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ARTICLE INFO ABSTRACT

The steady growth of online materials databases, coupled with efforts in materials informatics, has invited the
reexamination of existing empirical models through the lens of modern machine learning techniques. Inspired by
recent efforts to improve on the Goldschmidt tolerance factor for perovskite formation, we apply the symbolic
regression to the problem of predicting octahedral tilting. In addition to its impact on the crystal structure,
octahedral tilting is related to functional properties, including dielectric permittivity, ferroelectricity, magnetic
properties, and metal-insulator transitions. By relating a selection of physical parameters (e.g., atomic radii,
electronegativity) with mathematical operations (e.g., addition, exponentiation), we identify an analytical
equation that correctly predicts the octahedral tilting classification for 49 perovskite oxides in a dataset of 60
materials. Using the same training dataset, we additionally fit and compare seven models generated by other
common machine learning methods. Despite the increased complexity afforded by support vector machines,
decision trees/random forests, and artificial neural networks, we find that our equation outperforms the other
models as well as the original tolerance factor in predicting octahedral tilting.
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1. Introduction

The use of machine learning in the accelerated and cost-efficient
discovery of materials has been driven by the Materials Genome
Initiative and the availability of extensive materials databases such as
AFLOW, Materials Project, and OQMD [1-4]. Machine learning has
been applied to materials discovery and characterization, including
applications from empirical potential development to the prediction of
observable properties like bandgap and superconducting critical tem-
perature [5-15]. Arising from the emergence of such machine learning
methods is the opportunity to revisit past explorations in materials
science for the prospect of overlooked discoveries or trends (Fig. 1).

One recent noteworthy implementation of machine learning in
materials science that can enable this line of research is the symbolic
regression SISSO (Sure Independence Screening and Sparsifying
Operator) framework, which generates analytical expressions for re-
gression and classification using a relatively small number of physical
quantities [16,17]. Using a compressed-sensing approach, SISSO selects
the optimum descriptor from the massive space of analytical expres-
sions. SISSO’s versatility has been demonstrated in several applications,
from Anderson et al. employing SISSO to find predictions for adsorption
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energy for catalytic materials [18] to Bartel et al. using SISSO to
identity a descriptor to predict Gibbs energy for inorganic compounds
[19], and Mera Acosta et al. using SISSO to predict quantum spin Hall
insulators while providing insights into the mechanisms engendering
topological transitions [20]. In one notable example of SISSO’s com-
putational prowess, Bartel et al. used SISSO to predict a new tolerance
factor for perovskite oxides and halides [21].

Originating in 1926, the Goldschmidt tolerance factor has been
widely used for structural analysis of the perovskite crystal structure
(ABX3) [22]. The perovskite crystal structure consists of A-site cations
in twelve-fold coordination with corner-sharing BXs octahedra. Gold-
schmidt developed the tolerance factor for the stability of the per-
ovskite structure from the tolerance factor of a hard-sphere model of
the cubic perovskite structure:

- ln+x
ﬁVB‘FVX, (1)

where r,, g, rx are the ionic radii of the A, B, and X site, re-
spectively. The Goldschmidt parameter is t = 1 for the ideal perovskite
structure. The motivation for understanding the stability of compounds
in the perovskite structures stems from their importance in applications
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Fig. 1. Reaney et al. graph of tolerance factor (t) versus the temperature coefficient of the dielectric permittivity (t.) at room temperature [29]. The line drawn
through the points is a guide to the eye and shows a relative relationship between 7z, and Goldschmidt’s tolerance factor, t. Based on this work, the concept of applying
Goldschmidt’s tolerance factor spurred our investigation of a specific descriptor to predict octahedral tilting. The following is a key for the shorthand of perovskites
and references are extensive in Reaney et al. original work: Ba,Sr; x(Zn;,3Nbs,3)03 (BSZN), Ba,Sri (Mg;,3Tas,3)03 (BxSMT), Ba,Sr; x(In; oNb; 5)03 (B,SIN), Ba
(Nd; /»Ta;,2)03 (BNT), Ba(Gd, ,»Ta;,»)03 (BGT), Ba(Y;,»Ta;,2)03 (BYT), Ba(Ca;3Ta,,3)03 (BCaT), Sr(Ca;,3Ta,,3)03 (SCaT), Ba(Co,3Tas,3)03 (BCOT), Sr(Coy, 3Tay,
3)03 (SCoT), Sr(Zn, 3Tay,3)03 (SZT), Sr(Ni,; ,3Tas,3)03 (SNIiT), Ba(Ni; 3Ta,,3)03 (BNiT), Ba(Mn; 3Ta,,3)03 (BMnT), Ba(Mn; ,3Nb,,3)03 (BMnN), Ba(Mg; ,3Nb,,3)03
(BMN), Sr(Mg;,3Nb2,3)03 (SMN), Ba(Zn; 3Ta,,3)03 (BZT), Ba(Ni; 5Nby,3)03 (BNiN), Sr(Ni;,3Nb,,3)03 (SNiN), Ba(Co;,3Nb,,3)03 (BCoN).

such as ferroelectrics [23], high-temperature superconductors [24],
ferromagnets [25], spin filters [26], and electrocatalysis [27]. Although
the Goldschmidt tolerance factor has been applied to perovskite ana-
lysis, ranging from Suarez et al. correlating tolerance factor increase to
a decrease in paraelectric-to-ferroelectric phase transition temperature
[28] to Reaney et al. demonstrating the relationship between tolerance
factor and the temperature coefficient of dielectric permittivity and
octahedral tilting [29], its limitations have prompted the explorations
for a more accurate model of perovskite stability and structure [30].
Expanding on Goldschmidt’s tolerance factor, Bartel et al. applied
the SISSO method to a database composed of 576 ABX3 perovskite and
non-perovskite materials to develop a new tolerance factor:
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where the additional parameter n, is the oxidation state of the A-cation.
Bartel’s tolerance factor distinguished between perovskites and non-
perovskites with an accuracy of 92%, compared to only 74% accuracy
for the Goldschmidt tolerance factor, with significant improvements for
chlorides (90% to 51%), bromides (93% to 56%), and iodides (91% to
33%) [21]. This discovery of a more accurate tolerance factor for as-
sessing the stability of the perovskite structure in a plethora of com-
pounds warrants an exploration of previous trends determined by
Goldschmidt’s tolerance factor for other perovskite properties.

One notable trend determined by Reaney et al. is the correlation of
octahedral tilting with Goldschmidt’s tolerance factor [29]. Octahedral
tilting involves the rotation of the BX octahedra about its three prin-
cipal axes, resulting in different perovskite structures with lower overall
symmetry compared to the conventional structure [31]. Glazer en-
umerated 23 unique tilt systems describing each unit cell length and the
directions of octahedral tilting. A later group-theoretical analysis by
Howard et al. suggested only 15 possible tilt structures [32]. In Glazer’s
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notation, the letters a, b, and ¢ represent unique principle axes lengths
with superscripts denoting either a tilt in-phase along the axis (+),
antiphase with the axis (-), or untilted (0). Octahedral tilting affects the
unit-cell length, angles, and X-ray reflections. Octahedral tilting de-
termines the space-group symmetry of perovskites [33]. Tilting also
influences various characteristics of the material, including the tem-
perature coefficient of the relative permittivity, 7., important for the
development of microwave dielectric materials [29,34,35], the ferroe-
lectricity in perovskite heterostructures [36], the magnetic properties,
and metal-insulator transitions [37].

Due to the vital role that octahedral tilting plays in determining
perovskite structure and characteristics, it is pertinent to have a pre-
dictor for the onset of octahedral tilting in perovskite development. The
difficulty of experiments that characterize perovskite tilt structures, and
therefore correlate tilting with properties, results from the difficulty in
identifying X-ray diffraction peaks, which are sometimes exceedingly
small and difficult to classify correctly [31]. It is therefore widely un-
derstood that, in order to accurately detect and classify tilting experi-
mentally, transmission electron microscopy is almost always necessary.

Based on the work by Reaney et al., Goldschmidt’s tolerance factor
has been used to predict the onset of tilting in perovskites [29,38]. In
addition to predicting tilt structures through Goldschmidt’s tolerance
factor, Lufaso and Woodward developed the Structure Prediction Di-
agnostic Software (SPuDS) based on the bond valence sum concept [39]
and incrementally adjusting the tilt angle to minimize the global in-
stability index (GII) [40] to predict the relative stability among the
various perovskite structures and 10 tilt systems [41]. SPuDS calculates
the bond valence s;; between each cation-anion interaction using:

sij = exp((Ro — Ryj)/B)

I/zt(calc) = z Sij
J

(3.1

(3.2)
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di = Vi(ox) - Vi(calc) (3.3)

where both B and R, are empirically determined parameters, and R;; is
the distance between the cation and anion. B can be considered a
universal constant with a value of 0.37, and R, depends on the ions
forming the bond. The discrepancy factor d; is the difference between
the formal valence Vj,y and the sum Vjea) of the atomic valences
around the A, B, and X-site, which should be minimized to lessen the
strain on the compound [42]. The GII measures the overall structural
stability through:

N 2
. d;
GII = \/@ ,
N (C)]

where N is the number at atoms in the asymmetric unit cell, and d; is
the discrepancy factor mentioned above. Through incremental changes
in the tilt angle, SPuDS provides each tilt structure with its associated
GIL. In tilt systems where the distance between A and X is not solely
determined by tilt angle, SPuDS adjusts the tilt angle to first minimize
the GII with the A-site ions in their highest symmetry positions. Each A
and X bond valence is considered a vector parallel to the bond and
magnitude equal to the valence. All 12 A and X vector bonds are then
summed with the A-site iteratively changed to minimize the magnitude
of the resultant vector, and then, based on the new A-site position, the
tilt angle is iteratively changed to minimize the GII. This process of
adjusting the A-site position and tilt angle is continued until both the
resultant A-site vector sum and GII are minimized. SPuDS has been used
to provide initial structural data [43], calculate tolerance factors with
its bond valence parameters [44], and create structural models that
take into account tilting [45].

In this work, we use SISSO to search for a new descriptor to predict
octahedral tilting in perovskites. We identify multiple equations that
improve on the Goldschmidt tolerance factor and SPuDS in classifying
octahedral tilting, with functional forms that rely primarily on atomic
radii and suggest a geometric basis for tilting.

2. Data collection

The general steps to employ SISSO in material sciences are: a) to
determine a single target factor to be predicted by SISSO; b) acquire a
dataset that includes numerous properties that relate to the target
factor; ¢) implement SISSO in determining the most accurate equation
describing said target factor from a training set of data; and d) analyze
the newfound descriptor’s accuracy using a testing set. The first two
steps may be interchangeable depending on whether readily available
data leads to the determination of a material’s property that may be
worth exploring using SISSO. Nonetheless, properties must still be
chosen that relate to the target property.

Another important consideration is whether the target property will
be a quantitative or qualitative measure, which will alter the way SISSO
utilizes the property. In a quantitative target property, SISSO will find a
descriptor using the available data to best fit the numerical value of the
target property. In a qualitative target property, categories must be
created to differentiate each property, which will prompt SISSO to find
a descriptor that functions as a classifier rather than an equation at-
tempting to find a specific property value. Due to tilting being classified
as a qualitative target property, three categories of antiphase tilting,
both in-phase and antiphase tilting (along separate axes), and untilted
were chosen. These groups were modeled after Reaney’s notable dis-
covery of the relationship between Goldschmidt’s tolerance factor with
octahedral tilting and 7., which subsequently was separated into the
same three groups [29]. The reasoning behind excluding solely in-phase
tilting perovskites was further reinforced due to the scarcity of in-phase
oxide perovskites found during the literature review. Most perovskites
favor both in-phase and antiphase or solely antiphase tilt structures
over solely in-phase tilt structures [46], which subsequently resulted in
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only one oxide perovskite found with solely in-phase tilting during our
literature review [47].

After we learn descriptors for the prediction of tilting in oxide
perovskites, we assemble an experimental dataset through an extensive
series of literature reviews of known perovskites. First, Reaney’s work
was adapted into a database to provide an initial foundation of per-
ovskites of known tilt structures [29]. Next, two further review articles
augment the database [38,48]. After noticing a trend in an under-
representation of perovskites with either antiphase or untilted tilt
structure, a more direct attempt to include a broader range of tilt
structures was conducted using Bartel’s database of perovskites and
Goldschmidt’s tolerance factor to identify a predicted set of perovskites
with the desired tilting [21,29]. For this predicted set of perovskites, a
further literature review followed to find the experimentally derived tilt
structures for these compounds [49-56].

Since octahedral tilting is inherently difficult to characterize ex-
perimentally [31], the emphasis was placed on compiling a dataset of
perovskites with accurately known tilting structures and properties
while ensuring a sufficiently large database to perform symbolic re-
gression with SISSO.

Effective crystal radii and the effective valence of A and B cations
were chosen as the associated characteristics or properties due to their
importance in atomic bonding and in determining structure as relayed
by Goldschmidt’s tolerance factor and Bartel’s SISSO tolerance factor
[21,22]. Crystal radii were chosen as opposed to ionic radii as re-
commended by Shannon due to their closer relationship to the physical
size of ions in a solid [57]. Electronegativity and polarizability of A and
B cations were also added to the list of associated properties due to their
inherent influence on bonding and crystal structure stability, as well as
their empirical prevalence in other machine learning classification
techniques [58].

3. Finding low-dimensional descriptors for classification using
machine learning

To identify predictive models for classification, the symbolic re-
gression SISSO framework searches for analytical formulas relating a
small number of physical quantities, or “features,” with the desired
property. Beginning with a set of scalar-valued features ®,, SISSO
generates additional features by recursively applying unary (e.g., ex-
ponentiation, logarithm) and binary (e.g., addition, multiplication)
operations. The final feature space after i iterations, ®;, consists of
various analytical expressions that each map the input parameters to a
low-dimensional space. The domain of each class is defined by the
convex hull formed by the corresponding training data. During the sure
independence screening (SIS) step, SISSO ranks these expressions by the
sum of the overlapping one-dimensional region (or distance between
regions, in the negative case) between class domains. For the one-di-
mensional solution (Q2 = 1), the sparsifying operator (SO) step returns
the analytical expression with the least overlap between categories. To
determine Q2-dimensional solutions, the SO step selects tuples of Q
equations that minimize the Q-dimensional overlap between domains
(area or volume, in the 2D and 3D cases, respectively).

As previously mentioned, we selected eight primary features to
construct ®,: atomic radii (r,, r,), valence numbers (v,, v,), electro-
negativities (ya,, xb), and dielectric polarizabilities (ay, ap). We chose
four binary operators (+, —, X, /) and five unary operators 423,
3-) to recursively apply to the feature space, resulting in over 182
million features in @5 after three iterations. It is important to note that
limitations in computational resources prevent the generation of @4
using the SISSO framework, meaning that equations with many nested
terms, such as the GII, will not be generated or explored by SISSO when
®, consists of basic scalar properties.

We applied six-fold stratified cross-validation to benchmark the
performance of the predicted classifiers framework, as depicted in
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A) Fold cv B)
1|2|3|4|5|6 Accuracy

1 |Eval. Train Train Train Train Train = Eval.

Train Eval. Train Train Train Train = Eval.

Train Train Eval. Train Train Train = Eval.

Round

Train Train Train Eval. Train Train = Eval.

Train Train Train Train Eval. Train = Eval.

o |lvn | s |WwW N

Train Train Train Train Train Eval. = Eval.

Fig. 2a. During N-fold cross-validation (CV), all samples are partitioned
into N subsets, called folds. The stratified variant of CV involves pre-
serving the distribution of classes within each fold, yielding stratified
subsets that are each representative of the overall data. During each
round of cross-validation, a different combination of N — 1 folds is used
as training data, while the excluded fold is used to evaluate perfor-
mance. The accuracy across all N folds, where each sample is used for
validation exactly once, is a measure of how well a machine learning
method performs on unseen data. In this work, we partitioned the data
into six folds and used the SISSO framework to analyze each subset of
fifty samples.

To address the imbalance between classes in the data set, where the
ratio of in-phase and antiphase tilted materials to either antiphase tilted
or untilted is greater than 5:2, we employed the oversampling tech-
nique as illustrated in Fig. 2b. Within each fold, we augmented both
minority classes by randomly sampling materials with replacement
until all three classes were equal. We then repeated the cross-validation
process for comparison.

While the two tolerance factors presented by Goldschmidt and
Bartel feature discrete boundaries between categories, we additionally
consider the transition between categories using the probability esti-
mates offered by modern machine learning methods. Based on the 1D
SISSO function evaluations of the training data and the corresponding
experimental tiltings, we use the k nearest-neighbor method to generate
a continuous probability estimate for all 1D coordinates. We select
k = 10 and additionally weigh the probability contributions from each
neighbor by its distance to the sampled coordinate. In practice, any
testing sample can be assigned a percent probability for each tilting
class, and a prediction may be made based on the most-likely class or
classes. We may also obtain discrete decision boundaries based on co-
ordinates where the highest probability designations change.

4. Benchmarking the classification accuracy of competing
approaches

We additionally optimized seven alternative machine learning
models using both the imbalanced dataset and the oversampling
scheme, to compare the SISSO framework with other modern methods
for classification. Support vector machine (SVM), artificial neural net-
work (NN), decision tree (DT), and random forest (RF) models were
optimized using the Scikit-learn Python package [59].

The SVM is, traditionally, a deterministic classifier that separates
classes by calculating the optimum decision boundaries between sets of
samples after applying a transformation to a higher dimensional space
using a kernel function [60,61]. We considered both the linear kernel
and the nonlinear Gaussian radial basis function. The DT is a de-
terministic classifier that yields predictions (leaves) based on a flow-
chart-like series of decisions (branches) based on the input variables
and optimized thresholds [62]. The RF is an ensemble classification
method that makes predictions based on the majority vote of a multi-
tude of DTs, each trained on a randomized subset of the available data
[63,64]. In this work, we constructed each RF with ten DTs. The NN,
specifically the multi-layer perceptron in this work, is an algorithm that
can learn highly nonlinear function approximators for mapping inputs

lus 188
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Fig. 2. (A) Six-fold cross-validation scheme.
(B) Oversampling scheme. Minority classes
(green: antiphase tilting; blue: no tilting) in
the training data are augmented by resam-
pling with replacement until they are equal
in size to the majority class (orange: in-
phase and antiphase tilting). The testing
data, shown in yellow, is unchanged. (For
interpretation of the references to color in
this figure legend, the reader is referred to
the web version of this article.)

With Oversampling

to their corresponding outputs [65]. The first layer of the NN consists of
one neuron for each input feature, while the last layer of the NN con-
sists of one neuron for each class. Between the input and output are one
or more hidden layers of neurons. The value at each hidden neuron or
output neuron is a weighted linear summation of all values in the
preceding layer, plus a constant bias term, followed by an activation
function. These weights and biases are trained using the back-
propagation of error and stochastic gradient descent. We considered the
linear, rectified linear unit (ReLU) and hyperbolic tangent (tanh) acti-
vation functions [66].

We tuned hyperparameters for each model using six-fold cross-va-
lidation rather than a holdout set due to the relatively small amount of
available data. Probability estimates in SVMs were calculated by the
pairwise coupling method for multi-class classification described by Wu
et al. [67]. Probability estimates in DT and RF models were determined
by the ratios of training samples and their classifications in each leaf.
Probability estimates in NNs were determined by evaluating the
softmax activation function after training with the cross-entropy loss
function.

Unlike in the SISSO framework, the optimization procedures of
SVM, RF, and NN are stochastic. Randomness is introduced into the
SVM fitting by the internal cross-validation step that enables prob-
ability estimates with pairwise coupling [61,67]. The many decision
trees comprising a random forest are each fitted with a randomized
subset of data by sampling with replacement [63]. The weights and
biases of neural networks are optimized using a stochastic gradient-
based algorithm implemented in Adam, [68]. To better understand the
predictive power of SVMs, DTs, RFs, and NNs, we retrain each model 25
times with identical parameters, except for the random seed and record
all predictions (available in the supplemental information).

5. Results and discussion

Coupled with the cross-validation technique, the SISSO framework
generated millions of equations and returned the six equations with the
smallest overlap between domains, as summarized in Table 1. In several
rounds, equations with unphysical units such as A>7 were filtered out
in post-processing. All equations are reported in the supplementary
material. Across all rounds in both the original and oversampling cases,
the generated SISSO equations have high accuracy in predicting tilting
behavior in their respective testing samples. The overall 85% accuracy
with cross-validation indicates that the SISSO framework can generalize
to unseen data. Notably, the equation x = r? — 1,1, (v, + n,)appears in
four cases (5.4, 5.5, 6.5, 6.6) with a consistently high testing accuracy
across three folds — half of the available data. Electronegativity appears
in only one round each (5.2 and 6.2), while dielectric polarizability
does not appear at all, suggesting that they are relatively unimportant
for uniquely describing octahedral tilting.

Partially correct predictions, included in both Table 1 and Fig. 4, are
defined as the instances where two categories are assigned nearly equal
probability by a model and the correct classification is included. In this
work, we take the criteria for comparable probabilities to be a max-
imum difference of 10%. A prediction is given full credit where the
probability for the correct class is more than 10% greater than the
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Table 1
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Summary of SISSO equations as identified by cross-validation and performance on the corresponding 10-sample testing sets. Results with imbalanced training data
and with the oversampling scheme are shown in the left and right columns, respectively. Abbreviations: U = Units, C = number of correct predictions, P = number

of partially correct predictions.

Imbalanced Training Data

Oversampling Scheme

Expression U C P Expression U C P
Round 1 (5.1) STl — 2Ia + Tp A 7 1 6.1) JTaTs — 20+ Tp A 7 1
Round 2 (5.2) s A 9 0 6.2) 31 A 9 0
Round 3 (5.3) (ra—r)3(a+p) A? 8 0 6.3) (ra—rp)3(ra + ) A3 8 0
) b
Round 4 (5.4) 13 = rarp(ra + 1) A3 10 0 (6.4) (a+rp)ra _ rbXa A 8 0
L) Xa tXb
Round 5 (5.5) 73 = rary (ra + rb) A? 9 1 (6.5) 73 = rary (ra + 1b) A® 9 1
Round 6 (5.6) A 8 0 (6.6) 73— rary(ra + rv) A3 10 0

3
a
Sttt
b

remaining probabilities. A “correct” prediction with less than a 10%
difference in probability between either of the other categories is given
no credit due to the lack of confidence. Conceptually, partially correct
predictions are expected to occur when classifying materials that are
very close to a decision boundary. We then define a composite accuracy
as % composite accuracy = (C + 0.5P)/N, where C is the number of
correct predictions, P is the number of partially correct predictions, and
N is the number of samples.

Although rounds 4 and 6 yield different equations with the over-
sampling scheme compared to the original imbalanced case, over-
sampling offers no improvement in the overall CV accuracy. With the
same 10 testing materials from fold 4, equation 6.4 performs worse than
equation 5.4. On the other hand, equation 6.6 performs better than
equation 5.6 in predicting tilting in fold 6. To distinguish whether these
differences arise from differences in the generation of equations or the
ranking, we analyzed the intermediate SO results for each round. These
intermediate results each contained 1000 equations, ranked by the size
of the overlapping region between convex hulls as well as the number
of training samples within the overlapping regions. We found that, in all
rounds, all equations in Table 1 appeared among the 1000 equations
with different rankings. As evident in rounds 4 and 6, it appears that the
ranking criterion used by SISSO is sometimes insufficient for finding
equations with the best generalizability or extrapolative capacity.
Moreover, rather than one highly generalizable equation, SISSO iden-
tified 5 different equations with dissimilar functional forms when pro-
vided with six different partitions of available data. This indicates that
SISSO is sensitive to the input data, and therefore a key implication is
that the simple holdout method with one training and one testing set is
inadequate when using SISSO with a small dataset.

The SISSO results of Round 6 are plotted in Fig. 3, including both
equation 5.6 to the left and equation 6.6 to the right with a multi-
plicative coefficient of -1 for visualization purposes. The SISSO eva-
luations of the training data are displayed at the top, with dashed lines
at k nearest-neighbor decision boundaries for qualitative reference.
Testing predictions are displayed at the bottom with background color
gradients corresponding to the continuous probability estimates cal-
culated by the k nearest-neighbor method (k = 10). The visualization of
5.6 and 6.6 on the testing data shows a distinct difference in predictions
on materials with antiphase tilting, which span the smallest region in
both models. Despite having a smaller antiphase domain, both relative
to the other classes and in absolute value, equation 6.6 clearly separates
LaNiOj, LaAlOs;, and LaCoO; from the other two domains, while
equation 5.6 cannot. In addition, equation 5.6 exhibits peculiar multi-
modal probability functions with the k nearest-neighbor method due to
the poor separation between testing materials near the decision

boundaries. Across both training and testing sets, equation 5.6 correctly
predicts 49/60 samples with three partially correct predictions close to
the marked decision boundaries: BaTiOs, SrTiOs, and LaCoOs. On the
other hand, equation 6.6 correctly predicts 49/60 samples with only
one partially correct prediction: Sr(Co;,3Tas,3)O3. Although the accu-
racy of equation 6.6 across the entire dataset is not appreciably higher
than equation 5.6 or other equations in Table 1, its repeated identifi-
cation by the SISSO framework across rounds 4, 5, and 6 indicate that it
is the most generalizable and transferable equation out of the millions
generated using this set of sixty samples.

The classification accuracies for the imbalanced data and over-
sampling schemes are summarized in Table 2 for SISSO and the seven
alternative methods. For stochastic algorithms, we report the respective
performance for the two runs, out of 25, with the best and worst
composite accuracies. The SISSO equations collectively achieve a
composite accuracy of 86.7% across the six cross-validation folds. In
both imbalanced and oversampling cases, the contribution of partially
correct predictions to the accuracy is small (half of 3.3%). The com-
posite accuracies of the SVM trials are the lowest among all methods,
while the corresponding partially correct accuracies are the highest.
This observation may be an artifact of the instability in the pairwise
coupling probability estimates, which were calibrated using relatively
few training samples in each round. The nonlinear SVM is slightly more
accurate than the linear SVM, likely due to the increased complexity
afforded by the nonlinear kernel transformation. The DT models are
higher in accuracy than their RF counterparts in all cases, with a modest
6.6% difference in the oversampling case. The DT with oversampling
has the highest accuracy among the non-SISSO methods, with a com-
posite accuracy of 83.3%. The lack of partially correct predictions in the
DT case is unsurprising because the multiple discrete decision bound-
aries in DTs are optimized to maximize the separation of classes among
leaves, which inherently penalizes the partially correct cases. On the
other hand, disagreement between DTs in the RF ensemble yields up to
15.0% partially correct predictions. The lackluster performance of the
ensemble method compared to the individual classifier may be due in
part to the sufficiency of the DT for the problem at hand. Moreover, the
constituent trees in the RF are trained with randomized subsets of the
available data, which, as discussed regarding the SISSO equations, is
scarce and sensitive to over or underrepresentation of training data. The
NN methods are comparable to the DT and RF in performance, with the
ReLU NN achieving a maximum composite accuracy of 81.7%. The
higher performance of the ReLU NN and tanh NN, compared to the
linear NN, is most likely due to increased nonlinearity afforded by the
ReLU and tanh activation functions.

The oversampling scheme slightly improves accuracy in the
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Fig. 3. Comparison of quantitative separation and accuracy between equations 5.6 and 6.6. The latter equation is mirrored across x = 0 for visualization purposes.
Testing predictions are shown with black symbols with background colors corresponding to the k nearest-neighbor probability estimates along the x-coordinate.

nonlinear SVM and DT methods but otherwise tends to decrease com-
posite accuracy, the number of correct predictions, and the number of
partially correct predictions. The percent discrepancy between best and
worst runs in the SVM trials are among the smallest (4.20% in the
oversampling nonlinear SVM case to 7.50% in the linear SVM case). The
same metric in the RF case ranges from 15.90% with oversampling to
18.40% without oversampling. The linear NN trial with oversampling
exhibits the greatest discrepancy (25.0%) between the lowest and
highest observed composite accuracies. The variation in accuracy at-
tributed to the stochastic optimization is smaller in the SVM im-
plementation than in the RF and NN implementations.

Predictions for select classification models are displayed in Fig. 4 for
six cross-validation rounds. The corresponding true experimental values
are shown in the first row for reference, while the predictions using the
tolerance factor of equation (2) and SPuDS are shown in the last two
rows for comparison. With consistently incorrect predictions across all
methods, NdAlO; and CaMnOs are clear outliers when evaluated as
unseen testing data. This suggests irregularity in their input features or
in some combination of features, which might warrant further in-
vestigation and experimental confirmation. The Goldschmidt tolerance
factor, coupled with the decision boundaries determined by Reaneys
et al., achieves a composite accuracy of 73.3% against the 60 materials.
Notably, the 60 predictions made by the Goldschmidt tolerance factor
include all three classes in similar proportions as opposed to the over-
representation of in-phase and antiphase tilting. On the other hand,
SPuDS predicts only 9 materials correctly alongside two partially cor-
rect predictions. SPuDS overpredicts the antiphase tilting class and in-
phase tilting class while underpredicting the in-phase and antiphase

tilting and no tilting classes. One explanation for this low accuracy may
be the breakdown of the assumption of rigid octahedra that SPuDS
relies on to determine many degrees of freedom.

The analytical equations identified by SISSO (5.1-6.6) can accu-
rately classify tilting in perovskites with over 80% accuracy using only
2-4 physical parameters. In comparison, the Goldschmidt tolerance
factor uses four physical parameters, and SPuDS uses two physical
parameters and one empirical parameter, and both yield lower ac-
curacies. The SVM, DT, RF, and NN models each have greater mathe-
matical complexity than the SISSO equations but are also slightly lower
in accuracy. In particular, the equation x = 12 — 1,1, (r, + 1) (5.4, 5.5,
6.5, 6.6) exhibits 81.7% accuracy (49/60) across the 60 samples and
was repeated selected by SISSO across multiple rounds of cross-vali-
dation.

Much like the original Goldschmidt tolerance factor from 1926, this
SISSO equation relates a physical phenomenon to the atomic radii and,
indirectly, the theoretical bond lengths. The Goldschmidt tolerance
factor uses the ratio of the A-X bond to the B-X bond to determine
physical stability, while equation 5.4 relies on the radius of atom A, the
radius of atom B, and the length of the A-B bond to predict octahedral
tilting. When the radius of B is smaller than the radius of A, the value of
the expression is large, and the model predicts no tilting. As the radius
of B approaches the radius of A, the expression goes to zero, and the
model predicts both in-phase and antiphase tilting. For intermediate
values, where the radius of B is slightly smaller than the radius of A,
antiphase tilting is observed. Using only two physical parameters, this
equation is physically interpretable as a geometric relationship between
the radii of A and B with units of volume.
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with arbitrary ordering.

Table 2
Comparison between alternative machine learning models and their optimized hyperparameters. Descriptions of hyperparameters can be found in the supplemental
material.
Imbalanced Training Data Oversampling Scheme
Method Composite Accuracy Correct Partially Correct Composite Accuracy Correct Partially Correct
SISSO 86.7% 85.0% 3.3% 86.7% 85.0% 3.3%
Linear SVM 67.5% 51.7% 31.7% 65.0% 58.3% 13.3%
60.0% 48.3% 23.3% 58.3% 50.0% 16.7%
NonlinearSVM 68.3% 58.3% 20.0% 70.0% 65.0% 10.0%
61.7% 55.0% 13.3% 65.8% 61.7% 8.3%
DT 80.0% 80.0% 0.0% 83.3% 83.3% 0.0%
RF 79.2% 71.7% 15.0% 76.7% 73.3% 6.7%
60.8% 56.7% 8.3% 60.8% 53.3% 15.0%
Linear NN 77.5% 71.7% 11.7% 77.5% 75.0% 5.0%
60.8% 50.0% 21.7% 52.5% 41.7% 21.7%
ReLU NN 81.7% 81.7% 0.0% 80.0% 80.0% 0.0%
68.3% 68.3% 0.0% 65.0% 65.0% 0.0%
tanh NN 80.0% 80.0% 0.0% 79.2% 78.3% 1.7%
70.0% 70.0% 0.0% 71.7% 71.7% 0.0%
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The octahedral tilting dataset, SISSO inputs, SISSO outputs, and
Python post-processing tools are available on Github at https://github.
com/henniggroup/symbolic-regression-utilities.

6. Conclusions

Using symbolic regression within the SISSO framework, we identi-
fied a new descriptor for predicting the tilting of oxide perovskites,
which may be used to screen perovskites for electronic and magnetic
applications. Fit with a relatively small dataset of 60 octahedral tilting
classifications from literature, our SISSO-generated model exceeds
those produced with other modern machine learning methods in cross-
validated testing accuracy with far less mathematical complexity.
Compared to the existing Goldschmidt tolerance factor and SPuDS
methods, the model achieves a higher classification accuracy on the
available data with comparable complexity and physical interpret-
ability. Finally, the straightforward functional form of our machine-
learned classifier reinforces our understanding of octahedral tilting in
perovskites by suggesting a primary basis in physical geometry.
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