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Abstract—We study the Low Rank Phase Retrieval (LRPR)
problem defined as follows: recover an n x ¢ matrix X * of rank r
from a different and independent set of m phaseless (magnitude-
only) linear projections of each of its columns. To be precise, we
need to recover X* from y; := |A;'zi|,k = 1,2,...,q when
the measurement matrices A; are mutually independent. Here
Yy, is an m length vector, A;, is an n X m matrix, and ' denotes
matrix transpose. The question is when can we solve LRPR with
m < n? A reliable solution can enable fast and low-cost phaseless
dynamic imaging, e.g., Fourier ptychographic imaging of live
biological specimens. In this work, we develop the first provably
correct approach for solving this LRPR problem. Our proposed
algorithm, Alternating Minimization for Low-Rank Phase Re-
trieval (AltMinLowRaP), is an AltMin based solution and hence
is also provably fast (converges geometrically). Our guarantee
shows that AltMinLowRaP solves LRPR to ¢ accuracy, with high
probability, as long as mq > Cnr*log(1/¢), the matrices Ay
contain i.i.d. standard Gaussian entries, and the right singular
vectors of X ™ satisfy the incoherence assumption from matrix
completion literature. Here C is a numerical constant that only
depends on the condition number of X* and on its incoherence
parameter. Its time complexity is only C'mgnrlog?(1/e).

Since even the linear (with phase) version of the above problem
is not fully solved, the above result is also the first complete
solution and guarantee for the linear case. Finally, we also develop
a simple extension of our results for the dynamic LRPR setting.

I. INTRODUCTION

In recent years, there has been a resurgence of interest
in the classical phase retrieval (PR) problem [2], [3]. The
original PR problem involved recovering an n-length signal
x* from the magnitudes of its Discrete Fourier Transform
(DFT) coefficients. Its generalized version, studied in recent
literature, replaces DFT by inner products with any arbitrary
design vectors, a;. Thus, the goal is to recover * from y; :=
[{a;, x*)|, i =1,2,...,m. These are commonly referred to as
phaseless linear projections of *. While practical PR methods
have existed for a long time, e.g., see [2], [3], the focus of the
recent work has been on obtaining correctness guarantees for
these and newer algorithms. This line of work includes convex
relaxation methods [4], [5] as well as non-convex methods
[6]-[13]. It is easy to see that, without extra assumptions, PR
requires m > n. The best known guarantees — see [9] and
follow-up works — prove exact recovery with high probability
(whp) with order-optimal number of measurements/samples:
m = Cn; and with time complexity Cmnlog(1/e) that is
nearly linear in the problem size. Here and below, C' is reused
often to refer to a constant more than one. Most guarantees for
PR assume that a;’s are independent and identically distributed
(iid) standard Gaussian vectors. When this is assumed, we
refer to the PR problem as “standard PR”.

Part of this work appears in the proceedings of ICML 2019 [1].

A natural approach to reduce the sample complexity to
below n is to impose structure on the unknown signal(s). In
existing literature, with the exception of sparse PR which has
been extensively studied, e.g., [6], [14]-[18], there is little
other work on structured PR. Low rank is the other common
structure. This can be used in one of two ways. One is to
assume that the unknown signal/image, whose phaseless linear
projections are available, can be rearranged to form a low-
rank matrix. This would be valid only for very specific types
of images for which different image rows or columns look
similar, so that the entire image matrix can be modeled as low
rank. In general it is not a very practical model for images,
and this is probably why this setting has not been explored in
the literature. We do not consider this model here either.

A more practical, and commonly used, low-rank model
in biological applications [19], is for the dynamic imaging
setting. It assumes that a set, e.g., a time sequence, of
signals/images is generated from a lower dimensional subspace
of the ambient space. For our problem, we assume that we
have a set of m phaseless linear projections of each signal,
with a different set of measurement vectors used for each
signal. The question is can we jointly recover the signals
using an m < n and when? This setting was first studied
in our recent work [20] where we called it “Low-Rank PR”
(LRPR). It is a valid model whenever the set/sequence of
signals is sufficiently similar (correlated). A solution to LRPR
can enable fast and low-cost phaseless dynamic imaging of
live biological specimens, in vitro. See Sec. I-C and [21] for
a detailed motivation for studying LRPR.

A. Low Rank PR (LRPR) Problem Setting and Notation

We study the LRPR problem described above. This was
first introduced and briefly studied in [20] where we developed
two algorithms, evaluated them experimentally, and provided a
guarantee for the initialization step of one of them. The goal is
to to recover an n x ¢ matrix X* := [z}, @5, ..., %}, ..., T;],
of rank r, from measurements

yir = [(aer’, X )| = [aw, zi)|, i € [m],k € [q], (1)

when all the a;;’s are mutually independent. For proving
guarantees we assume also that they are iid standard Gaus-
sian and real-valued. Here and below the notation [m] :=
{1,2,...,m}, and ey, refers to the k-th column of I, (identity
matrix of size ¢ x ¢). We are interested in the low rank setting
when r < min(n, q).

By defining the m-length vector 1y =
Y16, Y2k, Ymi] and the n x m  matrix
A = la1k,G2k,...,Gn), and letting |z| denote
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Fig. 1: Recovering a video of a moving mouse (only approximately low-rank) from simulated coded diffraction pattern (CDP)
measurements. The images are shown at £ = 60, 78. We describe the experiment in Sec. IV-B.

element-wise magnitude of a vector, the above measurement
model can also be rewritten as

yr =AYz, k=1,2,...,q 2)

where / denotes vector or matrix transpose.

The requirement that the measurement vectors used for
imaging different x;’s be different and independent is what
allows us to show that m < n suffices. To understand this
point in a simple fashion, consider the r = 1 setting and
suppose that x; = x] (all columns are equal). We would
then have mg iid Gaussian measurements of ] and hence
mq > Cn would suffice [9]. If ¢ = n, this means just
a constant number of measurements m per column (signal)
suffices. For » > 1 but small, we will show that we can extend
this idea to show that, when g = n (or is larger), the required
value of m depends only on the value of r and not on n. On
the other hand, if a;; = a; for all k, then, in the above r = 1
example, only the first m measurements are useful (the others
are just repeats of these). Thus we will still need m > Cn in
this case. This a;; = a; case, and its linear version, is what
has been studied extensively in the literature [22], [23]. In this
case, m needs to be at least (n + q)r.

Let X* °Y° U*X*B* denote its singular value decom-
position (SVD) so that U* € R™*", B* € R4, and
¥* € R"™" is a diagonal matrix. Observe that this notation
is a little non-standard, if the SVD was U*S*V* we are
letting B* := V*'. Thus, columns of U* and rows of B*
are orthonormal. We use o}, ..., 0. to denote the maximum,
minimum singular values of X* and k = 0% .. /ol . to denote
its condition number. Finally, we define

B* .= X*B*.
We use the above non-standard notation for SVD because our
solution approach will recover columns of B*, N;;, individually
by solving an r-dimensional standard PR problem (it is more
intuitive to talk about recovery of column vectors than of
rows). With the above notation, the QR decomposition of an
estimate of B*, denoted B, will be written as B QR RpB
with B being an r X ¢ matrix with orthonormal rows (or

equivalently B’ ok B'(Rp)").

Right Incoherence. Observe that we have global mea-
surements of each column, but not of the entire matrix.
Thus, in order to correctly recover X* with small m, we
need an assumption that allows for correct “interpolation”
across the rows. One way to ensure this is to borrow the
right incoherence (incoherence or denseness of right singular
vectors) assumption from matrix completion literature [24],

[25]. In our notation, this means that we need to assume that

r
bi|? < p?- 3
e [0 < s°7 ©)
with ¢ > 1 being a constant. Clearly, this implies that
* % * r * r X :
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for each k. If we assume & is a constant, up to constant factors,
(4) also implies (3). Thus, up to constant factors, requiring
right incoherence is the same as requiring that the maximum
energy of any signal xj is within constant factors of the
average.

1) Notation: We use ||.|| to denote the l5-norm of a vector
or the induced 2-norm matrix and ||.|| ¢ to denote the Frobenius
norm. We use lgiatement tO denote the indicator function; it
takes the value one if statement is true and is zero otherwise.
A tall matrix with orthonormal columns is referred to as a
“basis matrix”. For two basis matrices U7, Us, we define the
subspace error (distance) as

sinO(Uy, Us) = |(I — U, UDUs)|.

This measures the sine of the largest principal angle between
the two subspaces. We often use terms like “estimate U™ when
the goal is to really estimate its column span, Span(U). The
phase-invariant distance is defined as

dist(z*, &) := min |a* — e_j9§:||

oc[—m,m)

For our guarantees, we work with real valued vectors and
matrices, and in this case this simplifies to dist(x*, &) =
min(||e* — &||, |&* + &||). Define the corresponding distance

between two matrices as

q
mat-dist( X, X*)? := Z dist?(x}, &1).
k=1



TABLE I: Comparing our result (first result for LRPR) with the first and the best results for (bounded time) non-convex algorithms for the
three related problems to ours - LRMC, PR, Sparse PR. Here “best” refers to best sample complexity. We treat «, i as constants. X ™ is an
n X q rank-r matrix; ™ is an n-length vector signal; and m is the number of samples needed per signal (per column of X *). LRPR, Sparse
PR, and Standard PR results assume iid Gaussian measurements, while LRMC results assume iid Bernoulli model on observed entries.

Problem Global Assumptions Sample Complexity Time Complexity per signal
Measurements? (with m = its lower bound)
LRPR (first) No right incoherence, m > C’%r4 log(1/e), Cn(n/q)r®log3(1/e)
(our work) X * has rank r m > C max(r,logn,logq)
LRMC (first) [25] No left & right incoherence, m > C%r‘“’ log(1/e) C(n/q)r%®lognlog?(1/e)
X * has rank r
LRMC (best) [26] No left & right incoherence m > 021002 n1og2(1/€) | C(n/q)r? log™ log?(1/e)
X * has rank r
Sparse PR (first) [6] Yes x* is s-sparse in canonical basis, | m > Cs?lognlog(1/e) Cns®lognlog?(1/e)
min nonzero entry lower bounded
Sparse PR (best) [17], [18] Yes * is s-sparse in canonical basis | m > Cs?logn Cns?lognlog(1/e)
Standard PR (first) [6] Yes None m > Cnlog® nlog(1/e) CnZlog3 nlog(1/e)
Standard PR (best) [9], [10] | Yes None m > Cn Cn?log(1/e)

We reuse the letters ¢, C' to denote different numerical
constants in each use, with the convention C' > 1 and ¢ < 1.

B. Our Contributions and their Significance and Novelty

This work provides the first provably correct solution,
AltMinLowRaP (Alternating Minimization for Low Rank PR),
for Low Rank PR. AltMinLowRaP is a fast alternating mini-
mization (AltMin) based solution approach with a carefully
designed spectral initialization. We can prove that AltMin-
LowRaP converges geometrically to an e-accurate solution
as long as (i) right incoherence stated in (3) holds, and (ii)
the total number of available measurements, mg, is at least a
constant (that depends on &, p1) times nrlog(1/e). Its time
complexity is order mgnrlog®(1/€), but if we replace mgq by
its lowest allowed value, then the time complexity becomes
O(n?r5log®(1/e€)). If ¢ = n (or is larger), ignoring log factors,
this implies that only about r* (or lesser) samples per signal
suffice when using AltMinLowRaP. Moreover, when using
these many samples, the time complexity per signal is only
about Cnr®. On the other hand, standard PR approaches (to
recover each signal = individually) necessarily need m > C'n
samples, and order Cn? time, per signal [9], [10]. In the
regime of small r, e.g., » = logn, our result provides a
significant sample, and time, complexity improvement over
standard PR. Moreover, in this regime, our sample complexity
is also only a little worse than its order optimal value of
(n+q)r.We demonstate the practical power of AltMinLowRaP
in Fig. 1, Fig. 2, and the other experiments described later.

The key insight that helps obtain the above reduction in
sample complexity is the following observation: for both the
initialization and the update steps for U™, conditioned on X*,
we have access to mg mutually independent measurements.
These are not identically distributed (because the different
b;’s could have different distributions), however, we can
carefully use the right incoherence assumption to show that
the distributions are ‘“‘similar enough” so that concentration
inequalities can be applied jointly for all the mgq samples.

We also briefly study the dynamic setting, Phaseless Subspace
Tracking, which allows the underlying signal subspace to
change with time in a piecewise constant fashion.

To our best knowledge, even the linear version of our
problem — recover X* from y; := Ay'z},k = 1,2,...,¢
— does not have any provably correct solutions (as we explain
in Sec. I-D). Thus, our work also provides the first provable
solution for this linear version. Our result implies that, even
in this case, we can recover X" to € accuracy using only
m = C(n/q)r*log(1/¢) samples per column, and can do this
using an alternating minimization solution. What has been
studied extensively is the Ay = A version of both LRPR
and the above linear version [22], [23]. These are completely
different problems as explained earlier in Sec. I-A.

1) Significance: The other somewhat related problem to
ours, Sparse PR, is actually quite different. This is because
it involves recovery from global measurements of the sparse
vector (each measurement depends on the entire unknown
sparse vector), where as, in our case, the measurements are
not global for the entire matrix X*. It is well known that,
when studying iterative (non-convex) solutions to problems,
the global measurements’ setting is easier to study, and one can
obtain better sample complexity guarantees for it, as compared
to its non-global counterpart [27]. For example, we can com-
pare guarantees for iterative low rank matrix sensing (LRMS)
from iid Gaussian linear projections with those for low rank
matrix completion (LRMC) when assuming the iid Bernoulli
model on observed entries [24], [25], [28]. LRMS can be
solved using an iterative algorithm with nearly order optimal
number of measurements, e.g., the approach of [28] needs
mq > C(n + q)rlogmax(n, ¢), while even the best iterative
LRMC guarantee (under the iid Bernoulli measurement model)
[26] needs mq > C(n + ¢)r? log?(ng) log?(1/e).

In this sense, the problem closest to ours that is extensively
studied is LRMC. Of course LRMC involves recovery from
completely local but linear measurements of X *, while LRPR
involves recovery from nonlinear but column-wise global
measurements. For this reason, for LRPR, in the regime of



q significantly larger than n, the required sample complexity
m is very small. As an example, suppose that ¢ > nr*, then
we only need m > Cmax(r,logq,log(1/¢)). But this does
not happen for LRMC.

We provide a comparison with the first and the best guar-
antees for non-convex (iterative) solutions for LRMC, sparse
PR, and standard PR in Table I. These and other works are
discussed in detail in Sec. I-D. As can be seen from the table,
the first guarantee for iterative solutions to many problems
is often sub-optimal (either needs more samples or more
assumptions) compared to the best one that appeared later.
Moreover, in the practical regime of r being order logn or
smaller, our LRPR sample complexity is as good or better
than that of the best LRMC guarantee.

2) Novelty: In the absence of relevant existing work for
even solving the linear version of our problem, except for
a convex solution for the a;; = a; case (which is a sig-
nificantly different problem), developing and analyzing our
approach was not a straightforward extension of existing ideas.
For example, the AltMinLowRaP algorithm itself is not just
alternating standard PR over U and B. The PR problem
for recovering U™ given an estimate of B* is significantly
different from standard PR; see Sec. II-A1 below.

For the above reasons, it is also not possible to directly
modify proof techniques from existing work. We borrow some
ideas from LRMC [25] and standard PR results [9], [10].
But the major difference is that concentration bounds need to
applied differently than for either of these problems. (i) The
LRMC guarantees use results for Bernoulli random variables
(which is a much more well-developed literature that has also
been studied in the context of random graphs). In our setting,
the random variables are not Bernoulli and not even bounded.
Hence we rely on the sub-exponential Bernstein inequality
[29, Theorem 2.8.1] and the fact that the product of two sub-
Gaussian random variables is a sub-exponential [29, Lemma
2.7.7]. A second difference is that LRMC results do not need
to deal with the phase error term. (ii) Standard PR results do
have a phase error term and do deal with unbounded random
variables using results from [29]. But they do not have to
prove concentration using a set of mgq measurements that are
not identically distributed and, on first glance, may not even be
“similar enough” to get a useful result. The “similarity” that is
needed is of the following form: the maximum sub-exponential
norm of any of the mq random variables being summed is not
much larger than its average value. For each term, we have
to carefully exploit the right incoherence assumption to show
that this holds.

C. Motivation for studying Low Rank PR (LRPR)

Low rank is a commonly used model in many dynamic
biomedical imaging applications since (i) such images cannot
change too much from one frame to the next, and (ii) these
images are taken in controlled settings and so there are no
fast changing foreground occlusions to worry about!. For

'Occlusions by moving objects or persons in the foreground are a common
feature in computer vision problems such as surveillance or autonomous
vehicles etc; for such videos a sparse + low-rank model is more appropriate

example, it is an important part of many practically useful
fast compressive dynamic MRI solutions, e.g., see [19], and
follow-up works [30], [31]%. In a similar fashion, a low
sample complexity solution to LRPR can enable fast or low-
cost dynamic phaseless imaging in applications such as solar
imaging when the sun’s surface properties gradually change
over time [32], or Fourier ptychographic imaging of live
biological specimens and other dynamic scenes [21], [33].
Suppose the scene resolution is n and the total number of
captured frames is ¢. If the dynamics is approximated to be
linear and slow changing, with most of the change being
explained by r linearly independent factors, then the matrix
formed by stacking the vectorized image frames next to each
other can be modeled as a rank-r matrix plus small modeling
error. In typical settings, » < min(n, ¢) is a valid assumption,
making the unknown images’ matrix approximately low-rank.

In all the above applications, measurement acquisition is
either expensive or slow. For example, Fourier ptychography
is a technique for super-resolution in which each of a set of
low resolution cameras measures the magnitude of a different
band-pass filtered version of the target high-resolution image.
To get enough measurements per image, one either needs many
cameras (expensive), or one needs to move a single camera to
different locations to acquire the different bands [33]. This can
make the acquisition process slow. By exploiting the low-rank
assumption, it is possible to get an accurate reconstruction
with using fewer total measurements (fewer cameras in this
example). This has been demonstrated experimentally for
dynamic Fourier ptychography in our recent work [21] and
its follow-up [34]. Moreover, it is indeed practically valid
to assume that a different measurement matrix Ay is used
for each different signal/image. In the ptychography example,
this would correspond to using a different randomly selected
subset of cameras at different times k. Modified cameras can
also be designed that save power by switching off a different
set of pixels at different time instants. We have explored both
settings in [21].

Another practical point that should be mentioned is that,
often, in practice, a very small value of rank r suffices. For
example, we used r = 20 in all our experiments on image
sequences with n = 32400 in [21]. In follow-up work [34], we
show that just r = 5 suffices for the same datasets, as long as
a “modeling error correction step™ is applied to the output of
AltMinLowRaP.

Lastly, in comparison to sparsity or structured sparsity
priors, the low rank prior is a significantly more flexible
one since it does not require knowledge of the dictionary or
basis in which the signal is sufficiently sparse. In Table III,
we demonstrate this via a simple experiment. We compare
AltMinLowRaP with the most recent provable sparse PR algo-
rithm [18], CoOPRAM, applied with assuming wavelet sparsity

2These follow-up works exploit both low-rank of the entire sequence and
wavelet sparsity of each image to further reduce the number of measurements
needed in practice. This is the so-called “sparse and low-rank” model which
is very different from sparse+low-rank model where the sparse component
models occlusions by foreground moving objects.

3This step applies a few iterations of any standard PR approach column-
wise to the output of AltMinLowRaP, in order to recover some of the modeling
error in the low-rank assumption.



(which is a generic choice for any piecewise smooth image,
but is not necessarily the best choice for the particular image).
As can be seen, AltMinLowRaP has significantly superior
performance not just for the real image sequence, but also
for its deliberately sparsified version. The sparsified sequence
had sparsity level s =~ 0.1n ~ 100 and we provided CoPRAM
with this ground truth. AltMinLowRaP used just » = 15
for all three results and still had much lower reconstruction
error than CoPRAM. Details of this experiment are provided
in Sec. IV-B. Moreover, low-rank also includes certain types
of dynamic sparsity models (those with fixed of very small
changes in support over time) as special cases.

D. Review of Related Work

1) Linear version of our problem: Compressive PCA:
While one would think that the linear (with phase) version of
our problem would been extensively studied, this is not true.
There have been a few algorithmic solutions for this problem
in prior work [35], [36], and attempts to prove some facts
theoretically. Follow-up work consists of an Asilomar 2014
paper [37] that solves the general PCA problem for any (not
necessarily low rank) matrix X *, but does not discuss recovery
of X*. We explain these in detail in Sec. II-C.

2) Our measurement model, but with same set of m mea-
surement vectors used for all signals, and its linear version:
The covariance sketching problem, e.g., see [23], assumes
that measurements satisfying (1), but with a;; = a;, are
available. One aggregates these over k to get y; := Y, Yir =
a,(>, iz )a; = a;X*X* a;. This aggregation is what
ensures that the memory complexity of storing the measure-
ments is order m and not mg (which is what we need).
Also, the aggregated y; is a function of X*X*'/q only in
the a;; = a; setting, otherwise it is a meaningless quantity.
Assuming random zero mean iid signals z}, X*X*'/q is the
empirical covariance matrix of a signal. The question is can we
recover X *X*'/q from the scalar sketches y;,7 = 1,2,...m
with using m much smaller than nq, when X™* is low rank
(or has other structure)? When X™ is rank r, the result of
[23] proves that m of order (n + ¢)r suffices to estimate the
empirical covariance from the aggregated measurements y; if
one solves an appropriately defined nuclear norm minimization
problem. For solving LRPR, we need a much smaller m than
this. The reason is we assume independent a;;’s for different
k, and we assume we have access to each individual y;.

The linear version of the above problem, but with random
noise added, is considered in Corollary 3 of [22] and in the
remark immediately below it. In our notation, its measurement
model can be written as y;; = (a;e;’, X*) + w,;, where wj
is iid zero mean Gaussian noise with variance 2. This result
(specialized to the exact low rank case) shows that, whp, a
nuclear norm minimization based solution will recover an es-
timate X of X* that satisfies || X *— X||2 < C v?r(n+q)/m.
In this paper, the focus is on using the low rank property
to achieve noise robustness. If the low rank property was
not used, and one attempted to recover the columns indi-
vidually, the recovery error bound would scale as v?ng/m
which is much larger. This paper also studies other settings

of recovering an approximately low rank matrix from linear
measurements.

3) Tangentially related work: Some other tangentially re-
lated work includes: (i) computing the approximate rank r
approximation of any matrix (need not be low rank) from its
random sketches [38], [39] (sketched SVD); (ii) compressed
covariance estimation using different sketching matrices for
each data vector, but without the low-rank assumption [40];
and (iii) a generalization of low-rank covariance sketching
[41]: this attempts to recover an n X r matrix U* from
measurements y; = ||aiU*||? with r < n. When r = 1,
this is the standard PR problem. In the general case, this is
related to covariance sketching described above, but not to our
problem.

4) Linear low-rank matrix recovery — LRMS and LRMC:
Low-rank matrix recovery problems with linear measurements
that have been extensively studied can be split into two kinds -
those with “global measurements” and those without. “Global
measurements” means that each measurement contains infor-
mation about the entire structured quantity-of-interest, here
the low-rank matrix. Such problems are called “affine rank
minimization problems” or “low-rank matrix sensing” (LRMS)
and involve recovery of X* from y; = (A;, X*) with
A; being dense matrices (typically iid Gaussian), see for
example, [25], [28], [42]-[44]. More recent work studies the
case of A; = a;a;’ [45], [46]. Low-rank Matrix Completion
(LRMC) is the completely local measurements’ setting that
involves recovering X* from measurements of a randomly
(iid Bernoulli) selected subset of its entries [12], [24]-[26],
[47], [48] . Thus A;’s are one-sparse matrices.

A precursor to LRMS is compressive sensing (CS) of sparse
signals. This has the same property as LRMS, it involves
recovering a sparse x* from y; = (a;,x*) with a; being
dense (sub-)Gaussian random vectors. Similar to CS, even for
LRMS, it is typically possible to prove a simple (sparse or low-
rank) restricted isometry property which simplifies the rest of
the analysis. Our problem setting is different from, and more
difficult than, LRMS. There are no “global measurements” of
the entire X * and, moreover, the measurements’ phase/sign is
unknown. In this sense it is closer to LRMC than to LRMS.
But, unlike LRMC, we do have column-wise global measure-
ments. This is why, for our problem only incoherence of right
singular vectors suffices, while LRMC needs incoherence of
both left and right singular vectors.

In summary, the problem closest to ours that is well studied
is LRMC. The first iterative solution to LRMC was [47].
However, its guarantee does not bound the required number
of algorithm iterations, and thus its time complexity cannot be
bounded. The first iterative LRMC solution with bounded time
complexity, AltMinComplete [25], needs a sample complexity
of about Ck*p?nr*>log(1/e) and assumes sample-splitting
(a different independent set of measurements is used at each
iteration). The most recent work on LRMC [12] removes
the sample-splitting requirement and has bounded time com-
plexity, but its sample complexity was Cnr3log®(n). The
best iterative LRMC solution in terms of sample complexity
[26] needs Cnr?log? nlog? k/e samples but needs sample-
splitting. In the practical regime » € O(logn), clearly our



sample complexity for LRPR is comparable to the best LRMC
guarantee [26]. For all values of r, it is slightly better than
the first bounded time iterative LRMC solution [25]. Time-
wise the AltMin algorithm for LRMC is faster than our
AltMinLowRaP algorithm for LRPR (see Table I). This is
because the LS problem to be solved in each AltMin step
of LRMC involves a matrix with a large number of zeros but
this is not the case for LRPR.

5) Sparse PR: Sparse PR is a somewhat related problem
to ours since it involves PR with a different type of structural
assumption on the signals. But, as noted earlier, there is a
major difference. Sparse PR involves recovery from global
measurements of the entire sparse vector. It can be under-
stood as the phaseless version of Compressive Sensing with
random Gaussian measurements. The global measurements’
setting is typical easier than its non-global counterparts. Prov-
ably correct sparse PR approaches include convex relaxation
approaches such as ¢;-PhaseLift [14]; older combinatorial
methods [49]; and a series of fast iterative approaches: (i)
AltMinSparse [6], (ii) Sparse Truncated Amplitude Flow
(SPARTA) [16], (iii) Thresholded WF [17] and CoPRAM [18].
The first two fast nonconvex approaches — AltMinSparse and
SPARTA - needed to assume a lower bound on the minimum
nonzero entry of x. In follow-up work on Thresholded WF
and then on CoPRAM, this extra assumption was removed.
All four results need at least order s%logn measurements. A
summary of comparison of our work with LRMC, sparse PR,
and standard PR is provided in Table 1.

E. Organization

We present our algorithm and guarantee along with a
detailed discussion of the novelty of our proof techniques
in Sec. II given next. The overall proof is given in Sec. III.
The lemmas introduced in Sec. III are proved in Appendix A.
Numerical experiments are provided in Sec. IV. We develop
extensions to phaseless subspace tracking in Sec. V. We
conclude in Sec. VI with a detailed discussion of ongoing
and future work.

II. Low RANK PR: ALGORITHM AND GUARANTEE
A. AltMinLowRaP algorithm

The complete algorithm is summarized in Algorithm 1. We
explain its main idea next and then explain the details.
1) Main idea: AltMinLowRaP minimizes the following

q
> ol yk—1ASTB | (5)
k=1

alternatively over U, B with the constraint that U is a basis

matrix. To initialize, we develop a spectral initialization for

Span(U*) explained below. At a top level, the alternating

minimization (AltMin) can be understood as alternating PR:

minimize (5) over B keeping U fixed at its current value and
then vice versa. But there are important differences between
the two PR problems and how they can be solved.
« Given an estimate of Span(U™*), denoted U, and assum-
ing that U contains orthnormal columns and is indepen-
dent of the measurement vectors, the recovery of each i)z

is an r-dimensional “standard PR” problem. We can use
either of [9], [10] to solve it. The estimate that we get,
denoted by, is actually an estimate of gy := U'U*b}
which is a rotated version of B,’;. If smO(U,U*) <4,
thAen, by the noisy PR result of [10], we can see that
by — gill < Collbg]. )

o Given a previous estimate of B*, the update of U*,
or equivalently of its vectorized version, U},., is a
significantly non-standard PR problem for two reasons.
First, the “measurement vectors” for this PR problem are
no longer independent or identically distributed. Second,
and more importantly, by using the previous estimates
of U* and of b}, with accuracy level §, we can get an
estimate, &, = U Bk, of xj with the same accuracy level.
With this, we can also get an estimate of the phase/sign of
the measurements, ¢;; := phase(a;;’z}) with the same
accuracy level. As a result, obtaining a new estimate
of U;,.. becomes a much simpler Least Squares (LS)
problem rather than a PR problem.

o We stress here that an argument similar to the above does
not apply when recovering ~,”;’s. The reason is, with a
new estimate of U*, denoted U™, the previous estimate
of b} becomes useless: (i) it is close to U'U*bf, and not
to UT'U *~Z; and (ii) we only estimate the span of the
columns of U* accurately, so U or U™ are close to U*
(and hence to each other) only in the subspace error sin ©
(and not in spectral or Frobenius norm). As a result an
estimate of the form U+l3k cannot be shown to be close

* 4
to x..".

2) Details: A different way to understand AltMinLowRaP
is to split it into a three-way AltMin problem over U™, ~Z’s,
and ¢;;’s. This discussion assumes “sample-splitting”: a new
set of mq measurements is used for each update of U* and
another new set for each update of B*. Thus the total number
of measurements used is 2mgq times the number of iterations.

1) At each new iteration, we first obtain a new estimate
of U* using previous estimates of l~),";s and of the
measurements’ phases c;i’s. This is a LS problem, see
line 10 of Algorithm 1. The output of the LS step may
not have orthonormal columns; this is easily resolved by
a QR decomposition step after it (line 11).

2) Given a new estimate of U™*, we recover each l~7,";
by solving easy individual r-dimensional standard PR
problems. These are easy because m of order r suffices.

3) Given a good estimate of bj and of U*, we can
get an equally good estimate of x; and hence of the
signs/phases c;;’s.

Consider the PR step to update NZ’S. Observe that we can

rewrite Y as yix = |(au, U*b})| = [(U* ai),b})|. If

4To understand this point easily, suppose both U and U are perfect
estimates of U™ in terms of the subspaces they span. Suppose UT = U* Ry
and U = U*R; where R, ﬁg could be any rotation matrices. Then it is
easy to see that ||x} — UTby| > (U — UN)bg| — ||z} — Uby| >
|U*(R1 — Ra)by| — d||x ||. Since R1, Ra can be any rotation matrices,
e.g, one could Ahave Rs = —Rj; in this case, the above error is lower
bounded by 2||bg || — S|z |l > (2 — Cd)|lx}||. The last inequality follows
since [|bg|| = ||&|| and dist(x}, &) < Col|x} || by Lemma 3.2. The error
can thus be even higher than using a zero vector to estimate ;.



U* were known, we would have a noise-free standard PR
problem. If, at the ¢-the iteration, instead, we have a good
estimate of Span(U*), denoted U?, we can still recover the
BZ’S by solving a noisy version of the same problem. Due to
sample splitting, U is independent of a;;’s and so the design
vectors (U ay,) are still iid standard Gaussian. Any standard
PR solution can be used, here we use Reshaped Wirtinger
flow (RWF) [10]. The noise seen by RWF is proportional
to sin®(U',U*). The error in the output of RWF cannot
be lower than this value [10]. Thus, one needs to use just
enough iterations of RWF so that the error at the end of the
final RWF iteration is proportional to sin ©(U*, U*). Since
we prove geometric convergence of sin @(U*, U*), we can
let Trw F,; grow linearly with ¢.

3) Initialization: To obtain the initialization, we develop a
careful modification of the truncated spectral initialization idea
from [9], [20]. First assume that 7 is known. We initialize U
as the top r left singular vectors of the following matrix:

I e 2
Yy = mq Z Z yikaikagkl{yi <Oy a3 T ¥k}’ ©
k=1 i=1

where C'y is a constant that decides the truncation threshold
(which measurements are too large in magnitude compared
to the mean energy of the measurements and should be
discarded). For our guarantee, we set it equal to 9x2u2. In
practice a good value can be chosen by experimentation and
cross-validation or by using the ideas in [50]. An alternative
approach is to set it differently for each k as done in [20]. This
approach does not require knowledge of x or p, but it results
in a worse lower bound on just m. We discuss the effect of
this choice in Remark 2.2 and also in Sec. II-D3.

To understand why the above approach works, first con-
sider the above matrix with the indicator function removed.
Then it is not hard to see that its expected value equals
(1/q)[U*(Z**)U* + 2trace(X**)I], and so its span of top r
singular vectors equals Span(U*). Hence, with large enough
mq, the same should approximately hold for the original
matrix. However, when using Yy, with the indicator function
removed, a few “bad” measurements (those with very large
magnitude y? compared to their empirical mean over i, k)
can heavily bias its value. To mitigate this effect, and get a
good initialization in spite of it, we will need a larger value of
mgq. Using the indicator function helps truncate the summation
to only sum over the “good” measurements, and as a result a
smaller value of mq suffices. Mathematically, this helps ensure
that Y7; is close to a matrix that can be written as » _,, w;,w;x’
with w;;’s being iid sub-Gaussian vectors (instead of sub-
exponential in the case without truncation) [9].

We can also use Yy to correctly estimate » whp by using
the fact that, when m and ¢ are large, the gap between its r-th
and (r + 1)-th singular value is close to o, ?/q. With this
idea, we estimate r as given in the first step of Algorithm 1.
As explained in [20], another way of estimating the rank is to
set 7 = argmax;(0;(Yy) — 0j4+1(Yy)). This approach does
not require knowledge of any model parameters. Hence it is
easily applicable for real data (even without training samples
being available). However, it works under the assumption that

Algorithm 1 AltMin-LowRaP: Alt-Min for Phaseless Low
Rank Recovery

1: Parameters: T, Trw r, w.

2: Partition the my,, measurements and design vectors for
each x into one set for initialization and 27T disjoint sets
for the main loop.

3: Set 7 as the largest index j for which A;(Yy)—A, (Yy) >
w where Yy is in (6).

4: U° « U « top 7 singular vectors of Yy, defined in (6).
{Initialize U}

5: fort =0:T do

cbL o« RVVF({y,(f)7 U“A,(:)}7 Trwrt) for each

k = 1,2,---,q (RWF: Reshaped WF [I0]).
{Update B }
7. &« U} foreach k=1,2,--- ,q.

8¢ C) « Phase (A;CTH)’:%Z) foreach k =1,2,--- ,q .
{Update C}’s}

9:  Get B! by QR decomp: B? & Ry, B

0. Ut —
AT

11:  Get U™ by QR decomp: Ut & U R .
{Line 10, 11: Update U}

12: end for

argming Y7, [Cry!”

consecutive nonzero singular values of X* are close (do not
have significant gap), see [20, Corollary 3.7] for one precise
statement of this claim.

The main idea of the initialization step explained above
was first developed in our previous work [20], we explain
the difference later in Sec. II-D3. Also, as pointed out by
an anonymous reviewer, a matrix that is related to Yy was
used in earlier work [35], [36] to try to solve what can be
called the linear version of our problem; see Sec. II-C. We
were not aware of this work when developing our approach.
Our approach was developed independently in [20] as a
modification of the truncated spectral initialization idea from
PR literature [9] and then modified here.

We summarize the complete algorithm in Algorithm 1. As
is commonly done in existing literature, e.g., see [6], [25], in
order to obtain a provable guarantee in a simple fashion, we as-
sume sample-splitting. Since we prove geometric convergence
of the iterates, this increases the required sample complexity
by a factor of only log(1/¢). In our empirical evaluations, we
reuse the same set of measurements.

B. Guarantee

We have the following guarantee.

Theorem 2.1. Consider Algorithm 1. Assume that the y;i’s
satisfy (1) with a;i being iid standard Gaussian; and X* is
an n X q rank-r matrix that satisfies right-incoherence with pa-
rameter p. Set T := C'log(1/¢), Trwr, = C(logr+log k +
t(log(0.7)/log(1 — ¢))), w = 1.30%,,%/q, and Cy = 9r>p>

in (6). Assume that, for the initialization step and for each new
update, we use a new set of m measurements with m satisfying



mq > Cr2p* - nrt and m > Cmax(r,log q,logn). Then,

with probability (w.p.) at least 1 — Cn~10,
sin@O(U*, UT) < ¢, mar-dist( XT, X*) < ¢| X* | »

and dist(2}, ;) < €||lx}|| for each k. Moreover, after the
t-th iteration,

sinOU*,U") < 0.7"8nit,t = 0,1,2,...,T

where dinyy = ﬁ Similar bounds also hold on the error in
estimating x}s. The time complexity is mgnr log?(1/e).

Proof: We prove this in Sec. III.

Remark 2.2. If we are willing to tolerate another lower bound
on just m of m > Cr*, we can improve the dependence on &,
w to K82, This will require the following change: define Yy
as done in [20]: use 9> | y2 /m as the threshold inside the
indicator function. A second advantage of using this is that it
allows one to use C'y =9 instead of Cy that depends on k, pu.
The disadvantage is of course a more stringent lower bound
on m.

Remark 2.3. To understand the time complexity, observe that
the most expensive step at each iteration is the update of
U*. This requires solving an LS problem of recovering an nr
length vector from mq measurements. One can solve this by
conjugate gradient descent with a cost of mq-nr-log(1/e) [6].
This times the total number of iterations, T = C'log(1/e) gives
the complexity of the algorithm after initialization. Consider
the initialization step. Observe that the top r singular vectors
of Yu are also the top r singular vectors of an mq X n matrix
G whose columns are given by a;iy;i times the indicator
function used in (6). Thus Yy = GG'. Since computing the
r-SVD of an a X b matrix to 0 accuracy needs time of order
abrlog(1/8) [51], the SVD needed for initialization can be
computed in time Cmgq - n - r - log(1/diit) = Cmgnrlogr
where 6;nit s the error level to which the initialization needs
to be accurate. As explained later, Sinic = c/r suffices.

Theorem 2.1 implies that one can achieve geometric conver-
gence as long as the sample complexity miot := (27 + 1)m
satisfies myorq > Cr2puinrtlog(l/e) along with myo >
C max(r,log q,logn)log(1/€). The second lower bound is
very small and essentially redundant® except when ¢ > Cnr?.

Notice that the LRPR sample complexity is significantly
better than that of standard (unstructured) PR methods which
necessarily need m = C'n samples per signal (matrix column).
For fixed m and ¢, LRPR time complexity is about r times
worse than that of standard PR. But, if we use the smallest
value of mq needed by each method to get an e-accurate
estimate, AltMinLowRaP is actually faster when r is small:
its needs time of order n?r°log(1/e) while standard PR
methods need time of oder n?q. We demonstrate this fact
experimentally in Fig 2.

The minimum number of samples needed to recover an n.x q
matrix of rank r is (¢ + n)r. Thus, in general, our sample

SWe need this lower bound because we recover the ¢ l;;;’s individually by
solving a standard PR problem for each. This step works correctly w.p. at
least 1 — 2g exp(r — cm).

=l RWF (m = 4n)
-©- TWF (m = 3n)

i RWF (m = 3n)
©  TWF(m=4n)
~6~ AltMinLowRaP (m = n/4)

mat-dist( X *, X*)

50 100
running time (in sec.)

150 200 250

Fig. 2: Recovery error versus time-taken plot with time in seconds.
The “time” here is the time taken in seconds to reach a certain error
level. We generate this plot as explained in Sec. IV-A: plot the time
taken until end of iteration t on the x-axis and plot the error at the end
of iteration t on the y-axis. This figure illustrates the fact that if we
use the lowest allowed value of m for each approach, AltMinLowRaP
is in fact faster than RWF or TWE, for any given value of desired
recovery error. Notice that RWF and TWF fail for m = 3n, but work
for m = 4n. AltMinLowRaP works with just m = n/4 and with
this value of m it is roughly 5-times faster than both RWF (with
m = 4n) and TWF (with m = 4n) for any desired level of error e.

complexity is 72 log(1/€) times worse than its order-optimal
value. As noted earlier, in problem settings like ours, where the
measurements are not global, non-convex algorithms typically
do need more than the order-optimal number of samples. Since
neither our problem nor its linear version have any complete
provable guarantees for correct recovery in existing work,
LRMC is the closest problem to ours that has been extensively
studied and that also uses non-global measurements. Sparse
PR is the other somewhat related problem to ours but it is
easier because it involves recovery from global measurements
of a sparse vector. Table I provides a comparison of our
guarantee with the first and best results for both problems.
More details are in Sec. I-D. As can be seen from the table,
our sample complexity compares favorably with that for the
first non-convex solution for LRMC that has bounded time
complexity (bounds the required number of iterations) [25]. In
the practical regime of r being order logn, it even compares
with the best iterative LRMC result [26]. Also, the the first
guarantee for iterative solutions to both problems is sub-
optimal (needs more samples or more assumptions) compared
to the best one that appeared later.

We should reiterate that, (i) in many practical applications,
a small value of r suffices, e.g., we used r = 5 for images
with n = 32400 in [34] followed by a few iterations of model
error correction via standard PR; and (ii) low rank is a more
flexible model for dynamic imaging than sparsity. Also see
Tables II and III.



C. Linear version of our problem: Compressive PCA

Consider the linear (with phase) version of our problem —
recover a low rank matrix X *, or its column span, from

Yir = (@i, xy), 1=1,2,....om, k=1,2,...,q.

This problem can also be understood as “compressive PCA”
although compressive PCA typically allows X* to also be
only approximately low rank [35]-[37]. Clearly, both our
algorithm and our guarantee, Theorem 2.1, directly apply to
this simpler special case as long as the a;;’s are iid Gaussian.
Even when phases are available one could use the magnitude
measurements and solve our harder problem instead. We can
state the following corollary.

Corollary 2.4. Consider the problem of recovering an n X q
rank-r matrix X* from y;1, := (@, x5), i =1,2,...,m, k=
1,2,...,q. As long as right incoherence given in (3) holds,
one needs m > C%r‘1 log(1/€) to recover X* and its column
span to € accuracy (precisely defined in Theorem 2.1).

Thus our work also provides a simple and fast AltMin solu-
tion that provably converges geometrically to the compressive
PCA solution. Of course, when the phase/sign is known, a
simpler version of our algorithm should work and a better
guarantee should be obtainable. We discuss this further in the
conclusions’ section.

In terms of existing related work, [35] provided an ap-
proach for solving the above problem when X* is only
approximately low-rank. A follow-up paper [36] studied its
modification where a;;’s are sparse random vectors, e.g.,
“sparse Bernoulli” as they call it (each entry takes values
—1,0, 1 with probabilities 1/2s,1—1/s, 1/2s). Their proposed
approach is related to our initialization step: one computes an
estimate of the principal subspace of the column span of X*
by computing the top r singular vectors of a matrix that is
similar to Yy defined in (6). The difference is that the indicator
function is absent, and they also sum over terms of the form
aikyikyjkajk’ for all j # 4 which, in this linear setting,
have nonzero expected value. To be precise, they compute
the top r singular vectors of _, AyrAy'y:'. Denote such
a matrix by Yy modified- These works treat the columns xj
as random vectors and assume that they have nonzero mean
and provide a simple intuitive approach to estimate the mean.
This is of course only possible because the measurements are
linear, and cannot be done in our setting. Both works [35],
[36] show that the expected value of Yy modifieda 15 €qual to
c1I + o E[X*X*'/q], thus, the span of top t eigenvectors
of the expected value equals the desired subspace: principal
subspace of the population covariance, E[X*X*'/q]. They
also claim that as ¢ — 00, Yy modified cOnverges to its
expected value, but do not provide a rate of convergence.
Finally, they also upper bound the expected value of the
Frobenius norm of the error between Yy modifica and its
expected value for any value of ¢. Since this result also only
bounds the expected value of the error, it cannot be used to get
any useful information about the sample complexity m that is
required even for the initialization step. Moreover, of course
these works do not provide any guarantee on how to recover
the entire matrix X *.

A later work in Asilomar 2014 [37] attempted to solve a
generalization of the above problem: it provided an approach
(which is again somewhat related to only our initialization
step) and a guarantee for recovering the top r singular vectors
of a general matrix X *. Specialized to the exactly rank r case,

their result proves that, if each column of X* is bounded,

and if m > 1 max (%\/77/@, %7"252), one can obtain an e-
accurate recovery of the subspace Span(U*). This is a much
weaker result than ours: (i) its sample complexity m depends
on 1/e instead of on log(1/¢); and (ii) m needs to grow as
n/,/q instead of as n/q. The reason it is weaker of course, is
because they used a single step approach instead of an iterative

algorithm.

D. Discussion of Proof Techniques and Reason for Worse
Dependence on k,r

1) Proof techniques: Since even the linear version of our
problem has not been studied theoretically (except for a convex
solution for the a;;, = a; case which is a significantly different
problem), it is not possible to directly modify proof techniques
from existing work. We do borrow some ideas from LRMC
[25] or from standard PR results [9], [10]. But, as explained
earlier in Sec. I-B2, concentration bounds need to applied in
a significantly different way than for either of these problems.
The algebra for obtaining an expression that bounds the
subspace recovery error between U' and U* uses the overall
approach of [25]. After this, the details are different because,
for LRMC, the random variables are Bernoulli, while in our
case they are unbounded sub-Gaussian or sub-exponential.
Also, in LRPR, the sign/phase are unknown and this introduces
an extra term that needs to be bounded, see Term?2 defined
in Lemma 3.9. To bound this we first use Cauchy-Schwarz
to bound it by a product of two terms. One term is easy to
deal with. For the second term, we borrow a lemma from the
RWEF paper [10] on standard PR, but the rest of our approach
is different because of the need to prove concentration of a set
of mq measurements that are not identically distributed (we
need to carefully exploit right concerence to ensure that they
are “similar enough” to apply the concentration bounds for
sums of products of sub-Gaussians).

Our initialization step uses the truncated spectral initializa-
tion approach, first introduced for PR in [9]. The proof for
it also uses the overall approach of [9] but there are many
important differences in proving the concentration bounds (see
above). Our initialization is also significantly different from
that of LRMC or LRMS. In these cases, the phase is known
and thus one can come up with a matrix whose expected
value equals X *. This is not possible for LRPR. The matrix
whose top r singular vectors we compute has expected value
23, X*X*' 4+ B, 1. This point has important implications for
the sample complexity dependence on k,r, we discuss this
next.

2) Worse dependence on k, r: Our sample complexity is
comparable to that of [25] in terms of its dependence on n and
r. However, our result has a worse dependence on « because
we have access only to phaseless measurements. Because of
this, (1) our initialization step needs to use the matrix Yy



and find its top r eigenvectors in order to get an initial
estimate of the column span U*. For simplicity, consider Yy
without the truncation (without the indicator function). Then,
its expected value is U*X*2U*' 4 2trace(X*?)I. Notice that
the condition number of the first term of this matrix (the term
of interest) is 2. Because of this, when analyzing this step,
we end up with a dependence of mgq on %uinr? /62, (see
Claim 3.1 and Sec. III-B where this claim is proved). Here
dinit 18 the subspace error after the initialization step. Instead,
the expected value of the matrix used for initialization of
AltMinComplete [25] has expected value equal to X* and
thus its condition number is just . (2) A second issue is
as follows: because of magnitude-only measurements, we are
having to deal with phase error (sign error) in each LS step
that updates the estimate of U*. In bounding the phase error
term — Term?2 defined in Lemma 3.9 in Sec. III-C — we need to
use the Cauchy-Schwarz inequality; see proof of Lemma 3.12.
Because of this, when using the bound on Term2 from Lemma
3.12 to prove the main descent claim, Claim 3.4, we end up
with a bound of the form sin @(U, U*) < C6;\/6i\/Tk
where ¢; is the bound on the subspace error from the previous
step. Thus, to ensure that this (¢ + 1)-th step error is below
0.75; (decays geometrically), we need to set &; < c¢/(k?r)
for each iteration ¢, including the initialization. This is why
we need &y = ¢/(k2r). This, along with the fact that the
init step needs mq > k8u*nr? /62 .., implies that our sample
complexity per iteration becomes Ck'2pnr.

If somehow the Cauchy-Schwarz were not used, we would
only need mq > x'0pu*r3. Similarly, if we somehow did not
use the loose bound || X || < || X || for rank r matrices at a
few different places in the proof, we could remove another
factor of 7.

3) Our previous work: The only other work that also
studies our problem is our previous work [20]. This introduced
a series of heuristics and evaluated them experimentally. It
also provided a guarantee for the initialization step of one of
them. If we compare their main result (their Theorem 3.2)
with ours, it required the following lower bound on just m:
m > C max(y/n,r*)/€e? in addition to a lower bound on mq
that also depends on 1/€2. We remove the 1/¢> dependence
by analyzing the complete algorithm.

The first two requirements on just m are also significantly
relaxed in our work because we study a significantly modi-
fied version of our previous algorithm. The most important
algorithmic difference is that, both for initialization and for
later iterations, we recover B;;’s by solving the standard PR
problem either fully (or, at least for enough iterations so that
the error in recovering bj’s is of the same order as the subspace
error in the estimate of U*). This is what allows us to replace
the strong requirement m > Cy/n that [20] needed by just
m > Cr. This is also what enables us to get a complete
guarantee for the entire algorithm. The algorithm in [20] used
only one iteration of AltMinPhase [6] for obtaining a new
estimate of b;’s using a new estimate of U*. With this, it was
not possible to show that the recovery error of B,’;’s is of the
same order as that of U*.

Our approach for initializing U* is taken from [20], but
with a simple, but important, difference: the threshold in the

indicator function used for defining Y7y in (6) now takes an
average over all mg measurements (instead of over only the m
measurements of the k-th column in [20]). This simple change
allows us to use concentration over all the mg measurements
(and design vectors) in every step of deriving the initializa-
tion guarantee for U*. This is what helps us eliminate the
requirement of m > Cr* on just m that was needed in [20].

III. PROOF OF THEOREM 2.1

The proof borrows ideas from past works — [9], [20] (for
initialization of U™), [25] (the overall approach for getting a
subspace error bound given in the Appendix), [52] for careful
e-net arguments for unit Frobenius norm matrices, and [10]
(for recovering l;,t’s, and in one step of trying to show that
the phase error is small). We cite the relevant reference again
where it is used. In Sec. III-A next, we provide the two main
claims (one for initialization and one for the descent), the two
other auxiliary lemmas needed for proving Theorem 2.1 and
the theorem’s proof using these. In Sec. III-B, we give the
key lemmas needed for proving the initialization claim and
also prove it. The same is done for the descent claim in Sec.
III-C. Each of these subsections also provides the main ideas
(intuition) used for proving the lemmas. We then prove all but
one of the lemmas from this entire section in Appendix A.
Lemma 3.9 which uses the overall approach of [25] is proved
in Appendix B.

A. Overall lemmas and proof of Theorem 2.1

Claim 3.1 (Rank estimation and Initialization of U™*). Let

Ui = U Pick a §i,i < 0.25. Assume mq >
kK8utnr?/62... Set the rank estimation threshold w =
1.30;‘nin2 /q (we can actually set the multiplier to any number

between 0.025 and 1.5). Then, w.p. at least 1 — 6n=19, the
rank is correctly estimated and

sin © (Uinit, U™) < Oinit-
Define
gl = (U 'z} and €., := (I - U'U)x}. (7

It is easy to see that z; = U'gl + el and so y;, =
(U aix) g + aix’el,|. Thus, we have a noisy PR problem
to solve with the noise magnitude proportional to ||ef|| with
llet] < sinOU*,U*)||x;||. We use RWF to solve it. RWF

A

provides an estimate, bf, of gi. Observe that
gi. = (U z; = (U U")b;

is just a rotated version of bf. We show in the next lemma
that, whp, the error in the RWF estimate, dist(g,i,f)ff), is
proportional to sin ©(U?,U*); and the same is true for the
error in &, := U'bL.

Lemma 3.2 (Recovery of EZ’S). At iteration t, assume that
sin®(U*,U") < 6. Pick a 8, < 1. If m > Cr, and if we



set Trwrpy = Clogd,/log(l — ¢), then, w.p. at least 1 —
2q exp (—cégm), the following is true for eachk = 1,2,--- | q

dist (g5 b} ) <Ca by | = Carllai,

mat-dist(G', BY)<C68,|| B*||r = C8:|| X* ||,

dist(&},, z5) <(C + 1)6; || . (8)

with C' = 1+ 6y + 1.
Thus, if m > Cmax(r,logn,logq)/d2, then the above
bounds hold w.p. at least 1 —n =19

From above, b, is close to gj. (which is a rotated version of
bZ) for each k. We thus expect B!, or equivalently B?, to also
satisfy the incoherence assumption. We show next that this is

indeed true if §, is small enough. Recall that B? L REB.

Lemma 3.3 (Incoherence of B* implies incoherence
of BY. Pick a & < 1/10 and assume that
m > Cmax(r,logn,logq)/02. At iteration t, assume
that sin©(U*,U?) < §, with 5t < OB I B* is pu-

Cyrk’
incoherent, then, w.p. at least 1 — —10 Bt g [i-incoherent
with i = Ckp.

Finally, the next claim shows that the LS step to update U
reduces its error by a factor of 0.7 at each iteration. Its proof
relies on the previous two lemmas and the fact that &} close
to x; implies that, with large probability, the phases (signs)
of (a;,'®%) and (a;,'x}) are equal too.

Claim 3.4 (Descent Lemma). At iteration t, assume that
sin®(U*,U") < 6. If 6; < =55, mq > Cr3u*nr? /8?2 and
m > C'max(r,logn,log q) then w.p. at least 1 — Cn=19,

sin@(U™, U*) < 0.76; := ¢ 41.

Proof of Theorem 2.1. The sin ©(U*,U") bounds are an im-
mediate consequence of Claims 3.1 and 3.4, along with
setting dinie = c/k%r, & = 0.7 and 0, = 1/11.
With these, we require mq > Crk'?u*nr* (for initialization)
and mq > Cr"p’nr* (for the descent steps), along with
m > Cmax(r,logn,logq). The first lower bound on mgq
dominates. The other bounds of Theorem 2.1 follow by
Lemma 3.2. O

We prove Claims 3.1 and 3.4 next in Sec. III-B and III-C.
The proof of Lemmas 3.2 and 3.3 and of the lemmas needed
for proving these two claims is postponed to Appendix A.

B. Proof of Claim 3.1
0) (0)

In this section, we let a;;, := agk and y;1, =y, -

The overall idea for proving this is inspired by the approach
in [20] which itself borrows ideas from [9]. But there are many
important differences because we define Yy, differently in this
work, see (6): the threshold in the indicator function now takes
an average over all mq measurements (instead of over only the
m measurements of the k-th column as in [20]). This simple
change enables us to get a significantly improved result. It
lets us use concentration over all the mqg measurements (and
design vectors) in each of the three steps of the proof. This is
what helps eliminate the lower bound m > Cr* on just m that

was needed in [20]. However, this also means that the proofs
are much more involved (more quantities now vary with k).

Recall the expression for Yy from earlier, and define
matrices Y_(e1) and Y, (e1) as

1
Yy = — E a;p’ T Papal, 1 o on2e2
U mq | ik k:‘ ik {|aik/mz|z<9l Zik‘aik/mzP}

" mq
ik

Y_ (61) =

1

/%2 /
—E a;.' . |“a;pa;, 1 0122 (1—e .
mq 4 @'z} ["aias, {laun@y|2< 22200 x - 3.1

Define Y, (e1) similarly but with (1 —€;) replaced by (1+¢7)
in the indicator function. We will show that Y;; is sandwiched
between Y_ and Y. This, along with showing that Y_ and
Y, are close, will help us show that Y7; is close to Y_ and,
hence, also to its expected value. After this, use of the sinf
theorem will give us the desired bound.

Adapting the approach of [9], [20],

E[Y- {Zﬂl ot (Zﬂgknww) }(9)

where

ﬁik(Gl) = E[(€4 - 52)]1£2S(1*61)%]
Bik(el) = EKQIEQSO—&)%];
_ PR X
o dllzi]?

)

and ¢ is a scalar standard Gaussian random variable. The
expression for E [Y7 (e1)] is similar but with (1 —e€;) replaced
by (1 + €1) in the expression for ﬂfk, [3;},{3.

Observe that [E [Y_(e1)] can be simplified as

Zﬁz ellBil*)T

Thus, the span of its top r eigenvectors (same as singular
vectors) equals Span(U*). Hence, we can use the sin®©
theorem [53] stated below in a fashion similar to [20] (Sec
6).

E[Y_ ()] = é[U*(Z B biby U™ +
k

Lemma 3.5 (Davis-Kahan sin© theorem). Given two sym-
metric matrices D and D. Let U* (U) be the matrix of top
eigenvectors of D (D). If \.(D)— Ar+1(D)—|D—DJ > 0,
then

|D - D|
Ar(D) = A1 (D) —

sin@(U,U*) < —
ID — D

Using Lemma 3.5 with D = Y and D = E[Y_],

SiIl @(Uinit7 U*)
1Yy —

) E[Y(c1)]|
S NEF-(@) - A EY

—(e))]) -

1Yo = E[Y-(e1)] ]|



Moreover,

A(EY]) = A1 (E[YL]) = ékmin <Z ﬁLk5252'>
k

x 2
: — \ Pmin
(min ) 72
Now we just need to upper bound ||Yy — E[Y_(e1)]| and
lower bound ming ;. Both these follow by combining the
three lemmas given next and triangle inequality.

Y

mq )’

Lemma 3.6. We have that, w.p. at least 1 — exp(—e% prEpe

Y_(el) j YU j Y+(61)
and so ||Yy — Y_(e1)|| < [|Yi(e1) — Y—(e1) ||

Lemma 3.7. Let Y, =Y, (¢1) and Y_ =Y_(€1). We have

2
max

2,.2 X* 2 2 2 "
IE[Y,] —E[Y_]|| < 9erp” R X || < Je1p K ro

q q

and, assuming €1 < 0.01,

mkinﬂl_k(el) > 1.5.

Lemma 3.8. We have that,

w.p. at least 1 — 2 exp (n log9 — ce%mq),

1.5eau2K2 rok,.>
q

We get the exact same claim also for ||Y. —E[Y,]].

Y- (e1) —E[Y_(e1)]]| <

We prove the above lemmas in Sec. A-B.

Using triangle inequality, ||Yy — E[Y_]|| < ||[Yy = Y_| +
lY— — E[Y_]||. Moreover, using Lemma 3.6, ||Yy — Y_|| <
lY: — Y_||. Using these and again using triangle inequality,
Y0 —E[Y_]|| < 2| Y- —E[Y_ ]|+ Y; —E[Y, ]|+ [E[Y;) -
E[Y_]||. Thus, combining bounds from the above lemmas and
setting €; = €2 = W for a d;n;; < 1, we conclude that

d5ima dimy
w.p. 1-— 2€Xp (n — W) — 2€Xp (— ngz”g N

256init 07 5
Hmfmnm§lif®L

(10)

Using miny ﬁfk > 1.5, from Lemma 3.7, and (10), since
Oinit < 1,

sin ®(Uinit7U*)

B |Yy - E[Y ]|

T AEYL]) - A (BYL]) - Yy —E[Y_]|
0'25éinito—;knin2/q

S 2 2
1507, 2/q — 0.2561107.2/q

min

< Jinit -

1) Proof that rank is correctly estimated: Consider the
rank estimation step. This requires lower bounding A,.(Yy) —
A (Yy) and upper bounding A.4+1(Yy) — A (Yy). Both
bounds follow using (i) (10), along with Weyl’s inequality,
and (ii) the lower bound on 8~ := miny Bi , from Lemma
3.7: 5~ > 1.5.

We have \.(Yy) — A (Yu) > A-(E[YZ]) — M (E[Y_]) —
2|Y- —E[Y_]| > -\ (U*S*UY) - 2| Yy —E[Y_]|| >

1.5(0%,,2/0)—0.2501mi007 1.2 /g = (1.5—0.258mi )02 /q >
1.4(0%,.%/q) as long as dipie < 0.1.

Also, A1 (Yu) = A (Yu) < A1 (E[YZ]) = M (E[YZ]) +
20Yy —E[Y_] || = 2[¥= —E[Y_] | < 0.258mi0(05>/4) <
0.025(0;‘nin2/q) as long as dy,;¢ < 0.1.

In summary, as long as dinit < 0.1, A\ (Yy) — A\ (Yu) >
Ldok,.2/q and Ayt (Yy) — M (Yor) < 0.02507 ;2 /q. Thus
by setting the threshold w = Co?; ?/q with C being any
constant between 0.025 and 1.4, we can ensure that the rank
is correctly estimated whp.

C. Proof of Claim 3.4

In this section, we remove the superscript * except where
. (T (Tt
essential. Also, we let a;, := a,, and y;, =y, -
We first use the overall approach of [25] to get the following
deterministic bound on the subspace error of the (¢t + 1)-th
estimate of U*, U**!. The proof requires some messy algebra

and hence we give it in Appendix B.
Lemma 3.9. We have

MainTerm
. Ut+1 U*) <
sin O ( U") < Omin(U*3*B*B’) — MainTerm

where MainTerm :=

Y

maxwes,, |Terml(W)| + maxwes,, |Term2(W)|

)

minyy es,, Term3(W)

Terml(W) := Zbk/W/aikaik/U*(B*B/bk - b}),
ik
Term2(W) := Z(Cikéik — 1)(ag'Wby)(ag'z}),
ik
Term3(W) := Z(aik/ka)za
ik
Sw = {W eR"": |W|p=1}

is the space of all n X r matrices with unit Frobenius norm,
and c;i,, C;; are the phases (signs) of a;,'x;, and a;'Ty.

We obtain high probability bounds on the three terms above
in the three lemmas that follow, Lemmas 3.10, 3.11, 3.12. All
three lemmas first bound the terms for a fixed W, followed
by using a carefully developed epsilon-net argument to extend
the bounds for all unit Frobenius norm W’s. This is inspired
by similar arguments in [52].

Consider a fixed W. To bound Terml, we first show
E[Terml] = 0. Next, we use Lemma 3.2 to show that
|B*(B'B — I)||r < C&||X*| . Finally, we use these two
facts and a simple modification of Lemma 5.16 of [54] for
sums of products of sub-Gaussian random variables (Lemma
A.1), along with careful linear algebra to show that, if mgq
is large enough, whp, |Terml| < Cmd?||X*|r for any
0¢ < 0.1. This is followed by a careful epsilon-net argument
to extend the bound for all unit Frobenius norm W's.

To bound Term2 for a fixed W, we first use Cauchy-
Schwarz. This implies that

|Term2(W)| < v/Term3(W)v/Term22, where

Term22 := Z(Cikéik - 1)2(aik/$2)2
ik




We explain how to upper bound Term3(W) in the next
paragraph. Consider Term?22. Notice that (c;¢;, — 1)? takes
only two values - zero or four. It is zero when the signs are
equal, else it is four. To start bounding E[Term22|, we can use
Lemma 1 of [10]. This shows that the probability that the signs
are unequal is upper bounded by a term that is directly pro-
portional to the ratio dist®(x}, &)/ (a'x})?. The probability
bound is thus large when this ratio is large and small otherwise.
Moreover, it is easy to see that E[(a;;'x})?] = ||z} ||* and by
Lemma 3.2, whp, dist®(z}, Zx) < 67|/ || Relying on these
ideas, we can argue that, on average, Term22 is very small:
E[Term22] < Cmd;|| X *||%. Careful use of concentration
bounds then implies that, if mgq is large enough, the same
order bound holds whp.

To upper and lower bound Term3, notice first that
E[Term3] = m|/W B||% = m. Also, each summand in this
term is sub-exponential with sub-exponential norm bounded
by [[Wby|* and [[Wby|* < [|bs]|* < ji°r/q (by Lemma
3.3), and Y, [[Wbg||> = m. Using these facts and Lemma
3.2 (Bernstein-like inequality similar to Lemma 5.16 of [54]),
we can show that Term3 concentrates around m whp.

Lemma 3.10. Pick a &, < 1/10 and assume that
m > Cmax(r,logn,logq)/d%. Under the conditions of
Theorem 2.1, for a 6; < 1/10, wp. at least 1 —

2 exp (nr(log 17) — c%) —n~10

>

min Term3(W) > 0.5(1 — d;)m
WwWeSw

and

max Term3(W') < 1.5(1 + &¢)m.

weSw
Lemma 3.11. Pick a 6, < 1/10 and assume that m >
C max(r,logn,logq)/82. Under the conditions of Theorem
2.1 and assuming that sin®(U*, U) < §;, with §; < 1/10,

2
w.p. at least 1 — 2 exp (m'(log 17) — C,fé:;qr -1

—n
nax Terml(W) < (52 X* F.
VII/eSW o ( ) Mo ” H

In proving the above, we also show that
IB*(I - B'B)||lr < C&| X"||r
(we will use this in proving Lemma 3.13).

Lemma 3.12. Pick a 0, < 1/10 and assume that m >
C max(r,logn,log q)/82. Under the conditions of Theorem
2.1 and assuming sin O(U*,U) < §; with §; < 1/10, w.p.

52mgq
iz

at least 1 — 2 exp (nr(log 17) —¢ ) —2exp (—cé?mq) —

n—lO’

max Term2(W) < m /1 + 0:1/8:0:]| X *|| -

WwWeSw
Finally, we lower bound the first denominNator term of (11).
This can be done by using the bound on | B* (I — B'B) ||r
from Lemma 3.11. This, in turn, implies a lower bound on the
minimum singular value of B*B’, and hence the following.

Lemma 3.13. Pick a 6, < 1/10 and assume that m >
C max(r,logn,log q)/82. Under the conditions of Theorem

2.1, if smOU*,U) < & with 6 < m, then, w.p. at
least 1 —n~10 o (U*S*B*B’) > 090

We prove the above lemmas in Sec. A-E.
Proof of Claim 3.4. Combining Lemmas 3.9 and 3.13, if §; <
¢/ VT,

in©® UtJrl,U* <

sin O( ) < 0907
Set 6, = 1/11. Combining Lemmas 3.11, 3.12 and 3.10, and
using || X*||r < v/ro.., we conclude that,

MainTerm S O(6t + \/(?t)atﬁozlax'

In the above bound, the /3, term dominates. In order to ensure
that MainTerm < 0.76,07% , we need to set /&; = ¢/\/Tk.
Doing this and using (12),

sinOUH,U*) < — SO VIO,
0'90—:;1in - C((St + \/E)(st\/;o—rfnax

MainTerm

. 12
— MainTerm 12)

< 0.76¢

O

IV. NUMERICAL EVALUATION

In this section we provide detailed description of the nu-
merical evaluation of our algorithms on synthetic and real
data. All time comparisons are performed on a single Desktop
Computer with Intel ~ Xeon E3-1240 8-core CPU @ 3.50GHz
and 32GB RAM. We must mention that for all the algorithms,
(a) we compare on the same system, and we do not run other
memory and compute intensive programs while performing
the time comparison, (b) we use the most efficient sub-
routines that are provided by the respective authors and these
implementations rely on the “anonymous functions” feature of
MATLAB. This provides a significant speed up since the major
chunk of computation time involves matrix-vector/matrix-
matrix products. This ensures uniformity to a large extent for
all algorithms.

A. Synthetic Data Experiments

We demonstrate the effectiveness of AltMinLowRaP over
existing work using two synthetic experiments. For both, we
generate an error versus time-taken plot as follows: for each
t = 0,1,...,T, we plot the matrix recovery error (at the
end of that iteration) and time-taken (until the end of that
iteration) on the y- and x-axes respectively. All synthetic data
experiments are performed for 100 independent trials, and for
each algorithm, we plot the average error over the best 90
trials (drop the 10 trials with the largest error). This is done
because all algorithms are guaranteed to work well only with
high probability.

In the first experiment, we compare the performance of
several algorithms for different values of m. We generated data
as follows: X* = U*B* where U* € R™*" is generated by
orthonormalizing a iid standard Gaussian matrix. The entries
of B* € R™*4 are chosen from another iid standard Gaussian
distribution. Thus, in this setting, 0%, ?/q ~ o..2/q ~ 1.
Measurements were generated using (1) with a;;’s being iid
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Fig. 3: Error versus time plot with time in seconds. We compare with LRPR2 which is the only other existing Low-Rank Phase Retrieval
algorithm [20], RWF [10] and projected RWF. The first step (initialization) of LRPR2 is slower than our proposed method. This is likely
due to the fact that the estimates of the rank are different for the two algorithms and thus the errors are also slightly different in the two
cases. For the purpose of better illustration, we only plot the error and time at the end of every 10 iterations for RWF and proj-RWF.

Gaussian. We compare AltMinLowRaP with LRPR2 (best
heuristic from [20]), RWF [10], and with what we call
projected-RWF or proj-RWF (for all ¢, after the t-th RWF
iteration, we project the matrix X}%W r onto the space of
rank-r matrices, with » known). We provide results for three

cases: (i) n = 200, ¢ = 400, r = 4, and m = 0.4n; (ii)
n = 600, ¢ = 1000, »r = 4, and m = 0.25n; and (iii)
n = 200, m = dn = 1000, ¢ = 200 and » = 4. The

results are summarized in Fig. 3. In the first two settings (Figs.
3(a),(b)), we show that by exploiting the low-rank structure,
AltMinLowRaP is able to outperform the unstructured PR
methods. Notice that, proj-RWF performs better than RWF
(which does not work at all since m < n). Secondly,
AltMinLowRaP is significantly better than proj-RWF, and
for reasons explained earlier, it is also better than LRPR2.
AltMinLowRaP and LRPR2 estimate the rank, whereas proj-
RWEF is provided the true rank. We observed that, in practice,
the estimated rank is higher than the true rank in all the
cases. In both these settings, m < n, and thus, unstructured
algorithms fail. The third setting is a setting with a very large
value of m: we are using m = 5n measurements. This is
a case where all of AltMinLowRaP, TWEF, and RWF work,
but AltMinLowRaP is much slower as shown in Fig. 3(c).
Additionally, for the first two cases, based on a reviewer’s
comment, we also empirically evaluate a random initialization
scheme for the AltMinLowRaP algorithm. We observed that
although the initial estimates are approximately in the order of
1072, the algorithm itself fails to improve this with subsequent
iterations. A possible workaround to this could be through
using a gradient descent based algorithm (inspired by [12])
but this requires a detailed analysis, and we will study this as
part of future work..

Our second experiment illustrates the time complexity dis-
cussion given in Sec. II-B. For a given m, AltMinLowRaP is
about r times slower than the best provably correct regular
(unstructured) PR methods - TWF and RWF. But, if for each
algorithm, we use the minimum m needed for the algorithm

to achieve e accuracy, then, theoretically, AltMinLowRaP
should be faster if the rank r is small enough. We tested
this empirically as follows. We generated data as before with
n = 600, ¢ = 1000 and r» = 4. We implemented TWF and
RWF using two values of m, m = 3n and m = 4n. We
evaluated AltMinLowRaP with using m = n/4. The error-
at-iteration-t versus time-taken-until-iteration-¢ plot is shown
in Fig. 2 for all these cases. As can be seen, using 3n
measurements, neither of TWF or RWF works. Using m = 4n,
both work. But if we compare the time taken (x-axis value)
for any value of error level ¢, both are at least 5 times slower
than AltMinLowRaP (m = n/4). For all algorithms, we repeat
the expriments for 100 independent trials, and plot the mean
taken over the best 90 trials to illustrate the high probability
results.

1) Algorithm parameters: For both experiments, AltMin-
LowRaP was implemented as Algorithm 1 but using the same
set of measurements (does not require sample-splitting), and
with the following parameters: T'ryy + scales linearly from 5
to 30, w = 1.30%,,%/q ~ 1.3 and Cy = 9. All parameters
are as suggested in the theorem. For LRPR2 we used the
default parameters mentioned in the documentation. We set
the maximum number of outer-loop iterations, 7,4, = 10
for both. For RWF and TWEF, we used the default parameters
suggested by the authors with the exception that we let the
maximum number of iterations 7,,,, = 300 (to try to see if
its error reduces with more iterations). However, as we plot
the time-taken at the end of each iteration, this is not an unfair
implementation of RWF; it only means that we have 300 data
points to plot on our graph. We should point out that the
recovery error for AltMinLowRaP is sensitive to the choice
of w. If w is too small (for given values of m and of Cy
used in computing Y7s), the algorithm will significantly over-
estimate the rank. This is especially problematic when m is
small (or Cy is large for a given m). Thus, as a thumb rule,
for a lower value of m/n, the threshold w should be larger.



Of course if it is too large, it will underestimate the rank®

B. Real Videos with Simulated CDP measurements: Small r
suffices

We demonstrate the effectiveness of AltMinLowRaP for
recovering two real video sequences (these are only approx-
imately low-rank) from simulated Coded Diffraction Pattern
(CDP) measurements. These measurements can be represented
as Y = |F(DX™*)| where F(-) is the DFT operation and the
matrix D represents a diagonal mask matrix whose diagonal
entries are chosen uniformly at random from {+1,++/—1}
and modulate the intensity of the input. We generate CDP
measurements of each frame of the video (the k-th frame
vectorized is x}). We compared our algorithm with LRPR2
and RWE. We present the quantitative results in Table II and
the visual comparisons in Fig. 1 (given in the beginning),
and in Fig. 4. Notice that, in this case, even with m = 5n
measurements, RWF is unable to accurately recover the video
and AltMinLowRaP has a slightly better performance w.r.t.
LRPR2. The algorithm parameters are set as in the syn-
thetic data experiments, swith the exception that we now set
Tinae = 30 for ALtMinLowRaP and LRPR2. AltMinLowRaP
implementation used all the speed-up ideas for Fourier mea-
surements explained in [20] for LRPR2 and so did LRPR2.

We tested AltMinLowRaP with three possible values of
rank, r = 15,20,25. As can be seen, even r = 15 suffices
to get a significantly better reconstruction error than RWF for
m = dn CDP measurements. For the plane video, n = 6912
and ¢ = 105 and for the mouse video, n = 5182 and g = 90,
and thus in both cases, r ~ 0.003n. If ¢ is larger, a natural
idea would be to use similar parameter settings, but instead
implement the tracking variant of AltMinLowRaP (Algorithm
2).

C. Real Videos with Simulated CDP measurements: Low-Rank
versus (Wavelet) Sparse Models

To justify the low-rank assumption on videos, we compare
with CoPRAM [18], a state-of-the-art, provable algorithm for
compressive phase retrieval. Since the videos are not sparse
in the spatial domain, as suggested in [18], we use the Haar
wavelet as the sparsifying basis’.

As can be seen from Table III and Fig. 5, the low-rank prior
gives a much better reconstruction error in all three cases in
this table including the exact sparse case. Since the video is
not exactly wavelet sparse, we also performed a comparison
on the sparsified video, wherein, for each image frame, we
truncate the wavelet coefficients such that approximately 90%
of the energy in each frame is preserved. We refer to this
as the sparsified video in this experiment. Sparsifying the

SThis is a bigger problem when x = 1 as in the simulated data above. It
is a lesser problem for real approximately low-rank data (e.g., slow changing
videos) with a larger x, since in those cases, the missed directions will be the
ones with smaller singular values.

7We also experimented with the Daubhechies-3 wavelet as the sparsifying
basis in our experiments. However, we noticed that, for the plane video,
irrespective of the wavelet basis, the number of coefficients necessary to
preserve =~ 90% of the energy of the video required s =~ 0.1n and thus
the choice of wavelet basis is not detrimental in this experiment.

TABLE II: mat-dist(X, X*) and time comparison for the
mouse and plane videos. We generate the measurements using
the CDP model and consider two different number of settings.
Notice that AltMinLowRaP is slightly better than LRPR2 but
is slower than in the simulated data experiments.

Algorithm mat-dist(X, X *) (Running Time in sec)
m = 5n (mouse) m = 5n (plane) m = 2n (mouse)
RWEF [10] 0.65 (0.35s) 0.65 (0.35s) 1.36 (0.25s)
LRPR2 [20] (r = 25) 0.48 (81.8s) 0.10 (122.3s) 0.61 (31.0s)
AltMinLowRaP (r = 25) 0.39 (297.6s) 0.09 (467.6s) 0.52 (122.1s)
AltMinLowRaP (r = 15) 0.57 (277.2s) 0.15 (418.9s) 0.60 (113.6s)
AltMinLowRaP (r = 10) 0.70 (262.7s) 0.23 (409.0s) 0.72 (97.4s)

TABLE III: Low rank versus Sparse PR: We compare with
a recent state of the art algorithm for provable sparse phase
retrieval. mat-dist(X , X*) and time comparison for the mouse
and plane videos using real valued CDP measurements. We
conclude that low-rank is a better model than wavelet-sparse
for slowly changing videos.

Algorithm Video

m = 5n (plane)

2.113
0.6531
0.111

m = 10n (plane)

1.019
0.4134
0.109

'm = bn (sparsified-plane)
0.3104
0.6514
0.1427

CoPRAM [18]
RWF
AltMinLowRaP (r = 15)

video significantly improves the performance of CoPRAM, but
AltMinLowRaP (r = 15) is still better. Even with m = 10n
measurements, the sparse model is unable to capture the finer
details in the video. We also observed that a standard complex
mask does not work very well for COPRAM and hence for this
experiment, we report the results when the entries of the CDP
mask, D are chosen uniformly at random from {+1}. We
reshaped each video frame into size 32 x 32 since the online
implementation of their code only works for small sized data.
We provide the quantitative results in Table III and qualitative
results for the plane video in Fig. 5.

V. PHASELESS SUBSPACE TRACKING

When the matrix X ™ consists of a time sequence of signals
x;,, then the column-wise measurements appear one column
at a time (sequentially). Hence, there is benefit in trying to
develop a mini-batch algorithm that works with measurements
of short batches of « consecutive columns. Moreover, for
long data sequences, the subspace from which the data are
generated could itself change with time. Detecting and being
able to track such subspace changes is important for long
sequences. Interestingly the algorithm that works for this
purpose is a simple modification of the static case idea along
with a carefully designed subspace change detection step.

A. Problem setting

The low-rank assumption is equivalent to assuming that
Ty = U*~Z where U™ specifies a fixed r-dimensional sub-
space. For long signal/image sequences, a better model (one
that allows the required subspace dimension r to be smaller) is
to let the subspace change with time. As is common in time-
series analysis, the simplest model for time-varying quantities
is to assume that they are piecewise constant with time. We



(a) Original (b) AltMinLowRaP
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(c) LRPR2 (d) RWF

Fig. 4: Comparison of visual performance for the plane video with m = 2n. The images are shown at k = 20, 60, 100.

(a) Original

(b) CoPram

(c) RWF (d) AltMinLowRaP

Fig. 5: Comparison of visual performance for the plane video for m = 5n at k = 10, 60. We observe that RWF fails visually
although numerical error is better, and CoPRAM is able to recover the global features but cannot recover the fine details due to
the high level of sparsity required. AltMinLowRaP outperforms both methods, confirming the validity of the low-rank model.

adopt this approach here. Moreover, in order to easily borrow
ideas from the static setting, we will assume that we now have
a total of gpy signals (matrix columns) and we will denote
the n X gp,) matrix formed by all these columns by X *gy;.
Our algorithm will operate on measurements of a-consecutive-
column sub-matrices of X *¢u1.

Let kg = 1, and let k; denote the j-th subspace change
time, for j = 1,2,...,J and let kj41 = gran. We have the
following model

;= Uy, (ydr, forall kj <k <kjp

S

13)

sub, (j) is an n X r “basis matrix” for the j-th subspace

where U
and ciz is the coefficients’ vector at time k.
The goal is to track the subspaces Span(US*uM j)) on-the-
fly; of course, “on-the-fly” for subspace tracking means with a
delay of at least r. Once this can be done accurately enough,
it is easy to also recover the matrix columns 7 (by solving
a simple r-dimensional PR problem to recover the dZ’s).
The reason we use a different notation here (the subscript

sub and use of JZ instead of BZ) is as follows. Consider an

a-column sub-matrix formed by « consecutive signals. Let us
call it X* and let X* °X” U** B* . 1f all the a}’s forming
this matrix are generated from the same subspace, say Us*ub7( )
then Span(U™) = Span(U,, ;) and there is no need for a
different notation. However, if a subspace change occurred in-
side this interval, then we cannot say anything simple like this.
All we can say is that X = [UZ, 1y D(j-1), Ul (D))

and so Span(U~) € Span(U,;, ;1)) USpan(UZ,, ;)

B. Basic PST algorithm and extensions

As noted earlier the PST algorithm is a simple modification
of the static case algorithm (AltMinLowRaP) along with a
carefully designed change detection strategy. In the static case,
in each iteration, we used a set of mq measurements of a single
n x ¢ matrix X *. For obtaining the guarantees, we assumed
a new (independent) set of 2mgq measurements of the same
matrix X* were used in each iteration (mgq for updating the
estimate of B* and another mg for U*). For the tracking
setting, using a mini-batch size of «, we proceed as follows:



each new update iteration uses 2ma measurements of a new
a-consecutive-column sub-matrix of X *¢,. The input to the
update iteration is the subspace estimate from the previous
iteration. Under the assumption that the subspace remains
constant for at least 7'« time instants after a subspace change
has been detected, this approach works: with 7' = C'log(1/¢),
we can show that, after T'a time instants, we get an e-accurate
estimate of the j-th subspace.

We summarize the algorithm in Algorithm 2. This toggles
between a “detect” and an “update” mode. It starts in the
“update” mode (described above) and remains in it for the
first T« time instants. At this time it enters the “detect” mode.
We are able to guarantee that, when the algorithm enters this
detect mode, the previous subspace has been estimated to ¢
error whp. In the detect mode, the algorithm does not perform
any subspace updates. This is done to simplify our analysis; it
ensures that, in the interval during which the subspace change
occurs, the subspace is not updated. This is what allows us
to use our previous two main claims (Claims 3.1 and 3.4)
without change to analyze the update mode. Practically, this
is of course wasteful. We develop an improvement below.

To understand the change detection strategy, let ];'j denote
the estimated change times. Consider an a-length interval, 7,
contained in [k;, kj11). Assume that an e-accurate estimate of
the previous subspace Us*ub,(]el) has been obtained by l%j_l +
Ta and that this time is before k;. Let Ugyy,,(;—1) denote this
estimate. Define the matrix

Yu,det pig ==
(I = Ugup, (- 1) Usub,(j—1) ) Yu (I = Ugup, (j—1)Usub, (j-1)")

with Yy = Yy (7, ). This means that Yy, is as defined earlier
in (6) with the k¥ summation being over all k € 7, (it is
using measurements for all the columns within this a-length
interval). With a little bit of work (see Lemma C.1 and its
proof), one can show that, in this interval, the matrix Yy ge; 1=
Usub,(j—1), 1 YU det,bigUsub, (j—1), 1 is close to a matrix Ee;
whose eigenvalues satisfy

Amax(Edet) - >\min (Edet)
* 2

. * O min
> 1.5(5111 G(Usub,(j—l)7 Usub,(j)) — 26)2T.

On the other hand, in an a-length interval contained in [k;_q +
Ta, kj ) N

)\max(Edet) - )\IIlil’l(Ed(it)
2

*
02 2 20
S SIH@ (Usub»(j_l)V Us*ub,(jfl))artlax /a S € mojx .

Thus, this quantity is small when the j-th change has not
occurred (before k;), and is large when the subspace has
changed (after k;). By using a large enough lower bound on
the product ma, the same can be shown for the difference
between the maximum and minimum eigenvalues of Yy ge:
(these are equal to the maximum and (n — r)-th eigenvalues
of YU,det,big)'

Once we have an e-accurate estimate of the current sub-
space, it is straightforward to also recover the corresponding
signals «}. This can simply be done by solving a standard

PR problem to recover the coefficients vector. See last line of
Algorithm 2. This borrows a similar idea from [55].

1) Improved algorithm: PST-all: Notice from Theorem 5.1
that Algorithm 2 can only provably detect and track subspace
changes that are larger than a small threshold. While this
makes sense for detection, it should be possible to track
all types of changes. By including a simple modification in
Algorithm 2 (include the “update” step during the detection
mode as well), we can empirically demonstrate that this is
indeed true. We demonstrate this in Fig 6(a). Moreover, PST-
all also removes the other limitation of basic PST (not using
the detect phase samples for improving the subspace estimate).
Thus, even for large changes that basic PST can detect, PST-all
has better tracking performance; see Fig 6(b).

C. Guarantee for basic PST
We can prove the following about Algorithm 2 (basic PST).

Corollary 5.1 (PST algorithm). Consider Algorithm 2. Pick
any value of m > Cmax(r,logn,logqsn). For this m, set
a = W Set T := Clog(1/e), and the detection
threshold wger = c/(k*r). Assume that k1 —k; > (T +3)a
and that sin@(US"ub’(J_fl),Us*ubﬁ(j))2 > 2. Then, wp. at
least 1 — Cn~=19, noitemsep
1) we can detect the change with a delay of at most 2q,
while ensuring no false detections, i.e., k; < kj <kj+
2o
2) for any € > 0, we can get an e-accurate estimate of the
j-th subspace with a delay of at most (T + 3)c from k;
(when the subspace changed);
3) we have the following subspace error bounds: let
U(@{zj) = U (j_1) = U(Q’(j_l), and let U

S s sub,(j)’
{=0,1,...,T, be the {-th estimate,

¥ (0) *
Sin Q(Usub,(j)7 Usub,(j)) S
sinO Uy, ;1) Udun, () T€ i 0= —1
(0.7) 1% ift=0,1,2,...T,
€ ife=1T

Offline PST returns X that satisfies mat-dist(X , X*) <
€.

We provide a proof sketch in Appendix C.

The above result shows that, if the subspace remains con-
stant for at least «wlog(1/¢) time instants, and if the amount of
subspace change (largest principal angle of subspace change)
is of order 1/4/7 or larger, then we can both detect the change
and track the changed subspace to e error within a delay of
order alog 1/e. Moreover, for only at most 3a time instants
after a change, the subspace error does not reduce and is
essentially bounded by the amount of change. After this, it
decays exponentially every « time instants.

Notice from the expression for « that, if we pick the smallest
allowed value of m, then the required « (and hence the
required delays) will be large. However, we are allowed to
tradeoff m and a. If we let m grow linearly with n, then
we will only need o ~ r%, which is, in fact, close to the
minimum required delay of r. This also matches what is seen



in existing works on provable subspace tracking (ST) in other
settings (e.g., robust ST, ST with missing data, or streaming
PCA with missing data) [55]-[57]. These are able to allow
close to optimal detection and tracking delays but all these
assume that m increases linearly with n. We can also pick
any value of m in between the two extremes of m = Cr or
m = Cn. For example, if m = Cn/r, then a = 75 and so on.

Algorithm 2 PST: detect and track large subspace changes

1: Set r equal to the largest index j for which A;(Yy) —
%\n(YU) > w.

2: kg 0,7 0,0+ 0

3: Mode < update

4: for k£ > 0 do

5:  if Mode = update then

6: if k=k; + (+ 1) then

7: if £ = 0 then

8: U fub,(j) + top r singular vectors of Y.

9: end if

10: b. « RWF((y., Ul ) Ar) Trw k), for 7 €
[k —a+ 1,k

11: QR decomposition BYE RpB

12: C, « Phase (A’TUsfubM)BT), forT € [k—a+
1, k] .

13 Ufjb%(j) < argming ZTGUC*OH’L/C] ICry, —
A'Ub,|?

14: QR decomposition UA'SZ‘E(J.) Q& Uf:{)l(j)RU

15: (—(+1 ’ ’

16: end if

17: if / =T then

18: Usub,(j) < Usj;b,(j)’ Mode < detect

19: end if

20:  end if

21:  if Mode = detect then

22: if )\max(YU,detA,big) - )\nfr(YU.,det,big) > Wdet then

23: Jj+—Jj+1,k; <k, £ < 0, Mode < update

24: end if

25:  end if

26:  Output Ufub’ )

27: end for

Offline PST: For each k € [l%j, lchH), output &, = Ud}
where 3; is a (at most) 2r-length vector obtained by
RWF applied on {y;,(U'a;),i = 1,2,...,m} with
U = basis([Usub,(j)> Usun,(j+1)])- Here basis(Uy, Us)
means a matrix with orthonormal columns that span
the subspace spanned by the columns of U; and Us.
We need to use the union of both subspace estimates
because the actual subspace change time, k;i, is not
known. Corollary 5.1 implies that, whp, it is contained
in [k, kjy1).

1) Related Work: For Phaseless Subspace Tracking (PST)
the only works before this work was our first huristic versions
[58], and [59]. Other subspace tracking (ST) problems that
have been extensively studied include dynamic compressive
sensing [60] (a special case of ST where the subspace is

defined by the span of a subset of r vectors from a known
dictionary matrix), dynamic robust PCA (or robust ST), see
[55], [56] and references therein, streaming PCA with missing
data [57], [61], and ST with missing data [62]-[66]. In
terms of works with complete provable guarantees, there is
the nearly optimal robust subspace tracking via recursive
projected compressive sensing approach [55], [56], [66] and its
precursors; recent papers on streaming PCA with missing data
[57], [61], and older work on dynamic compressive sensing
(CS) [60]. For robust ST, the problem setting itself implies
m = n/2. In the streaming PCA case, the availability of
m = pn measurements, with p < 1, is assumed. This is why
both achieve close to optimal tracking delays (at least when
the added unstructured noise is nearly zero). As noted earlier,
our method can also achieve a delay of order r* if we let m
grow linearly with n.

Dynamic CS (like basic CS) is able to detect support
changes (with sufficiently nonzero magnitude) immediately
even with a small value of m = Crlogn measurements; here
r is the sparsity level (support size). This is because it is a
much simpler special case of ST: in this case, one just needs
to be finding the correct subset of basis vectors from a large
provided set (dictionary matrix).

D. Numerical experiments

This experiment evaluates the PST algorithm (Algorithm
2) and PST-all algorithms from Sec. V. We generate the
true data for the first subspace X%y = Ug,, Dy where
Us*ub7(0) € R™" with n = 300, » = 2 is generated by
orthonormalizing the columns of a n x r iid standard normal
matrix. The entries of D§ € R™" with ¢, = 2992 are
also generated from an i.i.d. standard normal distribution. We

generate the true data from the second subspace similarly and

set X*y = UZ, (I)D{ and we set ¢ = 6000. Notice that
k =~ 1. The subspace U], 1) is generated using the idea

of [55] as Us*ub,(l) = e‘VMUS*ubV(O) in order to control the
subspace error. Here M is a skew-symmetric matrix and -y
controls the amount of subspace change. We study two cases
in which we set v = 0.08,0.001 which roughly translates to
sinOUgy, 0y Uaup, (1)) = 0-8,0.01. We generate the mea-

surement matrices Ay (€ R™*™) e N(0,I) with m = 100
for 7 = 1,---q. We then implemented PST (Algorithm 2)
and PST-all. PST requires large-enough change in order to
ensure good results, and PST-all which works even with small
changes. We chose the algorithm parameters as follows. We set
a = 250 and L = 8. For the detection, and initialization steps
of both algorithms we set m;nix = m. We set the threshold
for detection, w = 0.6 through cross-validation. The results
for the two algorithms are shown in Fig. 6. Notice that for the
small change case, since PST is always in the detect mode, it
does not improve the estimation error whereas PST-all does.
However, when the change is large enough, both algorithms
converge to a small error. The results are averaged over 100
independent trials.
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both algorithms are able to detect and track changes whereas when sin ©(U | (0)’ Us*ub_(l)) = 0.01 only the PST-all algorithm

works. We perform the experiment for 100 independent trials,

VI. CONCLUSIONS AND FUTURE WORK

This work introduced the first simple, fast, and provably
correct, algorithm for Low Rank Phase Retrieval — low-
rank matrix recovery from different (mutually independent)
column-wise phaseless linear projections — AltMinLowRaP.
Moreover, since, even the linear version of our problem has
not been studied, this work also provides the first fast and
provable solution to the linear version, “Compressive” or
“Sketched PCA”. AltMinLowRaP relies on a careful spectral
initialization followed by alternating minimization. We showed
that its required sample complexity is about > times the order-
optimal value of nr. We also developed its dynamic extension
that is relevant for datasets where we would like to develop
a mini-batch solution that recovers the current sub-matrix of
X* without waiting for all the measurements of all the signals
(columns) to arrive.

In ongoing work we are (i) exploring how to remove
the sample-splitting requirement by studying an alternating
gradient descent solution, and attempting to borrow the leave-
one-out ideas from [12]; (ii) how to reduce the dependence
of our sample complexity on r and on x. Some thoughts
are provided in Sec. II-D; and (iii) how to analyze an easy
modification of AltMinLowRaP to get a better guarantee for
the linear version of our problem. The algorithm modification
is easy, it just involves replacing the standard PR step for
recovering b;’s by a simpler LS step, and of course remove
the phase/sign estimation step before updating U. In terms
of analysis, (a) we can possibly simplify the analysis of the
initialization step because in the linear case, E[a;ky;k] = x};
and (b) in the iterations, there will be no phase error term,
Term?2, and hence, no need for Cauchy-Schwarz. This latter
change itself will reduce the sample complexity to nr?® instead
of nr.

Open questions for future work include (i) study if we
can exploit the right incoherence assumption in the algorithm
itself, for example, by using a projected GD approach inspired
by [67]; (ii) can phaseless LRMS be solved (this would be the
other possible LRPR problem alluded to in the introduction),

and plot the average taken over the best 90 trials.

and (iii) develop a fast algorithm and a guarantee for exploiting
both low-rank (as we do) and column-wise sparsity. This type
of modeling been used very successfully in the MRI literature
to come up with practical algorithms to reduce the sample
complexity empirically, see for example, [30], [31]. It has
also been studied theoretically in the linear setting [68]. (iv)
Another open question is how to analyze the improved tracking
algorithm PST-all that we currently only empirically evaluate.
In experiments, it is clearly much better than the simpler
version we analyze.

APPENDIX A
PROOFS OF THE LEMMAS FROM SEC. III

A. Simple facts for various proofs

Our proofs will use the following facts: for two arbitrary
matrices A, H,

1) Umax(A + H) S Umax(A) + ||H||

2) omin(A+ H) > omin(A) — || HJ|.

3) O'min(AH) Z O'min(A)O'min(H).

4) For two basis matrices, Uy, Us, o2, (U'Uz) = 1 —
sin@z(Ul,Ug).

5) For any matrix P, |[PM|r < |P|||M]|r and
IMP|5 < |PJ|M]|r.

6) For an invertible matrix P,
IM[r = [P'PM|y < [P|PM|s =
mHPMHF

The following lemma is a simple but useful modification of
[Lemma 5.16] [54]. The proof follows by combining Lemma
2.7.7. and Theorem 2.8.1. of [29]. The sub-Gaussian norm for
a random vector X, in this lemma, can be defined as follows:

Xl = sup X, 2],

zeS

where ||z||y, is the sub-Gaussian norm of a scalar z [54,
Definition 5.7].



Lemma A.1. Let X;,Y; be independent sub-Gaussian random
variables with sub-Gaussian norm Kx, and Ky, respectively
and with E[X;Y;] = 0. Then

Pr{ZXim > t}

<2 i £ t

exp | —c¢min
=~ b ZZ K}(ﬁ K2i ) ] .
When X; =Y, this simplifies to Lemma 5.16 of [54].

B. Proof of the lemmas for Claim 3.1

(0)

In this section, we let a;;, == a,, (0)

and y;1, ==y, -

Proof of Lemma 3.6. Observe that we will be done if we
can show that, whp, miq Sin (aik’w,’;)2 lies in the interval
(1 — e)lIX*%/q. (1 + €1)| X*[[%/q). Using Lemma A.1,

with Kx,, = Ky, = , with probability more than
1—2exp ( 1mq

, we have

3 (a'a)® - mlX I < aml X[

Details for obtaining this bound: using Y, |zf[|* <
maxy, ||z}]|? Y, lz;||* and right incoherence,

2 amAXlE  émg
Y Kx, — mmaxg @il X5 T pPe2
t _am|X*||E _ eimg
max K%, lagl? C e
O
Proof of Lemma 3.7. 1t is easy to see that
[ElY ) -ElY-]| < Z (B~ Br) i)
1 — *
+-3 (B4 - am) i .
77
Recall v, = 9| X*[|% u?x?/(q||x;]|?). Using zde /2 <

3v/3¢73/2, we have

6+ - 61_k =E [(54 - 52) 1{(1—61)7kS§2§(1+61)7k}]

VFe)ve )
z\/%/ S a:Q(xQ—l)e*m/zdx
€1)7k
(1+61)7k )
o V 27T / l 61)'Yk
6\/>€—3/2 v (14e€1)vk
< 7/ xdx
v2r vV (I—e1)vk

6\/§6_3/27 €1 < e
= —  —  Tk€1 > Vk€1-
V2T

20

Similarly, using re= /2 < e~ 1/2,

Bk = Bar = E[E1{a-c)m<er<(te)m}]

/ (1+€1)’Yk 2/
= 22e 24y
Vo Vi—e)me
2¢—1/2 v/ (I+e)vi
< — xdx
V2 J/a=e)w
2e~1/2
= T Ve€1 < Vi€l
T
Therefore,
[EYi]-E[Y_]|| < — Zwllwkll2

e p2K? X K2|| X * (|2
e Z” ||F:9qu ESi3

To lower bound 3, ., we will use right incoherence which
implies that v, > 9.

B =E[E (€ - 1) Lie<a—a)m]
=E[(¢'-&)] -E [ (6® - 1) Liez1-e)m))

2 (z? — 1)—e_x2/2dx

=2 2/
\/(1 €1)Vk V27
>92 / 4 7z2/2d
\/27T 1 61)%

So_ L / oA gy
\/27r (- 61)%

=2— mexp( (1 —e1)yk/4) > 1.5,

where we used the fact that 3¢ < 3.5 forany x; v, > 9
(follows by right incoherence); and ¢; < 0.01. O

—x2/4

Proof of Lemma 3.8. Let us define
!,k
wi = |aq oy |ai 1 2_901-oX*}n2s2 -
(au'a}) < 7

As argued in [20], which itself borrows the key idea from [9],
we can show that the w;;s are sub-Gaussian random variables
with sub-Gaussian norm K = Cuxl||X*||r/,/q. Notice that
we have defined Yy differently in this paper (in order to be
able to exploit concentration over mq) as compared to that in
[20] and hence only the above argument is similar.

Observe that
ma Y- — E[Y_]| =
Elw;rwi])z|.

First consider a fixed unit vector z. Observe that z'w;y is
sub-Gaussian with sub-Gaussian norm K = Cux|| X*||r/./q.
Thus, using Lemma A.1 with t = exmu?s?||X*||%, and
Kx,, = Ky, = %, we can conclude that w.p. at least

maXz:HzH:l |Z/ Zik(wikwik/ -

ik

>1—2exp (—ce%mq),

2(Y " wiwa’ —mgE [Y-])z| < emp®s®|| X713,
ik



After this, we can use a standard epsilon-net argument to
extend the bound to all unit vectors z. With it, we can conclude
that, w.p. at least 1 — 2exp (nlog9 — ce3mg),
L5eap®k?|| X *||%

q

Y- —E[Y-]]| <

C. Clarifying the sign inconsistency issue

Recall that we had defined g, := (U")'z} in (7). Since
the solution of phase retrieval always comes with a phase
(sign) ambiguity, at each iteration ¢, for each k, the output
of RWF, b, may be closer to either g/, or —gk This is what
decides whether dist(g}, b.,) equals ||gi — bl or ||gt + bL]|.
However, bound both in each proof is cumbersome Instead
we can proceed as follows. Re-define g}, as
S RECAE S R (COE SR ARZ0F

x;, otherwise

@}, + b |
9k = 7(Ut)/

and define the matrix

G' = 91,95, . 9.
With these new deﬁnitions,Adist(g,thZ) = |lgt — b and
mat-dist(G*, B") = |G" — By .

As an aside, we should point out that, even if some columns
of a matrix change sign (are multiplied by (—1)), its singular
values do not change. Thus, the minimum singular value of
G remains the same with or without the above re-definition.

We need to do somethlng similar to the above for x}’s
as twell Define =* k =z} if |&), — xf|| < |8} + =] and
x*, = —x), otherwise. Deﬁne the corresponding matrix X !

Clearly mat- dlst(X* ,X*) = 0. So, in the rest of the
writing in this section, to reduce notation, we will re-define

X* =X+
With this, we can define the error/perturbation in &j as just
hy =&, —x;

and we have dist(2}, z}) = ||&}, — =} || = ||hi-

D. Proof of Lemmas 3.2 and 3.3
(t)

In this section, we let a;; := a;;’ and y;;, := yf,? Also,
everywhere below, we remove the superscripts ¢ for ease of
notation. Recall that } = Ugy+ey with ey, := (I-UU")x;.

Proof of Lemma 3.2. To estimate by, we first need to estimate
gr, which requires measurements of the form a;;'Ugy. Our
measurements satisfy

Yir = |air' Ugr| + vir,

where v, = |a;' )| — |ai'Ugs| is the noise. We use these
to obtain the estimate by using RWF. By Theorem 2 of [10],
if m > Cr, w.p. at least 1 — exp(—cm),

i l-a

N

)TRWF‘,t

dist (gk,bk) Hng’

21

where c; is a constant less than one. For our problem,

ik <|lai'Ugr + air'ex] — lain'Ugi| | < |aix'es]

lvel® = Z%zk = Z|aik/ek|2~
j i
Clearly, HlelI I = mfe® and el <
sin @ (U, U*)||b%||. Using Lemma A.1 with t = mdy||ex|?,
Kx, = Ky, = ||ex||, and summing over i = 1,2,...,m, we

conclude that, w.p. at least 1 — exp (—cdzm),
o1 < (L + 6)llexl|® < m(L + )57 1163 1%

where the last inequality used ||e|| < &b . Thus, using the
above and ||gx| < b5l

dist (e, B ) < T+ Bi6llBE | + (1= )™ [
By setting Tryyr, s0 that (1 — ¢)TRwre < §, we get that
) < O8,||BL || = O, ||la*|| with C = (VI T8 +
1). The above bound holds w.p. at least 1 — exp (—cdzm) for

a given k. By union bound, it holds for all £ = 1,2,...,¢,
w.p. at least 1 — gexp (—c6§m). Hence, with this probability,

mat-dist(G, B) < C6;|| X*| ¢

For proving the third claim, recall that &, = Ub;, and Ty =
Ugi. + ey. Let hy, .= scl’: — &3. We can rewrite hy as h, =
x;, — Ugy + Ugy — Uby. Thus, by triangle inequality, and
using [[ex|| < sin®(U, U")||gxll < 6:[1b% [,

1kl < llexll + Ul gr — Bell < (14 C)¢ )17 -

dist (gk, i)k

O

Proof of Lemma 3.3. Recall that B ¥ RBB and so by =
I < ||b*|| and right incoher-
ence (Whlch implies that ||b,c||2 <ot P/,

okl = IB5" (g — be+gi )|
< | R5" | (dist (b, 91) + llgn )
< IR+ €5, B

L L+ COahmm/rfa _
Umln(RB) - Unnn(RB)
To lower bound omin(Rp), observe that opin(Rp) =
Omin(B). Using Lemma 3.2, the discussion of Sec. A-C, facts
from Sec. A-A, and sin©®(U,U*) < 4y,

amin(B) Z Omin (G) - HG - B”

max:u \/

> Umin(U/U*)o'min(B*) - HG - B”F
> /1 —sin©@2(U,U*)ot,;, — C8||B*||r
\/ 1- 51‘2 :;nn Cat\/;o':;lax'

Using 6; < ¢/k\/T, Omin(RB) = Omin (B) > 0.90%;,- Thus,

1.5 \r/
x| < ”(;“g*ff 4 <omp/rfa = i/rla

All of the above bounds used the bound from Lemma 3.2.
Thus the above bounds hold w.p. at least 1 —n =19 as long as
m > C' max(r, log q,logn). O



E. Proof of the lemmas for Claim 3.4

(T+t)

- (T+t)
= a;, .

In this section, we let a; and y;r = Y,
Also, at almost all places, we remove the superscript *.

All the proofs in this section use incoherence of B with
parameter (i = C'kp (by Lemma 3.3). This holds w.p. at least
1 —n~1% as long as m > C max(r, logn,logq) /5.

Proof of Lemma 3.10. Recall
Zik (aik/ka)2. We have

that  Term3(W) =

E Zaik’kaF] = m|WB|% =m.
ik
Let X; = l|ag'Whg|. X is sub-Gaussian with sub-

Gaussian norm ||Wby||. We use Lemma A.1 with Yj;, = X;
and t = d;m, along with the following facts:

D) 3ok [Whi||* < maxy [Why||? 32, [[Wby |,

2) S [Wh|?2 = [WB|2 = trace (WBB'W') —
W2 = 1, and

3 mas [Whel2 < [WPmasc bl <
W% mase b2 < masc x> < /g, wp. at
least 1 —n 1'% as long as m > C max(r, logn, log q) /52

by Lemma 3.3.

Using Lemma A.1 and the above facts, for a fixed W,

52
Pr {|Z la}, Wby|? —m| > (5tm} < 2exp (—c ;Zq>

ik

Now we develop an epsilon-net argument to complete the
proof. This is inspired by similar arguments in [52]. Recall
that Sy = {W € R™*" |W||r = 1}. By [54](Lemma 5.2),
there is a set (called e-net), Sy C Sy so that for any W in
Sw, there is a W € Sy, such that

W —W|r<e

_ 2 nr

Pick € = 1/8 so that |Sy/| < 17"". Also, define

and

AW =W - W
so that ||AW||r <e=1/8.

Using a union bound over all entries in the finite set Sy,

Pr <|Z lal, Wby |> —m| < 6m, forall W € SW>
ik

_ 52
>1-—2|Sw|exp (—c t;nq)
a2r
52
>1 - 2exp (nr(log 17) — ¢ ;Zq). (14)

Next we extend the above to obtain lower and upper bounds
over the entire hyper-sphere, Sy . Define

QW: max E |aik'ka|2,
weSw T
2

as the maximum of Term3(W') over Sy . Since T AA‘V“’,‘T‘F €

Sw,

> lai AWb[* < 0w [|[AW | < e’
ik
Using this, (14), and Cauchy-Schwarz,
Z |aik'ka|2
ik
= Z |aik’ka|2 + Z \aik'AkaF
ik ik
+ 2 Z (aik’ka) (a;,kAka)

ik
< (14 0)m + 0w + 2/m(1 + 6;) v/ Owe

=(1+)m+ (1/64)0w + (1/4)m/1 + 6;1/ 0w /m
15)

67mg

i ) The last equality
just used € = 1/8 and re-arranged the third term.

If Oy /m < 1, we are done because then Oy < m.
Otherwise, Oy /m > 1 and so /0w /m < 6Oy /m. Using
this and taking maxwes,, of (15),

Ow < (1+6)m + 0w ((1/64) + (1/4)\/1 + &;).
By assumption, 0; < 1/10, and so the above implies that
Ow < 1.25(1 + 6;)m.
2
Thus, w.p. 1 — 2exp (nr(log 17) — céﬁmq),

acr

w.p. at least 1 —2 exp (nr(log 17) —¢

Ow = max Term3 < 1.25(1 + §;)m < 1.5m.
WeSw

We now obtain the lower bound on the minimum of Term3
over the entire hyper-sphere. This uses (14), Cauchy-Schwarz,
and the upper bound on fy from above.

Z |aik’ka\2

ik

> Z |aik/ka|2 -+ 22 (aikaka) (aiyk’Aka)
ik ik

Z Z |aik'ka|2 — 2| Z ai7k'kaai7k'Aka\
ik ik

>m(l—6) =2 > laigWbi|? > |aix’ AWby|?

ik ik
> m(1 —6;) = 2v/m(1 +0p)y/ 0w [[AW |3
> m(1 — 6;) — 2m(1 + 6,)VL.5e > m(0.9 — 0.26) = 0.64m

w.p. 1 — 2exp (nr(log 17) — cﬁggq). In the last line we
substituted € = 1/8 and used d; < 1/10.

All of the above bounds hold on the event in which B is
i incoherent. This holds w.p. at least 1 — n~1% as long as
m > C max(r,logn,log ¢)/67 (this follows by Lemma 3.3).

Thus, if m > Cmax(r,logn,logq)/6Z, wp. 1 —

2 exp (nr(log 17) — c@) —n~10,

a2

min Term3(W') > 0.64m.
weSw



Proof of Lemma 3.11. Define
pi := B*B'by, — b}, = ©*(B*B'b, — b})
Recall that
Term1(W) = Z b, W'aa,'U*py.
ik

Define the matrix P := [p1, pa,. .., py]. Observe that

P=B*(B'B-1I).
We first upper bound || P||r by using Lemma 3.2. In Lemma

3.2, we bounded mat-dist(G, B) = |G — B||r. Recall also
that B Qi Rp B where B is a matrix with orthonormal rows.

Thus, B(I — B’B) = 0. Using this and facts from Sec. A-A,

IPlr = 1B (I~ B'B)|r
< — g VU B U= B'B) |
- g€~ B+ BB
< mlleﬁ||F+0
L O X

[ —
= omin (U'U¥)
Furthermore o2, (U'U*) = 1—sin©®(U,U*)? > 1—42. By

min

assumption, ¢; < 1/10 and so

1P||F < v/10/9C6(| X .
Next we show that E[Term1(W)] = 0.

(16)

E[Terml(W)] =m Y b,/W'U*S*(B*B'by, — bj)

k

=m Yy _ u(W'U*S*(B*B'b; — b})b;')
k

=m u(W'U*S*(B*B'BB’' — B*B'))

=0

where we used BB’ = I,. Now we use the above and (16)

to show that it also concentrates around zero. Let X;, =

a;,, Wby, and Yy, = a},U*ps. Both are sub-Gaussian, and

so we can apply the Bernstein-type lemma, Lemma A.l,

for sums of products of sub-Gaussian r.v.’s. Observe that

Kx,. = [[Wbi| < [[W]|rllbk| < [|bel, and Ky,, < [|pxl|-
Using Lemma 3.3, by’s are incoherent, i.e.,

bk ]|* < i°r/q = CK*pPr/q.

wp. at least 1 — n719 as long as m >

Cmax(r,logn,logq)/6?. Using the above, we can

also show that pj’s are incoherent as follows. Using
(a+b)? <2(a®+b?). and | B|| = |B*|| =1,
* 2 * *
1 < 2050 (1B 2B [1bx |1 + [16%]1)
* 2 *
= 207 ([1Be]|* + [[b]1%)

2/~ 2
<200 (07 + 1) /q = CRP P o T /q
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We will now apply Lemma A.1 with ¢ = md? || X *| .
¢ __ m* X%
Y K%, KY,  m X, |1bk]?]lpel|?
mdy || X%
maxy, [|by[|* 32, [Pl
mdy || X%
maxy [|bg ||| P %
o X3
oy [ox [2C267 | X 5
mqé?
Cr2pu2 ¢’
¢ még|| X
maxiy Kx,, Ky, — maxy [|bg[l|[pxl]
0 ax C2R2 2
mqdy /1
Cr3u? r

Y

Y

v

and

Y

The second inequality used (16), while the third used incoher-
ence of by’s. The last inequality used incoherence of by’s and

of pi’s (proved above) and || X*||p > /ro,;,. Thus
- * t mqé;
i K% K2’ = Or3 2
> ik . Ky, maxgg Kx,, Ky, Cr3u?r

and so

Pr{|Term1(W)| < mé; || X*||r} > 1 —exp 70,%3#27“
Now we just need to extend our bound for all W € Sy.
We first extend it to all W in an epsilon-net of Sy. By
[54](Lemma 5.2), there is an e-net, Sy so that for any W
in Sy, there is a W in Sy, such that [|[W — W{|r < ¢ and
Sw| < (1+2)"". Pick e = 1/8. With this, |Sy| < 17"".
Define AW = W — W. We have |[AW|r < e =1/8.
Using union bound on the set Sy,

Pr{|Term1(W)| < méZ||X*||r for all W € Sy}

_ 52
>1—2|Sw|exp <—cmqt)

K32

2
>1-—2exp <nr(log 17) —c mqo; ) (17)

K3 u2r

To extend the claim to all W € Sy, define

- o IorrE
Ow = V‘gle%xw 2 (i’ Whby)(a; U pr).
Since % € Sw, Y lai/AWby)(al, U*py) <

Ow |AW || p < Owe. Thus, using (17), for any W € Sy,

> (ai'Why)(ai'U*py)

ik

= (ai'Wbi)(ai'Upr) + > _(aiw' AWb)(aj, U pr)
ik ik

<mo2|| X*||p + Owe = mdZ|| X*||p + (1/8)0w



mqd?

w.p. at least 1—2 exp (nr(log 17) — cﬁguzr). Thus, taking the
maxwes, Of the above equation and solving for Oy, with
the above probability,

Ow < mF| X" p/(1 =€) = (8/T)mé; || X~ || -

All of the above bounds hold on the event in which B is
[i incoherent. This holds w.p. at least 1 — n~'9 as long as
m > C max(r,log n,log ¢)/67 (this follows by Lemma 3.3).

Thus, if m > C max(r,logn,logq) /62, w.p.
2
at least 1 — 2exp (nr(log 17) — céﬁi‘i‘r — n~10
maxw sy, |Term1(W)| < (8/7)mé2 (| X*| ¢
O
(T+t)
Proof of Lemma 3.12. Recall that a; := a;; and same
for y;i. Thus, these are independent of the current &’s.
By Cauchy-Schwarz,
Term2(W) := Z(Cikéik — 1)(aik’ka)(aik’:cZ)
ik
< Dol Woil2 [ eéin — 112 ai'z ]
ik ik
(18)

We can bound the first term using Lemma 3.10. Consider
the second term. Since c¢;; = sign(a;’xzy) and &y =
sign(a;,'®1), clearly (cipéip — 1)? = () 1qc, 2.,y To
bound this term we use the following result.

Lemma A.2 (Lemma 1 of [10]). Let a; be standard Gaussian
random vectors. For any given x*, and & independent from
a;,i=1---,m,

Pr (sign(a/a:*) + sign (a;'2) | (a;i'z*)’ = 22,373)

z
<ot (5rs1).
a2

for all & that satisfy dist(&,x*) < 0.4. Here erfc(u) :=
% fuoo exp (—7'2) dt is the complementary error function.

Let Qix = Lyc, 26,0} - (a,;k’:c’,;)Q and let Z;, := a;i'x}.
Recall from Sec. A-C that dist(xk, z}) = ||hx| with by =
w; — ii’k.

We first upper bound E[Q;x|&]. For simplicity, we remove
the subscripts ¢ and k wherever these are not needed. Consider
E[Q] = E[lcze Z?%]. Observe that ¢ = sign(Z) is a function
of Z and Z depends on a. Also ¢ is a function of a. Thus
both of ¢, ¢ are dependent on Z. Moreover ¢ also depends on
&. We first bound E[Q|Z?, ] using the lemma stated above.
For any & that satisfies dist(&, *) < 0.4,

E[Q|Z? = 22, 2]=E[lese 2% 2% = 2%, )]

=22Pr(c # ¢|Z% = 2%, &)

z
2Ne" - ]

2
<z?exp SR S—
- A — 2|
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The first inequality follows using Lemma A.2, the second is a
standard upper bound on the erfc function [69]. Thus, for any
& that satisfies dist(&, *) < 0.4,

EiQle) - EEQI2%,) <& |27 (-2 )]

Since Z is zero mean Gaussian with variance |z*||?, YV :=
Z?%/||x*||? is standard chi-squared with one degree of freedom.
Thus, E[Y] = 1. Using this and exp(—y/2) < 1, we get

E[Q#]
. ylz*2 Y\ exp(—u/2)
< [ vl e (‘4||a:*—:e||2> VZT(L2)

> yllz*|? > 1
< z*||?exp | — — d
< [ e (- vmram
:2\&”:3* 2|3 :2\/§dist(w*7:ic)3

[l ]|

dy

where T'(1/2) is the Gamma function evaluated at 1/2 (can
treat it as a constant). We will now use Lemma 3.2 to average
over &. Let E be the event that dist(x}, &) < & x| for
all k = 1,2,...,q. By Lemma 3.2, under the lower bound
on m, this event occurs w.p. at least 1 — n~19. On the
complement event, we do not have any tight bounds on Q.
However, trivially, @ < (a;’ :1:*)2 always and so, for any &,
E[Q|£] < ||=*||?. Thus

E[Q] < 467 [lz*||* - (1 = n™"%) + [|lz*[|* - n 71

We will eventually set §; = ¢/(x%r) which is larger than n =10,
Thus,
E[Q] < C'max(o7,n™'7)|lx*||* = OO} [l«*||?
and so, if m > C max(r,logn,logq),
> _E[Qix] < mOF|IX 7|3 (19)

ik

As a side-note, we should clarify here that the dependence
on & matters in only the above expected value computation
because this is the only term where we have upper bounded
the expectation using Lemma 3.2. The expected value of the
other two terms is the same for all values of & and hence
we ignore the dependence there. Everywhere else, we use this
lemma only while obtaining the high probability error bounds,
and of course we assume the bounds hold on the intersection
of the desired event with E.

Next we show that, on the event E, whp, Zik Qi is of the
same order. As shown in the proof of Theorem 1 of [10], ¢;, #
¢;1, implies that® (aik’wZ)Q < (aik'hk)z. Here hj, = xj — &.
Thus, Qir = Lic, 26,y (@i'TE)” < Ve, 2,y (@in'hi)” <
(a;’ hk)2. Thus, it is a sub-exponential r.v., or equivalently
it is a product of sub-Gaussian r.v.’s 1/Q;;. Thus, we can

8This follows from (a’x*)? = (a’h)? + (a’#)? + 2(a’h)(d'E) =
(a’h)? — (a’®)? +2(a’x*)(a’®) < (a’h)?. The inequality holds because
C;k # C;; means that the last term is negative.



apply Lemma A.1 with Kx,, = Ky, = ||hg|. Pick t =
md:67|| X *||%. Observe that

2w X3
Zik Al mZk Al
o ma X
~ maxy, [[hy]|267 ]| X (%
_ ma| X3
~ maxy, ||z ]]?
2
> mzqéé’ and
K2
t mdy|| X*||% dymgq

maxy, [|hil|? T maxy [|z5|? T k2p?

The second inequality used |hy||* < 67|z} ||* which holds
on the event E. The third inequality used the fact that right
incoherence implies ||z}||? < p?k?|| X*||%/q. Thus, on the
event I,

Pri{| 30, Qi — i E[Qur]l = ma: o7 (| X%}
< 2exp (—cofmq/w*p?)

Thus, using (19), and Pr(E) > 1 — n~1° (by Lemma 3.2),
if m > Cmax(r,logn,logq), w.p. at least 1 — n=10 —
2exp (—cdfmq/r?p?),

> Qu < (C+ 1)mdiS7 | X3 (20)
ik

Finally, combining (18), (20), and Lemma 3.10, if
m > Cmax(r,logn,logq)/62, wp. at least 1 — n=10 —
2 exp (nr — céf%) — 2exp | —cd? KT&
max Term2(W) < Cmn/1 + 0,7/8:0¢|| X *| -
wWeSw
O

Proof of Lemma 3.13. Using facts from Sec. A-A, and using
O'Z(U*) = 1,

Umin(U*E*B*BI) 2 Urnin(U*)Umin(2*>amin(B*B/)
\/1 —sin©%(B*', B’)

Z a;knin
To upper bound sin®(B*',B’), first notice that B*’
and B’ are basis matrices. Thus, sin©®(B* B') =
| B* (I — B'B) ||. We have upper bounded || B* (I — B'B) ||
in Lemma 3.11. Also recall that B* = ¥*B* and ||B*||p =
|X* | < vy Thus,

- Co|| X*
sin®@(B*',B’) = ||(Z*)"'B* (I - B'B) || < 7”'* I
O min
< CVrkby
Thus, using §; < 0.7/Cy/rk, we will have
Omin(U*S*B*B') > 0.950% . . 0
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APPENDIX B
PROOF OF LEMMA 3.9

We begin by defining a few quantities needed for writing
an expression of U'*! in closed form.

1) We use the subscript M,.. to refer to the vectorized
version of matrix M. Thus, for example, U}, is an
nr x 1 vectorized version of the basis matrix U*. When
updating its estimate by LS, we first obtain an expression
for the vectorized version U}chl and then rearrange it as
an n X r matrix.

2) Scalars such as b(q) refer to the g-th entry of vector b.

3) Define the diagonal matrix C} := diag(c;x), and re-
call from the algorithm that C. = diag(é;). Here
¢k, = sign(a;r' ;) and ¢&;;, := sign(a,i’ &) as defined
in Lemma 3.9.

4) For k=1,...,q, define
Bk,mat = [bk(l)In, e ,bk(T)In]/
d:= B mat A Cruyy,
k

M = Z Bk,matAkAchllc,mat'
k

Observe that By, y,q: and M are nr X n and nr x nr
matrices respectively while d is an nr x 1 vector.
Moreover, for any w € R™*! it is easy to see that
W By mar = b, W’ where W is matrix version of w
with W € R™*",

Recall from the algorithm that

Srt+1 s A ! D/ 3 2
Uuec - argmanvec E ||Ckyk - Ak'Bk,matUU€CH :
k

This is an LS problem, it can be solved in closed form to give

Ulll =M'd

vec

which is nr-length vector. We get the matrix U+ by reshap-
ing this vector into an n X r matrix.

To simplify the above expression, first recall that y, =
|Ax'x}| and C} is the diagonal matrix containing the signs
of (Ay'x});: its 4, i-th entry is the sign of (a;;'x}). Thus,

yr = CL A} xj,.
Since xj, = U*X*bj,, we can rewrite d as
d=>" BimaArCrCrA/'US"b;.
k

Before proceeding further, we define a few more quantities.
1) Define

* /
S = § Bk,'rrLatB k,mat -
k

2) Define the “expanded” singular value matrix which is of

size nr X nr,
* T * *
X, = diag(oi Ly, -+ ,071,)

where o are the singular values of X™.



3) In order to separate the contribution of phase error from
the rest, split d as d = dV) + d(®) where

dV =" Bimar AU S"b;,
k

d® =" Bimat(CrCr — T)A/U S b},

k

Thus,

Uit = M~'d=M"(dY +d?).
4) Define the nr-length vector F,,.. as follows
Fvec =M~ (Mszbzg vec d(l)) _1d(2)

and let F' € R™*" be the reshaped matrix formed from

E)(EC'
We will now show that

Ut =U*S*B*B’ — F. 1)

This will be wuseful because when we try to bound
sin®(U*,Ut1), the first term will disappear To do this,
we add and subtract the vector M .SXj; Uy, from d™). This
gives

Ut-l—l

vec

S8 Ulee — Foec

vec

Next we explain why the n X r reshaped matrix version of the

vector S, Uy, equals U*X*B*B’. We have
Szbzg vec ZBk’matBl}ck,mat/zbnglfec
k
= BimaU 'S"b;,
k
b (HU*X*b,
br(2 )U*E*b,c

by (r )U*Z by
Matrix version of the above vector has p-th column as
U*X* (3, bibr(p)). This implies that matrix version of
this vector is U*X* B* B’. Moreover, it is easy to see that
k matSELQU:P( = U*E*B*B,bk
In the rest of this section, we use (21) to obtain the desired

bound on sin ©(U*, U'*1). Recall that Uy, QR U Ry.

Thus, Ut = U(Ry)™! = (U*S*B*B’ — F)(Ry) ™!
and so
sinO(U*, U™ =|[UT F(Ry) ™| < |F(Ry) ™|
_ Fo.|
<||F R = M Fvecll 22
<|F|r [|R;"| P (22)

Since opmin(Ry) = omin(UTY), we have opmin(Ry) =
Omin(U*X*B*B’ — F) > 0nin(U*X*B*B’) — |F| >
Omin(U*X*B*B’) — || Fyec||- Thus,
[ Froeell
Omin(U*E*B*B’) — || Fye.||
In the rest of this proof, we show that ||F,..|| is upper
bounded by MainTerm. We have

| Fucell UM (IMSE5, U — dD) + [d2])) 24)

sinQ(U*, U™ < (23)
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Consider the first term, M !
positive semidefinite matrix

Umin(M) =

. Since M is a symmetric

min w Mw

weRnrxl’ ”wH:1

For all w € R ||w|? = 1, we can write w' Mw

> W' Bimat Ak AL By g = Y bW AL A Wby,
k k
= Z |a), Wby|?> = Term3(W)
ik

where W € R™*" is the matrix version of w and w = W ...

Recall that Syy = {W € R, |[W]p = 1} = {w €
R ¥L " |lw|| = 1}. Thus,
1 1
M| = = 25
” | Omin(M)  minwesy, |Term3(W)| (25)

Now consider the first term inside the parenthesis. Using the
variational definition,

||MSEbzg vec d(l || =
MSY; —dW
wER"g}?’?ﬁwH 1"(,0( bzg vec )|
It follows from definitions that
w M‘S’Ebzg vec —
Z (w Bk mat) AkAl (Bk matSEbzg vec) =
k
> bW/ A AUS*B*B'by.
k
Similarly
wld(l) _ Z bk/W/AkAk,U*E*bz,
k
and thus
1y —
|MS¥;,,U. = dV| = max [Terml (W), (26)

For the final term, ||d?)||, by variational definition we have,

1d@| = w'd®.

max
weR X1 ||lw]||=1

From definitions we know that
w’d(2) = Z ’wlBkymatAk(éka - I)AklU*E*bZ
k
=) bW/ ALCLCr — ) AU S b;
k
= (e — 1) (@i Why) (air'z})

ik
and thus

= Term2(W),

@) =
1] = jmax |Term2(W))]. 27)

Combining (24) -
[ Foeell

< MaXWesw | Term1(

@7,

W)| + maxwes,, |Term2(W)]
minwesy, | Term3(W)]

Combining the above bound with (23) proves the lemma.



APPENDIX C
PROOF SKETCH OF COROLLARY 5.1

Suppose first that the subspace change times k; were known.
By our assumption, k;11 — k; > Toa. Then the proof is
almost exactly the same as that for the static case. The
only difference is that, in the current case, every « time
instants, we are using measurements corresponding to a new
set of « signals (columns of X *¢,;1) but we use the estimate
of the subspace obtained from the measurements for the
previous « time instants. As long as the subspace has not
changed between the two intervals, Claims 3.1 and 3.4 apply
without change. Combining them, we can again conclude that
sin @(Ufub,(j), U:ub7(j)) < Sinit at K = k; + «, and that
the bound decreases 0.7 times after each a-length epoch so
that SinQ(Us:Zb,(j)’Us*ub,(j)) < eatk = k; +oT. By our
assumption, k; 1 > k; + o' so this happens before the next
change.

The proof in the unknown k; case follows if we can show
that, whp, k; < I%j < lch + 2. This can be done using Lemma
C.1 given below along with the following argument borrowed
from [55], [70]. Consider the o-length interval in which k;
lies. Assume that, before this interval, we have an e-accurate
estimate of the previous subspace. In this interval, the first
some data vectors satisfy x; = Us*ub,(jq)dz’ while the rest
satisfy x} = Us*ub’( j)d~z. By our assumption, this interval
lies in the “detect phase”. We cannot guarantee whether the
change will get detected in this interval, but it may. However,
in the interval after this interval, all data vectors satisfy
T = U:ub7(j)¢i~z. In this interval, Lemma C.1 given below can
be used to show that the change gets detected whp. Thus, either
the change is detected in the first interval itself (the one that
contains k;), or it is not. If it is not, then, by Lemma C.1, whp,
it will get detected in the second interval (in which all signals
are generated from the j-th subspace). Thus, /%j < kj+2a. See
Appendix A of [55] for a precise proof of this idea. The key
point to note here is that we are never updating the subspace
in the interval that contains k; and hence we do not have to
prove a new descent lemma that deals with the interval in
which the subspace changes.

We will replace o by q in the following lemma and its proof,
in order to able to use bounds from earlier proofs. Thus in this
lemma, we are considering a q-frame epoch.

Lemma C.1. Consider the (n — r) x (n — r) matrix
Yu,det := Usub,(j—1), 1 YU (Tq)Usub,(—1), 1+

Assume that ||[Yy —E[Y_]|| < W This is true by (10).
Assume that sin ©(Ugyy, (j—1), U, (j71)) < ¢. Then,

S

D) If J; C [kj, kj+1) (change has occurred), then
)\max (YU,det) - )\min (YU,det)

x 2
g (15 sin ("')2 (Us*ub,(j)7 Usub,(jfl)) - 26init)

Z min
q
O'*- 2 ] )
2 %(15(51“ O, (jy> Usub,(j—1)) — 2€)" —

20init)

27

2) If Jq C [kj—1+T4q, kj) (change has not occurred), then
)\max (YU,det) - )\min (YU,det)
1 * . *
< 50max2 sin ©7 ( sub,(j—1)» Usub,(j—l)) +

* 2
< @(5262) + 26init)
q

*
min

q

Proof. This proof uses the following fact: For basis ma-
trices Py, P,, P; of the same size, sin® (P, Py) —
2Sin®(P2,P3) S Sin@(Pth) S Sin@(PhPQ) +
sin © (PQ, Pg)

Define the (n — r) X (n — r) matrix

Ey = Usub,(jfl),J_/E[Yf]Usub,(jfl),J_-
Proof of item 1

)\max (YU,det) Z )\max (Edet) - ”YU,det - Edet”

| Yv,det — Edet|
5ini y 2
<|vy —E[Y_]| < %

Also we have
)\min (YU7det) S )\min (Edet) + ||YU,det - Edet”

Thus using the facts from Sec. A-A and miny ﬁfk > 1.5
(proved while proving Claim 3.1 for initializing U™*),

Amax (YU,det) - >\Inin (YU,det)

1 * — kL%
> )\max (quub,(j—l)7J_/Usub,(j) (Z Bl)kbkbk/)x
k

* 2
20init O i

*

(o'min)2 : * 2
Z T 1.5sin 6 (Usub,(j)7 Usub,(j—l)) — 261nit .
Proof of item 2

)\max (YU,det) - )\min (YU,det) S)\max (Edet) - )\min (Edet)
+ 2| Yu det — Egetl|-

It is easy to see that

>\max (Edet) - /\Inin (Edet)

maxy Bik * 2 . 2 *
< ?Umax sin® (Usub,(jfl)’USUba(j_1)>
* 2
< m;x, sin ©2 (Us*ub,(jfl)’ Usub,(j—l))
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