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Abstract—We study the Low Rank Phase Retrieval (LRPR)
problem defined as follows: recover an n×q matrix X∗ of rank r
from a different and independent set of m phaseless (magnitude-
only) linear projections of each of its columns. To be precise, we
need to recover X∗ from yk := |Ak

′x∗k|, k = 1, 2, . . . , q when
the measurement matrices Ak are mutually independent. Here
yk is an m length vector, Ak is an n×m matrix, and ′ denotes
matrix transpose. The question is when can we solve LRPR with
m� n? A reliable solution can enable fast and low-cost phaseless
dynamic imaging, e.g., Fourier ptychographic imaging of live
biological specimens. In this work, we develop the first provably
correct approach for solving this LRPR problem. Our proposed
algorithm, Alternating Minimization for Low-Rank Phase Re-
trieval (AltMinLowRaP), is an AltMin based solution and hence
is also provably fast (converges geometrically). Our guarantee
shows that AltMinLowRaP solves LRPR to ε accuracy, with high
probability, as long as mq ≥ Cnr4 log(1/ε), the matrices Ak

contain i.i.d. standard Gaussian entries, and the right singular
vectors of X∗ satisfy the incoherence assumption from matrix
completion literature. Here C is a numerical constant that only
depends on the condition number of X∗ and on its incoherence
parameter. Its time complexity is only Cmqnr log2(1/ε).

Since even the linear (with phase) version of the above problem
is not fully solved, the above result is also the first complete
solution and guarantee for the linear case. Finally, we also develop
a simple extension of our results for the dynamic LRPR setting.

I. INTRODUCTION

In recent years, there has been a resurgence of interest
in the classical phase retrieval (PR) problem [2], [3]. The
original PR problem involved recovering an n-length signal
x∗ from the magnitudes of its Discrete Fourier Transform
(DFT) coefficients. Its generalized version, studied in recent
literature, replaces DFT by inner products with any arbitrary
design vectors, ai. Thus, the goal is to recover x∗ from yi :=
|〈ai,x∗〉|, i = 1, 2, . . . ,m. These are commonly referred to as
phaseless linear projections of x∗. While practical PR methods
have existed for a long time, e.g., see [2], [3], the focus of the
recent work has been on obtaining correctness guarantees for
these and newer algorithms. This line of work includes convex
relaxation methods [4], [5] as well as non-convex methods
[6]–[13]. It is easy to see that, without extra assumptions, PR
requires m ≥ n. The best known guarantees – see [9] and
follow-up works – prove exact recovery with high probability
(whp) with order-optimal number of measurements/samples:
m = Cn; and with time complexity Cmn log(1/ε) that is
nearly linear in the problem size. Here and below, C is reused
often to refer to a constant more than one. Most guarantees for
PR assume that ai’s are independent and identically distributed
(iid) standard Gaussian vectors. When this is assumed, we
refer to the PR problem as “standard PR”.

Part of this work appears in the proceedings of ICML 2019 [1].

A natural approach to reduce the sample complexity to
below n is to impose structure on the unknown signal(s). In
existing literature, with the exception of sparse PR which has
been extensively studied, e.g., [6], [14]–[18], there is little
other work on structured PR. Low rank is the other common
structure. This can be used in one of two ways. One is to
assume that the unknown signal/image, whose phaseless linear
projections are available, can be rearranged to form a low-
rank matrix. This would be valid only for very specific types
of images for which different image rows or columns look
similar, so that the entire image matrix can be modeled as low
rank. In general it is not a very practical model for images,
and this is probably why this setting has not been explored in
the literature. We do not consider this model here either.

A more practical, and commonly used, low-rank model
in biological applications [19], is for the dynamic imaging
setting. It assumes that a set, e.g., a time sequence, of
signals/images is generated from a lower dimensional subspace
of the ambient space. For our problem, we assume that we
have a set of m phaseless linear projections of each signal,
with a different set of measurement vectors used for each
signal. The question is can we jointly recover the signals
using an m � n and when? This setting was first studied
in our recent work [20] where we called it “Low-Rank PR”
(LRPR). It is a valid model whenever the set/sequence of
signals is sufficiently similar (correlated). A solution to LRPR
can enable fast and low-cost phaseless dynamic imaging of
live biological specimens, in vitro. See Sec. I-C and [21] for
a detailed motivation for studying LRPR.

A. Low Rank PR (LRPR) Problem Setting and Notation

We study the LRPR problem described above. This was
first introduced and briefly studied in [20] where we developed
two algorithms, evaluated them experimentally, and provided a
guarantee for the initialization step of one of them. The goal is
to to recover an n×q matrix X∗ := [x∗1,x

∗
2, . . . ,x

∗
k, . . . ,x

∗
q ],

of rank r, from measurements

yik := |〈aikek′,X∗〉| = |〈aik,x∗k〉|, i ∈ [m], k ∈ [q], (1)

when all the aik’s are mutually independent. For proving
guarantees we assume also that they are iid standard Gaus-
sian and real-valued. Here and below the notation [m] :=
{1, 2, . . . ,m}, and ek refers to the k-th column of Iq (identity
matrix of size q×q). We are interested in the low rank setting
when r � min(n, q).

By defining the m-length vector yk :=
[y1,k,y2,k, . . . ,ym,k]′ and the n × m matrix
Ak := [a1,k,a2,k, . . . ,am,k], and letting |z| denote
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(a) Original (b) AltMinLowRaP (c) RWF

Fig. 1: Recovering a video of a moving mouse (only approximately low-rank) from simulated coded diffraction pattern (CDP)
measurements. The images are shown at k = 60, 78. We describe the experiment in Sec. IV-B.

element-wise magnitude of a vector, the above measurement
model can also be rewritten as

yk := |Ak
′x∗k|, k = 1, 2, . . . , q (2)

where ′ denotes vector or matrix transpose.
The requirement that the measurement vectors used for

imaging different x∗k’s be different and independent is what
allows us to show that m � n suffices. To understand this
point in a simple fashion, consider the r = 1 setting and
suppose that x∗k = x∗1 (all columns are equal). We would
then have mq iid Gaussian measurements of x∗1 and hence
mq ≥ Cn would suffice [9]. If q = n, this means just
a constant number of measurements m per column (signal)
suffices. For r > 1 but small, we will show that we can extend
this idea to show that, when q = n (or is larger), the required
value of m depends only on the value of r and not on n. On
the other hand, if aik = ai for all k, then, in the above r = 1
example, only the first m measurements are useful (the others
are just repeats of these). Thus we will still need m ≥ Cn in
this case. This aik = ai case, and its linear version, is what
has been studied extensively in the literature [22], [23]. In this
case, m needs to be at least (n+ q)r.

Let X∗ SVD
= U∗Σ∗B∗ denote its singular value decom-

position (SVD) so that U∗ ∈ Rn×r, B∗ ∈ Rr×q , and
Σ∗ ∈ Rr×r is a diagonal matrix. Observe that this notation
is a little non-standard, if the SVD was U∗Σ∗V ∗′, we are
letting B∗ := V ∗′. Thus, columns of U∗ and rows of B∗

are orthonormal. We use σ∗max, σ
∗
min to denote the maximum,

minimum singular values ofX∗ and κ = σ∗max/σ
∗
min to denote

its condition number. Finally, we define

B̃∗ := Σ∗B∗.

We use the above non-standard notation for SVD because our
solution approach will recover columns of B̃∗, b̃∗k, individually
by solving an r-dimensional standard PR problem (it is more
intuitive to talk about recovery of column vectors than of
rows). With the above notation, the QR decomposition of an
estimate of B̃∗, denoted B̂, will be written as B̂

QR
= RBB

with B being an r × q matrix with orthonormal rows (or
equivalently B̂′

QR
= B′(RB)′).

Right Incoherence. Observe that we have global mea-
surements of each column, but not of the entire matrix.
Thus, in order to correctly recover X∗ with small m, we
need an assumption that allows for correct “interpolation”
across the rows. One way to ensure this is to borrow the
right incoherence (incoherence or denseness of right singular
vectors) assumption from matrix completion literature [24],
[25]. In our notation, this means that we need to assume that

max
k
‖b∗k‖2 ≤ µ2 r

q
, (3)

with µ ≥ 1 being a constant. Clearly, this implies that

‖x∗k‖2 = ‖b̃∗k‖2 ≤ σ∗max
2µ2 r

q
= κ2σ∗min

2µ2 r

q
≤ κ2µ2 ‖X∗‖2F

q
(4)

for each k. If we assume κ is a constant, up to constant factors,
(4) also implies (3). Thus, up to constant factors, requiring
right incoherence is the same as requiring that the maximum
energy of any signal x∗k is within constant factors of the
average.

1) Notation: We use ‖.‖ to denote the l2-norm of a vector
or the induced 2-norm matrix and ‖.‖F to denote the Frobenius
norm. We use 1statement to denote the indicator function; it
takes the value one if statement is true and is zero otherwise.
A tall matrix with orthonormal columns is referred to as a
“basis matrix”. For two basis matrices U1,U2, we define the
subspace error (distance) as

sin Θ(U1,U2) := ‖(I −U1U
′
1)U2‖.

This measures the sine of the largest principal angle between
the two subspaces. We often use terms like “estimate U” when
the goal is to really estimate its column span, Span(U). The
phase-invariant distance is defined as

dist(x∗, x̂) := min
θ∈[−π,π]

‖x∗ − e−jθx̂‖

For our guarantees, we work with real valued vectors and
matrices, and in this case this simplifies to dist(x∗, x̂) =
min(‖x∗ − x̂‖, ‖x∗ + x̂‖). Define the corresponding distance
between two matrices as

mat-dist(X̂,X∗)2 :=

q∑
k=1

dist2(x∗k, x̂k).
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TABLE I: Comparing our result (first result for LRPR) with the first and the best results for (bounded time) non-convex algorithms for the
three related problems to ours - LRMC, PR, Sparse PR. Here “best” refers to best sample complexity. We treat κ, µ as constants. X∗ is an
n× q rank-r matrix; x∗ is an n-length vector signal; and m is the number of samples needed per signal (per column of X∗). LRPR, Sparse
PR, and Standard PR results assume iid Gaussian measurements, while LRMC results assume iid Bernoulli model on observed entries.

Problem Global Assumptions Sample Complexity Time Complexity per signal
Measurements? (with m = its lower bound)

LRPR (first) No right incoherence, m ≥ C n
q
r4 log(1/ε), Cn(n/q)r5 log3(1/ε)

(our work) X∗ has rank r m ≥ Cmax(r, logn, log q)

LRMC (first) [25] No left & right incoherence, m ≥ Cmax(n,q)
q

r4.5 log(1/ε) C(n/q)r6.5 logn log2(1/ε)

X∗ has rank r
LRMC (best) [26] No left & right incoherence m ≥ Cmax(n,q)

q
r2 log2 n log2(1/ε) C(n/q)r3 logn log2(1/ε)

X∗ has rank r
Sparse PR (first) [6] Yes x∗ is s-sparse in canonical basis, m ≥ Cs2 logn log(1/ε) Cns3 logn log2(1/ε)

min nonzero entry lower bounded
Sparse PR (best) [17], [18] Yes x∗ is s-sparse in canonical basis m ≥ Cs2 logn Cns2 logn log(1/ε)

Standard PR (first) [6] Yes None m ≥ Cn log3 n log(1/ε) Cn2 log3 n log(1/ε)

Standard PR (best) [9], [10] Yes None m ≥ Cn Cn2 log(1/ε)

We reuse the letters c, C to denote different numerical
constants in each use, with the convention C ≥ 1 and c < 1.

B. Our Contributions and their Significance and Novelty

This work provides the first provably correct solution,
AltMinLowRaP (Alternating Minimization for Low Rank PR),
for Low Rank PR. AltMinLowRaP is a fast alternating mini-
mization (AltMin) based solution approach with a carefully
designed spectral initialization. We can prove that AltMin-
LowRaP converges geometrically to an ε-accurate solution
as long as (i) right incoherence stated in (3) holds, and (ii)
the total number of available measurements, mq, is at least a
constant (that depends on κ, µ) times nr4 log(1/ε). Its time
complexity is order mqnr log2(1/ε), but if we replace mq by
its lowest allowed value, then the time complexity becomes
O(n2r5 log3(1/ε)). If q = n (or is larger), ignoring log factors,
this implies that only about r4 (or lesser) samples per signal
suffice when using AltMinLowRaP. Moreover, when using
these many samples, the time complexity per signal is only
about Cnr5. On the other hand, standard PR approaches (to
recover each signal x∗k individually) necessarily need m ≥ Cn
samples, and order Cn2 time, per signal [9], [10]. In the
regime of small r, e.g., r = log n, our result provides a
significant sample, and time, complexity improvement over
standard PR. Moreover, in this regime, our sample complexity
is also only a little worse than its order optimal value of
(n+q)r.We demonstate the practical power of AltMinLowRaP
in Fig. 1, Fig. 2, and the other experiments described later.

The key insight that helps obtain the above reduction in
sample complexity is the following observation: for both the
initialization and the update steps for U∗, conditioned on X∗,
we have access to mq mutually independent measurements.
These are not identically distributed (because the different
b∗k’s could have different distributions), however, we can
carefully use the right incoherence assumption to show that
the distributions are “similar enough” so that concentration
inequalities can be applied jointly for all the mq samples.

We also briefly study the dynamic setting, Phaseless Subspace
Tracking, which allows the underlying signal subspace to
change with time in a piecewise constant fashion.

To our best knowledge, even the linear version of our
problem – recover X∗ from yk := Ak

′x∗k, k = 1, 2, . . . , q
– does not have any provably correct solutions (as we explain
in Sec. I-D). Thus, our work also provides the first provable
solution for this linear version. Our result implies that, even
in this case, we can recover X∗ to ε accuracy using only
m = C(n/q)r4 log(1/ε) samples per column, and can do this
using an alternating minimization solution. What has been
studied extensively is the Ak = A version of both LRPR
and the above linear version [22], [23]. These are completely
different problems as explained earlier in Sec. I-A.

1) Significance: The other somewhat related problem to
ours, Sparse PR, is actually quite different. This is because
it involves recovery from global measurements of the sparse
vector (each measurement depends on the entire unknown
sparse vector), where as, in our case, the measurements are
not global for the entire matrix X∗. It is well known that,
when studying iterative (non-convex) solutions to problems,
the global measurements’ setting is easier to study, and one can
obtain better sample complexity guarantees for it, as compared
to its non-global counterpart [27]. For example, we can com-
pare guarantees for iterative low rank matrix sensing (LRMS)
from iid Gaussian linear projections with those for low rank
matrix completion (LRMC) when assuming the iid Bernoulli
model on observed entries [24], [25], [28]. LRMS can be
solved using an iterative algorithm with nearly order optimal
number of measurements, e.g., the approach of [28] needs
mq ≥ C(n + q)r log max(n, q), while even the best iterative
LRMC guarantee (under the iid Bernoulli measurement model)
[26] needs mq ≥ C(n+ q)r2 log2(nq) log2(1/ε).

In this sense, the problem closest to ours that is extensively
studied is LRMC. Of course LRMC involves recovery from
completely local but linear measurements of X∗, while LRPR
involves recovery from nonlinear but column-wise global
measurements. For this reason, for LRPR, in the regime of
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q significantly larger than n, the required sample complexity
m is very small. As an example, suppose that q ≥ nr4, then
we only need m ≥ C max(r, log q, log(1/ε)). But this does
not happen for LRMC.

We provide a comparison with the first and the best guar-
antees for non-convex (iterative) solutions for LRMC, sparse
PR, and standard PR in Table I. These and other works are
discussed in detail in Sec. I-D. As can be seen from the table,
the first guarantee for iterative solutions to many problems
is often sub-optimal (either needs more samples or more
assumptions) compared to the best one that appeared later.
Moreover, in the practical regime of r being order log n or
smaller, our LRPR sample complexity is as good or better
than that of the best LRMC guarantee.

2) Novelty: In the absence of relevant existing work for
even solving the linear version of our problem, except for
a convex solution for the aik = ai case (which is a sig-
nificantly different problem), developing and analyzing our
approach was not a straightforward extension of existing ideas.
For example, the AltMinLowRaP algorithm itself is not just
alternating standard PR over U and B. The PR problem
for recovering U∗ given an estimate of B̃∗ is significantly
different from standard PR; see Sec. II-A1 below.

For the above reasons, it is also not possible to directly
modify proof techniques from existing work. We borrow some
ideas from LRMC [25] and standard PR results [9], [10].
But the major difference is that concentration bounds need to
applied differently than for either of these problems. (i) The
LRMC guarantees use results for Bernoulli random variables
(which is a much more well-developed literature that has also
been studied in the context of random graphs). In our setting,
the random variables are not Bernoulli and not even bounded.
Hence we rely on the sub-exponential Bernstein inequality
[29, Theorem 2.8.1] and the fact that the product of two sub-
Gaussian random variables is a sub-exponential [29, Lemma
2.7.7]. A second difference is that LRMC results do not need
to deal with the phase error term. (ii) Standard PR results do
have a phase error term and do deal with unbounded random
variables using results from [29]. But they do not have to
prove concentration using a set of mq measurements that are
not identically distributed and, on first glance, may not even be
“similar enough” to get a useful result. The “similarity” that is
needed is of the following form: the maximum sub-exponential
norm of any of the mq random variables being summed is not
much larger than its average value. For each term, we have
to carefully exploit the right incoherence assumption to show
that this holds.

C. Motivation for studying Low Rank PR (LRPR)

Low rank is a commonly used model in many dynamic
biomedical imaging applications since (i) such images cannot
change too much from one frame to the next, and (ii) these
images are taken in controlled settings and so there are no
fast changing foreground occlusions to worry about1. For

1Occlusions by moving objects or persons in the foreground are a common
feature in computer vision problems such as surveillance or autonomous
vehicles etc; for such videos a sparse + low-rank model is more appropriate

example, it is an important part of many practically useful
fast compressive dynamic MRI solutions, e.g., see [19], and
follow-up works [30], [31]2. In a similar fashion, a low
sample complexity solution to LRPR can enable fast or low-
cost dynamic phaseless imaging in applications such as solar
imaging when the sun’s surface properties gradually change
over time [32], or Fourier ptychographic imaging of live
biological specimens and other dynamic scenes [21], [33].
Suppose the scene resolution is n and the total number of
captured frames is q. If the dynamics is approximated to be
linear and slow changing, with most of the change being
explained by r linearly independent factors, then the matrix
formed by stacking the vectorized image frames next to each
other can be modeled as a rank-r matrix plus small modeling
error. In typical settings, r � min(n, q) is a valid assumption,
making the unknown images’ matrix approximately low-rank.

In all the above applications, measurement acquisition is
either expensive or slow. For example, Fourier ptychography
is a technique for super-resolution in which each of a set of
low resolution cameras measures the magnitude of a different
band-pass filtered version of the target high-resolution image.
To get enough measurements per image, one either needs many
cameras (expensive), or one needs to move a single camera to
different locations to acquire the different bands [33]. This can
make the acquisition process slow. By exploiting the low-rank
assumption, it is possible to get an accurate reconstruction
with using fewer total measurements (fewer cameras in this
example). This has been demonstrated experimentally for
dynamic Fourier ptychography in our recent work [21] and
its follow-up [34]. Moreover, it is indeed practically valid
to assume that a different measurement matrix Ak is used
for each different signal/image. In the ptychography example,
this would correspond to using a different randomly selected
subset of cameras at different times k. Modified cameras can
also be designed that save power by switching off a different
set of pixels at different time instants. We have explored both
settings in [21].

Another practical point that should be mentioned is that,
often, in practice, a very small value of rank r suffices. For
example, we used r = 20 in all our experiments on image
sequences with n = 32400 in [21]. In follow-up work [34], we
show that just r = 5 suffices for the same datasets, as long as
a “modeling error correction step”3 is applied to the output of
AltMinLowRaP.

Lastly, in comparison to sparsity or structured sparsity
priors, the low rank prior is a significantly more flexible
one since it does not require knowledge of the dictionary or
basis in which the signal is sufficiently sparse. In Table III,
we demonstrate this via a simple experiment. We compare
AltMinLowRaP with the most recent provable sparse PR algo-
rithm [18], CoPRAM, applied with assuming wavelet sparsity

2These follow-up works exploit both low-rank of the entire sequence and
wavelet sparsity of each image to further reduce the number of measurements
needed in practice. This is the so-called “sparse and low-rank” model which
is very different from sparse+low-rank model where the sparse component
models occlusions by foreground moving objects.

3This step applies a few iterations of any standard PR approach column-
wise to the output of AltMinLowRaP, in order to recover some of the modeling
error in the low-rank assumption.
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(which is a generic choice for any piecewise smooth image,
but is not necessarily the best choice for the particular image).
As can be seen, AltMinLowRaP has significantly superior
performance not just for the real image sequence, but also
for its deliberately sparsified version. The sparsified sequence
had sparsity level s ≈ 0.1n ≈ 100 and we provided CoPRAM
with this ground truth. AltMinLowRaP used just r = 15
for all three results and still had much lower reconstruction
error than CoPRAM. Details of this experiment are provided
in Sec. IV-B. Moreover, low-rank also includes certain types
of dynamic sparsity models (those with fixed of very small
changes in support over time) as special cases.

D. Review of Related Work

1) Linear version of our problem: Compressive PCA:
While one would think that the linear (with phase) version of
our problem would been extensively studied, this is not true.
There have been a few algorithmic solutions for this problem
in prior work [35], [36], and attempts to prove some facts
theoretically. Follow-up work consists of an Asilomar 2014
paper [37] that solves the general PCA problem for any (not
necessarily low rank) matrixX∗, but does not discuss recovery
of X∗. We explain these in detail in Sec. II-C.

2) Our measurement model, but with same set of m mea-
surement vectors used for all signals, and its linear version:
The covariance sketching problem, e.g., see [23], assumes
that measurements satisfying (1), but with aik = ai, are
available. One aggregates these over k to get yi :=

∑
k yik =

a′i(
∑
k x
∗
kx
∗
k
′)ai = a′iX

∗X∗′ai. This aggregation is what
ensures that the memory complexity of storing the measure-
ments is order m and not mq (which is what we need).
Also, the aggregated yi is a function of X∗X∗′/q only in
the aik = ai setting, otherwise it is a meaningless quantity.
Assuming random zero mean iid signals x∗k, X∗X∗′/q is the
empirical covariance matrix of a signal. The question is can we
recover X∗X∗′/q from the scalar sketches yi, i = 1, 2, . . .m
with using m much smaller than nq, when X∗ is low rank
(or has other structure)? When X∗ is rank r, the result of
[23] proves that m of order (n + q)r suffices to estimate the
empirical covariance from the aggregated measurements yi if
one solves an appropriately defined nuclear norm minimization
problem. For solving LRPR, we need a much smaller m than
this. The reason is we assume independent aik’s for different
k, and we assume we have access to each individual yik.

The linear version of the above problem, but with random
noise added, is considered in Corollary 3 of [22] and in the
remark immediately below it. In our notation, its measurement
model can be written as yik = 〈aiek′,X∗〉+wik where wik
is iid zero mean Gaussian noise with variance ν2. This result
(specialized to the exact low rank case) shows that, whp, a
nuclear norm minimization based solution will recover an es-
timate X̂ ofX∗ that satisfies ‖X∗−X̂‖2F ≤ C ν2r(n+q)/m.
In this paper, the focus is on using the low rank property
to achieve noise robustness. If the low rank property was
not used, and one attempted to recover the columns indi-
vidually, the recovery error bound would scale as ν2nq/m
which is much larger. This paper also studies other settings

of recovering an approximately low rank matrix from linear
measurements.

3) Tangentially related work: Some other tangentially re-
lated work includes: (i) computing the approximate rank r
approximation of any matrix (need not be low rank) from its
random sketches [38], [39] (sketched SVD); (ii) compressed
covariance estimation using different sketching matrices for
each data vector, but without the low-rank assumption [40];
and (iii) a generalization of low-rank covariance sketching
[41]: this attempts to recover an n × r matrix U∗ from
measurements yi = ‖a′iU∗‖2 with r � n. When r = 1,
this is the standard PR problem. In the general case, this is
related to covariance sketching described above, but not to our
problem.

4) Linear low-rank matrix recovery – LRMS and LRMC:
Low-rank matrix recovery problems with linear measurements
that have been extensively studied can be split into two kinds -
those with “global measurements” and those without. “Global
measurements” means that each measurement contains infor-
mation about the entire structured quantity-of-interest, here
the low-rank matrix. Such problems are called “affine rank
minimization problems” or “low-rank matrix sensing” (LRMS)
and involve recovery of X∗ from yi = 〈Ai,X

∗〉 with
Ai being dense matrices (typically iid Gaussian), see for
example, [25], [28], [42]–[44]. More recent work studies the
case of Ai = aiai

′ [45], [46]. Low-rank Matrix Completion
(LRMC) is the completely local measurements’ setting that
involves recovering X∗ from measurements of a randomly
(iid Bernoulli) selected subset of its entries [12], [24]–[26],
[47], [48] . Thus Ai’s are one-sparse matrices.

A precursor to LRMS is compressive sensing (CS) of sparse
signals. This has the same property as LRMS, it involves
recovering a sparse x∗ from yi = 〈ai,x∗〉 with ai being
dense (sub-)Gaussian random vectors. Similar to CS, even for
LRMS, it is typically possible to prove a simple (sparse or low-
rank) restricted isometry property which simplifies the rest of
the analysis. Our problem setting is different from, and more
difficult than, LRMS. There are no “global measurements” of
the entire X∗ and, moreover, the measurements’ phase/sign is
unknown. In this sense it is closer to LRMC than to LRMS.
But, unlike LRMC, we do have column-wise global measure-
ments. This is why, for our problem only incoherence of right
singular vectors suffices, while LRMC needs incoherence of
both left and right singular vectors.

In summary, the problem closest to ours that is well studied
is LRMC. The first iterative solution to LRMC was [47].
However, its guarantee does not bound the required number
of algorithm iterations, and thus its time complexity cannot be
bounded. The first iterative LRMC solution with bounded time
complexity, AltMinComplete [25], needs a sample complexity
of about Cκ4µ2nr4.5 log(1/ε) and assumes sample-splitting
(a different independent set of measurements is used at each
iteration). The most recent work on LRMC [12] removes
the sample-splitting requirement and has bounded time com-
plexity, but its sample complexity was Cnr3 log6(n). The
best iterative LRMC solution in terms of sample complexity
[26] needs Cnr2 log2 n log2 κ/ε samples but needs sample-
splitting. In the practical regime r ∈ O(log n), clearly our
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sample complexity for LRPR is comparable to the best LRMC
guarantee [26]. For all values of r, it is slightly better than
the first bounded time iterative LRMC solution [25]. Time-
wise the AltMin algorithm for LRMC is faster than our
AltMinLowRaP algorithm for LRPR (see Table I). This is
because the LS problem to be solved in each AltMin step
of LRMC involves a matrix with a large number of zeros but
this is not the case for LRPR.

5) Sparse PR: Sparse PR is a somewhat related problem
to ours since it involves PR with a different type of structural
assumption on the signals. But, as noted earlier, there is a
major difference. Sparse PR involves recovery from global
measurements of the entire sparse vector. It can be under-
stood as the phaseless version of Compressive Sensing with
random Gaussian measurements. The global measurements’
setting is typical easier than its non-global counterparts. Prov-
ably correct sparse PR approaches include convex relaxation
approaches such as `1-PhaseLift [14]; older combinatorial
methods [49]; and a series of fast iterative approaches: (i)
AltMinSparse [6], (ii) Sparse Truncated Amplitude Flow
(SPARTA) [16], (iii) Thresholded WF [17] and CoPRAM [18].
The first two fast nonconvex approaches – AltMinSparse and
SPARTA – needed to assume a lower bound on the minimum
nonzero entry of x. In follow-up work on Thresholded WF
and then on CoPRAM, this extra assumption was removed.
All four results need at least order s2 log n measurements. A
summary of comparison of our work with LRMC, sparse PR,
and standard PR is provided in Table I.

E. Organization

We present our algorithm and guarantee along with a
detailed discussion of the novelty of our proof techniques
in Sec. II given next. The overall proof is given in Sec. III.
The lemmas introduced in Sec. III are proved in Appendix A.
Numerical experiments are provided in Sec. IV. We develop
extensions to phaseless subspace tracking in Sec. V. We
conclude in Sec. VI with a detailed discussion of ongoing
and future work.

II. LOW RANK PR: ALGORITHM AND GUARANTEE

A. AltMinLowRaP algorithm

The complete algorithm is summarized in Algorithm 1. We
explain its main idea next and then explain the details.

1) Main idea: AltMinLowRaP minimizes the following
q∑

k=1

‖ yk − |Ak
′Ubk| ‖2 (5)

alternatively over U ,B with the constraint that U is a basis
matrix. To initialize, we develop a spectral initialization for
Span(U∗) explained below. At a top level, the alternating
minimization (AltMin) can be understood as alternating PR:
minimize (5) over B keeping U fixed at its current value and
then vice versa. But there are important differences between
the two PR problems and how they can be solved.
• Given an estimate of Span(U∗), denoted U , and assum-

ing that U contains orthnormal columns and is indepen-
dent of the measurement vectors, the recovery of each b̃∗k

is an r-dimensional “standard PR” problem. We can use
either of [9], [10] to solve it. The estimate that we get,
denoted b̂k, is actually an estimate of gk := U ′U∗b̃∗k
which is a rotated version of b̃∗k. If sin Θ(U ,U∗) ≤ δ,
then, by the noisy PR result of [10], we can see that
‖b̂k − gk‖ ≤ Cδ‖b∗k‖.

• Given a previous estimate of B̃∗, the update of U∗,
or equivalently of its vectorized version, U∗vec, is a
significantly non-standard PR problem for two reasons.
First, the “measurement vectors” for this PR problem are
no longer independent or identically distributed. Second,
and more importantly, by using the previous estimates
of U∗ and of b̃∗k, with accuracy level δ, we can get an
estimate, x̂k = Ub̂k, of x∗k with the same accuracy level.
With this, we can also get an estimate of the phase/sign of
the measurements, cik := phase(aik

′x∗k) with the same
accuracy level. As a result, obtaining a new estimate
of U∗vec becomes a much simpler Least Squares (LS)
problem rather than a PR problem.

• We stress here that an argument similar to the above does
not apply when recovering b̃∗k’s. The reason is, with a
new estimate of U∗, denoted U+, the previous estimate
of b̃∗k becomes useless: (i) it is close to U ′U∗b̃∗k, and not
to U+′U∗b̃∗k; and (ii) we only estimate the span of the
columns of U∗ accurately, so U or U+ are close to U∗

(and hence to each other) only in the subspace error sin Θ
(and not in spectral or Frobenius norm). As a result an
estimate of the form U+b̂k cannot be shown to be close
to x∗k.4.

2) Details: A different way to understand AltMinLowRaP
is to split it into a three-way AltMin problem over U∗, b̃∗k’s,
and cik’s. This discussion assumes “sample-splitting”: a new
set of mq measurements is used for each update of U∗ and
another new set for each update of B̃∗. Thus the total number
of measurements used is 2mq times the number of iterations.

1) At each new iteration, we first obtain a new estimate
of U∗ using previous estimates of b̃∗k’s and of the
measurements’ phases cik’s. This is a LS problem, see
line 10 of Algorithm 1. The output of the LS step may
not have orthonormal columns; this is easily resolved by
a QR decomposition step after it (line 11).

2) Given a new estimate of U∗, we recover each b̃∗k,
by solving easy individual r-dimensional standard PR
problems. These are easy because m of order r suffices.

3) Given a good estimate of b̃∗k and of U∗, we can
get an equally good estimate of x∗k and hence of the
signs/phases cik’s.

Consider the PR step to update b̃∗k’s. Observe that we can
rewrite yik as yik = |〈aik,U∗b̃∗k〉| = |〈(U∗′aik), b̃∗k〉|. If

4To understand this point easily, suppose both U and U+ are perfect
estimates of U∗ in terms of the subspaces they span. Suppose U+ = U∗R2

and U = U∗R1 where R1,R2 could be any rotation matrices. Then it is
easy to see that ‖x∗k − U+b̂k‖ ≥ ‖(U − U+)b̂k‖ − ‖x∗k − Ub̂k‖ ≥
‖U∗(R1 −R2)b̂k‖ − δ‖x∗k‖. Since R1,R2 can be any rotation matrices,
e.g, one could have R2 = −R1; in this case, the above error is lower
bounded by 2‖b̂k‖ − δ‖x∗k‖ ≥ (2− Cδ)‖x∗k‖. The last inequality follows
since ‖b̂k‖ = ‖x̂k‖ and dist(x∗k, x̂k) ≤ Cδ‖x∗k‖ by Lemma 3.2. The error
can thus be even higher than using a zero vector to estimate x∗k .
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U∗ were known, we would have a noise-free standard PR
problem. If, at the t-the iteration, instead, we have a good
estimate of Span(U∗), denoted U t, we can still recover the
b̃∗k’s by solving a noisy version of the same problem. Due to
sample splitting, U t is independent of aik’s and so the design
vectors (U t′aik) are still iid standard Gaussian. Any standard
PR solution can be used, here we use Reshaped Wirtinger
flow (RWF) [10]. The noise seen by RWF is proportional
to sin Θ(U t,U∗). The error in the output of RWF cannot
be lower than this value [10]. Thus, one needs to use just
enough iterations of RWF so that the error at the end of the
final RWF iteration is proportional to sin Θ(U t,U∗). Since
we prove geometric convergence of sin Θ(U t,U∗), we can
let TRWF,t grow linearly with t.

3) Initialization: To obtain the initialization, we develop a
careful modification of the truncated spectral initialization idea
from [9], [20]. First assume that r is known. We initialize Û
as the top r left singular vectors of the following matrix:

YU =
1

mq

q∑
k=1

m∑
i=1

y2
ikaika

′
ik1{y2

ik≤CY
1
mq

∑
ik y2

ik}. (6)

where CY is a constant that decides the truncation threshold
(which measurements are too large in magnitude compared
to the mean energy of the measurements and should be
discarded). For our guarantee, we set it equal to 9κ2µ2. In
practice a good value can be chosen by experimentation and
cross-validation or by using the ideas in [50]. An alternative
approach is to set it differently for each k as done in [20]. This
approach does not require knowledge of κ or µ, but it results
in a worse lower bound on just m. We discuss the effect of
this choice in Remark 2.2 and also in Sec. II-D3.

To understand why the above approach works, first con-
sider the above matrix with the indicator function removed.
Then it is not hard to see that its expected value equals
(1/q)[U∗(Σ∗2)U∗′+2trace(Σ∗2)I], and so its span of top r
singular vectors equals Span(U∗). Hence, with large enough
mq, the same should approximately hold for the original
matrix. However, when using YU with the indicator function
removed, a few “bad” measurements (those with very large
magnitude y2

ik compared to their empirical mean over i, k)
can heavily bias its value. To mitigate this effect, and get a
good initialization in spite of it, we will need a larger value of
mq. Using the indicator function helps truncate the summation
to only sum over the “good” measurements, and as a result a
smaller value of mq suffices. Mathematically, this helps ensure
that YU is close to a matrix that can be written as

∑
ikwikwik

′

with wik’s being iid sub-Gaussian vectors (instead of sub-
exponential in the case without truncation) [9].

We can also use YU to correctly estimate r whp by using
the fact that, when m and q are large, the gap between its r-th
and (r + 1)-th singular value is close to σ∗min

2/q. With this
idea, we estimate r as given in the first step of Algorithm 1.
As explained in [20], another way of estimating the rank is to
set r̂ = arg maxj(σj(YU ) − σj+1(YU )). This approach does
not require knowledge of any model parameters. Hence it is
easily applicable for real data (even without training samples
being available). However, it works under the assumption that

Algorithm 1 AltMin-LowRaP: Alt-Min for Phaseless Low
Rank Recovery

1: Parameters: T , TRWF,t, ω.
2: Partition the mtot measurements and design vectors for

each x∗k into one set for initialization and 2T disjoint sets
for the main loop.

3: Set r̂ as the largest index j for which λj(YU )−λn(YU ) ≥
ω where YU is in (6).

4: U0 ← Û0 ← top r̂ singular vectors of YU defined in (6).
{Initialize U}

5: for t = 0 : T do
6: b̂tk ← RWF({y(t)

k ,U t′A
(t)
k }, TRWF,t) for each

k = 1, 2, · · · , q (RWF: Reshaped WF [10]).
{Update B̂ }

7: x̂tk ← U tb̂tk for each k = 1, 2, · · · , q.
8: Ĉk ← Phase

(
A

(T+t)
k

′x̂tk

)
for each k = 1, 2, · · · , q .

{Update Ĉk’s}
9: Get Bt by QR decomp: B̂t QR

= Rt
BB

t.
10: Û t+1 ← arg minŨ

∑q
k=1 ‖Ĉky

(T+t)
k −

A
(T+t)
k

′Ũbtk‖2.
11: Get U t+1 by QR decomp: Û t+1 QR

= U t+1Rt+1
U .

{Line 10, 11: Update U}
12: end for

consecutive nonzero singular values of X∗ are close (do not
have significant gap), see [20, Corollary 3.7] for one precise
statement of this claim.

The main idea of the initialization step explained above
was first developed in our previous work [20], we explain
the difference later in Sec. II-D3. Also, as pointed out by
an anonymous reviewer, a matrix that is related to YU was
used in earlier work [35], [36] to try to solve what can be
called the linear version of our problem; see Sec. II-C. We
were not aware of this work when developing our approach.
Our approach was developed independently in [20] as a
modification of the truncated spectral initialization idea from
PR literature [9] and then modified here.

We summarize the complete algorithm in Algorithm 1. As
is commonly done in existing literature, e.g., see [6], [25], in
order to obtain a provable guarantee in a simple fashion, we as-
sume sample-splitting. Since we prove geometric convergence
of the iterates, this increases the required sample complexity
by a factor of only log(1/ε). In our empirical evaluations, we
reuse the same set of measurements.

B. Guarantee

We have the following guarantee.

Theorem 2.1. Consider Algorithm 1. Assume that the yik’s
satisfy (1) with aik being iid standard Gaussian; and X∗ is
an n×q rank-r matrix that satisfies right-incoherence with pa-
rameter µ. Set T := C log(1/ε), TRWF,t = C(log r+ log κ+
t(log(0.7)/ log(1 − c))), ω = 1.3σ∗min

2/q, and CY = 9κ2µ2

in (6). Assume that, for the initialization step and for each new
update, we use a new set of m measurements with m satisfying
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mq ≥ Cκ12µ4 · nr4 and m ≥ C max(r, log q, log n). Then,
with probability (w.p.) at least 1− Cn−10,

sin Θ(U∗,UT ) ≤ ε, mat-dist(X̂T ,X∗) ≤ ε‖X∗‖F

and dist(x̂Tk ,x
∗
k) ≤ ε‖x∗k‖ for each k. Moreover, after the

t-th iteration,

sin Θ(U∗,U t) ≤ 0.7tδinit, t = 0, 1, 2, . . . , T

where δinit = c
κ2r . Similar bounds also hold on the error in

estimating x∗ks. The time complexity is mqnr log2(1/ε).

Proof: We prove this in Sec. III.

Remark 2.2. If we are willing to tolerate another lower bound
on just m of m ≥ Cr4, we can improve the dependence on κ,
µ to κ8µ2. This will require the following change: define YU
as done in [20]: use 9

∑m
i=1 y

2
ik/m as the threshold inside the

indicator function. A second advantage of using this is that it
allows one to use CY = 9 instead of CY that depends on κ, µ.
The disadvantage is of course a more stringent lower bound
on m.

Remark 2.3. To understand the time complexity, observe that
the most expensive step at each iteration is the update of
U∗. This requires solving an LS problem of recovering an nr
length vector from mq measurements. One can solve this by
conjugate gradient descent with a cost of mq ·nr·log(1/ε) [6].
This times the total number of iterations, T = C log(1/ε) gives
the complexity of the algorithm after initialization. Consider
the initialization step. Observe that the top r singular vectors
of YU are also the top r singular vectors of an mq×n matrix
G whose columns are given by aikyik times the indicator
function used in (6). Thus YU = GG′. Since computing the
r-SVD of an a × b matrix to δ accuracy needs time of order
abr log(1/δ) [51], the SVD needed for initialization can be
computed in time Cmq · n · r · log(1/δinit) = Cmqnr log r
where δinit is the error level to which the initialization needs
to be accurate. As explained later, δinit = c/r suffices.

Theorem 2.1 implies that one can achieve geometric conver-
gence as long as the sample complexity mtot := (2T + 1)m
satisfies mtotq ≥ Cκ12µ4nr4 log(1/ε) along with mtot ≥
C max(r, log q, log n) log(1/ε). The second lower bound is
very small and essentially redundant5 except when q ≥ Cnr4.

Notice that the LRPR sample complexity is significantly
better than that of standard (unstructured) PR methods which
necessarily need m = Cn samples per signal (matrix column).
For fixed m and q, LRPR time complexity is about r times
worse than that of standard PR. But, if we use the smallest
value of mq needed by each method to get an ε-accurate
estimate, AltMinLowRaP is actually faster when r is small:
its needs time of order n2r5 log(1/ε) while standard PR
methods need time of oder n2q. We demonstrate this fact
experimentally in Fig 2.

The minimum number of samples needed to recover an n×q
matrix of rank r is (q + n)r. Thus, in general, our sample

5We need this lower bound because we recover the q b̃∗k’s individually by
solving a standard PR problem for each. This step works correctly w.p. at
least 1− 2q exp(r − cm).
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Fig. 2: Recovery error versus time-taken plot with time in seconds.
The “time” here is the time taken in seconds to reach a certain error
level. We generate this plot as explained in Sec. IV-A: plot the time
taken until end of iteration t on the x-axis and plot the error at the end
of iteration t on the y-axis. This figure illustrates the fact that if we
use the lowest allowed value of m for each approach, AltMinLowRaP
is in fact faster than RWF or TWF, for any given value of desired
recovery error. Notice that RWF and TWF fail for m = 3n, but work
for m = 4n. AltMinLowRaP works with just m = n/4 and with
this value of m it is roughly 5-times faster than both RWF (with
m = 4n) and TWF (with m = 4n) for any desired level of error ε.

complexity is r3 log(1/ε) times worse than its order-optimal
value. As noted earlier, in problem settings like ours, where the
measurements are not global, non-convex algorithms typically
do need more than the order-optimal number of samples. Since
neither our problem nor its linear version have any complete
provable guarantees for correct recovery in existing work,
LRMC is the closest problem to ours that has been extensively
studied and that also uses non-global measurements. Sparse
PR is the other somewhat related problem to ours but it is
easier because it involves recovery from global measurements
of a sparse vector. Table I provides a comparison of our
guarantee with the first and best results for both problems.
More details are in Sec. I-D. As can be seen from the table,
our sample complexity compares favorably with that for the
first non-convex solution for LRMC that has bounded time
complexity (bounds the required number of iterations) [25]. In
the practical regime of r being order log n, it even compares
with the best iterative LRMC result [26]. Also, the the first
guarantee for iterative solutions to both problems is sub-
optimal (needs more samples or more assumptions) compared
to the best one that appeared later.

We should reiterate that, (i) in many practical applications,
a small value of r suffices, e.g., we used r = 5 for images
with n = 32400 in [34] followed by a few iterations of model
error correction via standard PR; and (ii) low rank is a more
flexible model for dynamic imaging than sparsity. Also see
Tables II and III.
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C. Linear version of our problem: Compressive PCA
Consider the linear (with phase) version of our problem –

recover a low rank matrix X∗, or its column span, from

yik := 〈aik,x∗k〉, i = 1, 2, . . . ,m, k = 1, 2, . . . , q.

This problem can also be understood as “compressive PCA”
although compressive PCA typically allows X∗ to also be
only approximately low rank [35]–[37]. Clearly, both our
algorithm and our guarantee, Theorem 2.1, directly apply to
this simpler special case as long as the aik’s are iid Gaussian.
Even when phases are available one could use the magnitude
measurements and solve our harder problem instead. We can
state the following corollary.

Corollary 2.4. Consider the problem of recovering an n× q
rank-r matrixX∗ from yik := 〈aik,x∗k〉, i = 1, 2, . . . ,m, k =
1, 2, . . . , q. As long as right incoherence given in (3) holds,
one needs m ≥ C n

q r
4 log(1/ε) to recover X∗ and its column

span to ε accuracy (precisely defined in Theorem 2.1).

Thus our work also provides a simple and fast AltMin solu-
tion that provably converges geometrically to the compressive
PCA solution. Of course, when the phase/sign is known, a
simpler version of our algorithm should work and a better
guarantee should be obtainable. We discuss this further in the
conclusions’ section.

In terms of existing related work, [35] provided an ap-
proach for solving the above problem when X∗ is only
approximately low-rank. A follow-up paper [36] studied its
modification where aik’s are sparse random vectors, e.g.,
“sparse Bernoulli” as they call it (each entry takes values
−1, 0, 1 with probabilities 1/2s, 1−1/s, 1/2s). Their proposed
approach is related to our initialization step: one computes an
estimate of the principal subspace of the column span of X∗

by computing the top r singular vectors of a matrix that is
similar to YU defined in (6). The difference is that the indicator
function is absent, and they also sum over terms of the form
aikyikyjkajk

′ for all j 6= i which, in this linear setting,
have nonzero expected value. To be precise, they compute
the top r singular vectors of

∑
kAkykAk

′yk
′. Denote such

a matrix by YU,modified. These works treat the columns x∗k
as random vectors and assume that they have nonzero mean
and provide a simple intuitive approach to estimate the mean.
This is of course only possible because the measurements are
linear, and cannot be done in our setting. Both works [35],
[36] show that the expected value of YU,modified is equal to
c1I + c2E[X∗X∗′/q], thus, the span of top r eigenvectors
of the expected value equals the desired subspace: principal
subspace of the population covariance, E[X∗X∗′/q]. They
also claim that as q → ∞, YU,modified converges to its
expected value, but do not provide a rate of convergence.
Finally, they also upper bound the expected value of the
Frobenius norm of the error between YU,modified and its
expected value for any value of q. Since this result also only
bounds the expected value of the error, it cannot be used to get
any useful information about the sample complexity m that is
required even for the initialization step. Moreover, of course
these works do not provide any guarantee on how to recover
the entire matrix X∗.

A later work in Asilomar 2014 [37] attempted to solve a
generalization of the above problem: it provided an approach
(which is again somewhat related to only our initialization
step) and a guarantee for recovering the top r singular vectors
of a general matrix X∗. Specialized to the exactly rank r case,
their result proves that, if each column of X∗ is bounded,
and if m ≥ 1

ε max
(
n√
q

√
rκ, nq r

2κ2
)

, one can obtain an ε-
accurate recovery of the subspace Span(U∗). This is a much
weaker result than ours: (i) its sample complexity m depends
on 1/ε instead of on log(1/ε); and (ii) m needs to grow as
n/
√
q instead of as n/q. The reason it is weaker of course, is

because they used a single step approach instead of an iterative
algorithm.

D. Discussion of Proof Techniques and Reason for Worse
Dependence on κ, r

1) Proof techniques: Since even the linear version of our
problem has not been studied theoretically (except for a convex
solution for the aik = ai case which is a significantly different
problem), it is not possible to directly modify proof techniques
from existing work. We do borrow some ideas from LRMC
[25] or from standard PR results [9], [10]. But, as explained
earlier in Sec. I-B2, concentration bounds need to applied in
a significantly different way than for either of these problems.
The algebra for obtaining an expression that bounds the
subspace recovery error between Û t and U∗ uses the overall
approach of [25]. After this, the details are different because,
for LRMC, the random variables are Bernoulli, while in our
case they are unbounded sub-Gaussian or sub-exponential.
Also, in LRPR, the sign/phase are unknown and this introduces
an extra term that needs to be bounded, see Term2 defined
in Lemma 3.9. To bound this we first use Cauchy-Schwarz
to bound it by a product of two terms. One term is easy to
deal with. For the second term, we borrow a lemma from the
RWF paper [10] on standard PR, but the rest of our approach
is different because of the need to prove concentration of a set
of mq measurements that are not identically distributed (we
need to carefully exploit right concerence to ensure that they
are “similar enough” to apply the concentration bounds for
sums of products of sub-Gaussians).

Our initialization step uses the truncated spectral initializa-
tion approach, first introduced for PR in [9]. The proof for
it also uses the overall approach of [9] but there are many
important differences in proving the concentration bounds (see
above). Our initialization is also significantly different from
that of LRMC or LRMS. In these cases, the phase is known
and thus one can come up with a matrix whose expected
value equals X∗. This is not possible for LRPR. The matrix
whose top r singular vectors we compute has expected value
2β2X

∗X∗′ + β1I . This point has important implications for
the sample complexity dependence on κ, r, we discuss this
next.

2) Worse dependence on κ, r: Our sample complexity is
comparable to that of [25] in terms of its dependence on n and
r. However, our result has a worse dependence on κ because
we have access only to phaseless measurements. Because of
this, (1) our initialization step needs to use the matrix YU
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and find its top r eigenvectors in order to get an initial
estimate of the column span U∗. For simplicity, consider YU
without the truncation (without the indicator function). Then,
its expected value is U∗Σ∗2U∗′+ 2trace(Σ∗2)I . Notice that
the condition number of the first term of this matrix (the term
of interest) is κ2. Because of this, when analyzing this step,
we end up with a dependence of mq on κ8µ4nr2/δ2

init (see
Claim 3.1 and Sec. III-B where this claim is proved). Here
δinit is the subspace error after the initialization step. Instead,
the expected value of the matrix used for initialization of
AltMinComplete [25] has expected value equal to X∗ and
thus its condition number is just κ. (2) A second issue is
as follows: because of magnitude-only measurements, we are
having to deal with phase error (sign error) in each LS step
that updates the estimate of U∗. In bounding the phase error
term – Term2 defined in Lemma 3.9 in Sec. III-C – we need to
use the Cauchy-Schwarz inequality; see proof of Lemma 3.12.
Because of this, when using the bound on Term2 from Lemma
3.12 to prove the main descent claim, Claim 3.4, we end up
with a bound of the form sin Θ(U t+1,U∗) ≤ Cδt

√
δt
√
rκ

where δt is the bound on the subspace error from the previous
step. Thus, to ensure that this (t + 1)-th step error is below
0.7δt (decays geometrically), we need to set δt ≤ c/(κ2r)
for each iteration t, including the initialization. This is why
we need δinit = c/(κ2r). This, along with the fact that the
init step needs mq ≥ κ8µ4nr2/δ2

init, implies that our sample
complexity per iteration becomes Cκ12µ4nr4.

If somehow the Cauchy-Schwarz were not used, we would
only need mq ≥ κ10µ4r3. Similarly, if we somehow did not
use the loose bound ‖X‖ ≤ ‖X‖F for rank r matrices at a
few different places in the proof, we could remove another
factor of r.

3) Our previous work: The only other work that also
studies our problem is our previous work [20]. This introduced
a series of heuristics and evaluated them experimentally. It
also provided a guarantee for the initialization step of one of
them. If we compare their main result (their Theorem 3.2)
with ours, it required the following lower bound on just m:
m ≥ C max(

√
n, r4)/ε2 in addition to a lower bound on mq

that also depends on 1/ε2. We remove the 1/ε2 dependence
by analyzing the complete algorithm.

The first two requirements on just m are also significantly
relaxed in our work because we study a significantly modi-
fied version of our previous algorithm. The most important
algorithmic difference is that, both for initialization and for
later iterations, we recover b̃∗k’s by solving the standard PR
problem either fully (or, at least for enough iterations so that
the error in recovering b̃∗k’s is of the same order as the subspace
error in the estimate of U∗). This is what allows us to replace
the strong requirement m ≥ C

√
n that [20] needed by just

m ≥ Cr. This is also what enables us to get a complete
guarantee for the entire algorithm. The algorithm in [20] used
only one iteration of AltMinPhase [6] for obtaining a new
estimate of b̃∗k’s using a new estimate of U∗. With this, it was
not possible to show that the recovery error of b̃∗k’s is of the
same order as that of U∗.

Our approach for initializing U∗ is taken from [20], but
with a simple, but important, difference: the threshold in the

indicator function used for defining YU in (6) now takes an
average over all mq measurements (instead of over only the m
measurements of the k-th column in [20]). This simple change
allows us to use concentration over all the mq measurements
(and design vectors) in every step of deriving the initializa-
tion guarantee for U∗. This is what helps us eliminate the
requirement of m ≥ Cr4 on just m that was needed in [20].

III. PROOF OF THEOREM 2.1

The proof borrows ideas from past works – [9], [20] (for
initialization of U∗), [25] (the overall approach for getting a
subspace error bound given in the Appendix), [52] for careful
ε-net arguments for unit Frobenius norm matrices, and [10]
(for recovering b̃∗k’s, and in one step of trying to show that
the phase error is small). We cite the relevant reference again
where it is used. In Sec. III-A next, we provide the two main
claims (one for initialization and one for the descent), the two
other auxiliary lemmas needed for proving Theorem 2.1 and
the theorem’s proof using these. In Sec. III-B, we give the
key lemmas needed for proving the initialization claim and
also prove it. The same is done for the descent claim in Sec.
III-C. Each of these subsections also provides the main ideas
(intuition) used for proving the lemmas. We then prove all but
one of the lemmas from this entire section in Appendix A.
Lemma 3.9 which uses the overall approach of [25] is proved
in Appendix B.

A. Overall lemmas and proof of Theorem 2.1

Claim 3.1 (Rank estimation and Initialization of U∗). Let
Uinit = Û0. Pick a δinit < 0.25. Assume mq ≥
κ8µ4nr2/δ2

init. Set the rank estimation threshold ω =
1.3σ∗min

2/q (we can actually set the multiplier to any number
between 0.025 and 1.5). Then, w.p. at least 1 − 6n−10, the
rank is correctly estimated and

sin Θ(Uinit,U
∗) ≤ δinit.

Define

gtk := (U t)′x∗k and etk := (I −U tU t′)x∗k. (7)

It is easy to see that x∗k = U tgtk + etk and so yik =
|((U t)′aik)′gtk +aik

′etk|. Thus, we have a noisy PR problem
to solve with the noise magnitude proportional to ‖etk‖ with
‖etk‖ ≤ sin Θ(U t,U∗)‖x∗k‖. We use RWF to solve it. RWF
provides an estimate, b̂tk, of gtk. Observe that

gtk = (U t)′x∗k = ((U t)′U∗)b̃∗k

is just a rotated version of b̃∗k. We show in the next lemma
that, whp, the error in the RWF estimate, dist(gtk, b̂

t
k), is

proportional to sin Θ(U t,U∗); and the same is true for the
error in x̂tk := U tb̂tk.

Lemma 3.2 (Recovery of b̃∗k’s). At iteration t, assume that
sin Θ(U∗,U t) ≤ δt. Pick a δb < 1. If m ≥ Cr, and if we
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set TRWF,t = C log δt/ log(1 − c), then, w.p. at least 1 −
2q exp

(
−cδ2

bm
)
, the following is true for each k = 1, 2, · · · , q

dist
(
gtk, b̂

t
k

)
≤Cδt‖b̃∗k‖ = Cδt‖x∗k‖,

mat-dist(Gt, B̂t)≤Cδt‖B̃∗‖F = Cδt‖X∗‖F ,
dist(x̂tk,x

∗
k)≤(C + 1)δt‖x∗k‖. (8)

with C =
√

1 + δb + 1.
Thus, if m ≥ C max(r, log n, log q)/δ2

b , then the above
bounds hold w.p. at least 1− n−10.

From above, b̂tk is close to gtk (which is a rotated version of
b̃∗k) for each k. We thus expect B̂t, or equivalently Bt, to also
satisfy the incoherence assumption. We show next that this is
indeed true if δt is small enough. Recall that B̂t QR

= RBB
t.

Lemma 3.3 (Incoherence of B∗ implies incoherence
of Bt). Pick a δb < 1/10 and assume that
m ≥ C max(r, log n, log q)/δ2

b . At iteration t, assume
that sin Θ(U∗,U t) ≤ δt with δt ≤ 0.25

C
√
rκ

. If B∗ is µ-
incoherent, then, w.p. at least 1 − n−10, Bt is µ̂-incoherent
with µ̂ = Cκµ.

Finally, the next claim shows that the LS step to update U
reduces its error by a factor of 0.7 at each iteration. Its proof
relies on the previous two lemmas and the fact that x̂tk close
to x∗k implies that, with large probability, the phases (signs)
of (aik

′x̂tk) and (aik
′x∗k) are equal too.

Claim 3.4 (Descent Lemma). At iteration t, assume that
sin Θ(U∗,U t) ≤ δt. If δt ≤ c

rκ2 , mq ≥ Cκ3µ2nr2/δ2
t and

m ≥ C max(r, log n, log q) then w.p. at least 1− Cn−10,

sin Θ(U t+1,U∗) ≤ 0.7δt := δt+1.

Proof of Theorem 2.1. The sin Θ(U∗,U t) bounds are an im-
mediate consequence of Claims 3.1 and 3.4, along with
setting δinit = c/κ2r, δt = 0.7tδinit and δb = 1/11.
With these, we require mq ≥ Cκ12µ4nr4 (for initialization)
and mq ≥ Cκ7µ2nr4 (for the descent steps), along with
m ≥ C max(r, log n, log q). The first lower bound on mq
dominates. The other bounds of Theorem 2.1 follow by
Lemma 3.2.

We prove Claims 3.1 and 3.4 next in Sec. III-B and III-C.
The proof of Lemmas 3.2 and 3.3 and of the lemmas needed
for proving these two claims is postponed to Appendix A.

B. Proof of Claim 3.1

In this section, we let aik := a
(0)
ik and yik := y

(0)
ik .

The overall idea for proving this is inspired by the approach
in [20] which itself borrows ideas from [9]. But there are many
important differences because we define YU differently in this
work, see (6): the threshold in the indicator function now takes
an average over all mq measurements (instead of over only the
m measurements of the k-th column as in [20]). This simple
change enables us to get a significantly improved result. It
lets us use concentration over all the mq measurements (and
design vectors) in each of the three steps of the proof. This is
what helps eliminate the lower bound m ≥ Cr4 on just m that

was needed in [20]. However, this also means that the proofs
are much more involved (more quantities now vary with k).

Recall the expression for YU from earlier, and define
matrices Y−(ε1) and Y+(ε1) as

YU =
1

mq

∑
ik

|aik′x∗k|2aika′ik1{|aik′x∗k|2≤ 9µ2κ2

mq

∑
ik |aik′x∗k|2

}
Y−(ε1) =

1

mq

∑
ik

|aik′x∗k|2aika′ik1{|aik′x∗k|2≤ 9µ2κ2(1−ε1)
q ‖X∗‖2F

}.
Define Y+(ε1) similarly but with (1−ε1) replaced by (1+ε1)
in the indicator function. We will show that YU is sandwiched
between Y− and Y+. This, along with showing that Y− and
Y+ are close, will help us show that YU is close to Y− and,
hence, also to its expected value. After this, use of the sin θ
theorem will give us the desired bound.

Adapting the approach of [9], [20],

E [Y−(ε1)] =
1

q

{∑
k

β−1,kx
∗
kx
∗
k
′ +

(∑
k

β−2,k‖x
∗
k‖2
)
I

}
(9)

where

β−1,k(ε1) := E[(ξ4 − ξ2)1ξ2≤(1−ε1)γk ]

β−2,k(ε1) := E[ξ2
1ξ2≤(1−ε1)γk ],

γk :=
9µ2κ2‖X∗‖2F

q‖x∗k‖2
,

and ξ is a scalar standard Gaussian random variable. The
expression for E [Y+(ε1)] is similar but with (1− ε1) replaced
by (1 + ε1) in the expression for β+

1,k, β+
2,k.

Observe that E [Y−(ε1)] can be simplified as

E [Y−(ε1)] =
1

q
[U∗(

∑
k

β−1,kb̃
∗
kb̃
∗
k
′)U∗′ + (

∑
k

β−2,k‖b̃
∗
k‖2)I]

Thus, the span of its top r eigenvectors (same as singular
vectors) equals Span(U∗). Hence, we can use the sin Θ
theorem [53] stated below in a fashion similar to [20] (Sec
6).

Lemma 3.5 (Davis-Kahan sin Θ theorem). Given two sym-
metric matrices D and D̂. Let U∗ (U ) be the matrix of top
eigenvectors of D (D̂). If λr(D)−λr+1(D)−‖D−D̂‖ > 0,
then

sin Θ(U ,U∗) ≤ ‖D − D̂‖
λr(D)− λr+1(D)− ‖D − D̂‖

.

Using Lemma 3.5 with D̂ = YU and D = E [Y−],

sin Θ(Uinit,U
∗)

≤ ‖YU − E [Y−(ε1)] ‖
λr(E [Y−(ε1)])− λr+1(E [Y−(ε1)])− ‖YU − E [Y−(ε1)] ‖
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Moreover,

λr(E [Y−])− λr+1(E [Y−]) =
1

q
λmin

(∑
k

β−1,kb̃
∗
kb̃
∗
k
′

)

≥ (min
k
β−1,k)

σ∗min
2

q

Now we just need to upper bound ‖YU − E [Y−(ε1)] ‖ and
lower bound mink β

−
1,k. Both these follow by combining the

three lemmas given next and triangle inequality.

Lemma 3.6. We have that, w.p. at least 1− exp(−ε21
mq
µ2κ2 ),

Y−(ε1) � YU � Y+(ε1)

and so ‖YU − Y−(ε1)‖ ≤ ‖Y+(ε1)− Y−(ε1)‖.

Lemma 3.7. Let Y+ = Y+(ε1) and Y− = Y−(ε1). We have

‖E[Y+]− E[Y−]‖ ≤ 9ε1µ
2κ2‖X∗‖2F
q

≤ 9ε1µ
2κ2rσ∗max

2

q

and, assuming ε1 < 0.01,

min
k
β−1,k(ε1) ≥ 1.5.

Lemma 3.8. We have that,
w.p. at least 1− 2 exp

(
n log 9− cε22mq

)
,

‖Y−(ε1)− E [Y−(ε1)] ‖ ≤ 1.5ε2µ
2κ2 rσ∗max

2

q

We get the exact same claim also for ‖Y+ − E [Y+] ‖.

We prove the above lemmas in Sec. A-B.
Using triangle inequality, ‖YU − E[Y−]‖ ≤ ‖YU − Y−‖+
‖Y− − E[Y−]‖. Moreover, using Lemma 3.6, ‖YU − Y−‖ ≤
‖Y+ − Y−‖. Using these and again using triangle inequality,
‖YU−E[Y−]‖ ≤ 2‖Y−−E[Y−]‖+‖Y+−E[Y+]‖+‖E[Y+]−
E[Y−]‖. Thus, combining bounds from the above lemmas and
setting ε1 = ε2 = δinit

C(κ2µ2)κ2r for a δinit < 1, we conclude that

w.p. 1− 2 exp
(
n− cδ2initmq

κ8µ4r2

)
− 2 exp

(
− cδ

2
initmq
κ8µ4r2

)
,

‖YU − E [Y−] ‖ ≤ 0.25δinitσ
∗
min

2

q
. (10)

Using mink β
−
1,k ≥ 1.5, from Lemma 3.7, and (10), since

δinit < 1,

sin Θ(Uinit,U
∗)

≤ ‖YU − E [Y−] ‖
λr(E [Y−])− λr+1(E [Y−])− ‖YU − E [Y−] ‖

≤ 0.25δinitσ
∗
min

2/q

1.5σ∗min
2/q − 0.25δinitσ∗min

2/q
< δinit.

1) Proof that rank is correctly estimated: Consider the
rank estimation step. This requires lower bounding λr(YU )−
λn(YU ) and upper bounding λr+1(YU ) − λn(YU ). Both
bounds follow using (i) (10), along with Weyl’s inequality,
and (ii) the lower bound on β− := mink β

−
1,k from Lemma

3.7: β− > 1.5.
We have λr(YU )− λn(YU ) ≥ λr(E [Y−])− λn(E [Y−])−

2‖Y− − E [Y−] ‖ ≥ β−λr(U∗Σ∗2U∗′)− 2‖YU − E [Y−] ‖ ≥

1.5(σ∗min
2/q)−0.25δinitσ

∗
min

2/q = (1.5−0.25δinit)σ
∗
min

2/q >
1.4(σ∗min

2/q) as long as δinit < 0.1.
Also, λr+1(YU )−λn(YU ) ≤ λr+1(E [Y−])−λn(E [Y−])+

2‖YU −E [Y−] ‖ = 2‖Y− −E [Y−] ‖ ≤ 0.25δinit(σ
∗
min

2/q) <
0.025(σ∗min

2/q) as long as δinit < 0.1.
In summary, as long as δinit < 0.1, λr(YU ) − λn(YU ) ≥

1.4σ∗min
2/q and λr+1(YU ) − λn(YU ) ≤ 0.025σ∗min

2/q. Thus
by setting the threshold ω = Cσ∗min

2/q with C being any
constant between 0.025 and 1.4, we can ensure that the rank
is correctly estimated whp.

C. Proof of Claim 3.4
In this section, we remove the superscript t except where

essential. Also, we let aik := a
(T+t)
ik and yik := y

(T+t)
ik .

We first use the overall approach of [25] to get the following
deterministic bound on the subspace error of the (t + 1)-th
estimate of U∗, U t+1. The proof requires some messy algebra
and hence we give it in Appendix B.

Lemma 3.9. We have

sin Θ(U t+1,U∗) ≤ MainTerm

σmin(U∗Σ∗B∗B′)−MainTerm
(11)

where MainTerm :=

maxW∈SW |Term1(W )|+ maxW∈SW |Term2(W )|
minW∈SW Term3(W )

,

Term1(W ) :=
∑
ik

bk
′W ′aikaik

′U∗(B̃∗B′bk − b̃∗k),

Term2(W ) :=
∑
ik

(cikĉik − 1)(aik
′Wbk)(aik

′x∗k),

Term3(W ) :=
∑
ik

(aik
′Wbk)2,

SW := {W ∈ Rn×r : ‖W ‖F = 1}

is the space of all n × r matrices with unit Frobenius norm,
and cik, ĉik are the phases (signs) of aik′x∗k and aik′x̂k.

We obtain high probability bounds on the three terms above
in the three lemmas that follow, Lemmas 3.10, 3.11, 3.12. All
three lemmas first bound the terms for a fixed W , followed
by using a carefully developed epsilon-net argument to extend
the bounds for all unit Frobenius norm W ’s. This is inspired
by similar arguments in [52].

Consider a fixed W . To bound Term1, we first show
E[Term1] = 0. Next, we use Lemma 3.2 to show that
‖B̃∗(B′B − I)‖F ≤ Cδt‖X∗‖F . Finally, we use these two
facts and a simple modification of Lemma 5.16 of [54] for
sums of products of sub-Gaussian random variables (Lemma
A.1), along with careful linear algebra to show that, if mq
is large enough, whp, |Term1| ≤ Cmδ2

t ‖X∗‖F for any
δt < 0.1. This is followed by a careful epsilon-net argument
to extend the bound for all unit Frobenius norm W ’s.

To bound Term2 for a fixed W , we first use Cauchy-
Schwarz. This implies that

|Term2(W )| ≤
√

Term3(W )
√

Term22, where

Term22 :=
∑
ik

(cikĉik − 1)2(aik
′x∗k)2
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We explain how to upper bound Term3(W ) in the next
paragraph. Consider Term22. Notice that (cikĉik − 1)2 takes
only two values - zero or four. It is zero when the signs are
equal, else it is four. To start bounding E[Term22], we can use
Lemma 1 of [10]. This shows that the probability that the signs
are unequal is upper bounded by a term that is directly pro-
portional to the ratio dist2(x∗k, x̂k)/(aik

′x∗k)2. The probability
bound is thus large when this ratio is large and small otherwise.
Moreover, it is easy to see that E[(aik

′x∗k)2] = ‖x∗k‖2 and by
Lemma 3.2, whp, dist2(x∗k, x̂k) ≤ δ2

t ‖x∗k‖2. Relying on these
ideas, we can argue that, on average, Term22 is very small:
E[Term22] ≤ Cmδ3

t ‖X∗‖2F . Careful use of concentration
bounds then implies that, if mq is large enough, the same
order bound holds whp.

To upper and lower bound Term3, notice first that
E[Term3] = m‖WB‖2F = m. Also, each summand in this
term is sub-exponential with sub-exponential norm bounded
by ‖Wbk‖2; and ‖Wbk‖2 ≤ ‖bk‖2 ≤ µ̂2r/q (by Lemma
3.3), and

∑
ik ‖Wbk‖2 = m. Using these facts and Lemma

3.2 (Bernstein-like inequality similar to Lemma 5.16 of [54]),
we can show that Term3 concentrates around m whp.

Lemma 3.10. Pick a δb < 1/10 and assume that
m ≥ C max(r, log n, log q)/δ2

b . Under the conditions of
Theorem 2.1, for a δt < 1/10, w.p. at least 1 −
2 exp

(
nr(log 17)− c δ

2
tmq
µ̂2r

)
− n−10,

min
W∈SW

Term3(W ) ≥ 0.5(1− δt)m

and

max
W∈SW

Term3(W ) ≤ 1.5(1 + δt)m.

Lemma 3.11. Pick a δb < 1/10 and assume that m ≥
C max(r, log n, log q)/δ2

b . Under the conditions of Theorem
2.1 and assuming that sin Θ(U∗,U) ≤ δt, with δt < 1/10,
w.p. at least 1− 2 exp

(
nr(log 17)− c δ

2
tmq
κ3µ2r

)
− n−10.

max
W∈SW

Term1(W ) ≤ mδ2
t ‖X∗‖F .

In proving the above, we also show that

‖B̃∗ (I −B′B) ‖F ≤ Cδt‖X∗‖F

(we will use this in proving Lemma 3.13).

Lemma 3.12. Pick a δb < 1/10 and assume that m ≥
C max(r, log n, log q)/δ2

b . Under the conditions of Theorem
2.1 and assuming sin Θ(U∗,U) ≤ δt with δt < 1/10, w.p.
at least 1−2 exp

(
nr(log 17)− c δ

2
tmq
µ̂2r

)
−2 exp

(
−cδ2

tmq
)
−

n−10,

max
W∈SW

Term2(W ) ≤ m
√

1 + δt
√
δtδt‖X∗‖F .

Finally, we lower bound the first denominator term of (11).
This can be done by using the bound on ‖B̃∗ (I −B′B) ‖F
from Lemma 3.11. This, in turn, implies a lower bound on the
minimum singular value of B∗B′, and hence the following.

Lemma 3.13. Pick a δb < 1/10 and assume that m ≥
C max(r, log n, log q)/δ2

b . Under the conditions of Theorem

2.1, if sin Θ(U∗,U) ≤ δt with δt ≤ 1
4C
√
rκ

, then, w.p. at
least 1− n−10, σmin(U∗Σ∗B∗B′) ≥ 0.9σ∗min.

We prove the above lemmas in Sec. A-E.

Proof of Claim 3.4. Combining Lemmas 3.9 and 3.13, if δt <
c/
√
rκ,

sin Θ(U t+1,U∗) ≤ MainTerm

0.9σ∗min −MainTerm
. (12)

Set δb = 1/11. Combining Lemmas 3.11, 3.12 and 3.10, and
using ‖X∗‖F ≤

√
rσ∗max, we conclude that,

MainTerm ≤ C(δt +
√
δt)δt
√
rσ∗max.

In the above bound, the
√
δt term dominates. In order to ensure

that MainTerm ≤ 0.7δtσ
∗
min, we need to set

√
δt = c/

√
rκ.

Doing this and using (12),

sin Θ(U t+1,U∗) ≤ C(δt +
√
δt)δt
√
rσ∗max

0.9σ∗min − C(δt +
√
δt)δt
√
rσ∗max

≤ 0.7δt

IV. NUMERICAL EVALUATION

In this section we provide detailed description of the nu-
merical evaluation of our algorithms on synthetic and real
data. All time comparisons are performed on a single Desktop
Computer with Intel

R©
Xeon E3-1240 8-core CPU @ 3.50GHz

and 32GB RAM. We must mention that for all the algorithms,
(a) we compare on the same system, and we do not run other
memory and compute intensive programs while performing
the time comparison, (b) we use the most efficient sub-
routines that are provided by the respective authors and these
implementations rely on the “anonymous functions” feature of
MATLAB. This provides a significant speed up since the major
chunk of computation time involves matrix-vector/matrix-
matrix products. This ensures uniformity to a large extent for
all algorithms.

A. Synthetic Data Experiments

We demonstrate the effectiveness of AltMinLowRaP over
existing work using two synthetic experiments. For both, we
generate an error versus time-taken plot as follows: for each
t = 0, 1, . . . , T , we plot the matrix recovery error (at the
end of that iteration) and time-taken (until the end of that
iteration) on the y- and x-axes respectively. All synthetic data
experiments are performed for 100 independent trials, and for
each algorithm, we plot the average error over the best 90
trials (drop the 10 trials with the largest error). This is done
because all algorithms are guaranteed to work well only with
high probability.

In the first experiment, we compare the performance of
several algorithms for different values of m. We generated data
as follows: X∗ = U∗B̃∗ where U∗ ∈ Rn×r is generated by
orthonormalizing a iid standard Gaussian matrix. The entries
of B̃∗ ∈ Rr×q are chosen from another iid standard Gaussian
distribution. Thus, in this setting, σ∗min

2/q ≈ σ∗max
2/q ≈ 1.

Measurements were generated using (1) with aik’s being iid



14

0 5 10 15

10−2

10−1

running time (in sec.)

m
at

-d
is

t(
X
∗
,X̂

t
)

(a) m = 80, n = 200, q = 400

RWF proj-RWF LRPR2 AltMinLowRaP AltMinLowRaP (random init)

0 50 100 150

10−8

10−6

10−4

10−2

running time (in sec.)

(b) m = 150, n = 600, q = 1000

10−3 10−2 10−1 100 101

10−16

10−11

10−6

10−1

running time (in sec.)

(c) m = 1000, n = 200, q = 200

Fig. 3: Error versus time plot with time in seconds. We compare with LRPR2 which is the only other existing Low-Rank Phase Retrieval
algorithm [20], RWF [10] and projected RWF. The first step (initialization) of LRPR2 is slower than our proposed method. This is likely
due to the fact that the estimates of the rank are different for the two algorithms and thus the errors are also slightly different in the two
cases. For the purpose of better illustration, we only plot the error and time at the end of every 10 iterations for RWF and proj-RWF.

Gaussian. We compare AltMinLowRaP with LRPR2 (best
heuristic from [20]), RWF [10], and with what we call
projected-RWF or proj-RWF (for all t, after the t-th RWF
iteration, we project the matrix X̂t

RWF onto the space of
rank-r matrices, with r known). We provide results for three
cases: (i) n = 200, q = 400, r = 4, and m = 0.4n; (ii)
n = 600, q = 1000, r = 4, and m = 0.25n; and (iii)
n = 200, m = 5n = 1000, q = 200 and r = 4. The
results are summarized in Fig. 3. In the first two settings (Figs.
3(a),(b)), we show that by exploiting the low-rank structure,
AltMinLowRaP is able to outperform the unstructured PR
methods. Notice that, proj-RWF performs better than RWF
(which does not work at all since m � n). Secondly,
AltMinLowRaP is significantly better than proj-RWF, and
for reasons explained earlier, it is also better than LRPR2.
AltMinLowRaP and LRPR2 estimate the rank, whereas proj-
RWF is provided the true rank. We observed that, in practice,
the estimated rank is higher than the true rank in all the
cases. In both these settings, m � n, and thus, unstructured
algorithms fail. The third setting is a setting with a very large
value of m: we are using m = 5n measurements. This is
a case where all of AltMinLowRaP, TWF, and RWF work,
but AltMinLowRaP is much slower as shown in Fig. 3(c).
Additionally, for the first two cases, based on a reviewer’s
comment, we also empirically evaluate a random initialization
scheme for the AltMinLowRaP algorithm. We observed that
although the initial estimates are approximately in the order of
10−2, the algorithm itself fails to improve this with subsequent
iterations. A possible workaround to this could be through
using a gradient descent based algorithm (inspired by [12])
but this requires a detailed analysis, and we will study this as
part of future work..

Our second experiment illustrates the time complexity dis-
cussion given in Sec. II-B. For a given m, AltMinLowRaP is
about r times slower than the best provably correct regular
(unstructured) PR methods - TWF and RWF. But, if for each
algorithm, we use the minimum m needed for the algorithm

to achieve ε accuracy, then, theoretically, AltMinLowRaP
should be faster if the rank r is small enough. We tested
this empirically as follows. We generated data as before with
n = 600, q = 1000 and r = 4. We implemented TWF and
RWF using two values of m, m = 3n and m = 4n. We
evaluated AltMinLowRaP with using m = n/4. The error-
at-iteration-t versus time-taken-until-iteration-t plot is shown
in Fig. 2 for all these cases. As can be seen, using 3n
measurements, neither of TWF or RWF works. Using m = 4n,
both work. But if we compare the time taken (x-axis value)
for any value of error level ε, both are at least 5 times slower
than AltMinLowRaP (m = n/4). For all algorithms, we repeat
the expriments for 100 independent trials, and plot the mean
taken over the best 90 trials to illustrate the high probability
results.

1) Algorithm parameters: For both experiments, AltMin-
LowRaP was implemented as Algorithm 1 but using the same
set of measurements (does not require sample-splitting), and
with the following parameters: TRWF,t scales linearly from 5
to 30, ω = 1.3σ∗min

2/q ≈ 1.3 and CY = 9. All parameters
are as suggested in the theorem. For LRPR2 we used the
default parameters mentioned in the documentation. We set
the maximum number of outer-loop iterations, Tmax = 10
for both. For RWF and TWF, we used the default parameters
suggested by the authors with the exception that we let the
maximum number of iterations Tmax = 300 (to try to see if
its error reduces with more iterations). However, as we plot
the time-taken at the end of each iteration, this is not an unfair
implementation of RWF; it only means that we have 300 data
points to plot on our graph. We should point out that the
recovery error for AltMinLowRaP is sensitive to the choice
of ω. If ω is too small (for given values of m and of CY
used in computing YU ), the algorithm will significantly over-
estimate the rank. This is especially problematic when m is
small (or CY is large for a given m). Thus, as a thumb rule,
for a lower value of m/n, the threshold ω should be larger.
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Of course if it is too large, it will underestimate the rank6

B. Real Videos with Simulated CDP measurements: Small r
suffices

We demonstrate the effectiveness of AltMinLowRaP for
recovering two real video sequences (these are only approx-
imately low-rank) from simulated Coded Diffraction Pattern
(CDP) measurements. These measurements can be represented
as Y = |F(DX∗)| where F(·) is the DFT operation and the
matrix D represents a diagonal mask matrix whose diagonal
entries are chosen uniformly at random from {±1,±

√
−1}

and modulate the intensity of the input. We generate CDP
measurements of each frame of the video (the k-th frame
vectorized is x∗k). We compared our algorithm with LRPR2
and RWF. We present the quantitative results in Table II and
the visual comparisons in Fig. 1 (given in the beginning),
and in Fig. 4. Notice that, in this case, even with m = 5n
measurements, RWF is unable to accurately recover the video
and AltMinLowRaP has a slightly better performance w.r.t.
LRPR2. The algorithm parameters are set as in the syn-
thetic data experiments, swith the exception that we now set
Tmax = 30 for ALtMinLowRaP and LRPR2. AltMinLowRaP
implementation used all the speed-up ideas for Fourier mea-
surements explained in [20] for LRPR2 and so did LRPR2.

We tested AltMinLowRaP with three possible values of
rank, r = 15, 20, 25. As can be seen, even r = 15 suffices
to get a significantly better reconstruction error than RWF for
m = 5n CDP measurements. For the plane video, n = 6912
and q = 105 and for the mouse video, n = 5182 and q = 90,
and thus in both cases, r ≈ 0.003n. If q is larger, a natural
idea would be to use similar parameter settings, but instead
implement the tracking variant of AltMinLowRaP (Algorithm
2).

C. Real Videos with Simulated CDP measurements: Low-Rank
versus (Wavelet) Sparse Models

To justify the low-rank assumption on videos, we compare
with CoPRAM [18], a state-of-the-art, provable algorithm for
compressive phase retrieval. Since the videos are not sparse
in the spatial domain, as suggested in [18], we use the Haar
wavelet as the sparsifying basis7.

As can be seen from Table III and Fig. 5, the low-rank prior
gives a much better reconstruction error in all three cases in
this table including the exact sparse case. Since the video is
not exactly wavelet sparse, we also performed a comparison
on the sparsified video, wherein, for each image frame, we
truncate the wavelet coefficients such that approximately 90%
of the energy in each frame is preserved. We refer to this
as the sparsified video in this experiment. Sparsifying the

6This is a bigger problem when κ = 1 as in the simulated data above. It
is a lesser problem for real approximately low-rank data (e.g., slow changing
videos) with a larger κ, since in those cases, the missed directions will be the
ones with smaller singular values.

7We also experimented with the Daubhechies-3 wavelet as the sparsifying
basis in our experiments. However, we noticed that, for the plane video,
irrespective of the wavelet basis, the number of coefficients necessary to
preserve ≈ 90% of the energy of the video required s ≈ 0.1n and thus
the choice of wavelet basis is not detrimental in this experiment.

TABLE II: mat-dist(X̂,X∗) and time comparison for the
mouse and plane videos. We generate the measurements using
the CDP model and consider two different number of settings.
Notice that AltMinLowRaP is slightly better than LRPR2 but
is slower than in the simulated data experiments.

Algorithm mat-dist(X̂,X∗) (Running Time in sec)

m = 5n (mouse) m = 5n (plane) m = 2n (mouse)

RWF [10] 0.65 (0.35s) 0.65 (0.35s) 1.36 (0.25s)
LRPR2 [20] (r = 25) 0.48 (81.8s) 0.10 (122.3s) 0.61 (31.0s)

AltMinLowRaP (r = 25) 0.39 (297.6s) 0.09 (467.6s) 0.52 (122.1s)
AltMinLowRaP (r = 15) 0.57 (277.2s) 0.15 (418.9s) 0.60 (113.6s)
AltMinLowRaP (r = 10) 0.70 (262.7s) 0.23 (409.0s) 0.72 (97.4s)

TABLE III: Low rank versus Sparse PR: We compare with
a recent state of the art algorithm for provable sparse phase
retrieval. mat-dist(X̂,X∗) and time comparison for the mouse
and plane videos using real valued CDP measurements. We
conclude that low-rank is a better model than wavelet-sparse
for slowly changing videos.

Algorithm Video

m = 5n (plane) m = 10n (plane) m = 5n (sparsified-plane)

CoPRAM [18] 2.113 1.019 0.3104
RWF 0.6531 0.4134 0.6514

AltMinLowRaP (r = 15) 0.111 0.109 0.1427

video significantly improves the performance of CoPRAM, but
AltMinLowRaP (r = 15) is still better. Even with m = 10n
measurements, the sparse model is unable to capture the finer
details in the video. We also observed that a standard complex
mask does not work very well for CoPRAM and hence for this
experiment, we report the results when the entries of the CDP
mask, D are chosen uniformly at random from {±1}. We
reshaped each video frame into size 32× 32 since the online
implementation of their code only works for small sized data.
We provide the quantitative results in Table III and qualitative
results for the plane video in Fig. 5.

V. PHASELESS SUBSPACE TRACKING

When the matrix X∗ consists of a time sequence of signals
x∗k, then the column-wise measurements appear one column
at a time (sequentially). Hence, there is benefit in trying to
develop a mini-batch algorithm that works with measurements
of short batches of α consecutive columns. Moreover, for
long data sequences, the subspace from which the data are
generated could itself change with time. Detecting and being
able to track such subspace changes is important for long
sequences. Interestingly the algorithm that works for this
purpose is a simple modification of the static case idea along
with a carefully designed subspace change detection step.

A. Problem setting

The low-rank assumption is equivalent to assuming that
x∗k = U∗b̃∗k where U∗ specifies a fixed r-dimensional sub-
space. For long signal/image sequences, a better model (one
that allows the required subspace dimension r to be smaller) is
to let the subspace change with time. As is common in time-
series analysis, the simplest model for time-varying quantities
is to assume that they are piecewise constant with time. We
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(a) Original (b) AltMinLowRaP (c) LRPR2 (d) RWF

Fig. 4: Comparison of visual performance for the plane video with m = 2n. The images are shown at k = 20, 60, 100.

(a) Original (b) CoPram (c) RWF (d) AltMinLowRaP

Fig. 5: Comparison of visual performance for the plane video for m = 5n at k = 10, 60. We observe that RWF fails visually
although numerical error is better, and CoPRAM is able to recover the global features but cannot recover the fine details due to
the high level of sparsity required. AltMinLowRaP outperforms both methods, confirming the validity of the low-rank model.

adopt this approach here. Moreover, in order to easily borrow
ideas from the static setting, we will assume that we now have
a total of qfull signals (matrix columns) and we will denote
the n × qfull matrix formed by all these columns by X∗full.
Our algorithm will operate on measurements of α-consecutive-
column sub-matrices of X∗full.

Let k0 = 1, and let kj denote the j-th subspace change
time, for j = 1, 2, . . . , J and let kJ+1 = qfull. We have the
following model

x∗k = U∗sub,(j)d̃
∗
k, for all kj ≤ k ≤ kj+1 (13)

where U∗sub,(j) is an n×r “basis matrix” for the j-th subspace
and d̃∗k is the coefficients’ vector at time k.

The goal is to track the subspaces Span(U∗sub,(j)) on-the-
fly; of course, “on-the-fly” for subspace tracking means with a
delay of at least r. Once this can be done accurately enough,
it is easy to also recover the matrix columns x∗k (by solving
a simple r-dimensional PR problem to recover the d̃∗k’s).

The reason we use a different notation here (the subscript
sub and use of d̃∗k instead of b̃∗k) is as follows. Consider an

α-column sub-matrix formed by α consecutive signals. Let us
call it X∗ and let X∗ SVD

= U∗Σ∗B∗. If all the x∗k’s forming
this matrix are generated from the same subspace, sayU∗sub,(j),
then Span(U∗) = Span(U∗sub,(j)) and there is no need for a
different notation. However, if a subspace change occurred in-
side this interval, then we cannot say anything simple like this.
All we can say is thatX∗ = [U∗sub,(j−1)D(j−1),U

∗
sub,(j)D(j)]

and so Span(U∗) ⊆ Span(U∗sub,(j−1)) ∪ Span(U∗sub,(j)).

B. Basic PST algorithm and extensions

As noted earlier the PST algorithm is a simple modification
of the static case algorithm (AltMinLowRaP) along with a
carefully designed change detection strategy. In the static case,
in each iteration, we used a set of mq measurements of a single
n × q matrix X∗. For obtaining the guarantees, we assumed
a new (independent) set of 2mq measurements of the same
matrix X∗ were used in each iteration (mq for updating the
estimate of B∗ and another mq for U∗). For the tracking
setting, using a mini-batch size of α, we proceed as follows:
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each new update iteration uses 2mα measurements of a new
α-consecutive-column sub-matrix of X∗full. The input to the
update iteration is the subspace estimate from the previous
iteration. Under the assumption that the subspace remains
constant for at least Tα time instants after a subspace change
has been detected, this approach works: with T = C log(1/ε),
we can show that, after Tα time instants, we get an ε-accurate
estimate of the j-th subspace.

We summarize the algorithm in Algorithm 2. This toggles
between a “detect” and an “update” mode. It starts in the
“update” mode (described above) and remains in it for the
first Tα time instants. At this time it enters the “detect” mode.
We are able to guarantee that, when the algorithm enters this
detect mode, the previous subspace has been estimated to ε
error whp. In the detect mode, the algorithm does not perform
any subspace updates. This is done to simplify our analysis; it
ensures that, in the interval during which the subspace change
occurs, the subspace is not updated. This is what allows us
to use our previous two main claims (Claims 3.1 and 3.4)
without change to analyze the update mode. Practically, this
is of course wasteful. We develop an improvement below.

To understand the change detection strategy, let k̂j denote
the estimated change times. Consider an α-length interval, Jα,
contained in [kj , kj+1). Assume that an ε-accurate estimate of
the previous subspace U∗sub,(j−1) has been obtained by k̂j−1+
Tα and that this time is before kj . Let Usub,(j−1) denote this
estimate. Define the matrix

YU,det,big :=

(I −Usub,(j−1)Usub,(j−1)
′)YU (I −Usub,(j−1)Usub,(j−1)

′)

with YU = YU (Jα). This means that YU is as defined earlier
in (6) with the k summation being over all k ∈ Jα (it is
using measurements for all the columns within this α-length
interval). With a little bit of work (see Lemma C.1 and its
proof), one can show that, in this interval, the matrix YU,det :=
Usub,(j−1),⊥

′YU,det,bigUsub,(j−1),⊥ is close to a matrix Edet
whose eigenvalues satisfy

λmax(Edet)− λmin(Edet)

≥ 1.5(sin Θ(Usub,(j−1),U
∗
sub,(j))− 2ε)2σ

∗
min

2

α
.

On the other hand, in an α-length interval contained in [k̂j−1+
Tα, kj),

λmax(Edet)− λmin(Edet)

≤ sin Θ2(Usub,(j−1),U
∗
sub,(j−1))σ

∗
max

2/α ≤ ε2σ
∗
max

2

α
.

Thus, this quantity is small when the j-th change has not
occurred (before kj), and is large when the subspace has
changed (after kj). By using a large enough lower bound on
the product mα, the same can be shown for the difference
between the maximum and minimum eigenvalues of YU,det
(these are equal to the maximum and (n − r)-th eigenvalues
of YU,det,big).

Once we have an ε-accurate estimate of the current sub-
space, it is straightforward to also recover the corresponding
signals x∗k. This can simply be done by solving a standard

PR problem to recover the coefficients vector. See last line of
Algorithm 2. This borrows a similar idea from [55].

1) Improved algorithm: PST-all: Notice from Theorem 5.1
that Algorithm 2 can only provably detect and track subspace
changes that are larger than a small threshold. While this
makes sense for detection, it should be possible to track
all types of changes. By including a simple modification in
Algorithm 2 (include the “update” step during the detection
mode as well), we can empirically demonstrate that this is
indeed true. We demonstrate this in Fig 6(a). Moreover, PST-
all also removes the other limitation of basic PST (not using
the detect phase samples for improving the subspace estimate).
Thus, even for large changes that basic PST can detect, PST-all
has better tracking performance; see Fig 6(b).

C. Guarantee for basic PST

We can prove the following about Algorithm 2 (basic PST).

Corollary 5.1 (PST algorithm). Consider Algorithm 2. Pick
any value of m ≥ C max(r, log n, log qfull). For this m, set
α = Cκ12µ4·nr4

m . Set T := C log(1/ε), and the detection
threshold ωdet = c/(κ2r). Assume that kj+1−kj ≥ (T + 3)α
and that sin Θ(U∗sub,(j−1),U

∗
sub,(j))

2 > 2c
κ2r . Then, w.p. at

least 1− Cn−10, noitemsep
1) we can detect the change with a delay of at most 2α,

while ensuring no false detections, i.e., kj ≤ k̂j ≤ kj +
2α;

2) for any ε > 0, we can get an ε-accurate estimate of the
j-th subspace with a delay of at most (T + 3)α from kj
(when the subspace changed);

3) we have the following subspace error bounds: let
U

(−1)
sub,(j) = Usub,(j−1) := U

(T )
sub,(j−1), and let U (`)

sub,(j),
` = 0, 1, . . . , T , be the `-th estimate;

sin Θ(U
(`)
sub,(j),U

∗
sub,(j)) ≤

sin Θ(U∗sub,(j−1),U
∗
sub,(j)) + ε if ` = −1

(0.7)`−1 c
κ2r if ` = 0, 1, 2, . . . T,

ε if ` = T

Offline PST returns X̂ that satisfies mat-dist(X̂,X∗) ≤
ε.

We provide a proof sketch in Appendix C.
The above result shows that, if the subspace remains con-

stant for at least α log(1/ε) time instants, and if the amount of
subspace change (largest principal angle of subspace change)
is of order 1/

√
r or larger, then we can both detect the change

and track the changed subspace to ε error within a delay of
order α log 1/ε. Moreover, for only at most 3α time instants
after a change, the subspace error does not reduce and is
essentially bounded by the amount of change. After this, it
decays exponentially every α time instants.

Notice from the expression for α that, if we pick the smallest
allowed value of m, then the required α (and hence the
required delays) will be large. However, we are allowed to
tradeoff m and α. If we let m grow linearly with n, then
we will only need α ≈ r4, which is, in fact, close to the
minimum required delay of r. This also matches what is seen
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in existing works on provable subspace tracking (ST) in other
settings (e.g., robust ST, ST with missing data, or streaming
PCA with missing data) [55]–[57]. These are able to allow
close to optimal detection and tracking delays but all these
assume that m increases linearly with n. We can also pick
any value of m in between the two extremes of m = Cr or
m = Cn. For example, if m = Cn/r, then α = r5 and so on.

Algorithm 2 PST: detect and track large subspace changes

1: Set r equal to the largest index j for which λj(YU ) −
λn(YU ) ≥ ω.

2: k̂0 ← 0, j ← 0, `← 0
3: Mode← update
4: for k ≥ 0 do
5: if Mode = update then
6: if k = k̂j + (`+ 1)α then
7: if ` = 0 then
8: U `

sub,(j) ← top r singular vectors of YU .
9: end if

10: b̂τ ← RWF ((yτ ,U
`
sub,(j)

′Aτ ), TRWF,`), for τ ∈
[k − α+ 1, k]

11: QR decomposition B̂
QR
= RBB

12: Ĉτ ← Phase
(
A′τU

`
sub,(j)b̂τ

)
, for τ ∈ [k − α +

1, k]
13: Û `+1

sub,(j) ← arg minU

∑
τ∈[k−α+1,k] ‖Ĉτyτ −

Aτ
′Ub̂τ‖2

14: QR decomposition Û `+1
sub,(j)

QR
= U `+1

sub,(j)RU

15: `← `+ 1
16: end if
17: if ` = T then
18: Usub,(j) ← UT

sub,(j), Mode← detect
19: end if
20: end if
21: if Mode = detect then
22: if λmax(YU,det,big)− λn−r(YU,det,big) ≥ ωdet then
23: j ← j + 1, k̂j ← k, `← 0, Mode← update
24: end if
25: end if
26: Output U `

sub,(j)

27: end for
Offline PST: For each k ∈ [k̂j , k̂j+1), output x̂k = U

ˆ̃
d∗k

where ˆ̃
d∗k is a (at most) 2r-length vector obtained by

RWF applied on {yik, (U ′aik), i = 1, 2, . . . ,m} with
U = basis([Usub,(j),Usub,(j+1)]). Here basis(U1,U2)
means a matrix with orthonormal columns that span
the subspace spanned by the columns of U1 and U2.
We need to use the union of both subspace estimates
because the actual subspace change time, kj+1, is not
known. Corollary 5.1 implies that, whp, it is contained
in [k̂j , k̂j+1).

1) Related Work: For Phaseless Subspace Tracking (PST)
the only works before this work was our first huristic versions
[58], and [59]. Other subspace tracking (ST) problems that
have been extensively studied include dynamic compressive
sensing [60] (a special case of ST where the subspace is

defined by the span of a subset of r vectors from a known
dictionary matrix), dynamic robust PCA (or robust ST), see
[55], [56] and references therein, streaming PCA with missing
data [57], [61], and ST with missing data [62]–[66]. In
terms of works with complete provable guarantees, there is
the nearly optimal robust subspace tracking via recursive
projected compressive sensing approach [55], [56], [66] and its
precursors; recent papers on streaming PCA with missing data
[57], [61], and older work on dynamic compressive sensing
(CS) [60]. For robust ST, the problem setting itself implies
m = n/2. In the streaming PCA case, the availability of
m = ρn measurements, with ρ < 1, is assumed. This is why
both achieve close to optimal tracking delays (at least when
the added unstructured noise is nearly zero). As noted earlier,
our method can also achieve a delay of order r4 if we let m
grow linearly with n.

Dynamic CS (like basic CS) is able to detect support
changes (with sufficiently nonzero magnitude) immediately
even with a small value of m = Cr log n measurements; here
r is the sparsity level (support size). This is because it is a
much simpler special case of ST: in this case, one just needs
to be finding the correct subset of basis vectors from a large
provided set (dictionary matrix).

D. Numerical experiments

This experiment evaluates the PST algorithm (Algorithm
2) and PST-all algorithms from Sec. V. We generate the
true data for the first subspace X∗0 = U∗sub,(0)D

∗
0 where

U∗sub,(0) ∈ Rn×r with n = 300, r = 2 is generated by
orthonormalizing the columns of a n× r iid standard normal
matrix. The entries of D∗0 ∈ Rr×t1 with t1 = 2992 are
also generated from an i.i.d. standard normal distribution. We
generate the true data from the second subspace similarly and
set X∗1 = U∗sub,(1)D

∗
1 and we set q = 6000. Notice that

κ ≈ 1. The subspace U∗sub,(1) is generated using the idea
of [55] as U∗sub,(1) = e−γMU∗sub,(0) in order to control the
subspace error. Here M is a skew-symmetric matrix and γ
controls the amount of subspace change. We study two cases
in which we set γ = 0.08, 0.001 which roughly translates to
sin Θ(U∗sub,(0),U

∗
sub,(1)) = 0.8, 0.01. We generate the mea-

surement matrices Ak(∈ Rn×m)
i.i.d.∼ N (0, I) with m = 100

for i = 1, · · · q. We then implemented PST (Algorithm 2)
and PST-all. PST requires large-enough change in order to
ensure good results, and PST-all which works even with small
changes. We chose the algorithm parameters as follows. We set
α = 250 and L = 8. For the detection, and initialization steps
of both algorithms we set minit = m. We set the threshold
for detection, ω = 0.6 through cross-validation. The results
for the two algorithms are shown in Fig. 6. Notice that for the
small change case, since PST is always in the detect mode, it
does not improve the estimation error whereas PST-all does.
However, when the change is large enough, both algorithms
converge to a small error. The results are averaged over 100
independent trials.



19

1000 2000 3000 4000 5000 6000
10−15

10−10

10−5

time (k)

si
n

Θ
(U

l su
b
,(
j
)
,U
∗ su
b
,(
j
)
))

(a) sin Θ(U∗sub,(0),U
∗
sub,(1)) ≈ 0.01

PST-all PST

1000 2000 3000 4000 5000 6000

10−14

10−10

10−6

10−2

time (k)

si
n

Θ
(U

l su
b
,(
j
)
,U
∗ su
b
,(
j
)
))

(b) sin Θ(U∗sub,(0),U
∗
sub,(1)) ≈ 0.8

Fig. 6: Plot of subspace error versus time at each α frames. Notice that for the cases where sin Θ(U∗sub,(0),U
∗
sub,(1)) = 0.8

both algorithms are able to detect and track changes whereas when sin Θ(U∗sub,(0),U
∗
sub,(1)) = 0.01 only the PST-all algorithm

works. We perform the experiment for 100 independent trials, and plot the average taken over the best 90 trials.

VI. CONCLUSIONS AND FUTURE WORK

This work introduced the first simple, fast, and provably
correct, algorithm for Low Rank Phase Retrieval – low-
rank matrix recovery from different (mutually independent)
column-wise phaseless linear projections – AltMinLowRaP.
Moreover, since, even the linear version of our problem has
not been studied, this work also provides the first fast and
provable solution to the linear version, “Compressive” or
“Sketched PCA”. AltMinLowRaP relies on a careful spectral
initialization followed by alternating minimization. We showed
that its required sample complexity is about r3 times the order-
optimal value of nr. We also developed its dynamic extension
that is relevant for datasets where we would like to develop
a mini-batch solution that recovers the current sub-matrix of
X∗ without waiting for all the measurements of all the signals
(columns) to arrive.

In ongoing work we are (i) exploring how to remove
the sample-splitting requirement by studying an alternating
gradient descent solution, and attempting to borrow the leave-
one-out ideas from [12]; (ii) how to reduce the dependence
of our sample complexity on r and on κ. Some thoughts
are provided in Sec. II-D; and (iii) how to analyze an easy
modification of AltMinLowRaP to get a better guarantee for
the linear version of our problem. The algorithm modification
is easy, it just involves replacing the standard PR step for
recovering b̃∗k’s by a simpler LS step, and of course remove
the phase/sign estimation step before updating U . In terms
of analysis, (a) we can possibly simplify the analysis of the
initialization step because in the linear case, E[aikyik] = x∗k;
and (b) in the iterations, there will be no phase error term,
Term2, and hence, no need for Cauchy-Schwarz. This latter
change itself will reduce the sample complexity to nr3 instead
of nr4.

Open questions for future work include (i) study if we
can exploit the right incoherence assumption in the algorithm
itself, for example, by using a projected GD approach inspired
by [67]; (ii) can phaseless LRMS be solved (this would be the
other possible LRPR problem alluded to in the introduction),

and (iii) develop a fast algorithm and a guarantee for exploiting
both low-rank (as we do) and column-wise sparsity. This type
of modeling been used very successfully in the MRI literature
to come up with practical algorithms to reduce the sample
complexity empirically, see for example, [30], [31]. It has
also been studied theoretically in the linear setting [68]. (iv)
Another open question is how to analyze the improved tracking
algorithm PST-all that we currently only empirically evaluate.
In experiments, it is clearly much better than the simpler
version we analyze.

APPENDIX A
PROOFS OF THE LEMMAS FROM SEC. III

A. Simple facts for various proofs

Our proofs will use the following facts: for two arbitrary
matrices A,H ,

1) σmax(A+H) ≤ σmax(A) + ‖H‖
2) σmin(A+H) ≥ σmin(A)− ‖H‖.
3) σmin(AH) ≥ σmin(A)σmin(H).
4) For two basis matrices, U1,U2, σ2

min(U1
′U2) = 1 −

sin Θ2(U1,U2).
5) For any matrix P , ‖PM‖F ≤ ‖P ‖‖M‖F and
‖MP ‖F ≤ ‖P ‖‖M‖F .

6) For an invertible matrix P ,
‖M‖F = ‖P−1PM‖F ≤ ‖P−1‖‖PM‖F =

1
σmin(P )‖PM‖F .

The following lemma is a simple but useful modification of
[Lemma 5.16] [54]. The proof follows by combining Lemma
2.7.7. and Theorem 2.8.1. of [29]. The sub-Gaussian norm for
a random vector X , in this lemma, can be defined as follows:

‖X‖ψ2
= sup
x∈Sn−1

‖〈X,x〉‖ψ2
,

where ‖z‖ψ2
is the sub-Gaussian norm of a scalar z [54,

Definition 5.7].
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Lemma A.1. Let Xi, Yi be independent sub-Gaussian random
variables with sub-Gaussian norm KXi and KYi respectively
and with E[XiYi] = 0. Then

Pr

{
|
∑
i

XiYi| ≥ t

}

≤ 2 exp

(
−cmin

(
t2∑

iK
2
Xi
K2
Yi

,
t

maxi |KXiKYi |

))
When Xi = Yi, this simplifies to Lemma 5.16 of [54].

B. Proof of the lemmas for Claim 3.1

In this section, we let aik := a
(0)
ik and yik := y

(0)
ik .

Proof of Lemma 3.6. Observe that we will be done if we
can show that, whp, 1

mq

∑
ik (aik

′x∗k)
2 lies in the interval

[(1 − ε1)‖X∗‖2F /q, (1 + ε1)‖X∗‖2F /q]. Using Lemma A.1,
with KXik = KYik = ‖xk‖, with probability more than
1− 2 exp

(
−Cε21mq
µ2κ2

)
, we have

|
∑
ik

(aik
′x∗k)

2 −m‖X∗‖2F | ≤ ε1m‖X∗‖2F .

Details for obtaining this bound: using
∑
k ‖x∗k‖4 ≤

maxk ‖x∗k‖2
∑
k ‖x∗k‖2 and right incoherence,

t2∑
ikK

4
Xik

≥ ε21m
2‖X∗‖4F

mmaxk ‖x∗k‖2‖X∗‖2F
≥ ε21mq

µ2κ2
,

t

maxK2
Xik

=
ε1m‖X∗‖2F
‖x∗k‖2

≥ ε1mq

µ2κ2
.

Proof of Lemma 3.7. It is easy to see that

‖E [Y+]− E [Y−] ‖ ≤ 1

q

∑
k

(
β+

1,k − β
−
1,k

)
‖x∗k‖2

+
1

q

∑
k

(
β+

2,k − β
−
2,k

)
‖x∗k‖2.

Recall γk = 9‖X∗‖2F µ2κ2/(q‖x∗k‖2). Using x3e−x
2/2 ≤

3
√

3e−3/2, we have

β+
1,k − β

−
1,k = E

[(
ξ4 − ξ2

)
1{(1−ε1)γk≤ξ2≤(1+ε1)γk}

]
=

2√
2π

∫ √(1+ε1)γk

√
(1−ε1)γk

x2
(
x2 − 1

)
e−x

2/2dx

≤ 2√
2π

∫ √(1+ε1)γk

√
(1−ε1)γk

x4e−x
2/2dx

≤ 6
√

3e−3/2

√
2π

∫ √(1+ε1)γk

√
(1−ε1)γk

xdx

=
6
√

3e−3/2

√
2π

γkε1 ≤ γkε1.

Similarly, using xe−x
2/2 ≤ e−1/2,

β+
2,k − β

−
2,k = E

[
ξ2
1{(1−ε1)γk≤ξ2≤(1+ε1)γk}

]
=

2√
2π

∫ √(1+ε1)γk

√
(1−ε1)γk

x2e−x
2/2dx

≤ 2e−1/2

√
2π

∫ √(1+ε1)γk

√
(1−ε1)γk

xdx

=
2e−1/2

√
2π

γkε1 ≤ γkε1.

Therefore,

‖E [Y+]− E [Y−] ‖ ≤ ε1
q

∑
k

γk‖x∗k‖2

= 9
ε1µ

2κ2

q

∑
k

‖X∗‖2F
q

= 9ε1
µ2κ2‖X∗‖2F

q
.

To lower bound β−1,k, we will use right incoherence which
implies that γk ≥ 9.

β−1,k = E
[
ξ2
(
ξ2 − 1

)
1{ξ2≤(1−ε1)γk}

]
= E

[(
ξ4 − ξ2

)]
− E

[
ξ2
(
ξ2 − 1

)
1{ξ2≥(1−ε1)γk}

]
= 2− 2

∫ ∞
√

(1−ε1)γk

x2(x2 − 1)
1√
2π
e−x

2/2dx

≥ 2− 2√
2π

∫ ∞
√

(1−ε1)γk

x4e−x
2/2dx

≥ 2− 7√
2π

∫ ∞
√

(1−ε1)γk

xe−x
2/4dx

= 2− 14√
2π

exp (−(1− ε1)γk/4) > 1.5,

where we used the fact that x3e−x
2/4 ≤ 3.5 for any x; γk ≥ 9

(follows by right incoherence); and ε1 < 0.01.

Proof of Lemma 3.8. Let us define

wik = |aik′x∗k|aik1{(aik′x∗k)
2≤

9(1−ε)‖X∗‖2
F
µ2κ2

q

}.
As argued in [20], which itself borrows the key idea from [9],
we can show that the wiks are sub-Gaussian random variables
with sub-Gaussian norm K = Cµκ‖X∗‖F /

√
q. Notice that

we have defined YU differently in this paper (in order to be
able to exploit concentration over mq) as compared to that in
[20] and hence only the above argument is similar.

Observe that
mq‖Y− − E [Y−] ‖ = maxz:‖z‖=1 |z′

∑
ik(wikwik

′ −
E[wikwik])z|.

First consider a fixed unit vector z. Observe that z′wik is
sub-Gaussian with sub-Gaussian norm K = Cµκ‖X∗‖F /

√
q.

Thus, using Lemma A.1 with t = ε2mµ
2κ2‖X∗‖2F , and

KXik = KYik = µκ‖X∗‖F√
q , we can conclude that w.p. at least

≥ 1− 2 exp
(
−cε22mq

)
,

|z′(
∑
ik

wikwik
′ −mqE [Y−])z| ≤ ε2mµ2κ2‖X∗‖2F ,
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After this, we can use a standard epsilon-net argument to
extend the bound to all unit vectors z. With it, we can conclude
that, w.p. at least 1− 2 exp

(
n log 9− cε22mq

)
,

‖Y− − E [Y−] ‖ ≤ 1.5ε2µ
2κ2‖X∗‖2F
q

C. Clarifying the sign inconsistency issue

Recall that we had defined gtk := (U t)′x∗k in (7). Since
the solution of phase retrieval always comes with a phase
(sign) ambiguity, at each iteration t, for each k, the output
of RWF, b̂tk, may be closer to either gtk or −gtk. This is what
decides whether dist(gtk, b̂

t
k) equals ‖gtk − b̂tk‖ or ‖gtk + b̂tk‖.

However, bound both in each proof is cumbersome. Instead
we can proceed as follows. Re-define gtk as

gtk =

{
+(U t)′x∗k if ‖(U t)′x∗k − b̂tk‖ ≤ ‖(U t)′x∗k + b̂tk‖
−(U t)′x∗k otherwise

and define the matrix

Gt := [gt1, g
t
2, . . . , g

t
q].

With these new definitions, dist(gtk, b̂
t
k) = ‖gtk − b̂tk‖ and

mat-dist(Gt, B̂t) = ‖Gt − B̂t‖F .
As an aside, we should point out that, even if some columns

of a matrix change sign (are multiplied by (−1)), its singular
values do not change. Thus, the minimum singular value of
Gt remains the same with or without the above re-definition.

We need to do something similar to the above for x∗k’s
as well. Define x̃∗

t
k = x∗k if ‖x̂tk − x∗k‖ ≤ ‖x̂tk + x∗k‖ and

x̃∗
t
k = −x∗k otherwise. Define the corresponding matrix X̃∗

t
.

Clearly mat-dist(X̃∗
t
,X∗) = 0. So, in the rest of the

writing in this section, to reduce notation, we will re-define

X∗ := X̃∗
t
.

With this, we can define the error/perturbation in x̂k as just

hk := x̂tk − x∗k
and we have dist(x̂tk,x

∗
k) = ‖x̂tk − x∗k‖ = ‖hk‖.

D. Proof of Lemmas 3.2 and 3.3

In this section, we let aik := a
(t)
ik and yik := y

(t)
ik . Also,

everywhere below, we remove the superscripts t for ease of
notation. Recall that x∗k = Ugk+ek with ek := (I−UU ′)x∗k.

Proof of Lemma 3.2. To estimate bk, we first need to estimate
gk which requires measurements of the form aik

′Ugk. Our
measurements satisfy

yik = |aik′Ugk|+ νik,

where νik = |aik′x∗k| − |aik′Ugk| is the noise. We use these
to obtain the estimate b̂k using RWF. By Theorem 2 of [10],
if m ≥ Cr, w.p. at least 1− exp(−cm),

dist
(
gk, b̂k

)
≤ ‖νk‖√

m
+ (1− c1)

TRWF,t ‖gk‖,

where c1 is a constant less than one. For our problem,

|νik| ≤ | |aik′Ugk + aik
′ek| − |aik′Ugk| | ≤ |aik′ek|

‖νk‖2 =
∑
i

ν2
ik =

∑
i

|aik′ek|2.

Clearly, E[‖νk‖2] = m‖ek‖2 and ‖ek‖2 ≤
sin Θ(U ,U∗)‖b̃∗k‖. Using Lemma A.1 with t = mδb‖ek‖2,
KXi = KYi = ‖ek‖, and summing over i = 1, 2, . . . ,m, we
conclude that, w.p. at least 1− exp

(
−cδ2

bm
)
,

‖νk‖2 ≤ m(1 + δb)‖ek‖2 ≤ m(1 + δb)δ
2
t ‖b̃∗k‖2.

where the last inequality used ‖ek‖ ≤ δt‖b̃∗k‖. Thus, using the
above and ‖gk‖ ≤ ‖b̃∗k‖,

dist
(
gk, b̂k

)
≤
√

1 + δbδt‖b̃∗k‖+ (1− c1)
TRWF,t ‖b̃∗k‖.

By setting TRWF,t so that (1 − c)TRWF,t ≤ δt, we get that
dist

(
gk, b̂k

)
≤ Cδt‖b̃∗k‖ = Cδt‖x∗‖ with C = (

√
1 + δb +

1). The above bound holds w.p. at least 1− exp
(
−cδ2

bm
)

for
a given k. By union bound, it holds for all k = 1, 2, . . . , q,
w.p. at least 1− q exp

(
−cδ2

bm
)
. Hence, with this probability,

mat-dist(G, B̂) ≤ Cδt‖X∗‖F .

For proving the third claim, recall that x̂k = Ub̂k and x∗k =
Ugk + ek. Let hk := x∗k − x̂k. We can rewrite hk as hk =
x∗k − Ugk + Ugk − Ub̂k. Thus, by triangle inequality, and
using ‖ek‖ ≤ sin Θ(U ,U∗)‖gk‖ ≤ δt‖b̃∗k‖,

‖hk‖ ≤ ‖ek‖+ ‖U‖‖gk − b̂k‖ ≤ (1 + C)δt‖b̃∗k‖.

Proof of Lemma 3.3. Recall that B̂
QR
= RBB and so bk =

R−1
B b̂k. Using Lemma 3.2, ‖gk‖ ≤ ‖b̃∗k‖, and right incoher-

ence (which implies that ‖b̃∗k‖2 ≤ σ∗max
2µ2r/q),

‖bk‖ = ‖R−1
B

(
gk − b̂k + gk

)
‖

≤ ‖R−1
B ‖

(
dist(b̂k, gk) + ‖gk‖

)
≤ ‖R−1

B ‖(1 + Cδt)‖b̃∗k‖

≤
(1 + Cδt)σ

∗
maxµ

√
r/q

σmin(RB)
≤

1.5σ∗maxµ
√
r/q

σmin(RB)

To lower bound σmin(RB), observe that σmin(RB) =
σmin(B̂). Using Lemma 3.2, the discussion of Sec. A-C, facts
from Sec. A-A, and sin Θ(U ,U∗) ≤ δt,

σmin(B̂) ≥ σmin (G)− ‖G− B̂‖
≥ σmin(U ′U∗)σmin(B̃∗)− ‖G− B̂‖F
≥
√

1− sin Θ2(U ,U∗)σ∗min − Cδt‖B̃∗‖F

≥
√

1− δ2
t σ
∗
min − Cδt

√
rσ∗max.

Using δt ≤ c/κ
√
r, σmin(RB) = σmin

(
B̂
)
≥ 0.9σ∗min. Thus,

‖bk‖ ≤
1.5σ∗maxµ

√
r/q

0.9σ∗min

≤ 2κµ
√
r/q := µ̂

√
r/q.

All of the above bounds used the bound from Lemma 3.2.
Thus the above bounds hold w.p. at least 1−n−10 as long as
m ≥ C max(r, log q, log n).
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E. Proof of the lemmas for Claim 3.4

In this section, we let aik := a
(T+t)
ik and yik := y

(T+t)
ik .

Also, at almost all places, we remove the superscript t.
All the proofs in this section use incoherence of B with

parameter µ̂ = Cκµ (by Lemma 3.3). This holds w.p. at least
1− n−10 as long as m ≥ C max(r, log n, log q)/δ2

b .

Proof of Lemma 3.10. Recall that Term3(W ) :=∑
ik(aik

′Wbk)2. We have

E

[∑
ik

|aik′Wbk|2
]

= m‖WB‖2F = m.

Let Xik = |aik′Wbk|. Xik is sub-Gaussian with sub-
Gaussian norm ‖Wbk‖. We use Lemma A.1 with Yik = Xik

and t = δtm, along with the following facts:
1)
∑
k ‖Wbk‖4 ≤ maxk ‖Wbk‖2

∑
k ‖Wbk‖2,

2)
∑
k ‖Wbk‖2 = ‖WB‖2F = trace (WBB′W ′) =

‖W ‖2F = 1, and
3) maxk ‖Wbk‖2 ≤ ‖W ‖2 maxk ‖bk‖2 ≤
‖W ‖2F maxk ‖bk‖2 ≤ maxk ‖bk‖2 ≤ µ̂2r/q, w.p. at
least 1−n−10 as long as m ≥ C max(r, log n, log q)/δ2

b

by Lemma 3.3.
Using Lemma A.1 and the above facts, for a fixed W ,

Pr

{
|
∑
ik

|a′ikWbk|2 −m| ≥ δtm

}
≤ 2 exp

(
−cδ

2
tmq

µ̂2r

)
.

Now we develop an epsilon-net argument to complete the
proof. This is inspired by similar arguments in [52]. Recall
that SW = {W ∈ Rn×r, ‖W ‖F = 1}. By [54](Lemma 5.2),
there is a set (called ε-net), S̄W ⊆ SW so that for any W in
SW , there is a W̄ ∈ S̄W , such that

‖W̄ −W ‖F ≤ ε

and

|S̄W | ≤
(

1 +
2

ε

)nr
.

Pick ε = 1/8 so that |SW | ≤ 17nr. Also, define

∆W := W̄ −W

so that ‖∆W ‖F ≤ ε = 1/8.
Using a union bound over all entries in the finite set S̄W ,

Pr

(
|
∑
ik

|a′ikWbk|2 −m| ≤ δtm, for all W̄ ∈ S̄W

)

≥ 1− 2|S̄W | exp

(
−cδ

2
tmq

µ̂2r

)
≥ 1− 2 exp

(
nr(log 17)− cδ

2
tmq

µ̂2r

)
. (14)

Next we extend the above to obtain lower and upper bounds
over the entire hyper-sphere, SW . Define

θW = max
W∈SW

∑
ik

|aik′Wbk|2,

as the maximum of Term3(W ) over SW . Since ∆W
‖∆W ‖F ∈

SW , ∑
ik

|aik′∆Wbk|2 ≤ θW ‖∆W ‖2F ≤ θW ε2.

Using this, (14), and Cauchy-Schwarz,∑
ik

|aik′Wbk|2

=
∑
ik

|aik′W̄ bk|2 +
∑
ik

|aik′∆Wbk|2

+ 2
∑
ik

(
aik
′W̄ bk

) (
a′i,k∆Wbk

)
≤ (1 + δt)m+ ε2θW + 2

√
m(1 + δt)

√
θW ε

= (1 + δt)m+ (1/64)θW + (1/4)m
√

1 + δt
√
θW /m

(15)

w.p. at least 1−2 exp
(
nr(log 17)− c δ

2
tmq
µ̂2r

)
. The last equality

just used ε = 1/8 and re-arranged the third term.
If θW /m < 1, we are done because then θW ≤ m.

Otherwise, θW /m ≥ 1 and so
√
θW /m ≤ θW /m. Using

this and taking maxW∈SW of (15),

θW ≤ (1 + δt)m+ θW ((1/64) + (1/4)
√

1 + δt).

By assumption, δt < 1/10, and so the above implies that
θW ≤ 1.25(1 + δt)m.

Thus, w.p. 1− 2 exp
(
nr(log 17)− c δ

2
tmq
µ̂2r

)
,

θW := max
W∈SW

Term3 ≤ 1.25(1 + δt)m ≤ 1.5m.

We now obtain the lower bound on the minimum of Term3
over the entire hyper-sphere. This uses (14), Cauchy-Schwarz,
and the upper bound on θW from above.∑
ik

|aik′Wbk|2

≥
∑
ik

|aik′W̄ bk|2 + 2
∑
ik

(
ai,k

′W̄ bk
)

(ai,k
′∆Wbk)

≥
∑
ik

|aik′W̄ bk|2 − 2|
∑
ik

ai,k
′W̄ bkai,k

′∆Wbk|

≥ m(1− δt)− 2

√∑
ik

|ai,k′W̄ bk|2
√∑

ik

|ai,k′∆Wbk|2

≥ m(1− δt)− 2
√
m(1 + δt)

√
θW ‖∆W ‖2F

≥ m(1− δt)− 2m(1 + δt)
√

1.5ε ≥ m(0.9− 0.26) = 0.64m

w.p. 1 − 2 exp
(
nr(log 17)− c δ

2
tmq
µ̂2r

)
. In the last line we

substituted ε = 1/8 and used δt < 1/10.
All of the above bounds hold on the event in which B is

µ̂ incoherent. This holds w.p. at least 1 − n−10 as long as
m ≥ C max(r, log n, log q)/δ2

b (this follows by Lemma 3.3).
Thus, if m ≥ C max(r, log n, log q)/δ2

b , w.p. 1 −
2 exp

(
nr(log 17)− c δ

2
tmq
µ̂2r

)
− n−10,

min
W∈SW

Term3(W ) ≥ 0.64m.
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Proof of Lemma 3.11. Define

pk := B̃∗B′bk − b̃∗k = Σ∗(B∗B′bk − b∗k)

Recall that

Term1(W ) =
∑
ik

bk
′W ′aikaik

′U∗pk.

Define the matrix P := [p1,p2, . . . ,pq]. Observe that

P = B̃∗(B′B − I).

We first upper bound ‖P ‖F by using Lemma 3.2. In Lemma
3.2, we bounded mat-dist(G, B̂) = ‖G − B̂‖F . Recall also
that B̂

QR
= RBB where B is a matrix with orthonormal rows.

Thus, B̂(I −B′B) = 0. Using this and facts from Sec. A-A,

‖P ‖F = ‖B̃∗ (I −B′B) ‖F

≤ 1

σmin (U ′U∗)
‖U ′U∗B̃∗ (I −B′B) ‖F

=
1

σmin (U ′U∗)
‖(G− B̂ + B̂) (I −B′B) ‖F

≤ 1

σmin (U ′U∗)
‖G− B̂‖F + 0

≤ 1

σmin (U ′U∗)
Cδt‖X∗‖F .

Furthermore σ2
min (U ′U∗) = 1−sin Θ(U ,U∗)2 ≥ 1−δ2

t . By
assumption, δt ≤ 1/10 and so

‖P ‖F ≤
√

10/9Cδt‖X∗‖F . (16)

Next we show that E[Term1(W )] = 0.

E [Term1(W )] = m
∑
k

bk
′W ′U∗Σ∗(B∗B′bk − b∗k)

= m
∑
k

tr(W ′U∗Σ∗(B∗B′bk − b∗k)bk
′)

= m tr(W ′U∗Σ∗(B∗B′BB′ −B∗B′))
= 0

where we used BB′ = Ir. Now we use the above and (16)
to show that it also concentrates around zero. Let Xik =
a′ikWbk and Yik = a′ikU

∗pk. Both are sub-Gaussian, and
so we can apply the Bernstein-type lemma, Lemma A.1,
for sums of products of sub-Gaussian r.v.’s. Observe that
KXik = ‖Wbk‖ ≤ ‖W ‖F ‖bk‖ ≤ ‖bk‖, and KYik ≤ ‖pk‖.

Using Lemma 3.3, bk’s are incoherent, i.e.,

‖bk‖2 ≤ µ̂2r/q = Cκ2µ2r/q.

w.p. at least 1 − n−10 as long as m ≥
C max(r, log n, log q)/δ2

b . Using the above, we can
also show that pk’s are incoherent as follows. Using
(a+ b)2 ≤ 2(a2 + b2), and ‖B‖ = ‖B∗‖ = 1,

‖pk‖2 ≤ 2σ∗max
2(‖B∗‖2‖B‖2‖bk‖2 + ‖b∗k‖2)

= 2σ∗max
2(‖bk‖2 + ‖b∗k‖2)

≤ 2σ∗max
2(µ̂2 + µ2)r/q = Cκ2µ2σ∗max

2r/q

We will now apply Lemma A.1 with t = mδ2
t ‖X∗‖F .

t2∑
ikK

2
Xik

K2
Yik

=
m2δ4

t ‖X∗‖2F
m
∑
k ‖bk‖2‖pk‖2

≥ mδ4
t ‖X∗‖2F

maxk ‖bk‖2
∑
k ‖pk‖2

=
mδ4

t ‖X∗‖2F
maxk ‖bk‖2‖P ‖2F

≥ mδ4
t ‖X∗‖2F

maxk ‖bk‖2C2δ2
t ‖X∗‖2F

≥ mqδ2
t

Cκ2µ2 r
, and

t

maxikKXikKYik

=
mδ2

t ‖X∗‖F
maxk ‖bk‖‖pk‖

≥ mqδ2
t

√
rσ∗min

σ∗maxC
2κ2µ2r

=
mqδ2

t

√
r

Cκ3µ2 r

The second inequality used (16), while the third used incoher-
ence of bk’s. The last inequality used incoherence of bk’s and
of pk’s (proved above) and ‖X∗‖F ≥

√
rσ∗min. Thus

min

(
t2∑

ikK
2
Xik

K2
Yik

,
t

maxikKXikKYik

)
≥ mqδ2

t

Cκ3µ2r

and so

Pr{|Term1(W )| ≤ mδ2
t ‖X∗‖F } ≥ 1− exp

(
−c mqδ

2
t

κ3µ2r

)
Now we just need to extend our bound for all W ∈ SW .
We first extend it to all W in an epsilon-net of SW . By
[54](Lemma 5.2), there is an ε-net, S̄W so that for any W
in SW , there is a W̄ in S̄W , such that ‖W̄ −W ‖F ≤ ε and
|S̄W | ≤

(
1 + 2

ε

)nr
. Pick ε = 1/8. With this, |S̄W | ≤ 17nr.

Define ∆W := W̄ −W . We have ‖∆W ‖F ≤ ε = 1/8.
Using union bound on the set S̄W ,

Pr{|Term1(W )| ≤ mδ2
t ‖X∗‖F for all W̄ ∈ S̄W }

≥ 1− 2|S̄W | exp

(
−c mqδ

2
t

κ3µ2r

)
≥ 1− 2 exp

(
nr(log 17)− c mqδ

2
t

κ3µ2r

)
(17)

To extend the claim to all W ∈ SW , define

θW := max
W∈SW

∑
ik

(aik
′Wbk)(a′ikU

∗pk).

Since ∆W
‖∆W ‖F ∈ SW ,

∑
ik(aik

′∆Wbk)(a′ikU
∗pk) ≤

θW ‖∆W ‖F ≤ θW ε. Thus, using (17), for any W ∈ SW ,∑
ik

(aik
′Wbk)(aik

′U∗pk)

=
∑
ik

(aik
′W̄ bk)(aik

′U∗pk) +
∑
ik

(aik
′∆Wbk)(a′ikU

∗pk)

≤ mδ2
t ‖X∗‖F + θW ε = mδ2

t ‖X∗‖F + (1/8)θW
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w.p. at least 1−2 exp
(
nr(log 17)− c mqδ

2
t

κ3µ2r

)
. Thus, taking the

maxW∈SW of the above equation and solving for θW , with
the above probability,

θW ≤ mδ2
t ‖X∗‖F /(1− ε) = (8/7)mδ2

t ‖X∗‖F .

All of the above bounds hold on the event in which B is
µ̂ incoherent. This holds w.p. at least 1 − n−10 as long as
m ≥ C max(r, log n, log q)/δ2

b (this follows by Lemma 3.3).
Thus, if m ≥ C max(r, log n, log q)/δ2

b , w.p.
at least 1 − 2 exp

(
nr(log 17)− c mqδ

2
t

κ3µ2r

)
− n−10,

maxW∈SW |Term1(W )| ≤ (8/7)mδ2
t ‖X∗‖F .

Proof of Lemma 3.12. Recall that aik := a
(T+t)
ik and same

for yik. Thus, these are independent of the current x̂k’s.
By Cauchy-Schwarz,

Term2(W ) :=
∑
ik

(cikĉik − 1)(aik
′Wbk)(aik

′x∗k)

≤
√∑

ik

|aik′Wbk|2
√∑

ik

|cikĉik − 1|2|aik′x∗k|2

(18)

We can bound the first term using Lemma 3.10. Consider
the second term. Since cik = sign(aik

′x∗k) and ĉik =
sign(aik

′x̂k), clearly (cikĉik − 1)2 = (4)1{cik 6=ĉik}. To
bound this term we use the following result.

Lemma A.2 (Lemma 1 of [10]). Let ai be standard Gaussian
random vectors. For any given x∗, and x̂ independent from
ai, i = 1, · · · ,m,

Pr
(
sign(ai

′x∗) 6= sign (ai
′x̂) | (ai′x∗)

2
= z2, x̂

)
≤ erfc

(
z

2‖x∗ − x̂‖

)
,

for all x̂ that satisfy dist(x̂,x∗) ≤ 0.4. Here erfc(u) :=
2√
π

∫∞
u

exp
(
−τ2

)
dτ is the complementary error function.

Let Qik := 1{cik 6=ĉik} · (aik′x∗k)
2 and let Zik := aik

′x∗k.
Recall from Sec. A-C that dist(xk,x

∗
k) = ‖hk‖ with hk =

x∗k − x̂k.
We first upper bound E[Qik|x̂k]. For simplicity, we remove

the subscripts i and k wherever these are not needed. Consider
E[Q] = E[1c6=ĉ Z

2]. Observe that c = sign(Z) is a function
of Z and Z depends on a. Also ĉ is a function of a. Thus
both of c, ĉ are dependent on Z. Moreover ĉ also depends on
x̂. We first bound E[Q|Z2, x̂] using the lemma stated above.
For any x̂ that satisfies dist(x̂,x∗) ≤ 0.4,

E[Q|Z2 = z2, x̂]=E[1c6=ĉ z
2|Z2 = z2, x̂]

=z2 Pr(c 6= ĉ|Z2 = z2, x̂)

≤z2erfc
(

z

2‖x∗ − x̂‖

)
≤z2 exp

(
− z2

4‖x∗ − x̂‖2

)
.

The first inequality follows using Lemma A.2, the second is a
standard upper bound on the erfc function [69]. Thus, for any
x̂ that satisfies dist(x̂,x∗) ≤ 0.4,

E[Q|x̂] = E[E[Q|Z2, x̂]] ≤ E
[
Z2 exp

(
− Z2

4‖x∗ − x̂‖2

)
|x̂
]
.

Since Z is zero mean Gaussian with variance ‖x∗‖2, Y :=
Z2/‖x∗‖2 is standard chi-squared with one degree of freedom.
Thus, E[Y ] = 1. Using this and exp(−y/2) < 1, we get

E[Q|x̂]

≤
∫ ∞

0

y‖x∗‖2 exp

(
− y‖x∗‖2

4‖x∗ − x̂‖2

)
exp(−y/2)√

2yΓ(1/2)
dy

≤
∫ ∞

0

y‖x∗‖2 exp

(
− y‖x∗‖2

4‖x∗ − x̂‖2

)
1√

2yΓ(1/2)
dy

= 2
√

2
‖x∗ − x̂‖3

‖x∗‖
= 2
√

2
dist(x∗, x̂)3

‖x∗‖

where Γ(1/2) is the Gamma function evaluated at 1/2 (can
treat it as a constant). We will now use Lemma 3.2 to average
over x̂. Let E be the event that dist(x∗k, x̂k) ≤ δt‖x∗k‖ for
all k = 1, 2, . . . , q. By Lemma 3.2, under the lower bound
on m, this event occurs w.p. at least 1 − n−10. On the
complement event, we do not have any tight bounds on Q.
However, trivially, Q ≤ (ai

′x∗)
2 always and so, for any x̂,

E[Q|x̂] ≤ ‖x∗‖2. Thus

E[Q] ≤ 4δ3
t ‖x∗‖2 · (1− n−10) + ‖x∗‖2 · n−10

We will eventually set δt = c/(κ2r) which is larger than n−10.
Thus,

E[Q] ≤ C max(δ3
t , n
−10)‖x∗‖2 = Cδ3

t ‖x∗‖2

and so, if m ≥ C max(r, log n, log q),∑
ik

E [Qik] ≤ mCδ3
t ‖X∗‖2F . (19)

As a side-note, we should clarify here that the dependence
on x̂ matters in only the above expected value computation
because this is the only term where we have upper bounded
the expectation using Lemma 3.2. The expected value of the
other two terms is the same for all values of x̂ and hence
we ignore the dependence there. Everywhere else, we use this
lemma only while obtaining the high probability error bounds,
and of course we assume the bounds hold on the intersection
of the desired event with E.

Next we show that, on the event E, whp,
∑
ikQik is of the

same order. As shown in the proof of Theorem 1 of [10], cik 6=
ĉik implies that8 (aik

′x∗k)
2 ≤ (aik

′hk)
2. Here hk = x∗k−x̂k.

Thus, Qik = 1{cik 6=ĉik} (aik
′x∗k)

2 ≤ 1{cik 6=ĉik} (aik
′hk)

2 ≤
(aik

′hk)
2. Thus, it is a sub-exponential r.v., or equivalently

it is a product of sub-Gaussian r.v.’s
√
Qik. Thus, we can

8This follows from (a′x∗)2 = (a′h)2 + (a′x̂)2 + 2(a′h)(a′x̂) =
(a′h)2− (a′x̂)2 +2(a′x∗)(a′x̂) ≤ (a′h)2. The inequality holds because
cik 6= ĉik means that the last term is negative.
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apply Lemma A.1 with KXik = KYik = ‖hk‖. Pick t =
mδtδ

2
t ‖X∗‖2F . Observe that

t2∑
ik ‖hk‖4

=
m2δ2

t (δ2
t ‖X∗‖2F )2

m
∑
k ‖hk‖4

≥ mδ6
t ‖X∗‖4F

maxk ‖hk‖2δ2
t ‖X∗‖2F

≥ mδ2
t ‖X∗‖2F

maxk ‖x∗k‖2

≥ mqδ2
t

κ2µ2
, and

t

maxk ‖hk‖2
≥ mδt‖X∗‖2F

maxk ‖x∗k‖2
≥ δtmq

κ2µ2
.

The second inequality used ‖hk‖2 ≤ δ2
t ‖x∗k‖2 which holds

on the event E. The third inequality used the fact that right
incoherence implies ‖x∗k‖2 ≤ µ2κ2‖X∗‖2F /q. Thus, on the
event E,

Pr
{
|
∑
ikQik −

∑
ik E[Qik]| ≥ mδtδ2

t ‖X∗‖2F
}

≤ 2 exp
(
−cδ2

tmq/κ
2µ2
)

Thus, using (19), and Pr(E) > 1 − n−10 (by Lemma 3.2),
if m ≥ C max(r, log n, log q), w.p. at least 1 − n−10 −
2 exp

(
−cδ2

tmq/κ
2µ2
)
,∑

ik

Qik ≤ (C + 1)mδtδ
2
t ‖X∗‖2F . (20)

Finally, combining (18), (20), and Lemma 3.10, if
m ≥ C max(r, log n, log q)/δ2

b , w.p. at least 1 − n−10 −
2 exp

(
nr − cδ2

t
mq
µ̂2r

)
− 2 exp

(
−cδ2

t
mq
κ2µ2

)
,

max
W∈SW

Term2(W ) ≤ Cm
√

1 + δt
√
δtδt‖X∗‖F .

Proof of Lemma 3.13. Using facts from Sec. A-A, and using
σi(U

∗) = 1,

σmin(U∗Σ∗B∗B′) ≥ σmin(U∗)σmin(Σ∗)σmin(B∗B′)

≥ σ∗min

√
1− sin Θ2(B∗′,B′)

To upper bound sin Θ(B∗′,B′), first notice that B∗′

and B′ are basis matrices. Thus, sin Θ(B∗′,B′) =
‖B∗ (I −B′B) ‖. We have upper bounded ‖B̃∗ (I −B′B) ‖
in Lemma 3.11. Also recall that B̃∗ = Σ∗B∗ and ‖B̃∗‖F =
‖X∗‖F ≤

√
rσ∗max. Thus,

sin Θ(B∗′,B′) = ‖(Σ∗)−1B̃∗ (I −B′B) ‖ ≤ Cδt‖X∗‖F
σ∗min

≤ C
√
rκδt

Thus, using δt ≤ 0.7/C
√
rκ, we will have

σmin(U∗Σ∗B∗B′) ≥ 0.95σ∗min.

APPENDIX B
PROOF OF LEMMA 3.9

We begin by defining a few quantities needed for writing
an expression of Û t+1 in closed form.

1) We use the subscript Mvec to refer to the vectorized
version of matrix M . Thus, for example, U∗vec is an
nr×1 vectorized version of the basis matrix U∗. When
updating its estimate by LS, we first obtain an expression
for the vectorized version Û t+1

vec and then rearrange it as
an n× r matrix.

2) Scalars such as b(q) refer to the q-th entry of vector b.
3) Define the diagonal matrix Ck := diag(cik), and re-

call from the algorithm that Ĉk = diag(ĉik). Here
cik := sign(aik

′x∗k) and ĉik := sign(aik
′x̂k) as defined

in Lemma 3.9.
4) For k = 1, . . . , q, define

Bk,mat := [bk(1)In, . . . , bk(r)In]′

d :=
∑
k

Bk,matAkĈkyk

M :=
∑
k

Bk,matAkA
′
kB
′
k,mat.

Observe that Bk,mat and M are nr × n and nr × nr
matrices respectively while d is an nr × 1 vector.
Moreover, for any w ∈ Rnr×1 it is easy to see that
w′Bk,mat = b′kW

′ where W is matrix version of w
with W ∈ Rn×r.

Recall from the algorithm that

Û t+1
vec = argminÛvec

∑
k

‖Ĉkyk −A′kB′k,matÛvec‖2.

This is an LS problem, it can be solved in closed form to give

Û t+1
vec = M−1d

which is nr-length vector. We get the matrix Û t+1 by reshap-
ing this vector into an n× r matrix.

To simplify the above expression, first recall that yk =
|Ak

′x∗k| and Ck is the diagonal matrix containing the signs
of (Ak

′x∗k)i: its i, i-th entry is the sign of (aik
′x∗k). Thus,

yk = CkAk
′x∗k.

Since x∗k = U∗Σ∗b∗k, we can rewrite d as

d =
∑
k

Bk,matAkĈkCkAk
′U∗Σ∗b∗k.

Before proceeding further, we define a few more quantities.
1) Define

S =
∑
k

Bk,matB
∗
k,mat

′.

2) Define the “expanded” singular value matrix which is of
size nr × nr,

Σ∗big := diag(σ∗1In, · · · , σ∗rIn)

where σ∗i are the singular values of X∗.



26

3) In order to separate the contribution of phase error from
the rest, split d as d = d(1) + d(2) where

d(1) =
∑
k

Bk,matAk
′U∗Σ∗b∗k

d(2) =
∑
k

Bk,mat(ĈkCk − I)Ak
′U∗Σ∗b∗k,

Thus,

Û t+1
vec = M−1d = M−1(d(1) + d(2)).

4) Define the nr-length vector Fvec as follows

Fvec = M−1(MSΣ∗bigU
∗
vec − d(1))−M−1d(2).

and let F ∈ Rn×r be the reshaped matrix formed from
Fvec.

We will now show that

Û t+1 = U∗Σ∗B∗B′ − F . (21)

This will be useful because when we try to bound
sin Θ(U∗,U t+1), the first term will disappear. To do this,
we add and subtract the vector MSΣ∗bigU

∗
vec from d(1). This

gives

Û t+1
vec = SΣ∗bigU

∗
vec − Fvec

Next we explain why the n×r reshaped matrix version of the
vector SΣ∗bigU

∗
vec equals U∗Σ∗B∗B′. We have

SΣ∗bigU
∗
vec =

∑
k

Bk,matB
∗
k,mat

′Σ∗bigU
∗
vec

=
∑
k

Bk,matU
∗Σ∗b∗k

=
∑
k


bk(1)U∗Σ∗b∗k
bk(2)U∗Σ∗b∗k

...
bk(r)U∗Σ∗b∗k


Matrix version of the above vector has p-th column as
U∗Σ∗ (

∑
k b
∗
kbk(p)). This implies that matrix version of

this vector is U∗Σ∗B∗B′. Moreover, it is easy to see that
B′k,matSΣ∗bigU

∗
vec = U∗Σ∗B∗B′bk.

In the rest of this section, we use (21) to obtain the desired
bound on sin Θ(U∗,U t+1). Recall that Ût+1

QR
= U t+1RU .

Thus, U t+1 = Û t+1(RU )−1 = (U∗Σ∗B∗B′ − F )(RU )−1

and so

sin Θ(U∗,U t+1) =‖U∗
′

⊥ F (RU )−1‖ ≤ ‖F (RU )−1‖

≤‖F ‖F ‖R−1
U ‖ =

‖Fvec‖
σmin(RU )

(22)

Since σmin(RU ) = σmin(U t+1), we have σmin(RU ) =
σmin(U∗Σ∗B∗B′ − F ) ≥ σmin(U∗Σ∗B∗B′) − ‖F ‖ ≥
σmin(U∗Σ∗B∗B′)− ‖Fvec‖. Thus,

sin Θ(U∗,U t+1) ≤ ‖Fvec‖
σmin(U∗Σ∗B∗B′)− ‖Fvec‖

(23)

In the rest of this proof, we show that ‖Fvec‖ is upper
bounded by MainTerm. We have

‖Fvec‖ ≤‖M−1‖
(
‖MSΣ∗bigU

∗
vec − d(1)‖+ ‖d(2)‖

)
(24)

Consider the first term, M−1. Since M is a symmetric
positive semidefinite matrix

σmin(M) = min
w∈Rnr×1, ‖w‖=1

w′Mw

For all w ∈ Rnr×1, ‖w‖2 = 1, we can write w′Mw∑
k

w′Bk,matAkA
′
kB
′
k,matw =

∑
k

b′kW
′AkA

′
kWbk

=
∑
ik

|a′ikWbk|2 = Term3(W )

where W ∈ Rn×r is the matrix version of w and w = Wvec.
Recall that SW = {W ∈ Rn×r, ‖W ‖F = 1} = {w ∈
Rnr×1, ‖w‖ = 1}. Thus,

‖M−1‖ =
1

σmin(M)
=

1

minW∈SW |Term3(W )|
(25)

Now consider the first term inside the parenthesis. Using the
variational definition,

‖MSΣ∗bigU
∗
vec − d(1)‖ =

max
w∈Rnr×1,‖w‖=1

|w′(MSΣ∗bigU
∗
vec − d(1))|.

It follows from definitions that

w′MSΣ∗bigU
∗
vec =∑

k

(w′Bk,mat)AkA
′
k

(
B′k,matSΣ∗bigU

∗
vec

)
=∑

k

b′kW
′AkA

′
kU
∗Σ∗B∗B′bk.

Similarly

w′d(1) =
∑
k

bk
′W ′AkAk

′U∗Σ∗b∗k,

and thus

‖MSΣ∗bigU
∗
vec − d(1)‖ = max

W∈SW
|Term1(W )|. (26)

For the final term, ‖d(2)‖, by variational definition we have,

‖d(2)‖ = max
w∈Rnr×1:‖w‖=1

w′d(2).

From definitions we know that

w′d(2) =
∑
k

w′Bk,matAk(ĈkCk − I)Ak
′U∗Σ∗b∗k

=
∑
k

b′kW
′Ak(ĈkCk − I)Ak

′U∗Σ∗b∗k

=
∑
ik

(ĉikcik − 1) (aik
′Wbk) (aik

′x∗k) = Term2(W ),

and thus

‖d(2)‖ = max
W∈SW

|Term2(W )|. (27)

Combining (24) - (27),

‖Fvec‖

≤ maxW∈SW |Term1(W )|+ maxW∈SW |Term2(W )|
minW∈SW |Term3(W )|

Combining the above bound with (23) proves the lemma.
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APPENDIX C
PROOF SKETCH OF COROLLARY 5.1

Suppose first that the subspace change times kj were known.
By our assumption, kj+1 − kj > Tα. Then the proof is
almost exactly the same as that for the static case. The
only difference is that, in the current case, every α time
instants, we are using measurements corresponding to a new
set of α signals (columns of X∗full) but we use the estimate
of the subspace obtained from the measurements for the
previous α time instants. As long as the subspace has not
changed between the two intervals, Claims 3.1 and 3.4 apply
without change. Combining them, we can again conclude that
sin Θ(U0

sub,(j),U
∗
sub,(j)) ≤ δinit at k = kj + α, and that

the bound decreases 0.7 times after each α-length epoch so
that sin Θ(UT

sub,(j),U
∗
sub,(j)) ≤ ε at k = kj + αT . By our

assumption, kj+1 > kj + αT so this happens before the next
change.

The proof in the unknown kj case follows if we can show
that, whp, kj ≤ k̂j ≤ k̂j+2α. This can be done using Lemma
C.1 given below along with the following argument borrowed
from [55], [70]. Consider the α-length interval in which kj
lies. Assume that, before this interval, we have an ε-accurate
estimate of the previous subspace. In this interval, the first
some data vectors satisfy x∗k = U∗sub,(j−1)d̃

∗
k, while the rest

satisfy x∗k = U∗sub,(j)d̃
∗
k. By our assumption, this interval

lies in the “detect phase”. We cannot guarantee whether the
change will get detected in this interval, but it may. However,
in the interval after this interval, all data vectors satisfy
x∗k = U∗sub,(j)d̃

∗
k. In this interval, Lemma C.1 given below can

be used to show that the change gets detected whp. Thus, either
the change is detected in the first interval itself (the one that
contains kj), or it is not. If it is not, then, by Lemma C.1, whp,
it will get detected in the second interval (in which all signals
are generated from the j-th subspace). Thus, k̂j ≤ kj+2α. See
Appendix A of [55] for a precise proof of this idea. The key
point to note here is that we are never updating the subspace
in the interval that contains kj and hence we do not have to
prove a new descent lemma that deals with the interval in
which the subspace changes.

We will replace α by q in the following lemma and its proof,
in order to able to use bounds from earlier proofs. Thus in this
lemma, we are considering a q-frame epoch.

Lemma C.1. Consider the (n− r)× (n− r) matrix

YU,det := Usub,(j−1),⊥
′YU (Jq)Usub,(j−1),⊥,

Assume that ‖YU −E[Y−]‖ ≤ δinitσ
∗
min

2

q . This is true by (10).
Assume that sin Θ(Usub,(j−1),U

∗
sub,(j−1)) ≤ ε. Then,

1) If Jq ⊆ [kj , kj+1) (change has occurred), then

λmax (YU,det)− λmin (YU,det)

≥ σ∗min
2

q

(
1.5 sin Θ2

(
U∗sub,(j),Usub,(j−1)

)
− 2δinit

)
≥ σ∗min

2

q
(1.5(sin Θ(U∗sub,(j),U

∗
sub,(j−1))− 2ε)2 − 2δinit)

2) If Jq ⊆ [k̂j−1 +Tq, kj) (change has not occurred), then

λmax (YU,det)− λmin (YU,det)

≤ 1

q
σ∗max

2 sin Θ2
(
U∗sub,(j−1),Usub,(j−1)

)
+

2δinitσ
∗
min

2

q

≤ σ∗min
2

q
(κ2ε2) + 2δinit)

Proof. This proof uses the following fact: For basis ma-
trices P1,P2,P3 of the same size, sin Θ (P1,P2) −
2 sin Θ (P2,P3) ≤ sin Θ (P1,P3) ≤ sin Θ (P1,P2) +
sin Θ (P2,P3).

Define the (n− r)× (n− r) matrix

Edet = Usub,(j−1),⊥
′E[Y−]Usub,(j−1),⊥.

Proof of item 1

λmax (YU,det) ≥ λmax (Edet)− ‖YU,det −Edet‖
‖YU,det −Edet‖

≤ ‖YU − E[Y−]‖ ≤ δinitσ
∗
min

2

q
.

Also we have

λmin (YU,det) ≤ λmin (Edet) + ‖YU,det −Edet‖

Thus using the facts from Sec. A-A and mink β
−
1,k ≥ 1.5

(proved while proving Claim 3.1 for initializing U∗),

λmax (YU,det)− λmin (YU,det)

≥ λmax

(
1

q
Usub,(j−1),⊥

′U∗sub,(j) (
∑
k

β−1,kb̃
∗
kb̃
∗
k
′)×

U∗sub,(j)
′Usub,(j−1),⊥

)
− 2δinitσ

∗
min

2

q

≥ (σ∗min)2

q

(
1.5 sin Θ

(
U∗sub,(j),Usub,(j−1)

)2

− 2δinit

)
.

Proof of item 2

λmax (YU,det)− λmin (YU,det) ≤λmax (Edet)− λmin (Edet)

+ 2‖YU,det −Edet‖.

It is easy to see that

λmax (Edet)− λmin (Edet)

≤
maxk β

−
1,k

q
σ∗max

2 sin Θ2
(
U∗sub,(j−1),Usub,(j−1)

)
≤ σ∗max

2

q
sin Θ2

(
U∗sub,(j−1),Usub,(j−1)

)
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