.: Automatic web services composition for phy-
lotastic. In: Calimeri, F., Hamlen, K., Leone, N. (eds.) PADL 2018. LNCS, vol.
10702, pp. 186-202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73305-0-13

Prosdocimi, F., Chisham, B., Thompson, J., Pontelli, E., Stoltzfus, A.: Initial
implementation of a comparative data analysis ontology. Evol. Bioinform. 5, 47-66
(2009)

Ranta, A.: Grammatical framework. J. Funct. Program. 14(2), 145-189 (2004)
Ranta, A.: Grammatical framework: Programming with multilingual grammars.
CSLI Publications, Center for the Study of Language and Information (2011)
Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, Cambridge (2000)

Schwitter, R.: Specifying and verbalising answer set programs in controlled natural
language (2018). arXiv preprint: arXiv:1804.10765

Vrandei, D.: Capturing meaning: Toward an abstract wikipedia. http://ceur-ws.
org/Vol-2180/

https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-3-319-73305-0_13
https://doi.org/10.1007/978-3-319-73305-0_13
http://arxiv.org/abs/1804.10765
http://ceur-ws.org/Vol-2180/
http://ceur-ws.org/Vol-2180/

