
On Repairing Web Services Workflows

Thanh H. Nguyen[0000−0001−9996−4720], Enrico Pontelli[0000−0002−7753−1737], and
Tran Cao Son[0000−0003−3689−8433]

New Mexico State University, Las Cruces, NM 88003, USA
{tnguyen,tson,epontell}@cs.nmsu.edu

Abstract. When a composite web service—i.e., a composition of individual web
services—is executed and fails, it is desirable to reuse as much as possible the re-
sults that have been obtained thus far. For example, a travel agent, after receiving
an order to arrange for a trip from LA to NY from a customer, would typically
identify the flights and the hotels, obtain the confirmation from the customer, and
place the reservations using the credit card information provided by the user; if
something is wrong (e.g., at the last step, the credit card information was wrong),
the travel agent would prefer to place the reservations using another means (e.g.,
a different card) instead of starting from the beginning.
This paper introduces an approach for dealing with service failures in the context
of workflow execution. The paper defines the notion of a web service composition
(WSC) problem and the notion of a solution workflow for a WSC problem. The
paper describes two approaches to repair a partially executed workflow, with the
goal of effectively reusing parts of the workflow that have been successfully exe-
cuted. The usefulness of these approaches are demonstrated in an implementation
using Answer Set Programming (ASP) in the well-known shopping domain.

Keywords: repair · reuse · workflow · web services composition.

1 Introduction

The Semantics Web has been long considered as a killer application of the Internet that
will, according to [1], “unleash a revolution of new possibilities” of the Web [1]. One
of the key features of the Semantics Web is that it provides an environment suitable
for intelligent agents to automatically: (i) discover and compose web services to create
personalized services or workflows (i.e., Web Services Composition (WSC)); (ii) execute
these personalized services whenever their users request; (iii) monitor such executions;
and (iv) deal with failures of the services. These features are often provided by a WSC
framework with two phases: one is responsible for the composition of web services and
the other for the execution and monitoring the composition of web services.

Our interest, in this paper, is on the second phase of a WSC framework, dealing
with failures during the execution of a workflow. This is because web services are
inherently dynamic and cannot be expected to be stable all the time—developers of-
ten modify them, introduce faults, and modify APIs in unexpected manners. There are
many different situations that can cause failures of web services [2, 9]—ranging from
physical failures, e.g., due to network failures, to development failures, e.g., due to in-
correct APIs and incorrect logic, to interaction faults, e.g., due to incorrect parameter

2 Thanh H. Nguyen et al.

exchanges and misunderstood behavior. This paper focuses on the question of how to
deal with physical failures.

There is a growing literature that addresses the problem of recovery when the ex-
ecution of a web service fails. Several research contributions explore the problem of
services monitoring, often based on checkpointing and oriented towards orchestration
and choreography [13]. Proposed recovery methodologies include execution rollback
to previous checkpoints and the use of redundancy to assist with server failures (e.g.,
[5, 14, 16]). Alternative approaches have explored the use of replacement of failed ser-
vices in an attempt to repair a workflow (e.g., [4, 15]). The idea of replacement has
been expanded in [11], by allowing both rollback steps (with re-execution of failed ser-
vices) as well as substitution of sequences of services with new workflows. A variety
of studies have also proposed Several web service architectures that provide monitor-
ing, fault detection, and exception event handlers have been described (e.g., [2, 3, 12]).
Most of these approaches rely on static recovery techniques or relatively simple rep-
etitions of the composition process. In [10], the authors propose a method based on
partial-order planning that makes use of feedbacks from the plan execution to improve
new plan search and to repair failed services. The method is illustrated using a shop-
ping example. Unfortunately, the system available at http://sws.mcm.unisg.ch:
8080/axis/services/MegashopService?wsdl is no longer active.

Initial
State

Goal
State

checkAvailability([lapt
op, desk], shop_A)

shop_A
(open,online)

addToCart(laptop,
cart_shop_A)

laptop (available,
in_list(lst_electrical_
devices, shop_A))

checkout(cart_shop
_A)

checkout(cart_shop
_B)

laptop (possess(client,laptop))
desk (possess(client,desk))
cart_shop_A(paid, empty)

ai_book
(possess(client,ai_book))

time_magazine
(possess(client,time_magazine))

cart_shop_B(paid, empty)credit_card (valid,
enough_balance)

credit_card
(valid,enough_balance)

checkAvailability([ai_b
ook, time_magazine],

shop_B)

shop_B
(open,online)

addToCart(desk,
cart_shop_A)

desk (available,
in_list(lst_furnitures

, shop_A))

addToCart(ai_book
,cart_shop_B)

ai_book (available,
in_list(lst_books,

shop_B))

time_magazine
(available,

in_list(lst_maganizes
, shop_B)) addToCart(time_ma

gazine, cart_shop_B)

cart_shop_A
(not_empty)

laptop
(on_cart(shop_A))

desk
(on_cart(shop_A))

ai_book
(on_cart(shop_B))

cart_shop_B
(not_empty)

time_magazine
(on_cart(shop_B))

Fig. 1: Shopping for some items from different web-sites (Web Shopping Domain)

In this paper, we investigate the problem of repairing a web services workflow
whose execution failed. We develop a general framework for repairing web services
workflows, that aims at reusing as much as possible the results obtained by an incom-
plete execution of the workflow. The framework could potentially be used in any WSC
realization. We illustrate the framework by examples from the shopping domain.

2 Web Shopping Domain

Throughout the paper, we will illustrate our definitions using elements of the Web shop-
ping domain as described in [10]. It consists of an ontology describing different classes

http://sws.mcm.unisg.ch:8080/axis/services/MegashopService?wsdl
http://sws.mcm.unisg.ch:8080/axis/services/MegashopService?wsdl

On Repairing Web Services Workflows 3

of e-commerce shops (e.g., electronic, furniture, etc.), items sold in these shops
(e.g., laptops, books, desks, etc.), containers (e.g., shop cart), payment methods
(e.g., credit card payment), and their subclasses (e.g., shop type A is a subclass
of shops, cart shop A is a subclass of shop cart, ai book is a subclass of books,
etc.). In addition, each type of shop provides a diversity of services and operations.
They are listed below.

– checkAvailability: checks for the availability of a set of items. This service takes as
input a list of items and returns the list of items and their metadata that are available
in the shop. This service is available at all the shops.

– addToCart: places an item into a shopping cart. This service takes two inputs: a
shopping cart and an item in the shop; the service produces an output which is the
cart containing the added item. This service is provided in shops of type A and B.

– removeFromCart: removes an item from a shopping cart. It is the reverse of addTo-
Cart and is available at the shops of type A and B.

– checkout: purchases the items currently in the shopping cart; the service is available
at shops of type A and B. It requires a valid credit card as an input. The output is
that this cart is paid and the items belong to the client.

– getItemsList: returns the list of items that are in the shop’s catalog. The input of this
service is a shop and the output is the list of items in the shop’s categories. This
service is provided by shops of type A and B.

– buytItem: purchases a single item in shop. This service takes an item in the shop
and a valid credit card as inputs. This service belongs to shops of type A and C.

– getList: works only for shops of type C and retrieves a list of all available items in
the shop.

In shops of type B, every item needs to be placed into a shopping cart before it can
be purchased (by the service checkout). In shops of type C, a selected item can be
purchased directly by the service buyItem. Both purchasing methods (shopping cart or
direct) can be used in shops of type A.

Figure 1 shows an example of a workflow over a WSC problem in the web shopping
domain, aimed at purchasing some items (a laptop, an ai book, a time magazine

and a desk) from different online stores with credit card information that has been
submitted by users. The initial state supplies a credit card (and its information) to
the services checkout or buyItem. The Web Shopping Ontology provides the infor-
mation and status of the shops (shop A, shop B etc.) in the initial state, which are
used in service checkAvailability to verify the availability of the requested item
in shops as well as to retrieve the metadata of the requested items. Let us assume that,
in this example, credit card is valid and has enough balance to use; these shops
are online and open. In the goal state, possess(client,X) denotes that item X is
owned by the client.

3 The Web Service Composition Problem

In order to formalize the notion of repair, we need a precise definition of the WSC prob-
lem and its solutions. The well-known abstract view of a WSC problem as a planning

4 Thanh H. Nguyen et al.

problem is easy to understand but assumes groundedness (i.e., actions are propositional
terms)—which is not the case in our context, as parameters of a web service are of-
ten specified by types and will be instantiated only when the service is executed. We
therefore start by defining the notion of a WSC problem.

An abstract resource is specified by its type, typically described as a class in an
ontology. A concrete resource is specified by its type and concrete data, which is an
instance of the resource type. A named abstract/concrete resource is a resource asso-
ciated with a unique identifier. Let us denote with T the set of resource types. We use
the notations (n, t,nil) and (n, t,d), where n is the name of the resource, t ∈ T is a re-
source type and d is an instance of t, to describe a named abstract and named concrete
resource, respectively; nil represents an unknown value.

A Web service receives a set of named resources and produces a set of named re-
sources. For example, the getItemsList service receives a shop object (e.g., shop A

of the type shops) and produces a list of all available items that are in the shop’s
catalogs (e.g., list catalog A of the type list). At the specification level, a Web
service over a set of abstract resource types T is a pair (a,e(a)), where a is the ser-
vice name and e(a) is a tuple of pairs of named abstract resources, i.e., each element
in e(a) is of the form (in,out) where in,out denote sets of named resources. Each ele-
ment in e(a) is called a precondition-effect pair for a. For example, e(addToCart) =
(in1,out1) where in1 = {(cart id,shop cart,nil),(it id,item,nil)} and out1 =
{(cart id,shop cart,nil),(it id,item,nil)}.

The execution of a service a will take concrete data conforming to the specification
in in and output concrete data of the type specified by out. For example, in Fig. 1, an
instance of the addToCart service receives a shop cart object of the type cart shop A,
a subclass of the type shop cart, and an object of the type laptop, a subclass of the
type item, as inputs, and produces as output a shopping cart containing the item.

Definition 1. A Web service composition (WSC) problem P is a tuple (T ,A,S0,Sg)
where

– T is a set of abstract resource types;
– A is a set of web services over T ;
– S0 and Sg are two sets of concrete resources.

Let P = (T ,A,S0,Sg) be a web service composition problem. A state s of P is a set
of concrete resources over T . Let x be a set of abstract resources. We say that a set xc
of concrete resources is an instance of x if there exists a bijection b from x to xc such
that b((n, t,nil)) = (n, t,d) for each (n, t,nil) ∈ x. Given a state s and a set of abstract
resources x, we denote:

s|x = {(n, t,d) | (n, t,d) ∈ s,(n, t,nil) ∈ x}.

We say that s contains an instance of x iff s|x is an instance of x. Given a state s and
a service a ∈ A, the execution of a in s results in one of the three situations: (i) There
exists a precondition-effect pair (i,o) of a such that s|i is an instance of i. In this case,
we say that (i,o) is an active precondition-effect of a in s and the execution of a will
produce an instance, denoted by res(a,s), of o; (ii) There exists no precondition-effect

On Repairing Web Services Workflows 5

pair (i,o) of a such that s|i is an instance of i. In this case, the execution of a will produce
/0, which will also be denoted by res(a,s); or (iii) the execution of a fails, which will
be denoted by ⊥. In the following, a service a ∈ A is executable in a state s if the cases
(i) or (ii) occur. The WSC problem related to the example in Fig. 1 can be specified by
Ps = (Ts,As,S0,Sg) where:

– Ts consists of the types (classes) in the ontology of the Web Shopping Domain;
– As consists of the services described in the previous section;
– S0 = {credit card(valid, enough balance), shop A(open, online), ...}
– Sg = {possess(client, laptop), possess(client, desk), possess(client,
ai book), possess(client, time magazine)}.

Definition 2. A workflow over a WSC problem P = (T ,A,S0,Sg) is a tuple G =
(V,E,v0,vg) where (V,E) is an acyclic directed graph with the set of nodes V and
the set of labeled edges E, v0,vg ∈ V are referred to as the initial and goal state of G,
respectively, and

– each v ∈V \{v0,vg} is associated to an action a ∈ A, denoted by act(v);
– each (u,v) ∈ E is labeled with a set of abstract resources, denoted by lE(u,v); and
– {x | (x,v0) ∈ E}= /0 and {x | (vg,x) ∈ E}= /0.

A workflow over a WSC problem in the shopping domain is given Figure 1. The
two triangles represent the initial and goal state (v0,vg) respectively. Ellipses represent
nodes of the graph, each node is associated to a service. Ingoing and outgoing links
represent preconditions and effects of the service. For example, the top-left node is
associated to checkAvailability, which requires a shop (in this case, shop A from
the initial state) and a set of items (that the client wishes to buy).

Given a workflow G over a problem P , the execution of G starts from its initial state
by sending concrete resources to its neighbors in accordance to the specification on the
edges. Whenever all concrete resources from the predecessors of a node v are delivered
to v, the service attached to v, act(v), will be executed. If the execution is successful, i.e.,
it produces the proper concrete resources to be sent to the neighbors, then the execution
continues; otherwise the execution of the workflow fails. The process continues until
every service in the workflow is executed. The execution is said to be successful if the
concrete resources specified at the goal state of G are produced. Formally, this process
can be defined via a state function as follows.

Definition 3. Let G = (V,E,v0,vg) be a workflow over P = (T ,A,S0,Sg). The state
function of G, denoted by st, is a function that maps each node of G into a state of P
or nil and is defined as follows.

– st(v0) = S0;
– for each v ∈V \{v0}

(a) if there exists some u ∈V such that (u,v) ∈ E and st(u) = nil then st(v) = nil;
(b) otherwise, let in(v) =

⋃
(u,v)∈E st(u)|lE (u,v),

(b.1) if v = vg then st(v) = in(v);
(b.2) if v 6= vg and in(v)∪res(act(v), in(v)) is not an instance of lE(v,z) for some

(v,z) ∈ E then st(v) = nil;

6 Thanh H. Nguyen et al.

(b.3) if v 6= vg and Case (b.2) does not occur then st(v)= in(v)∪res(act(v), in(v)).

We say that the execution of G succeeds if st(v) 6= nil for every v ∈ V . Otherwise, the
execution of G fails. G is a solution of P if the execution of G succeeds and Sg ⊆ st(vg).
Otherwise, G is not a solution of P .

In (Case b) of Definition 3, in(v) is the set of concrete resources received by node v.
st(v) denotes the set of concrete resources which includes in(v) and the result of the
execution of act(v) in in(v). The situation st(v) = nil indicates that the execution of the
workflow at node v fails. Such situation can occur in different ways: (i) the execution of
one of the predecessor of v failed (Case a); (ii) the execution of act(v) does not result in
proper concrete resources for the continuation of the execution of the workflow (Case
b.2).

Observe that Definition 3 only considers G to be a solution of P if all services
associated to G are executed successfully. This implies that G does not contain any
redundant nodes, producing concrete resources not needed by any of its successors. This
might sound too strong but it is reasonable for two reasons. First, the generation of G—
similar to the generation of a plan—does not usually generate redundant nodes. Second,
the definition could easily be relaxed to accommodate workflows with redundant nodes.

Observe also that Definition 3 assumes that communication between services is
perfect and all services are executed. During the execution of a workflow, failures can
happen when a service becomes unavailable. This could also be classified as a service
failure. The execution monitoring server is responsible for dealing with this type of
failures, as discussed in the next section.

4 Repair

Let P = (T ,A,S0,Sg) be a WSC problem. Assume that G = (V,E,v0,vg) is a work-
flow over P . Furthermore, assume that G is a solution of P under the normal condition
(e.g., communication between services is perfect, no machine failures, etc.), i.e., if the
execution of G is successful then G will be a solution of P . We are interested in situ-
ations where the execution of G is not successful due to the unavailability of a service
attached to some node in G. In such a case, recovery measures are needed in order to
achieve the goal of P . For example, if the execution of G fails at node v, which is asso-
ciated to the service act(v), then a simple repair could consist of replacing act(v) with
another service a ∈ A that takes the concrete resources at v and produces the concrete
resources needed for the continuation of the execution of G. It is easy to see that this
may not be always possible, due to the fact that no such service may exist. We call the
process of identifying a new workflow G′ that is a solution of P , under the condition
that the execution of G fails, as the repair process.

4.1 Formalization

Let P = (T ,A,S0,Sg) be a WSC problem and G = (V,E,v0,vg) be a workflow over
P . Let us assume that st is the state function of G.

On Repairing Web Services Workflows 7

Definition 4. Let G be a workflow over P , we define:

Ast
f ailed = {act(v) | st(v) = nil,st(u) 6= nil for all u such that (u,v) ∈ E}.

We are interested in identifying another workflow G′ which achieves the same goal
and such that G′ reuses as much as possible the services in G that have been successfully
executed. It is easy to see that G′ must not consider the services that are not available.
Intuitively, a service act(v) associated to a node v fails with respect to st if it does not
allow the execution of the workflow to continue.

By Gst we denote the subgraph (Vst ,Est) of (V,E) such that Vst = {v | v ∈V,st(v) 6=
nil} and Est = {(v,u) | (v,u) ∈ E, v,u ∈ Vst}. For each (u,v) ∈ Est , lEst (u,v) = lE(u,v).
Thus, (Vst ,Est) is the graph containing all nodes whose services have been successfully
executed. We explore two approaches for the repair process.

Planning from Failed State The first alternative is to consider a new WSC problem
whose initial state corresponds to the set of available concrete resources in Gst .

Let V st
0 =

⋃
v∈Vst st(v). Intuitively, V0(st) denotes the set of concrete resources that

are available. Let P ′ = (T ,A\Ast
f ailed ,V

st
0 ,Sg). We can achieve the goal of P by iden-

tifying a new workflow G′ = (V ′,E ′,v′0,v
′
g) over P ′. To evaluate how much G′ reuses

the executed services in G, we define the notion of a reusable resource as follows.
Given a node v in a graph G, let us denote with preG(v) the set of all predecessors of v
in G—i.e., u ∈ preG(v) iff there exists a non-empty path in G from u to v.

Definition 5. Let P ′ = (T ,A\Ast
f ailed ,V

st
0 ,Sg) and G′ = (V ′,E ′,v′0,v

′
g) be a workflow

over P ′ that is a solution of P ′. A concrete resource (n, t,d) ∈V st
0 \ st(v0) is said to be

reused by G′ if:

– for every u ∈ preG′(v), (n, t,d) ∈ st(u) and (n, t,d) 6∈ res(act(u), in(u)); and
– (n, t,d) ∈ in(v) and, if (i,o) is the active precondition-effect of act(v) in in(v), then
(n, t,nil) ∈ i.

Intuitively, Definition 5 says that the concrete resource is reused if it is generated by
Gst and is needed in G′. The above definition allows us to define the score of reusable
resources as follows.

Definition 6. Let G′ be a solution of P ′. The amount of reusable resources of G′ is
denoted by reused(G′) = |{(n, t,d) | (n, t,d) ∈V st

0 \ st(v0),(n, t,d) is reused by G′}|.

We say that G′ reuses more than G′′, denoted by G′′≺r G′, if reused(G′)≥ reused(G′′).
It is easy to see that≺r creates a transitive, reflexive, and antisymmetric relation among
solutions of P ′. The identification of the workflow that reuses as much as possible of
G is then equivalent to determining the solutions of P ′ which are maximal elements of
≺r. The Implementation section will discuss how to compute such solutions.

8 Thanh H. Nguyen et al.

Replanning with Successful Services Replanning from the failed state might be use-
ful. However, this will mean that we have to ignore the workflow G completely. In many
situations, it is better to keep G as the original workflow might have components that
have been included as desirable by the user. This idea also appears in the discussion
of designing a workflow when users’ preferences are taken into consideration [7]. For
this reason, we develop an alternative approach to reuse the workflow G. This approach
aims at keeping the services that have been executed successfully in the new workflow.

Let G′ = (V ′,E ′,v′0,v
′
g) be another solution of P . We define a relation 7→ between

G and G′, as the minimal relation satisfying the following properties:

– v0 7→ v′0
– if (x,y) ∈ Est , (x′,y′) ∈ E ′, x 7→ x′ and act(y) = act(y′) then y 7→ y′

We next define the function π : V ′ −→ {0,1} as follows.

π(y′) =

{
1 if ∃y ∈Vst ,y 7→ y′

0 otherwise
(1)

Note that the second case in the definition of π occurs if either y′=v′0 or if there is
no node in Gst which is related to y′. Finally, we define a function: score(G,G′) =
sum{x′∈V ′}π(x′).

Definition 7. A workflow G′ is said to re-use executed services and their relations as
much as possible with current workflow G if score(G,G′) is maximal.

In Fig. 2, the blue arrow lines illustrate the relations 7→ between nodes in G and
possible associated nodes in G′ (e.g., init node in G 7→ init node in G′, service node
a in G 7→ service a in G′, etc.); and Gst (grey area) is the part of G that was executed
successfully.

G
Init

a b c d

e f
b

g

h
Goal

d

Gst

G’

Init

a b c d

e f Goal….

Fig. 2: Relation between G and G′

4.2 Implementation

In order to experiment with the notions of recovery discussed in the previous section,
we obtained the source code from the authors of the code in the Phylotastic project as

On Repairing Web Services Workflows 9

described in [8]. We implement the two notions of recovery on top of their implementa-
tion. The system described in the Phylotastic project has been developed using Answer
Set Programming (ASP) and includes the execution monitoring module that captures
the state of execution of a workflow. The implementation described in this paper will
focus on the repairing phase. For reference, we denote with Π(P) the planning module
in the Phylotastic project and include the basic rules of the system below.

From Ontology to ASP Encoding: The ontology encoding the types, resources, ser-
vices, etc. of the Web Shopping Domain is translated into an ASP program in Π(P).
This task is accomplished using a translation program. For example, a service in the
class pur ol op takes item and credit card as inputs and produces outputs item—
has been purchased (possess(client,item)) and a receipt—will be sent to client
by email (have(receipt,sentByEmail)). Operation buyItem is an instance of this
class which purchases the available item if the provided credit card is valid and
enough balance. The ASP encoding of this operation and its resources is the follow-
ing:

Listing 1.1: ASP encoding for buyItem operation

1 class(purchase_op). class(pur_onl_op).
2 subclass(pur_onl_op,purchase_op).
3 operation(buyItem). type(buyItem,pur_onl_op).
4 class(credit_card). class(receipt).
5 class(payment_method). class(item).
6 subclass(credit_card,payment_method).
7 has input(pur_onl_op,item_1,item).
8 has input(pur_onl_op,card_1,credit_card).
9 has output(pur_onl_op,item_1,item).

10 has output(pur_onl_op,receipt_1,receipt).
11 input spec(buyItem,item,item_1,have(item,available)).
12 input spec(buyItem,credit_card,card_1,
13 have(credit_card,valid)).
14 input spec(buyItem,credit_card,card_1,
15 have(credit_card,enough_balance)).
16 output spec(buyItem,item,item_1,possess(client,item)).
17 output spec(buyItem,receipt,receipt_1,
18 have(receipt,sentByEmail)).

The predicate names are self explanatory.

Web Services Planning Engine: The planning engine of Π(P) is similar to any plan-
ning engine implemented using ASP. It consists of different types of rules, divided into
groups as follows.

– Initial state: The rule translates information given in S0 to indicate that the data is
available at time step 0. For example, credit card(valid,enough balance)

is translated to

10 Thanh H. Nguyen et al.

Listing 1.2: Initial State

1 init(credit_card,have(credit_card,valid)).
2 init(credit_card,have(credit_card,enough_balance)).
3 exists(X,F,0) :- init(X,F).

– Planning: In this listing, T denotes a step in the workflow; DI /DO the input and
output type of a service, respectively; and occ(A,T) says that A occurs at step T .
Lines 1–2 enforce the precondition of a service. Lines 3–6 define g m which indi-
cates that an input I (type DI) of A is provided by an output O (type DO) at time
T1 ≤ T . Line 7 defines match/4, which says that the input I of A is available at
step T . Lines 8–10 generate action occurrences and make sure only actions whose
preconditions are satisfied can be executed. Lines 11–15 define map/8 which maps
between outputs produced at one step to inputs at later steps.

Listing 1.3: Planning Engine

1 {executable(A,T)} :- operation(A).
2 :- executable(A,T), input spec(A,I,N,D),not match(A,I,D,T).
3 p_m(A,I,DI,T,O,DO,T1):- operation(A),T1≤T,
4 input spec(A,I,NI,DI), exists(O,DO,T1),
5 subclass(O,I), subclass(DO,DI).
6 1{g_m(A,I,DI,T,O,DO,T1):p_m(A,I,DI,T,O,DO,T1)}1 :- step(T1).
7 match(A,I,DI,T) :- g_m(A,I,DI,T,_,_,_).
8 1{occ(A,T) : operation(A)}1.
9 :- occ(A,T), not executable(A,T).

10 exists(O,DO,T+1) :- occ(A,T), output spec(A,O,NO,DO).
11 map(A,I,DI,T,B,O,DO,T1):- occ(A,T),T>=T1,
12 occ(B,T1-1),g_m(A,I,DI,T,O,DO,T1),
13 input spec(A,I,NI,DI), output spec(B,O,NO,DO).
14 map(A,I,DI,T,initG,O,DO,0):- occ(A,T),
15 g_m(A,I,DI,T,O,DO,0), input spec(A,I,NI,DI).

The program Π(P) will also contain a generic rule of the form “:- not goal(n)”
where goal(n) indicates that the goal is satisfied at step n. For a constant n, Π(P,n)
denotes the program Π(P) with steps taken values in {1, . . . ,n}with the goal checking
rule at n. Answer sets of Π(P,n) represent workflows solving P . The current execu-
tion and monitoring system of the Phylotastic project is responsible for the execution
of workflows generated by Π(P,n). It stops whenever a failure occurs. Π(P,n) is
enhanced as follows.

Repairing Method 1: Planning from Failed State We encode the available resources
at the failed state by ASP atoms of the form res gen/4. We alter the execution and
monitoring system to record this information. To plan from the failed state, we only
need to add the available resources to the initial state, remove the failed services by
encoding them as f ailed(op,) to prevent Π to consider these services in the planning
phase. Let F(P) denote the set of facts of the form res gen/4 or f ailed/2 that is
supplied by the execution monitoring system when a failure occurs.

On Repairing Web Services Workflows 11

To compute the amount of reused resources, we add the rules1 in Listing 1.4 to
Π(P). In Listing 1.4, the first rule (Lines 1–2) records the successful execution of
operation X at step T and defines res prod, the resource R named N has been produced
by an operation X at step T . The lines 3–5 define the predicate res reuse, which says
that the resource R named N of the type DR and data DataR is reused. Line 6 counts
the number of reused resources. Line 7 enables the identification of answer sets with
maximal number of reused resources and Line 8 prevents reuse of failed services.

Listing 1.4: Planning From Failed State (Πpff)

1 res_prod(R,N,DR):- res_gen(R,N,DR,DataR),
2 output spec(X,R,N,DR), occ(X,T).
3 res_reuse(R,N,DR,DataR) :- occ(X,T),
4 res_gen(R,N,DR,DataR), not res_prod(R,N,DR),
5 map(X,I,DI,T,initG,R,DR,0).
6 reused(V) :- V = #count{R,N,DR,DataR : res_reuse(R,N,DR,DataR)}.
7 #maximize{V : reused(V)}.
8 :- failed(F,T), is_used_op(F).

Let Π
f

1 (n) = Π(P,n)∪Πpff∪F(P). We can show the following:

Proposition 1. If A is an answer set of Π
f

1 (n) then A encodes a workflow solution of
P that does not include any failed service and reuses the maximal number of resources
specified in F(P).

Proof. the fact that A satisfies Π(P,n) indicates that A encodes a workflow solution of
P . The rules on Lines 6-8 (Listing 1.4) ensure the other properties of the solution. �

Repairing Method 2: Replanning with Successful Services Let Gst be the workflow
whose execution fails. We assume that Gst and the services that have been executed
successfully are encoded by a program F(Gst), which consists of facts of the form
old occ exe/2 or old map exe(S, I,DI ,T1,S0,O,DO,T0). We add to Π(P,n) a new set
of rules Πrss (Listing 1.5) and F(Gst) and generate new solution G′ for P such that
score(Gst ,G′) is maximal. In addition, F(Gst) also records failed services.

The program Πrss (Listing 1.5) implements the function 7→. The first rule (Line
1) says that we will map the initial state of Gst to the initial state of G′. Other rules
defined ϕ (Lines 2–6, 7–11) extend the 7→ relation whenever possible. In these rules,
s equal(Y,Y’) represents the fact that two services Y and Y ′ are equivalent in terms of
functionality. The rules defining π (Lines 12–14) compute the value of π as defined in
Eq. 1. Πrss computes the number of reused services, instructs the solver to find answer
sets containing the maximal number of reused services (Lines 15–16), and makes sure
that the generated workflow G′ does not include failed services (Line 17–18).

Listing 1.5: Replanning with Successful Services (Πrss)

1 ϕ(initG,0,initG’,0).
2 ϕ(Y,T1,Y’,T3) :- ϕ(initG,0,initG’,0),

1 The rules have been simplified somewhat for readability.

12 Thanh H. Nguyen et al.

Initial
State

Goal
State

M-1: Failure service is checkout(cart_shop_A)

buyItem(laptop
,shop_A)

Gst
shop_A (open,online)
shop_B (open,online)
credit_card (valid,
enough_balance)
….
laptop(available,in_list(lst_
electrical_devices,
shop_A))
desk(available,in_list(lst_fu
rnitures, shop_A))
cart_shop_B (not_empty)
ai_book (on_cart(shop_B))
time_magazine
(on_cart(shop_B))
….

laptop (available,
(in_list(lst_electrical_devices,

shop_A))

buyItem(desk,
shop_A)

desk (available,
(in_list(lst_furnitures

,shop_A))

credit_card
(valid,enough_

balance)

checkout(cart_
shop_B)ai_book

(on_cart(shop_B))

cart_shop_B
(not_empty)

laptop
(possess(client,laptop))

desk
(possess(client,

desk))

ai_book
(possess(client,ai_book))
time_magazine(possess(
client,time_magazine))

cart_shop_B(paid,empty)
time_magazine

(on_cart(shop_B))

Fig. 3: Recovery workflow (Web Shopping Domain): Replanning from Failed State

3 old_occ_exe(Y,T1), occ(Y’,T3),
4 old_map_exe(Y,I,DFI,T1,initG,O,DFO,0),
5 map(Y’,I,DFI,T3,initG’,O,DFO,0),
6 s_equal(Y,Y’).
7 ϕ(Y,T1,Y’,T3) :- ϕ(X,T2,X’,T4),
8 old_occ_exe(Y,T1), occ(Y’,T3),
9 old_map_exe(Y,I,DFI,T1,X,O,DFO,T2+1),

10 map(Y’,I,DFI,T3,X’,O,DFO,T4+1),
11 T1>=T2+1,T3>=T4+1,s_equal(Y,Y’).
12 π(initG’,0).
13 π(Y’,0) :- occ(Y’,T3), not ϕ(_,_,Y’,T3).
14 π(Y’,1) :- occ(Y’,T3), ϕ(_,_,Y’,T3).
15 score(Vϕ) :- Vϕ = #sum{VY ′,Y’ : π(Y’, VY ′)}.
16 #maximize{Vϕ : score(Vϕ)}.
17 :- failed(F,TF), occ(F,T), not succ(F,T).
18 succ(F,T) :- failed(F,TF), occ(Y,T), Y = F, ϕ(F,_,Y,T).

Proposition 2. If A is an answer set of Π
f

2 (n) = Π(P,n)∪Πrss ∪F(Gst) then A en-
codes a workflow solution of P that does not include any failed service and reuses the
maximal number of services specified in F(Gst).

Proof. Similar to Prop. 1. �

4.3 Experimental Evaluation

Web Shopping Domain We experimented the approaches with the problem described
in the second section 2. A failure of service (checkout(cart shop A)) is injected

2 We used a computer running Ubuntu 16.4 LTS, 8GB DDR3, 2.5GHz Intel-Core i5, and ASP
solver clingo.

On Repairing Web Services Workflows 13

M-2: Failure service is checkout(cart_shop_A)

Initial
State

Goal
State

checkAvailability([lap
top, desk], shop_A)

shop_A
(open,online)

buyItem(laptop,
shop_A)

laptop (available,
(in_list(lst_electrical
_devices,shop_A))

checkout(cart_shop
_B)

ai_book
(possess(client,ai_book))
time_magazine(possess(
client,time_magazine))

cart_shop_B(paid,empty)

credit_card (valid,
enough_balance)

checkAvailability([ai_
book,time_magazine],

shop_B)

shop_B
(open,online)

buyItem(desk,
shop_A)desk (available,

(in_list(lst_furnitures,
shop_A))

addToCart(ai_book
, cart_shop_B)ai_book (available,

in_list(lst_books,
shop_B))

time_magazine
(available,

in_list(lst_magazine
s,shop_B))

addToCart(time_ma
gazine, cart_shop_B)

ai_book
(on_cart(shop_B))cart_shop_B

(not_empty)

time_magazine
(on_cart(shop_B))

laptop
(possess(client,latop))

desk
(possess(client,

desk))

Fig. 4: Recovery workflow (Web Shopping): Replanning with Successful Services

during the execution of the workflow generated in Fig. 1. Fig. 3 shows a new workflow
generated by Π

f
1 (3) that uses the planning from the failed state method (0.5 second).

Fig. 4 shows a new workflow generated by Π
f

2 (7) that uses the replanning with suc-
cessful services method (2 seconds). Observe that the repaired workflow on the left,
generated by Π

f
1 (3), utilizes the available resources and is simpler comparing to the

original one. On the other hand, the workflow on the right, generated by Π
f

2 (7), con-
tains new services that replace the failed service and is able to reuse the majority of the
executed services.

In Fig. 3, the new initial state includes all concrete resources which have been
produced successfully before failure point when executing the original workflow. For
example, ai book(on cart(shop B)) is the concrete resource produced by ser-
vice addToCard when executing the original workflow. Program Π

f
1 (3) generated a

new workflow from new initial state to original goal state and reused concrete resource
ai book(on cart(shop B)). In Fig. 4, the gray background eclipse nodes and
their links simulate whole or a part of executed structure Gst while repairing services
are represented by blue text nodes.

Phylotastic Domain We did further experimental evaluation to evaluate the two repair-
ing methods with problems in the Phylotastic domain as well. The detail information
about Phylotastic domain is described in [8]. Basically, the Phylotastic Ontology is
a services repository that deals with the manipulation of services (e.g., names, species,
phyloreferences) and representations of evolutionary knowledge (e.g., taxonomies, phy-
logenies). There are some primary classes of services such as names operation,
tree operation, taxon operation, etc. The results of repairing in Phylotastic do-
main are discussed below.

14 Thanh H. Nguyen et al.

Initial
State

Goal
State

FindSciNames_
Text_GNRD_V1

FreeText
(plain_text) convert_names

_GNRD_LT_3

SciNames
(GNRD)

convert_name
s_LT_3_5

SciNames
(LT_3)

convert_names
_LT_5_OT

SciNames
(LT_5)

Resolve_Nam
es_OT_V2

SciNames
(OT)

Get_PhyloTree_
OT_V2

SetofTaxon
(OT)

convert_tree_
to_newick

SpeciesTree
(OT)

Get_Metadata_Ch
ronogram_DL_V2

SpeciesTree
(Newick)

Get_Chronogram_
ScaledTree_DL_V2

SpeciesTree
(Newick)

Metadata_Tree
(set_of_strings)

Chronogram
(Newick)

phylo_method
(string)

Fig. 5: Generating a Chronogram and its Metadata from Free Plain Text

– Use case 1: From Free Plain Text to a Chronogram and its Metadata. We ex-
perimented with a WSC problem in the Phylotastic domain, aimed at creating a
chronogram, a scaled species phylogeny with branch lengths, in newick for-
mat, along with its metadata, from a plain text document. The initial state sup-
plies a FreeText (more precisely, an object of the type FreeText) to the service
FindSciNames Text GRND V1 (type of names extraction text) and a string
(phylo method) to the service Get Chronogram ScaledTree DL V2 (type of
tree transformation), which also needs a speciesTree in newick format
to produce the chronogram, etc. A workflow solving for this problem is given in
Fig. 5. In this experiment, we consider two scenarios: (S1) The service convert
tree to newick fails; and (S2) the service Get Chronogram ScaledTree DL

V2 fails. The workflows generated using the two methods are depicted in Fig. 6.
The two workflows on the left are generated from the failed state. Available re-
sources are listed in the gray box. The reused resources are highlighted in Blue.
In both scenarios, the new workflow differs significant from the original one (e.g.,
new services are used). The two workflows on the right are generated by replanning
using successful services. The new services that need to be inserted are highlighted
in Blue. As it can be seen, almost a half of all executed services are reused in (S1)
and only a few are added in (S2).

Initial
State

Goal
State

Get_Metadata_
Chronogram_DL

_V2

Generate_Chro
nogram_TB_V1

Metadata_Tree
(set_of_strings)

Chronogram
(Newick)phylo_method

(string)

S2: Failure service is Get_Chronogram_ScaledTree_DL_V2

convert_tree_to
_phyloXML

SpeciesTree
(PhyloXML)

prepare_Method
_as_List methods

(list_of_strings)

Gst
FreeText (plain text)
phylo_method
(string)
….
SpeciesTree (OT)
SpeciesTree
(Newick)
….

SpeciesTree
(OT)

SpeciesTree
(Newick)

Initial
State

Goal
State

S1: Failure service is convert_tree_to_newick

convert_names_
LT_5_to_GNR

SciNames
(GNR)

Gst
FreeText (plain
text)
phylo_method
(string)
….

SciNames
(GNRD)
SciNames (LT_3)
SciNames (LT_5)
….

SciNames
(LT_5)

convert_taxa_GN
R_PhyloT

SetOfTaxon
(GNR)

Get_PhyloTree
_PhyloT_V1

SetOfTaxon
(PhyloT)

Get_Metadata_
Chronogram_DL

_V2

Get_Chronogram
_ScaledTree_DL_

V2

SpeciesTree
(Newick)

SpeciesTree
(Newick)

phylo_method
(string)

Metadata
(set_of_strings)

Chronogram
(Newick)

Initial
State

Goal
State

FindSciNames_
Text_GNRD_V1

FreeText
(plain_text)

convert_name
s_GNRD_LT_3

SciNames
(GNRD)

convert_name
s_LT_3_5

SciNames
(LT_3)

convert_name
s_LT_5_GNR

SciNames
(LT_5)SciNames

(GNR)

SetOfTaxon
(GNR)

SetOfTaxon
(PhyloT)

Get_Metadata
Chronogram

DL_V2

SpeciesTree
(Newick)

Get_Chronogram
_ScaledTree_DL_

V2

SpeciesTree
(Newick)

Metadata_Tree
(set_of_strings)

Chronogram
(Newick)

phylo_method
(string)

S1: Failure service is convert_tree_to_newick

Initial
State

Goal
StateFindSciNames_

Text_GNRD_V1

FreeText
(plain_text) convert_name

s_GNRD_LT_3

SciNames
(GNRD)

convert_name
s_LT_3_5

SciNames
(LT_3)

convert_nam
es_LT_5_OT

SciNames
(LT_5)

Resolve_Names
_OT_V2

SciNames
(OT)

Get_PhyloTre
e_OT_V2

SetofTaxon
(OT)

convert_tree
_to_newick

SpeciesTree
(OT)

Get_Metadata
Chronogram

DL_V2

SpeciesTree
(Newick)

Generate_Chro
nogram_TB_V1

Metadata_Tree
(set_of_strings)

Chronogram
(Newick)phylo_method

(string)

S2: Fails Get_Chronogram_ScaledTree_DL_V2
convert_tree_to

_phyloXML
SpeciesTree

(OT)
SpeciesTree
(PhyloXML)

methods
(list_of_strings)

Resolve_Name
s_GNR_V2

Resolve_Name
s_GNR_V2

convert_taxa_
GNR_PhyloT

Get_PhyloTree
_PhyloT_V1

prepare_Method
_as_List

Fig. 6: Repaired workflows: Phylotastic Generating a Chronogram and its Metadata

On Repairing Web Services Workflows 15

Initial
State Goal

State

FindSciNames_
DocPDF_GNR

document
(PDF)

convert_names_
GNR_OT

Resolve_Names_
OT_V2 (1)

SciNames
(OT)

Get_PhyloTree
_OT_V2

SetofTaxon
(OT)

convert_tree_
to_newick (1)

SpeciesTree
(OT)

CompareTrees_Sym
_Dendropy_V1

SpeciesTree
(Newick) AreSameTree

(Boolean)

FindSciNames
_Web_OT_V3

WebURL
(http format)

SciNames
(GNR)

convert_tree_
to_newick (2)

SpeciesTree
(Newick)

Resolve_Names_
OT_V2 (2)

Generate_Phyl
oTree_FC_SP SpeciesTree

(phyloFC)
SciNames

(OT) SetOfTaxon
(OT)

Fig. 7: Compare Species Trees from Different Sources

– Use case 2: Compare Species Trees from Different Sources. In this use case, an
user provides inputs data including a document (PDF format), and a Web address
(http URL format). Each document contains information about a phylogeny tree.
The requirement is to examine whether or not the two phylogeny trees generated
from these inputs sources (document and Web-page content) have the same phy-
logeny structure (Fig. 7). There are two concrete services that are used more than
one time in the workflow: Resolve Names OT V2 and convert tree to newick.
They are drawn with a number next to it (1 and 2) in Fig. 7 and 8 in order to identify
which service will be executed before another in the execution ordering3. For ex-
ample, Resolve Names OT V2(1) and Resolve Names OT V2(2) describe the
same service and Resolve Names OT V2(1) is executed before Resolve Names

OT V2(2). Again, we inject two different service failures in two scenarios: (S1)
The failure is at the very end of the process (CompareTrees Sym Dendropy V1);
and (S2) The failure is at convert tree to newick(2) (meaning that the first
execution of the service convert tree to newick succeed while the second ex-
ecution fails). Fig 8 depicts the four recovery workflows for use case 2. The left two
are workflows generated from the failed state while the right ones are generated by
replanning with using successful services.

Initial
State

Goal
State

FindSciNames_
DocPDF_GNR

docume
nt (PDF)

convert_names
_GNR_OT

SciNames
(OT)

Get_PhyloTre
e_OT_V2

SetofTaxon
(OT)

convert_tree_t
o_newick (1)

SpeciesTree
(OT)

CompareTrees_BL
_Dendropy_V1SpeciesTree

(Newick)

AreSameTree
(Boolean)

WebURL
(http format)

SciNames
(GNR)

convert_tree_t
o_newick (2)

SpeciesTree
(Newick)Generate_Phylo

Tree_FC_SP

SpeciesTree
(phyloFC)

SciNames
(OT)

SetOfTaxon
(OT)

Initial
State Goal

State

FindSciNames_
DocPDF_GNR

docume
nt (PDF)

convert_name
s_GNR_OT

Resolve_Name
s_OT_V2

SciNames
(OT)

Get_PhyloTree
_OT_V2

SetofTaxon
(OT)

convert_tree_t
o_newick (1)

SpeciesTree (OT) CompareTrees_
Sym_Dendropy_

V1

SpeciesTree
(Newick)

AreSameTree
(Boolean)

FindSciNames
_Web_OT_V3

WebURL
(http

format)

SciNames
(GNR)

SpeciesTree
(Newick)

Resolve_Names
_GNR_V2

convert_taxa_
GNR_PhyloT SetOfTaxon

(PhyloT)

SciNames
(OT)

SetOfTaxo
n (GNR)

S1: Failure service is CompareTrees_Sym_Dendropy_V1

S2: Failure service is convert_tree_to_newick (2)

convert_names
_OT_GNR

SciNames
(GNR)

SpeciesTree
(2) (Newick)

SpeciesTree
(1) (Newick)

SpeciesTree
(Newick)

SciNames
(OT)

Initial
State

Goal
State

CompareTrees_BL
_Dendropy_V1

AreSameTree
(Boolean)

S1: Failure service is CompareTrees_Sym_Dendropy_V1

Gst
document (PDF)
WebURL (http)
SciNames (GNR)
SciNames (OT)
SetOfTaxon (OT)
….
SpeciesTree (1) (Newick)
SpeciesTree (2) (Newick)

Initial
State

Goal
State

CompareTrees_Sy
m_Dendropy_V1

AreSameTree
(Boolean)

Get_PhyloTree
_PhyloT_V1

SpeciesTree
(Newick)

Resolve_Name
s_GNR_V2

convert_taxa_GNR
_PhyloT

SetOfTaxon
(PhyloT)

SetOfTaxon
(GNR)

S2: Failure service is convert_tree_to_newick (2)

convert_name
s_OT_GNR

SciNames
(GNR)

Gst
document (PDF)
WebURL (http)
….
SciNames (OT)
SetOfTaxon (OT)
SpeciesTree(New
ick) Get_PhyloTree

_PhyloT_V1

Resolve_Name
s_OT_V2 (1)

Resolve_Name
s_OT_V2 (2)

FindSciNames_
Web_OT_V3

Fig. 8: Repaired workflows: Phylotastic Compare Species Trees from Different Sources

3 The ordering is done so we can experiment with the failure of the services. It is also possible
for the order to be reverse.

16 Thanh H. Nguyen et al.

Comparison Between Two Methods. We close this section with a brief discussion on
the advantages and disadvantages of the two methods for repairing failed workflows.
Clearly, both aim at reusing as much as possible the results obtained from the incom-
plete execution of the workflow but with a slight different focus. Method 2 (Replanning
with Successful Services) attempts to take advantage of the information in the original
workflow and Method 1 (Planning from Failed State) ignores this information. This
leads to the following main differences:

– Planning from Failed State. In this method, the replanning process often starts
from a state that is richer in resources than the initial state of the original problem.
This is due to the fact that the execution of a service does not remove the outputs
of services that have been successfully executed earlier. Given that the original
workflow is minimal under certain metric (e.g., shortest plan) then the new initial
state is closer to the goal than the original one. Therefore, Method 1 could be faster
than Method 2—it can be observed in the experiment.

– Replanning with Successful Services. The replanning in this method is more com-
plex than Method 1. It involves the generation of a new workflow (G′) and then a
subgraph isomorphism between the new workflow and the partial executed work-
flow (G′ and Gst). In our implementation, this is done in a single ASP program.
This is the added overhead and is the main reason for Method 2 to take longer to
find a new plan as in the experiments. On the other hand, as suggested in [7], main-
taining the skeleton of the original workflow is a desirable feature of the replanning
process.

5 Conclusion, Discussion, and Future Work

We formally defined the notion of a WSC problem that enables the introduction of
two methods for repairing a workflow whose execution fails when a services fails. The
most interesting feature of the two new methods lies in the precise definition of the
rather relative statement of reusing as much as possible what has been executed. In one
method, the focus is on the available resources that have been produced by the executed
services and a new workflow is generated from the failed state. In another method, the
focus is on reusing the original workflow in generating the new one. We experimentally
evaluate the proposed methods in the shopping domain by integrating them into an
existing WSC framework. (Available online at: http://workflow.phylotastic.org)

We note that the WSC problem defined in this paper inherits several characteristics
of a WSC problem defined in the literature (e.g., as in [6]), which views the WSC
problem as a planning problem and its solution is generally a graph (a workflow) and
not a sequential plan. On the other hand, due to fact that web services need resources
to start their execution but do not usually remove them, the replanning problem with
respect to a WSC problem is different from replanning in general. Our first method
of replanning relies on this property of WSC problems. Last but not least, we are not
aware of any comparable WSC system that we could use in our experiments. The several
WSC systems reviewed in the introduction are no longer functional or inaccessible. Our
intermediate goal is to identify potential applications that could benefit by the proposed
methods and allows us to experiment and validate the scalability of the proposed system.

On Repairing Web Services Workflows 17

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantics web. Scientific American 284(5),
34–43 (2001)

2. Chan, K.S.M., Bishop, J., Steyn, J., Baresi, L., Guinea, S.: A fault taxonomy for web service
composition. In: ICSOC Workshops (2007)

3. Chen, H.P., Zhang, C.: A queueing-theory-based fault detection mechanism for soa-based
applications. The 9th IEEE International Conference on E-Commerce Technology and The
4th IEEE International Conference on Enterprise Computing, E-Commerce and E-Services
(CEC-EEE 2007) pp. 157–166 (2007)

4. Erradi, A., Maheshwari, P., Tosic, V.: Recovery policies for enhancing web services reliabil-
ity. 2006 IEEE International Conference on Web Services (ICWS’06) pp. 189–196 (2006)

5. Mansour, H.E., Dillon, T.S.: Dependability and rollback recovery for composite web ser-
vices. IEEE Transactions on Services Computing 4, 328–339 (2011)

6. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems (Special
Issue on the Semantic Web) 16(2), 46–53 (March/April 2001)

7. Nguyen, T., Pontelli, E., Son, T.: Phylotastic: An Experiment in Creating, Manipulating, and
Evolving Phylogenetic Biology Workflows Using Logic Programming. Theory and Practice
of Logic Programming 18(3-4), 656–672 (2018)

8. Nguyen, T.H., Son, T.C., Pontelli, E.: Automatic web services composition for phylotastic.
In: Practical Aspects of Declarative Languages - 20th International Symposium, PADL 2018,
Los Angeles, CA, USA, January 8-9, 2018, Proceedings. pp. 186–202 (2018), https://
doi.org/10.1007/978-3-319-73305-0_13

9. Nwana, H.: Software Agents: an Overview. Knowledge Engineering Review 11(3) (1996)
10. Peer, J.: A pop-based replanning agent for automatic web service composition. In: ESWC

(2005)
11. Saboohi, H., Amini, A., Abolhassani, H.: Failure recovery of composite semantic web ser-

vices using subgraph replacement. 2008 International Conference on Computer and Com-
munication Engineering pp. 489–493 (2008)

12. Vaculı́n, R., Wiesner, K., Sycara, K.P.: Exception handling and recovery of semantic web
services. Fourth International Conference on Networking and Services (icns 2008) pp. 217–
222 (2008)

13. Vargas-Santiago, M., Hernández, S.E.P., Rosales, L.A.M., Kacem, H.H.: Survey on web ser-
vices fault tolerance approaches based on checkpointing mechanisms. JSW 12, 507–525
(2017)

14. Yin, J., Chen, H., Deng, S., Wu, Z., Pu, C.: A dependable esb framework for service integra-
tion. IEEE Internet Computing 13, 26–34 (2009)

15. Yin, K., Zhou, B., Zhang, S., Xu, B., Chen, Y.: Qos-aware services replacement of web ser-
vice composition. 2009 International Conference on Information Technology and Computer
Science 2, 271–274 (2009)

16. Zhao, W.: Design and implementation of a byzantine fault tolerance framework for web
services. Journal of Systems and Software 82, 1004–1015 (2009)

https://doi.org/10.1007/978-3-319-73305-0_13
https://doi.org/10.1007/978-3-319-73305-0_13

	On Repairing Web Services Workflows

