
Noname manuscript No.
(will be inserted by the editor)

Packet-size Aware Scheduling Algorithms in Guard
band for Time Sensitive Networking

Chuwen Zhang · Yi Wang · Ruyi Yao ·
Boyang Zhou · Liang Cheng · Yang Xu ·
Xiaoguang Li · Jian Cheng · Bin Liu

the date of receipt and acceptance should be inserted later

Abstract As an emerging and promising technology, Time Sensitive Networking
(TSN) can be widely used in many real-time systems such as Industrial Internet
of Things (IIoT) and Cyber Physical System (CFS). TSN, while ensuring the
bounded latency and jitter, also exhibits the disadvantage of not being able to
effectively use the bandwidth resources in the guard band. This is because the past
studies put emphasized efforts on pursuing the deterministic packet forwarding
for time-sensitive data traffic, but they overlooked the issue of low guard band
utilization. In this paper, we propose an algorithm family named Packet-size Aware
Shaping (PAS), which is inspired by abstracting the problem of utilizing the guard
band to a classic Precedence-Constrained Knapsack Problem (PCKP). PAS works
with the existing TSN standards, having achieved the goal of guaranteeing the
end-to-end latency for scheduled time-sensitive applications while fully utilizing
the available bandwidth in the guard band for others. Further, we have proposed
and implemented several hardware designs for both the current standard TSN
scheduler and the programmable one. The simulation results show that PAS family
can achieve satisfying performance in maximizing the resource utilization in guard
band. The synthesis results on Xilinx Vivado show that our proposed Multi-group
Push-In-First-Out (MPIFO) scheduler can achieve 100 Mpps scheduling rate for
1024 scheduling items, which is fast enough to purchase the high-speed TSN.

Keywords TSN · programmable packet scheduling · guard band · PCKP

Chuwen Zhang · Bin Liu
Department of Computer Science and Technology, Tsinghua University, Beijing, China
Tel.: +86-13621164840
E-mail: chuwen1992@gmail.com;lmyujie@gmail.com

Yi Wang · Xiaoguang Li · Jian Cheng · Bin Liu
Peng Cheng Lab, Shenzhen, China

Yi Wang
Southern University of Science and Technology, ShenZhen, China;

Ruyi Yao · Yang Xu
Fudan University, Shanghai, China

Boyang Zhou · Liang Cheng
Lehigh University, Bethlehem, USA

2 Chuwen Zhang et al.

1 Introduction

With the emergence of Industrial Internet of Things (IIoT) and Cyber Physical
System (CFS), ultra low end-to-end latency and jitter (e.g., a few microseconds)
need to be guaranteed for time-sensitive traffic. The current Ethernet technology
can provide end-to-end communication with high bandwidth up to tens or even
hundreds of Gbps, but cannot guarantee the low latency due to its best-effort
and time-insensitive nature. On the other hand, although some specialized real-
time communication technologies can guarantee low transmission lantency and
jitter, the network communication bandwidth they can provide is very limited.
For example, the communication protocol CAN (International Organization for
Standardization 2003) and FlexRay (International Organization for Standardiza-
tion 2013) are operating at 0.5 and 10 Mbps, far behind the increasing bandwidth
demands of existing industrial applications. Faced with this situation, several time-
synchronized Ethernet-based communication technologies have been introduced,
such as EtherCAT (Jansen and Buttner 2004) and TTEthernet (Kopetz and Bauer
2003; Kopetz et al. 2005). However, they cannot achieve flexible and efficient traf-
fic scheduling for time-sensitive and best-effort traffic simultaneously within IEEE
802.3 networks, which is exactly the demand of more and more industrial applica-
tions such as industrial automation and automotive self-driving. To address these
issues, Time Sensitive Networking (TSN), therefore, is proposed to achieve ultra
low end-to-end latency and jitter for the time-sensitive traffic while providing the
maximum possible bandwidth for the best-effort traffic.

TSN is composed of a number of IEEE standards that are still evolving and
expanding. Among them, the Time Aware Shaper (TAS) in IEEE Std 802.1Qbv
(LAN/MAN Standards Committee 2016c) plays an important role in realizing de-
terministic forwarding for scheduled traffic, a class of time-sensitive traffic that
has a fixed cycle and predictable size. This shaper isolates scheduled traffic from
others by an exclusive time window on the base of globally synchronized time
from IEEE Std 802.1AS (LAN/MAN Standards Committee 2011), resulting in
the transmission of scheduled traffic not being preempted by other traffic. It in-
troduces a guard band (detailed in Section 2) to ensure that the link is available
for transmitting the scheduled traffic at the start of its time window. However,
except for the packets that are already being transmitted, no other packets will
be scheduled in the guard band, even if the guard band is not fully filled, which
will cause the remaining band wasted.

As a guard band is reserved as large as the transmission time of the largest
Ethernet frame1, the maximum bandwidth waste in guard band could be f ·Smax

l ,
where f denotes the window frequency, Smax the size of the largest Ethernet frame,
and l the link rate. When the window frequency is high and the link rate is low,
the waste on the guard band will increase. For example, if there are 100 sensors,
each of them sends a packet every 10 ms, and the link rate is 1 Gbps, up to 12%
bandwidth will be wasted in the guard band. Further, if the TSN LAN adopts
Jumbo frame for efficiency, whose payload is up to 9000 bytes, the theoretical
maximum waste will go up to 72% in the above settings!

1 In this paper, the term of packet actually refers to the Ethernet frame, but we do not
distinguish between them, and use them interchangeably.

Title Suppressed Due to Excessive Length 3

To reduce the bandwidth waste in the guard band, frame preemption in IEEE
Std 802.1br (LAN/MAN Standards Committee 2016a) and 802.1Qbu (LAN/MAN
Standards Committee 2016b) is employed, which allows a low-priority packet that
is being transmitted to be preempted by a high-priority packet. After the high-
priority packet has finished its transmission, the rest of the low-priority packet
will resume sending. This, however, depends on the dedicated MAC layer with a
complex hardware structure that partitions and assembles a packet on a sender
and receiver, respectively.

In this paper, we propose a family of Packet-size Aware Scheduling (PAS)
algorithms to make full use of the guard band. The genealogy of the PAS family
is shown in Fig. 1. PAS family tries to select eligible packets to fill the remaining
band repeatedly until the next scheduled traffic window comes. PAS functions
as an auxiliary measure to work with the basic scheduling algorithm such as the
Strict Priority Scheduling (SPS), and takes action only in the guard band. Selecting
packets to fill the remaining band can be modeled as a Precedence-Constrained
Knapsack Problem (PCKP), which is an NP-complete problem. In this paper, we
have proposed two solutions: PAS I and PAS G. The former tries to get the optimal
solution, but it fails running fast enough at line rate, while the latter is a simple
but fast greedy algorithm. We design the Binary-Comparator-Tree (BCT) based
and Push-in-First-out (PIFO) based structures for the standard TSN scheduler to
realize PAS G. However, as PAS G needs to traverse N scheduling items to find
the best one, it cannot adapt to a programmable scheduler supporting hundreds
of per-flow queues. We then further develop PAS G(M) to approximate PAS G,
where M denotes the number of packet-size based PIFO queues, and design a
Multi-group PIFO (MPIFO) scheduler accordingly.

We have made the following major contributions.

– We propose PAS family algorithms to utilize the bandwidth in guard bands
more efficiently. We model PAS as a PCKP, and then raise a dynamic program-
ming based algorithm PAS I and greedy strategy based PAS G to schedule
packets in guard band.

– We design the BCT-based and PIFO-based structures for the standard TSN
scheduler with eight output queues according to realize PAS G. We also de-
sign the MPIFO structure for a programmable TSN scheduler according to
PAS G(M), which can support hundreds of per-flow queues at line rate.

– We conduct extensive simulations to evaluate the performance of our PAS
family algorithms. Experimental results show that PAS(M) has ever-increased
performance as M grows. We prototype the three scheduler designs on FPGA,
and the synthesis results on Xilinx Vivado show that MPIFO achieves 100 Mpps
scheduling rate when the number of scheduling items is 1024, more faster than
the others.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of TSN standards related to packet scheduling. Section 3 proposes PAS
concept, models it as a PCKP, and presents PAS I and PAS G. Section 4 describes
two hardware designs based on PAS G for the current standard TSN switch and
MPIFO based on PAS G(M) for the programmable TSN scheduler. Section 5
evaluates the performance of PAS family by simulations and implementations.
Section 6 surveys the related work on packet scheduling. Finally, Section 7 con-
cludes this paper.

4 Chuwen Zhang et al.

PAS_G(S) PAS_G(P/S)PAS_G(P)

PAS_I(S) PAS_I(P)

PAS_G(S, M) PAS_G(P, M)

PAS_I

PAS_G

PAS_G(M)

For maximizing the
bandwidth utilization

For maximizing the
priority sum

PAS
Family

Fig. 1: PAS family is composed of three sub-classes: PAS I provides an optimal
solution based on the dynamic programming; PAS G provides a local optimal solu-
tion based on the greedy strategy on per-flow queues; PAS G(M) provides a local
optimal solution based on the greedy strategy on the M packet-size based queues.
According to the optimization objective, we further develop specific algorithms in
each sub-class.

Transmission
selection

...
Per-Class

packet queue

Class #7
Scheduled traffic

Class #6
A/V traffic

Class #0
Best-effort traffic

SPS

Transmission
gate

T0:10000000
T1:01000000
T2:00111111

...

Gate
Control List

Fig. 2: Structure of the standard TSN scheduler with TAS.

2 Background

Existing TSN standards mainly focus on two types of time-sensitive traffic, i.e.,
scheduled traffic and Audio/Video (A/V) traffic. The former has a fixed cycle,
predictable size, and rigid requirement on the latency and jitter, while the latter
is usually bursty with a bulk of packets and has a requirement on bandwidth.
As TSN aims to realize the harmonious coexistence of best-effort, scheduled, and
A/V traffic, it should has a sophisticated packet scheduler to differentiate and
schedule network traffic at line rate. Generally, a packet scheduler specifies when
and in what order the queued packets should be transmitted according to its
configured scheduling algorithm. To cope with the traffic diversity in TSN, the
TSN task group has published several standards for packet scheduling: 1) IEEE

Title Suppressed Due to Excessive Length 5

Std 802.1Qbv proposed TAS for isolating scheduled traffic, 2) IEEE Std 802.1Qbu
and IEEE std 802.3br proposed frame preemption for reduce the influence of best-
effort traffic on the time-sensitive traffic; and 3) IEEE Std 802.1Qav (LAN/MAN
Standards Committee 2009) proposed Credit-based shaping (CBS) for A/V traffic.
As we mainly focus on efficiently utilizing the remaining bandwidth in the guard
band, which can be understood as a side-effect of TAS, we omit the description
on CBS. We show the standard TSN scheduler structure in Fig. 2.

In the default setting, each port possesses eight First-In-First-Out (FIFO)
queues to buffer packets that are waiting for transmission. An incoming packet
towards an egress port will be dispatched to different FIFO queues according to
the Priority Code Point (PCP) value in its VLAN header or the Internal Prior-
ity Value (IPV) value if Per-Stream Filtering and Policing (PSFP) of IEEE Std
802.1Qci (LAN/MAN Standards Committee 2017) is enabled. As a result, the
packets belonging to the same class is pushed into the same FIFO queue. By
default, all packets of scheduled traffic are pushed into the #7 queue with the
highest priority. TAS specifies a gate ahead of each FIFO queue to control the
queue availability. If a queue’s gate is closed or there is no packet in the queue, the
queue will be regarded as ‘empty’. When the output link is idle, the scheduling
algorithm (e.g., SPS) will select the queue with the highest priority among all the
‘non-empty’ queues to dequeue its head packet. Specially, the open or close states
of the gates are controlled by a Gate Control List (GCL), which consists of a series
of pairs of time and gate states. Taking the example in Fig. 2, the gate state at
time T0 is 10000000, so only the transmission gate for queue #7 is open, resulting
in scheduled packets occupying the output link from time T0 to T1. In this way,
the time line is split to many time windows, which is a special kind of Time Divi-
sion Multiple Access (TDMA) in a broad sense. Flexible Time-Triggered Ethernet
(FTTE) (Pedreiras et al. 2005; Meyer et al. 2013) also adopts time windows to
isolate scheduled traffic, but the window’s size and offset are fixed, in contrast
to the flexible window obeying the GCL in TSN. To obtain a feasible GCL for a
predefined scheduled traffic pattern, many schemes based on Satisability Modulo
Theories (SMT) have been proposed (Steiner 2010; Craciunas et al. 2016; Oliver
et al. 2018). This paper dose not get involved but assumes a GCL is available
reasonably.

However, A/V or best-effort traffic will collide with scheduled traffic if one
of their packets is occupying the link at the start of a scheduled flow’s window.
As shown in Fig. 3, the left is a snapshot of a TSN egress port with four FIFO
queues and an SPS scheduler, and we assume no new packet will arrive since then,
so packets will be dequeued according to their priorities strictly. For sequence
diagram 1), at time t1, the transmission of packet b3 has not been finished, so
the packet a1 cannot occupy the link, though its gate is open and its priority is
the highest, which we call a collision. The collision may cause prolonged and non-
deterministic end-to-end latency for the scheduled traffic. As the sequence diagram
1) shown in Fig. 3, the delayed packet a2 cannot be transmitted in its planned
window and has to encroach the next window, and such an operation may bring
a chain effect.

The root cause of the collision is that a low-priority packet under transmitting
cannot stop at the exact starting point of a new window to give its way to the
scheduled traffic. The basic IEEE Std 802.1Qbv sets a guard band before the
start of each scheduled traffic’s window, during which no packet will be allowed

6 Chuwen Zhang et al.

1) No guard band

Priority 3
Best-effort

traffic

Priority 2
Best-effort

traffic

Priority 1
Best-effort

traffic

a1 c1

a2

b3b2b1 d1

b1

Guard band

a1 a2 b2 c1b3 d1

b2b1 a1 a2 c1b3 d1

b2b1 a1 a2c1 b3 d1

b1 a1 a2d1 b3

Collision is postponed to the
next window

Window
For flow a

t0 t1 t2

a1

a2
b1

b2

b3

c1 d1

SPSGCL
t0:0111
t1:1000
t2:0111

...

2) The basic Qbv

4) Frame Preemption

5) PAS for
maximizing sum of
packet priorities

6) PAS for
maximizing link
utilization

3) The improved Qbv

Priority 4
Scheduled

traffic

Remaining band

a1 c1b3lb2b1 d1a2 b3r

Remaining band

c1 b2

Fig. 3: The left is a snapshot for a TSN egress port with four queues and an
SPS scheduler, and the right shows the subsequent packet transmission order for
different scheduling algorithms if no new packet is enqueued since then. We specify
that a larger priority value denotes a higher priority, so the priority order is a >
b > c > d.

to transmit except for the on-the-fly packet, resulting in a clean state at the start
of the next scheduled traffic’s window. The safest approach is setting the guard
band to be as long as the transmission time of the largest Ethernet frame as the
sequence diagram 2) shown in Fig. 3, but it may waste a large amount of link
resources, especially when the windows frequency is high and link rate is low. To
relieve this problem, the improved Qbv keeps sending the highest-priority packet
until it cannot be filled into the remaining band (assuming the size information
can be obtained in advance). As the sequence diagram 3) shown in Fig. 3, packet
b2 is transmitted because it has the highest priority and its size is small enough
to fit in the remaining band. The following packet b3, however, is too large to fit
the remaining band, causing a waste of bandwidth. Note that the improved Qbv
reduces the average remaining band size, but its maximum bandwidth waste can
be equal to the maximum guard band minus one byte when the highest-priority
packet is as large as the maximum Ethernet frame.

Instead of delaying the packets that may cause collision, frame preemption
allows splitting a low-priority packet at the start of a window and resumes the
transmission of the remaining half after the window immediately. As the sequence
diagram 4) shown in Fig. 3, frame preemption enables the large packet b3 to be split
into two halves: b3l, which can fit the remaining band seamlessly, and b3r, which
will be scheduled once the window ends. Although frame preemption improves
the bandwidth utilization significantly, it has the following shortcomings. First,
the ingress and egress ports need a dedicated and complicated hardware structure
to support a new sub-MAC layer for eMAC (express Media Access Control) and
pMAC (preemptable Media Access Control): eMAC is for express frames which are
high-priority and cannot be preempted, while pMAC is for preemptable frames,
which need the partition and assembling operations at the sender and receiver,

Title Suppressed Due to Excessive Length 7

respectively. The hardware complexity makes it not so appealing. Second, it cannot
eliminate the guard band completely because it still needs a guard band for a 124-
byte frame. The reason is both two split frames must be no smaller than the
minimum Ethernet frame length (64 bytes), a frame that is smaller than 124 bytes
(128 bytes minus the 4-byte new CRC) cannot be split.

3 PAS primitive

In this section, we will first explain the motivation of proposing PAS. Then, we
will model PAS with two optimization objectives and abstract both of them to a
PCKP. Finally, we will raise a dynamic programming based algorithm PAS I and
a greedy strategy based algorithm PAS G for packet scheduling.

3.1 Motivation

As mentioned above, the basic Qbv sets a guard band ahead of each scheduled
traffic window, whose size is equal to the transmission time of the largest Ethernet
frame. The improved Qbv approach keeps transmitting the highest priority packets
until the remaining band cannot afford. Neither of them takes into account head
packets of other queues, leading to a large remaining band waste potentially, even if
some low-priority packets can indeed fill in it. As a result, the precious bandwidth
resource is wasted. For the frame preemption solution, though it can significantly
reduce the bandwidth waste, its dedicated and complicated MAC layer makes it
hard to be deployed.

For this situation, we propose PAS, which is aware both the size of each packet
to be scheduled and the amount of the remaining band, to make scheduling de-
cisions. PAS is in pursuit of an approximate performance comparable to frame
preemption without asking for a dedicated MAC layer. This is feasible in prac-
tice because the size of the head packets should be delivered to the scheduler in
advance and the high-precision synchronized clock gives a precise remaining time
estimation as well as the amount of remaining band by recognizing the product of
the remaining time and link rate. By now, the coming question is the methodology
of PAS.

In this paper, we target two optional optimization objectives for PAS, maxi-
mizing the sum of packet priorities or the bandwidth utilization. As the examples
in Fig. 3, we only have three scheduling schemes, (b2, c1), (b2, d1) and (c1, d1), to
fill the guard band as much as possible. In order to maximize the sum of packet
priorities, we select (b2, c1) as the sequence diagram 5), because they have the
largest priority sum. To maximize the bandwidth utilization, we select (c1, d1) as
the sequence diagram 6), because they have the largest size sum.

Note that PAS is an auxiliary scheduling algorithm which takes actions only in
guard band. In other time periods, the scheduler runs on its configured scheduling
algorithms such as SPS.

8 Chuwen Zhang et al.

3.2 Model

We first present some mathematical definitions to model PAS. Assume that PAS is
for a TSN egress port with N FIFO queues and the size of the original remaining
band is denoted by r. Without loss of correctness, we assume all packets, including
the ones arriving within the remaining time, are all buffered in their FIFO queues
in advance. We also assume that making a scheduling decision costs zero time.
We use Ni to denote the number of queued packets for queue i. For the j-th
packet of queue i, si,j and pi,j denote its size2 and priority, respectively, where
i = 1, 2, . . . , N and j = 1, 2, . . . , Ni. Packets in the same queue must be dequeued
in FIFO manner, i.e., successively from the head. Therefore, we use xi to denote
the number of packets to be dequeued in queue i, where xi ∈ {0, 1, . . . , Ni}.

For the objective of maximizing the sum of packet priorities, packets in a queue
should be dequeued in an FIFO manner and the sum of all selected packets’ size
should be less than r. To sum up, we have the following optimization model.

max
N∑
i=1

xi∑
j=1

pi,j

s.t.

{
xi ∈ {0, 1, . . . , Ni},∑N

i=1

∑xi
j=1 si,j ≤ r.

(1)

This model is indeed equal to a PCKP, where packet size corresponds to the
item weight, packet priority corresponds to the item value, and our objective cor-
responds to select some items obeying some orders (i.e., the PIFO manner) to a
fixed-size knapsacka to get the total value as large as possible.

For the objective of maximizing bandwidth utilization, it is equal to maximizing
the sum of packet sizes under a given r. We can also abstract it as a PCKP similar
as the above. The only difference is that the item value is the packet size rather
than the packet priority. Hence, we have the final model as follows.

max
N∑
i=1

xi∑
j=1

si,j

s.t.

{
xi ∈ {0, 1, . . . , Ni},∑N

i=1

∑xi
j=1 si,j ≤ r.

(2)

3.3 Scheduling algorithms

Now that both the two models can be abstracted as a PCKP, we can use dynamic
programming, one of the algorithm solutions for PCKP, to solve these models. The
state transfer equation for the models are as follows,

Rank[i][s] =
Ni

max
j=0

(Rank[i− 1][s− sumsize[i][j]] + sumrank[i][j]), (3)

2 The size refers to the real occupation of each packet on the wire, containing the Ethernet
frame, eight-byte headers in the physical layer, and 12-byte Inter Frame Gap (IFG)

Title Suppressed Due to Excessive Length 9

where Rank[i][s] denotes the maximum sum of ranks (priorities or sizes according
to the objective) for the first i queues with the total size constraint s; sumsize[i][j],
the sum of packet sizes of the first j packets in queue i; and sumrank[i][j], the sum
of ranks. Using this state transfer equation, we can get an ideal PAS algorithm,
PAS I. Especially, we let PAS I(P) denote the algorithm of maximizing the sum
of packet priorities and PAS I(S) for sizes.

The maximum operation in Eq. (3) can be executed in parallel, reducing the
time complexity to O(N). Even so, it is still overwhelming for hardware imple-
mentations when N goes large. Besides, the model is based on the fact that we
know the information of all packets in advance. However, an online scheduler could
not know the packet arriving in the future, so it fails to achieve the real optimal
solution. Therefore, instead of getting the optimal solution by PAS I, we tend to
find a feasible algorithm in practice with the fast greedy strategy, called PAS G,
for the two optimization objectives as mentioned earlier.

For the objective of maximizing the sum of packet priorities, our first algorithm
PAS G(P/S) is to use the greedy strategy to select the head packet with the largest
priority density, pi,1/si,1. We define the priority density as the rank and get it when
a packet is delivered into the scheduler. However, the priority density ranking
needs division operations which are unfriendly to hardware implementation. We
then turn to use the packet priority as the rank for simplicity, called PAS G(P).
PAS G(P) can not only be deployed easily, but also be shared with most of the
main scheduling algorithms which dequeue the packet with the highest rank each
time. This is because the remaining band is larger that the largest Ethernet frame
ahead of the guard band. In other words, the highest-ranked packet ahead of the
guard band is indeed the highest-ranked eligible packet.

For the objective of maximizing bandwidth utilization, we select the head
packet with the largest eligible size greedily, called PAS G(S). PAS G(S) tends
to select fewer large packets to fill the remaining band, so the waste on IFG
can be reduced. Note that PAS G(S) cannot be completely shared with the most
mainstream scheduling algorithms because it needs to maintain the packet size
information separately.

4 Hardware designs

Considering the complexity, we focus on the hardware designs based on PAS G(P)
and PAS G(S) in this section. For the standard TSN scheduler, we propose two
structures to select the highest-ranked eligible item based on BCT and PIFO.
However, these two structures both have limits on scalability, resulting in poor
performance for a programmable TSN scheduler. Instead, we elaborate a new
MPIFO structure based on the algorithm PAS G(M).

4.1 Hardware designs for the standard TSN scheduler

Whatever we apply the PAS G(P) or PAS G(S) algorithms, their essential behav-
ior is the same, i.e., to select the highest-ranked packet with a size constraint:
the rank is either priority or size, while the size constraint is that the packet size

10 Chuwen Zhang et al.

should always be smaller than the remaining band. Therefore, we can apply the
same structure for both of them methodologically.

For cases without size constraints, the above two algorithms’ behavior will be-
come selecting the highest-ranked packet. Under this case, two classes of hardware-
based work can be referred. The first class traverses all items to get the highest-
ranked one upon each dequeue operation. As the fact that finding the maximum
among N items takes at least N − 1 pairwise comparisons, doing parallel compar-
isons by a mean of tree structure such as the BCT, should be the most efficient and
economic way. The other class is based on the priority queue, which maintains a
sorted list of items by their ranks, so the dequeue operation only needs to pop out
the head item, though the enqueue operation needs to insert the item to a proper
place. The priority queue is an abstract data structure, and many hardware-based
designs have been proposed in academia: PIFO (Sivaraman et al. 2016), calendar
queues (Brown 1988), shift registers (Moon et al. 2000; Chandra and Sinnen 2010),
systolic arrays (Moon et al. (2000)), and binary heaps (Bhagwan and Lin 2000;
Ioannou and Katevenis 2007; Huang et al. 2014). Next, the constraint adds a layer
of filter fundamentally, which filters out packets that do not meet the constraint
and limits the search space to eligible packets only.

In this subsection, we modify the two typical structures, i.e., BCT and PIFO, to
realize the PAS G enabled standard TSN scheduler. Before explaining the detailed
hardware design, we first need to recall and clarify the requirements of the standard
TSN scheduler as shown in Fig. 2: 1) a small number of (e.g., eight) physical FIFO
queues with different priorities, 2) TAS to control the availability of some queues
according to the GCL, and 3) SPS to select the queue with the highest priority
among all the ‘non-empty’ queues upon each dequeue operation.

4.1.1 BCT-based structure

A BCT is a tree structure for extracting the maximum or minimum value among
N inputs, which consists of log(N) levels of parallel comparators, assuming N is a
power of 2 for simplicity. We use the PAS G(S)-oriented BCT-based scheduler as
an example in Fig. 4 to explain how it works. The scheduler does not need to store
all the entire packets but only the extracted scheduling items, each of which has
three fields, queue index, priority, and size, to represent its corresponding queue,
the priority of this queue, and the size of the queue’s head packet, respectively.
The scheduling items first go through a filter layer to filter out ineligible ones that
do not meet the size constraint. The passed items will update their corresponding
input units in the BCT, each of which has two fields, queue index and rank. For
example, the rank field of a unit represents the packet size in Fig. 4. Moreover, we
only need to change the ranks of input units and can share the BCT structure,
when exchanging the scheduling algorithm between PAS and SPS.

To simplify the hardware complexity, the number of input units should be fixed,
e.g., four in the Fig. 4. We set the items that are filtered out by the constraint or
corresponding to ‘empty’ queues with rank zero and others with positive ranks. For
the example in Fig. 4, the rank of a packet is equal to its queue indexes plus one.
In this way, the ineligible item will not appear at the output of the BCT as long
as there exists an eligible packet. This setting is also applied to the PIFO-based
and MPIFO structures.

Title Suppressed Due to Excessive Length 11

rank = size

packet
queues
(FIFO)

queue 3
0B Pri: 0

queue 2
800B Pri: 3

queue 1
1000B Pri: 2

queue 0
1500B Pri: 1

queue rank
3 0 2 800 1 1000 0 0

2 800 1 1000

1 1000

Size < 1200?

items

BCT-based
Scheduler

units

Send feedback to queue #1

Pre-filter

queue #3 queue #2 queue #0queue #1

Fig. 4: An example of a BCT-based scheduler for the PAS G(S) algorithm.

Finally, once getting an output unit from the BCT, we will operate its corre-
sponding packet queue to dequeue its head, and deliver the information of the new
head to the scheduler if the queue is not ‘empty’. Besides, whenever an ‘empty’
packet queue becomes ‘non-empty’, we will also deliver the information of its head
to the scheduler.

4.1.2 PIFO-based structure

The core of PIFO is a sorted list which inserts an item to an appropriate position
according to its rank and removes the head item accordingly. The sorted list is
based on the shift registers (Moon et al. 2000). Each enqueue operation need three
steps: 1) compare the new item with all items in the list in parallel; 2) get the
new item’s position by encoding the comparation result; 3) according to the new
item’s position, shift the items in the list forward, backward or stay in place, and
insert the new item in parallel. The dequeue operation is much more simple, which
dequeues the head item and shift the other items forward in parallel. In contrast,
BCT takes log(N) steps of parallel comparison for each dequeue operation, which
takes more time as N grows.

The BCT-based structure needs a pre-filter to filer out ineligible items. On
the contrary, PIFO-based structure needs a post-filter and a priority encoder to
select the highest-ranked eligible item, as shown in the SPS S(P)-oriented PIFO-
based structure in Fig. 5. The PIFO queue is a list sorted by packet priorities for
PAS S(P). The post-filter consists of a layer of parallel comparators. The items
whose sizes are smaller than the remaining band will be encoded to 1, and 0 other-
wise. After this filter layer, we get a bitmap, where ‘1’ denotes the corresponding
item is eligible. Next, the priority encoder encodes the bitmap to an index of the
item whose ‘1’ is nearest to the head. For the example in Fig. 5, the bitmap 0111

12 Chuwen Zhang et al.

packet
queues
(FIFO)

Size < 1200?

queue 2
1500B Pri: 3

queue 1
1000B Pri: 2

queue 0
800B Pri: 1

0
0 Pri: 0

1500 1000 800 0

0 1 1 1

Priority encoder

Send feedback to queue #1

PIFO-based Scheduler

Post-filter

PIFO
rank=pri

queue #3 queue #2 queue #0queue #1

Fig. 5: An example of a PIFO-based scheduler for PAS G(P) algorithm.

is encoded to 1. Then we can figure out which PIFO queue needs to dequeue its
head packet from the queue index field.

The PAS G(P)-oriented PIFO-based structure can be used throughout if the
main scheduling algorithms always dequeue the highest-priority packet, such as
SPS. However, PAS G(S)-oriented one needs an isolated PIFO queue to maintain
the packet size order, which is not cost-effective. In view of this, we will only eval-
uate the performance of PAS G(P)-oriented PIFO-based scheduler in Section 5.

4.2 Hardware design for the programmable TSN scheduler

With the development of TSN, a more diverse and harsh application requirements
have emerged, so the design of a packet scheduler needs to consider the following
potential features for the programmable TSN scheduler: 1) the scheduling should
be programmable to flexibly support a variety of scheduling algorithms such as
WFQ, with no change to the existing hardware structure; 2) the scheduling should
be fine-grained to satisfy the demand of different flows, e.g., storing packets in per-
flow queues instead of per-class queues; 3) the scheduling should be scalable with
the increasing number of scheduling items.

Sivaraman et al. (2016) show that a large number of scheduling algorithms
can be expressed by the PIFO primitive. In other words, both the BCT-based
and the PIFO-based structures are programmable if we adopt a specified rank
distributor. Furthermore, replacing the eight per-class queues with hundreds of
per-flow queues and distributing rank per flow, they can also provide fine-grained
scheduling. However, the biggest bastion for them is the scalability. For BCT-based
structure, each dequeue operation costs the time of log(N) levels of comparisons,
which takes more time as the number of scheduling items increases. The bottleneck

Title Suppressed Due to Excessive Length 13

Small-scaled BCT-based structure

PIFO #0
[64, 255]

PIFO #1
[256, 511]

PIFO #2
[512, 1023]

PIFO #3
[1024, 1518]

queue 99
100B Pri:2

...

queue 16
300B Pri:21

...

queue 3
800B Pri:10

...

queue 5
1500B Pri:99

...

queue 2
1000B Pri:90

Size < 1200
Dequeue the head of PIFO #1 for PAS_G(P,4)

or the head of PIFO #2 for PAS_G(S,4);

MPIFO scheduler

Post-Dequeue
function

queue #0

...
Per-flow FIFO queues

queue #1

queue #2 Scheduling
 states

Packet
on wire

Pre-enqueue
function

Pri size

Select
PIFO

Fig. 6: An example of an MPIFO scheduler for PAS G(4).

of PIFO-based structure is the priority encoder, which does not scale with the input
number increasing and causes large latency in the extreme case. Applying pipeline
technology cannot solve this problem, as the remaining size may be changed after
several stages. Therefore, we strive to design a structure that can do dequeue
operation at a stable and fast speed regardless of the number of per-flow packets
queues.

4.2.1 Structure overview

The original intention of PIFO is to make the dequeue operation as fast as possi-
ble, but the post-filter layer and the priority encoder in the PIFO-based structure
surely increase the dequeue complexity. If we can only dequeue a head packet like
PIFO, the dequeue operation will be much simplified. Based on this idea, we pro-
pose the PAS G(M) algorithm. PAS G(M) divides the items into M sorted lists,
e.g., PIFO queues, according to their size fields. When dequeuing, the scheduler
selects the highest-ranked eligible item among the M heads of these lists. In this
way, the scale of the problem is converted from N (the number of per-flow queues)
to M (the number of size-based PIFO queues), reducing the complexity signifi-
cantly. Note that PAS G(M) provides a feasible solution, but can not guarantee
the same performance of PAS G, which will be analyzed later. Particularly, we
define PAS G(P, M) to select the highest-priority eligible item and PAS G(S, M)
to select the largest eligible packet.

Then we design the MPIFO structure to realize PAS G(M), which sets M
PIFO queues and a small-scaled BCT-based structure. Fig. 6 shows an MPIFO
scheduler with four PIFO queues whose packet sizes are in range of 64 to 255
bytes, 256 to 511 bytes, 512 to 1023 bytes and 1024 to 1518 bytes, as the length of
IEEE 802.3 Ethernet frame is from 64 to 1518 bytes. This grouping is merely an
example, and the actual grouping should be based on the distribution of packet
sizes in the network to balance the item number in each PIFO queue. Besides,
to support the programmability for various scheduling algorithms, each enqueued
and dequeued item should go through the pre-enqueue function and post-dequeue

14 Chuwen Zhang et al.

function, respectively. The pre-enqueue and the post-dequeue functions work to-
gether to provide a rank according to the configured scheduling algorithms and
maintain the scheduling states, referring to (Shrivastav 2019) for details. Next, we
will detail the dequeue and enqueue operation of the MPIFO scheduler as follows.

Dequeue: whenever the output link is idle, the heads of the four PIFO queues
will be pushed into the internal BCT-based structure. The rest operations are the
same as the BCT-based structure, except that the post-dequeue function needs the
information of the dequeued item to update the scheduling states. As the number
of PIFO queues is small, the tree depth can be much shallow and even we can do
M(M − 1) comparisons in parallel for a small scale, e.g., four items. Hence, the
dequeue latency is greatly reduced to realize a high scheduling rate as shown in
Section 5.

Enqueue: when a ‘non-empty’ per-flow queue receives a call from the post-dequeue
function or an ‘empty’ per-flow queue becomes ‘non-empty’, the information of its
flow id and head packet size will be sent to the MPIFO scheduler. The pre-enqueue
function will first extract these information and create a new scheduling item with
an appropriate rank, Then, it pushes the item to a PIFO queue according to its
size, which can be realized by a layer of parallel comparators and an encoder. Note
that this encoder is not a priority encoder and thus can work fast.

4.2.2 Mistake analysis

We define a mistake as a dismatched scheduling decision of PAS G(M) to that of
PAS G , i.e., the dequeued packet may not be the eligible one with the largest size
or highest priority. Mistakes are caused by the head blocking problem. We take
the example in Fig. 6 to explain it, assuming the remaining size is 1200 bytes.
For selecting the highest-priority eligible item, the head item in the PIFO #3 is
oversized, so it blocks the second item which is assumed to be the highest-priority
eligible one. As a result, PAS G(S,M) will select the head packet of PIFO #1,
and thus cause a mistake. On the other hand, for the mistake of selecting the
largest eligible item, the head blocking problem causes that the second item of
the PIFO #3 cannot be selected as well. However, the mistake ratio compared
with PAS G(P) is much smaller than that compared with PAS G(S), as the PIFO
queues are sorted by the priority as its rank.

We should keep in mind that a mistake just shows that the dequeued packet
does not obey PAS G but cannot assert it is even a worse selection, as PAS G is
also a local optimal solution. Nevertheless, we still want to figure out the expected
mistake ratio and do some analysis as follows.

Let a random variable S denote packet size which is an integer in the range
of [Smin, Smax]; a random variable R, the remaining band which is in the range
of [0, Smax]; and a constant M , the number of PIFO queues indexed from 0 to
(M − 1). For the i-th PIFO queue, its size coverage is denoted by [Ln, Un]. The
mapping from a remaining size r to the queue index i is denoted by i = f(r) ∈
{0, 1, ...,M−1}. Assume the size of each item in i-th queue obeys independent and

identical distribution denoted by Si, where Pr{Si = s} = Pr{S=s}
Pr{Ln≤S≤Un} . Besides,

we assume all the PIFO queues have more than one packet.

Title Suppressed Due to Excessive Length 15

Let Mp denote the mistake ratio of the PAS G(P, M) algorithm. The head of
each PIFO queue must store the highest priority in its own queue and we assume
all the heads have the highest priority with equal probability. Hence, PAS G(G,
M) will cause a mistake when 1) the highest-priority eligible packet appears in the

f(r)-th PIFO queue, whose probability is
Pr{Lf(r)≤S≤r}

Pr{S≤r} ; and 2) the head packet

of the f(r)-th PIFO is larger than r, whose size is larger than r. Hence, we can
get the expectation of Mp as the following equation,

E{Mp} =
Smax∑

r=Smin

Pr{R = r}
Pr{Lf(r) ≤ S ≤ r}

Pr{S ≤ r} Pr{Sf(r) > r}. (4)

If S and R obey the uniform distribution, we can obtain,

E{Mp} =
1

Smax

Smax∑
r=Smin

r − Lf(r) + 1

r − Smin + 1

Uf(r) − r

Uf(r) − Lf(r) + 1
. (5)

Then, assume the range of Smin to Smax can be divided into M groups with
interval T evenly, an approximation of Eq. (5) will be

E{Mp} ≈
1

Smax

M−1∑
i=0

T−1∑
t=1

t(T − t)

T (iT + t)
, (6)

which decreases as T decreases. Therefore, more groups can help reduce the mis-
take ratio.

Let Ms denote the mistake ratio of PAS G(S, M). For a given remaining size
r, PAS G(S, M) can obtain the correct item only if the head of the f(r)-th PIFO
queue is the largest eligible one in its queue, or all items in queue f(r) are not
eligible but the head of the queue f(r)− 1 is the largest one in its queue. Assume
the priority and size are independent mutually and the item number in queue i is
cn, so if there is at least an eligible item in the f(r)-th queue, the largest eligible
item appears at the head with the probability of 1

ci
. On the other hand, if all items

are not eligible in the f(r)-th queue, the largest eligible item will be in the queue
f(r) − 1 and appears at the head with the probability of 1

cf(r)−1
. Hence, we can

get the expectation of Ms as follows,

E{Ms} = 1−
Smax∑

r=Smin

Pr{R = r}
[

1− q

cf(r)
+

q

cf(r)−1

]
, (7)

where q = (Pr{Sf(r) > r})cf(r) . If each queue has the same item number c, we have

an approximation E{Ms} ≈ 1 − 1
c . Even though PAS G(M) has low probability

to get the largest eligible item, an average large eligible packet is still encouraging
to reduce the waste of the guard band. Furthermore, for a given r, we can get the
size expectation of the output item So as follows,

E{So|r} =
r∑

s=Lf(r)

Pr{Sf(r) = s}s + Pr{Sf(r) > r}
Uf(r)−1∑

s=Lf(r)−1

Pr{Sf(r)−1 = s}s.

(8)

16 Chuwen Zhang et al.

Table 1: Frequency distribution of packet sizes

Size interval [84, 138) [138, 1438) [1438, 1538) 1538

Probability 0.45 0.15 0.2 0.2

If S obeys the uniform distribution, we can obtain,

E{So|r} =
r∑

s=l

s

u− l + 1
+

u− r

u− l + 1

u′∑
s=l′

s

u′ − l′ + 1

=
(r + l)(r − l + 1) + (u′ + l′)(u− r)

2(u− l + 1)
,

(9)

where u = Uf(r), l = Lf(r), u
′ = Uf(r)−1, and l = Lf(r)−1. Eq. (9) shows the

expectation is a quadratic function of r and it increases in the interval [l, u]. Par-
ticularly, if r = u, i.e., the items in the queue f(u) are all eligible, the expectation
will get the maximum (u + l)/2.

5 Evaluation

In this section, we first do simulations to compare the band utilization and priority
density in the remaining band of the PAS family and the improved Qbv. Then we
implement the BCT-based, PIFO-based, and MPIFO designs with System Ver-
ilog (Wikipedia 2020) and the synthesis results show that MPIFO has highest
performance as the number of flow queues grows.

5.1 Simulation

5.1.1 Setup

Data set: we set 255 per-flow queues indexed for 0 to 254 in our simulations. For
simplicity, each queue stores four packets with the same priority equal to their
queue indexes plus one, i.e., 1 to 255. The packet size on the wire is in the range of
84 to 1538, which is composed of the 802.3 Ethernet frame size (64 to 1518 bytes),
Preamble (1 byte), Start Frame Delimiter (SFD, 7 bytes) and IFG (12 bytes).
Next, the packet size obeys two typical distributions: 1) uniform distribution, i.e.,
Pr{S = s} = 1/1455, where s = 84, 85, ..., 1538, and 2) frequency distribution
(Caida 2019), as shown in Table 1.

Metrics: first, we explicitly define remaining band utilization as the proportion
of the remaining band used to send packets (excluding IFG), and priority density
as the priority sum divided by the original remaining size. Then, we compare
the remaining band utilization of algorithms PAS I(S), PAS G(S), PAS G(S, M),
where M = 2, 4, 8, 32, and the improved Qbv and the priority density of algorithms
PAS I(P), PAS G(P/S), PAS G(P), PAS G(P, M), where M = 2, 4, 8, 32, and the
improved Qbv. The values of the improved Qbv is from the theoretical results, and
each value of other algorithms is an average of 1000 tests to reduce the impact
from random numbers.

Title Suppressed Due to Excessive Length 17

500 1000 1500
Original remaining band (Byte))

0
10
20
30
40
50
60
70
80
90

100
Ba

nd
 u

til
iza

tio
n

(%
)

PAS_I(S)
PAS_G(S)
PAS_G(S,2)
PAS_G(S,4)

PAS_G(S,8)
PAS_G(S,32)
Improved Qbv

(a) Uniform distribution

500 1000 1500
Original remaining band (Byte))

0
10
20
30
40
50
60
70
80
90

100

Ba
nd

 u
til

iza
tio

n
(%

)

PAS_I(S)
PAS_G(S)
PAS_G(S,2)
PAS_G(S,4)

PAS_G(S,8)
PAS_G(S,32)
Improved Qbv

(b) Frequency distribution

Fig. 7: Remaining band utilization of the algorithms on different packet-size dis-
tributions.

5.2 Remaining band utilization

Fig. 7 shows the remaining band utilization on uniform and frequency distribution
of packet size. We can see all the algorithms have an upward trend and PAS I(S)
has the highest utilization closely followed by the second highest one PAS G(S).
The larger M is, the smaller gap between PAS G(S) and PAS G(S, M) can be
achieved, i.e., increasing the PIFO queue number indeed improves the band uti-
lization of MPIFO. However, using M PIFO queues also means M times more logic
resources, so the number of M should not be too large. Considering the utilization
of PAS G(S,4) is high enough, we set the default MPIFO with four PIFO queues.
Besides, as the original remaining band grows, the gap between PAS G(S) and
PAS G(S, M) narrows as well, due to more selections out of the M PIFO queues.
The improved Qbv has the worst performance, especially when the remaining size
is not large. This is because its band utilization heavily relies on whether the first
selected highest-priority packet can fit the band. On the other hand, the biggest
difference between uniform and frequency distribution is that algorithms on the
frequency distribution can achieve higher utilization when the original remaining
band is small. This is because nearly half of packets on the wire for the frequency
distribution are less than 138 bytes.

5.3 Priority density

Fig. 8 shows the priority density on uniform and frequency distribution. PAS I(P)
still exhibits the highest utilization, closely followed by PAS G(P/S). The lines of
improved Qbv are still at the bottom, much lower than the others. Similarly, as
M increase, PAS G(S, M) is closer to PAS G(P), but still has a gap to PAS I(P)
and PAS G(P/S), which means the priority greedy algorithms perform worse than
the priority density greedy algorithms. However, as priority greedy algorithms are
easier to be implemented in hardware, we still use them to prototype our BCT-
based, PIFO-based, and MPIFO schedulers. Specially, PAS G(S,M) presents a
trend of rising first and then falling, which is caused by the following two aspects.
1) When the original remaining band is small, the dequeue selection is limited to

18 Chuwen Zhang et al.

500 1000 1500
Original remaining band (Byte))

0.0

0.5

1.0

1.5

2.0

2.5

Pr
io

rit
y

de
ns

ity

PAS_I(P)
PAS_G(P)
PAS_G(P,2)
PAS_G(P,4)

PAS_G(P,8)
PAS_G(P,32)
PAS_G(P/S)
Improved Qbv

(a) Uniform distribution

500 1000 1500
Original remaining band (Byte))

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
io

rit
y

de
ns

ity

PAS_I(P)
PAS_G(P)
PAS_G(P,2)
PAS_G(P,4)

PAS_G(P,8)
PAS_G(P,32)
PAS_G(P/S)
Improved Qbv

(b) Frequency distribution

Fig. 8: Priority density of the algorithms on different packet-size distributions.

8 16 32 64 128 256 512 1024
of scheduling items

0

50

100

150

Ra
te

 (M
pp

s)

BCT-based
PIFO-based
MPIFO

Fig. 9: Scheduling rate of BCT-based, PIFO-based, and MPIFO schedulers as
scheduling items increase.

several PIFO queues, so the eligible packets with higher priority are more likely
to be blocked. Since a larger M means a larger range for selection under a given
remaining band, PAS G(S,32) grows faster than others. 2) PAS G(S, M) is more
likely to select a large packet with a low priority density, so the curves cannot
maintain a linear growth and all drops with the remaining band increasing. The
default PAS G(P,4) can provide a sufficient priority density and is easy to be
implemented.

5.4 Implementation

We prototype the BCT-based, PIFO-based, and MPIFO scheduler on a Xilinx
Virtex-7 (Xilinx 2020) FPGA comprising 712K Look-Up Table (LUT) elements
and 1424K Flip-flops. Our prototypes are written in System Verilog comprising
∼400, ∼400, and ∼700 LOCs for BCT-based, PIFO-based, and MPIFO scheduler,
respectively. We evaluate the performance of our prototypes across two metrics:
scheduling rate and resource occupation. To serve as the baseline, we synthesize the
three implementations atop our FPGA by Xilinx Vivado. We use 8-bit priority and
12-bit size fields, and the MPIFO scheduler is equipped with four PIFO queues.

Title Suppressed Due to Excessive Length 19

8 16 32 64 128 256 512 1024
of scheduling items

0

50

100

150

200

LU
T

el
em

en
ts

 (K
)

BCT-based
PIFO-based
MPIFO
MPIFO^

(a) LUT consumption

8 16 32 64 128 256 512 1024
of scheduling items

0

50

100

150

200

LU
T

el
em

en
ts

 (K
)

BCT-based
PIFO-based
MPIFO
MPIFO^

(b) Flip-fop consumption

Fig. 10: Resource consumption of BCT-based, PIFO-based, MPIFO, and MPIFOˆ
schedulers as the number of scheduling items increases.

5.4.1 Scheduling rate

We evaluate the scheduling rate below which the scheduler can do the schedul-
ing decisions normally, i.e., the enqueue and dequeue operations. Scheduling rate
is a significant indicator for a scheduler design. Fast scheduling rate means the
scheduler can adapt to high line rate. Although pipeline technology can achieve
high throughput in many scenarios, it cannot be used in PAS. This is because
the remaining band may have changed from the first stage to the last one in the
pipeline.

Fig. 9 shows the scheduling rate for the three scheduler designs. We can see
that when the item scale is small, the complexities of their dequeue operations
are all relatively low, so they all have high scheduling rate. PIFO-based scheduler
even is the best due to its fast enqueue and dequeue operation. However, as the
item scale expands, though they all show a downward trend, MPIFO scheduler
outperforms PIFO-based one and achieves more than 100 M packet per second
(Mpps) scheduling rate when the number of items is 1024, which proves it is better
design of the high-speed programmable TSN scheduler. The dequeue operation
of MPIFO scheduler only involves parallel comparisons among the four heads,
so its dequeue rate keeps stable. Its scheduling rate is limited by its enqueue
operation, whose encoding step costs more time as the item scale expands. PIFO-
based scheduler suffers a lot with the scale increasing because its dequeue operation
needs a priority encoder, which is not suitable for large-scaled inputs. aCT-based
scheduler sees a slow downwards trend as the delay of its dequeue operation is
linear with the number of BCT levels. We find that the scheduling rate of BCT-
based scheduler at 1024 items is a little higher than that at 512 items. We cannot
figure out the specific reason yet but we speculate it is caused by the synthesis
settings.

5.4.2 Resource occupation

The logic resource consumption on LUT and Flip-flop is a key to the feasibility
of a design in practice. As shown in Fig. 10, we count the LUT and Flip-flop
consumption of different schedulers with the number of scheduling items increases.
MPIFOˆ specifies a MPIFO scheduler that sacrifices packet loss in exchange for
low resource consumption. For example, a MPIFOˆ maintains 4x256 PIFO queues

20 Chuwen Zhang et al.

for 1024 scheduling items, in contrast to 4x1024 queues in the default MPIFO.
Fig. 10a and Fig. 10b show the same trends that the MPIFO scheduler explodes
with the scale expanding, while the BCT-based scheduler keeps the smallest. If we
allow a low packet loss ratio, adopting MPIFOˆ takes the second smallest resources
and is relatively salable as the scheduling items increase.

6 Related work

We will mainly focus on two aspects: 1) the general packet scheduling algorithms,
and 2) the current TSN standards involved in packet scheduling.

6.1 General packet scheduling algorithms

Many algorithms have been proposed in the long history of packet scheduling
algorithms. Broadly speaking, they determine when and in what order for incoming
packets to be transmitted, which can be divided into two classes: work-conserving
and non-work conserving algorithms. The former will never let the output be link
idle as long as there are packets in queue. Some typical work-conserving scheduling
algorithms are Deficit Round Robin (DDR) (Shreedhar and Varghese 1996), WFQ
(Demers et al. 1989), Worst-case Fair Weighted Fair Queuing (WF2Q) (Bennett
and Zhang 1996), and Stochastic Fairness Queuing (SFQ) (McKenney 1990). On
the other hand, non-work conserving scheduling algorithms, whose representative
is Token Bucket (Wikipedia 2020), will let the link idle if they think the packets in
the queue are not eligible for transmission, so they actually express traffic shaping
primitives (Saeed et al. 2017; Radhakrishnan et al. 2014).

Since the advent of SDN, the programmability of data plane has been remark-
ably developed, e.g., the language P4 (Bosshart et al. 2014) and reprogrammable
hardware Barefoot Tofino (Barefoot Networks 2017). Achieving the programmable
packet scheduling algorithm is the last mile to the complete data-plane pro-
grammability. Although no universal structure can express all the scheduling algo-
rithms, which are proved by Mittal et al. (2016), researchers strive to find a more
general structure to cover more scheduling algorithms. Sivaraman et al. (2016) pro-
pose a PIFO structure to realize many rank-based scheduling algorithms at line
rate, and Shrivastav (2019) further proposes a PIEO structure to realize schedul-
ing algorithms that can be abstracted as dequeuing the highest-ranked eligible
packet. Nevertheless, they are both far away to be implemented in commercial
switches due to they need a new ASIC for the scheduling module. To utilize the
current programmable hardware switches, SP-PIFO (Alcoz et al. 2020) seeks to
realize approximate performance of PIFO with multiple FIFO queues and SPS by
adaptively controlling packets entering different queues.

6.2 Packet scheduling algorithms in TSN

Back to current TSN standards, there are two typical non-work conserving al-
gorithms, namely TAS and CBS, and one work-conserving algorithm SPS. Most
research work focuses on TAS as it is one of the most prominent features in TSN.

Title Suppressed Due to Excessive Length 21

First, TAS relies on an efficient GCL to divide the time windows. Generating a
GCL is proved to be an NP-hard problem by Steiner (2010). To obtain a feasible
solution for a certain scheduled traffic pattern, many algorithms based on SMT
are proposed (Steiner 2010; Craciunas et al. 2016; Oliver et al. 2018). SMT are
designed to determine the satisfiability of the first-order logical formulas against
certain background theories like linear integer arithmetic or bit-vectors. There are
many constraints in these algorithms, such as the end-to-end latency and hop-to-
hop latency, and the biggest difference lies in the specific constraints. Particularly,
the flow isolation constraint is that if a frame of a given flow has entered a queue, no
frame of another flow may arrive at this queue until all frames of the previous flow
have been fully dispatched, which maintains the determinacy of packet forwarding.
From another point of view, as these algorithms are based on limited constraints,
it remains to be seen whether they perform well in actual TSNs.

The guard band problem has also attracted attentions from the academia.
Dürr and Nayak (2016) notice that if multiple time windows are seamlessly back-
to-back, only one guard band is needed, so they aggregate as many time windows
as possible. This scheme is effective when the end-to-end latency is not strict
so that the time window has much space to move forward and backward. Apart
form this, Heilmann and Fohler (2019) try to reduce the guard band size like PAS.
They set two FIFO queues for small and large packets, respectively, for each packet
class. The GCL controls the gates for the large packets’ queues to be closed when
the remaining band is small enough. This scheme can improve the bandwidth
utilization, but it has the following drawbacks: 1) it needs an extra physical queue
for each class; 2) it is not fine-grained except increasing the queue number; 3) the
GCL size will double and be more complex. On the contrary, our BCT-based and
PIFO based structures for standard TSN scheduler need no extra physical queue,
and MPIFO is more resource-efficient.

The critical issue of TAS is that it needs a synchronized clock with nanosecond
precision. Although it can be realized by IEEE 802.1AS, it is still much complex
and expensive for commercial switches. Hence, some work explores how to en-
sure the end-to-end latency without a strict synchronized clock. Li et al. (2019)
solve this problem by keeping the scheduled flows on two disjoint paths with TAS
and best-effort method. Their experimental results show that the latency is much
smaller thanks to the assistance of the best-effort path, and thus the strict tim-
ing requirement of TAS can be relaxed. An alternative for TAS is to use the
Asynchronous Traffic Shaping (ATS), which does not need a strict timing syn-
chronization. The fundamental research of ATS is the Urgency Based Scheduler
(UBS) (Specht and Samii 2016), which achieves the Quality of Service (QoS) by
asynchronous sub-shapers in each switch. Each switch possesses a number of FIFO
queues for packets form different upstream switches and priorities and schedules
urgent traffic first. As the scheduling decision is based on the local clock, UBS is
easy to be implemented, but the end-to-end jitter may be amplified.

With the introduction of the standards and schemes for TSN, theoretical work
is also proceeding steadily. Traditional probability theory focuses on the expecta-
tion of latency, but TSN cares more about whether the latency requirement is met
in the worst cases. Network Calculus (Le Boudec and Thiran 2001) is a theory for
analyzing the bound of latency, queue length, and so on, which is suitable for TSN.
Therefore, Zhao et al. (2018) use Network Calculus to calculate the worst-case la-

22 Chuwen Zhang et al.

tency that the scheduled traffic may experience along a path with configured time
windows.

7 Conclusion

The guard band is born with the TAS in IEEE std 802.1Qbv, and it brings non-
negligible bandwidth waste especially when the window number is large and link
speed is not too high. We propose an algorithm family of PAS to utilize the guard
band efficiently, which is based on the classic PCKP. Considering the hardware
implementation, we focus on designs on PAS G, and propose BCT-based and
PIFO-based structures for a standard TSN scheduler with eight packet queues per
port. The programmable TSN scheduler needs hundreds of per-flow packet queues
to realize fine-grained custom scheduling algorithms, but these two structures do
not scale well as the queue number increases. Therefore, we further propose the
MPIFO structure for optimizing scheduling rate. In the future, we will focus on
improving the MPIFO structure with less resource consumption and no packet
drop.

References

Alcoz AG, Dietmüller A, Vanbever L (2020) SPPIFO: Approximating push-in
first-out behaviors using strict-priority queues. In: USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI)

Barefoot Networks (2017) Barefoot Tofino. URL http://barefootnetworks.com/
Bennett JC, Zhang H (1996) WF2Q: worst-case fair weighted fair queueing. In:

Proceedings of IEEE INFOCOM’96. Conference on Computer Communications,
IEEE, vol 1, pp 120–128

Bhagwan R, Lin B (2000) Fast and scalable priority queue architecture for high-
speed network switches. In: Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), IEEE, vol 2, pp 538–547

Bosshart P, Daly D, Gibb G, Izzard M, McKeown N, Rexford J, Schlesinger C,
Talayco D, Vahdat A, Varghese G, et al. (2014) P4: Programming protocol-
independent packet processors. ACM Special Interest Group on Data Commu-
nication (SIGCOMM) Computer Communication Review 44(3):87–95

Brown R (1988) Calendar queues: a fast 0(1) priority queue implementation for the
simulation event set problem. Communications of The ACM 31(10):1220–1227

Caida (2019) Packet size distribution comparison between Internet
links in 1998 and 2008. URL https://www.caida.org/research/traffic-
analysis/pktsizedistribution/graphs.xml

Chandra R, Sinnen O (2010) Improving application performance with hardware
data structures. In: Proceeding of the IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), IEEE, pp 1–4

Craciunas SS, Oliver RS, Chmeĺık M, Steiner W (2016) Scheduling real-time com-
munication in IEEE 802.1 Qbv time sensitive networks. In: Proceedings of the
ACM International Conference on Real-Time Networks and Systems, ACM, pp
183–192

Title Suppressed Due to Excessive Length 23

Demers A, Keshav S, Shenker S (1989) Analysis and simulation of a fair queue-
ing algorithm. In: the ACM Special Interest Group on Data Communication
(SIGCOMM) Computer Communication Review, ACM, vol 19, pp 1–12

Dürr F, Nayak NG (2016) No-wait packet scheduling for IEEE time-sensitive net-
works (TSN). In: Proceedings of the ACM International Conference on Real-
Time Networks and Systems, ACM, pp 203–212

Heilmann F, Fohler G (2019) Size-based queuing: an approach to improve band-
width utilization in TSN networks. ACM Special Interest Group on Embedded
Systems Review 16(1):9–14

Huang M, Lim K, Cong J (2014) A scalable, high-performance customized pri-
ority queue. In: Proceedings of the IEEE International Conference on Field
Programmable Logic and Applications (FPL), IEEE, pp 1–4

International Organization for Standardization (2003) ISO 11898: Road vehicles –
Controller area network (CAN). ISO

International Organization for Standardization (2013) ISO 17458: Road vehicles -
FlexRay communications system (1st Edition). ISO

Ioannou A, Katevenis MG (2007) Pipelined heap (priority queue) management
for advanced scheduling in high-speed networks. IEEE/ACM Transactions on
Networking (ToN) 15(2):450–461

Jansen D, Buttner H (2004) Real-time Ethernet: the EtherCAT solution. Com-
puting and Control Engineering 15(1):16–21

Kopetz H, Bauer G (2003) The time-triggered architecture. Proceedings of the
IEEE 91(1):112–126

Kopetz H, Ademaj A, Grillinger P, Steinhammer K (2005) The time-triggered
Ethernet (TTE) design. In: Proceedings of the IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC), IEEE, pp 22–
33

LAN/MAN Standards Committee (2009) IEEE Standard for Local and metropoli-
tan area networks—Virtual Bridged Local Area Networks Amendment 12: For-
warding and Queuing Enhancements for Time-Sensitive Streams. IEEE Std pp
1–71

LAN/MAN Standards Committee (2011) Ieee standard for local and metropolitan
area networks—timing and synchronization for time-sensitive applications in
bridged local area networks. IEEE Std pp 1–274

LAN/MAN Standards Committee (2016a) IEEE Standard for Ethernet Amend-
ment 5: Specification and Management Parameters for Interspersing Express
Traffic. IEEE Std pp 1–58

LAN/MAN Standards Committee (2016b) IEEE Standard for Local and
metropolitan area networks – Bridges and Bridged Networks – Amendment 26:
Frame Preemption. IEEE Std pp 1–52

LAN/MAN Standards Committee (2016c) IEEE Standard for Local and
metropolitan area networks–Bridges and Bridged Networks - Amendment 25:
Enhancements for Scheduled Traffic. IEEE Std pp 1–57

LAN/MAN Standards Committee (2017) IEEE Standard for Local and metropoli-
tan area networks–Bridges and Bridged Networks–Amendment 28: Per-Stream
Filtering and Policing. IEEE Std pp 1–65

Le Boudec JY, Thiran P (2001) Network calculus: a theory of deterministic queu-
ing systems for the internet, vol 2050. Springer Science & Business Media

24 Chuwen Zhang et al.

Li Z, Wan H, Zhao B, Deng Y, Gu M (2019) Dynamically optimizing end-to-
end latency for time-triggered networks. In: Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM) Workshop on Networking
for Emerging Applications and Technologies, ACM, pp 36–42

McKenney PE (1990) Stochastic fairness queueing. In: Proceedings. IEEE INFO-
COM’90: Ninth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies@ m The Multiple Facets of Integration, IEEE, pp 733–740

Meyer P, Steinbach T, Korf F, Schmidt TC (2013) Extending IEEE 802.1 AVB
with time-triggered scheduling: A simulation study of the coexistence of syn-
chronous and asynchronous traffic. In: Proceedings of the IEEE Vehicular Net-
working Conference, IEEE, pp 47–54

Mittal R, Agarwal R, Ratnasamy S, Shenker S (2016) Universal packet scheduling.
In: USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pp 501–521

Moon S, Rexford J, Shin KG (2000) Scalable hardware priority queue architec-
tures for high-speed packet switches. IEEE Transactions on Computers (TOC)
49(11):1215–1227

Oliver RS, Craciunas SS, Steiner W (2018) IEEE 802.1 Qbv gate control list
synthesis using array theory encoding. In: Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), IEEE, pp
13–24

Pedreiras P, Gai P, Almeida L, Buttazzo GC (2005) FTT-Ethernet: A flexible
real-time communication protocol that supports dynamic QoS management on
Ethernet-based systems. IEEE Transactions on industrial informatics 1(3):162–
172

Radhakrishnan S, Geng Y, Jeyakumar V, Kabbani A, Porter G, Vahdat A (2014)
SENIC: Scalable NIC for end-host rate limiting. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pp 475–488

Saeed A, Dukkipati N, Valancius V, Contavalli C, Vahdat A, et al. (2017) Carousel:
Scalable traffic shaping at end hosts. In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, ACM, pp 404–417

Shreedhar M, Varghese G (1996) Efficient fair queuing using deficit round-robin.
IEEE/ACM Transactions on networking (3):375–385

Shrivastav V (2019) Fast, scalable, and programmable packet scheduler in hard-
ware. In: Proceedings of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), ACM, pp 367–379

Sivaraman A, Subramanian S, Alizadeh M, Chole S, Chuang ST, Agrawal A,
Balakrishnan H, Edsall T, Katti S, McKeown N (2016) Programmable packet
scheduling at line rate. In: Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM), ACM, pp 44–57

Specht J, Samii S (2016) Urgency-based scheduler for time-sensitive switched Eth-
ernet networks. In: Proceedings of the IEEE Euromicro Conference on Real-
Time Systems (ECRTS), IEEE, pp 75–85

Steiner W (2010) An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks. In: Proceedings of the Real-Time Systems Sym-
posium, IEEE, pp 375–384

Wikipedia (2020) System Verilog. URL https://en.wikipedia.org/wiki/SystemVerilog
Wikipedia (2020) Wikipedia. Token Bucket. URL https://en.wikipedia.org

/wiki/Token bucket

Title Suppressed Due to Excessive Length 25

Xilinx (2020) Virtex-7. URL https://www.xilinx.com/products/silicon-
devices/fpga/virtex-7.html

Zhao L, Pop P, Craciunas SS (2018) Worst-case latency analysis for IEEE 802.1
Qbv time sensitive networks using network calculus. IEEE Access 6:41803–41815

