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Abstract: The DNA phosphorothioate (PT) modification existing in many prokaryotes, including
bacterial pathogens and commensals, confers multiple characteristics, including restricting gene
transfer, influencing the global transcriptional response, and reducing fitness during exposure to
chemical mediators of inflammation. While PT-containing bacteria have been investigated in a variety
of environments, they have not been studied in the human microbiome. Here, we investigated
the distribution of PT-harboring strains and verified their existence in the human microbiome.
We found over 2000 PT gene-containing strains distributed in different body sites, especially in
the gastrointestinal tract. PT-modifying genes are preferentially distributed within several genera,
including Pseudomonas, Clostridioides, and Escherichia, with phylogenic diversities. We also assessed
the PT modification patterns and found six new PT-linked dinucleotides (CpsG, CpsT, ApsG, TpsG,
GpsC, ApsT) in human fecal DNA. To further investigate the PT in the human gut microbiome,
we analyzed the abundance of PT-modifying genes and quantified the PT-linked dinucleotides in
the fecal DNA. These results confirmed that human microbiome is a rich reservoir for PT-containing
microbes and contains a wide variety of PT modification patterns.
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1. Introduction

Phosphorothioate (PT) DNA modifications, in which the nonbridging oxygen in the phosphate
backbone is replaced by sulfur, are widespread among bacteria and archaea [1]. The PT-modifying
gene cluster, dndA-E, has been found in more than 1300 sequenced genomes [2] and confers cells with
5"-Gps AAC-3'/5"-Gps TTC-3' or 5'-GpsGCC-3’ consensus sequences [3]. Recently, another PT-modifying
gene cluster has been reported, sspA-D, which confers cells with 5'-CpsCA-3’ on the single strand [4].
The DndA protein, which can be functionally substituted by an IscS (a cysteine desulfurase located
elsewhere in the genome) [5,6], transfers sulfur into the Fe-S cluster of DndC [5,7]. SspA and SspD may
share the same initial sulfur mobilization pathway with DndA and DndC, respectively [4]. Meanwhile,
SspC shows ATPase activity and may provide energy in a manner similar to DndD [4]. Though PT
modifications are usually introduced in a sequence-specific manner, only 12%-14% of target motifs
are modified [3,8]. In some bacteria, PT modifications are involved in a restriction-modification
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(R-M) system with gene cassette dndF-H/sspE or an antiviral system with gene cassette pbeA-D [9].
However, nearly half of the PT-containing strains lack dndF-H/sspE and pbeA-D, indicating that the
PT modifications possess other functions [4,10]. A recent transcriptomic and metabolomic analysis
showed that PT modifications contribute to the cellular redox state [11], while, at the same time,
PT modifications confer sensitivity to the HOCI produced by neutrophils [12]. To date, little is known
about the presence of PT-containing bacteria in the human microbiome. Here, we performed an
informatic analysis of sequenced microbiome-related genomes and a mass spectrometric analysis of
fecal DNA to show the widespread presence of PT-modifying genes and PT-linked dinucleotides in the
human microbiome.

2. Materials and Methods

2.1. Multiple Sequence Alignments

All publicly available genomes (including the complete and partial genomes) were downloaded
from the online databases of NCBI (National Center for Biotechnology Information) (https://www.
ncbi.nlm.nih.gov/genome/), EMBL (European Molecular Biology Laboratory) (https://www.ebi.ac.uk/),
and HMP (Human Microbiome Project) (https://www.hmpdacc.org/). We used the MakeDB of
multigeneblast (software version 1.1.13) [13] to convert the original databases into the GBK format. The
dnd genes of Salmonella enterica serovar Cerro 87 (CP008925: 3477655...3481641) and the ssp genes of Vibrio
cyclitrophicus FF75 (NZ_ATLT01000001: 2194844...2200061) were used as PT-modifying component
queries [4]. The DndF-H cluster of S. enterica serovar Cerro 87 (CP008925: 3467758 ... 3475796) was
used as the restriction component query. The PbeA-D cluster of Haloterrigena jeotgali A29 (CP031303:
460843 ... 466000) was used as the antiviral component query. The amino acid translation of each gene
sequence within the query gene cluster is searched against the selected GBK (Genebank) database,
yielding a dataset of BLAST (Basic Local Alignment Search Tool) hits [13]. The BLAST hits are
then mapped to their parent nucleotide scaffolds, based on the information from the database [13].
The nucleotide scaffolds are then sorted according to their empirical similarity scores with the query
gene cluster [13]. The number of blast hits per gene to be mapped is 250. The weight of synteny
conversion in hit sorting is 0.5. The minimal sequence coverage of blast hits is 25. The minimal identity
of blast hits is 30%. The maximum distance between genes in locus is 20 kb. These parameters above
were set up for multiple sequence alignments in multigeneblast (software version 1.1.13) [13].

2.2. Phylogenic Analysis

The identification of protein sequences was based on the TIGR (The Institute for Genomic
Research) database (http://www.tigr.org) annotation (e.g., TIGR03233, TIGR03183, TIGR03185, and
TIGR03184 for DndA, B, C, D, and E, respectively) [14]. The amino acid sequences of DndC/SspD
(accession numbers were shown in dataset) were downloaded from the online databases (e.g.,
https://www.ncbi.nlm.nih.gov/genome/). Then. we combined these amino acid sequences with the
DndC/SspD of V. cyclitrophicus FF75 (CpsC) and Pseudomonas fluorescens Pf0-1 (GpsG) and aligned them
by MEGAY? with the maximum likelihood method (500 bootstrap replications). The phylogenic tree
was visualized using iTOL (http://itol.embl.de/).

2.3. Gene Abundance Calculation

A thenon-redundant human gut microbial gene catalog was constructed in our previous study [15].
In brief, the reads from the metagenomes were de novo assembled into contigs. Genes were predicted
from the contigs and merged into non-redundant genes based on sequence similarity. The abundance
of the genes was obtained by mapping the reads on the catalog, obtaining the gene-length normalized
base counts, and adjusting the sequencing depth with a resampling procedure. All the genes were
clustered into CAGs based on their abundance data using the canopy-based algorithm with default
parameters. CAGs with more than 700 genes were regarded as bacterial CAGs for further analysis.
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The CAG abundance profiles were calculated as the sample-wise median gene abundance, essentially
as described elsewhere [16].

2.4. Fecal DNA Preparation

All subjects gave their informed consent for inclusion before they participated in the study [15].
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the School of Life Sciences and Biotechnology, Shanghai Jiao
Tong University (No. 2012-016). Feces samples were obtained and immediately frozen on dry ice
upon collection and stored at —80 °C until further analysis [15]. DNA extraction from the human fecal
samples was conducted as previously described [15] and purified by the QIAamp DNA mini kit (51304,
QIAGEN, Germany).

2.5. Detection of PT-Linked Dinucleotides

All the fecal DNA samples were hydrolyzed with 4 units of nuclease P1 (Sigma, St. Louis,
MO, USA) and subsequently dephosphorylated by 10 units of alkaline phosphatase (Fermentas),
essentially as described elsewhere [17]. For qualitation, the digested DNA samples were pre-purified
by reversed-phase high-performance liquid chromatography on a ThermoHypersil Gold Aq column
(250 x 4.6; SN:1292941W) at a flow rate of 0.8 mL/min with the following parameters: solvent A: water
with 8 mM NH4OAC; B: Acetonitrile; gradient: 3% B for 17 min; 40% B for 23 min; 100% B for 10 min;
3% B for 10 min. The pre-purified samples were dried and re-suspended in 50 pL of deionized water
for analysis by the Agilent 6410 Triple Quad liquid chromatography mass spectrometer, as previously
described [18].

For quantification, the digested DNA samples were purified by ultrafiltration, dried, and
resuspended in 40 pL of deionized water. Then, the mixture containing PT-dinucleotides was resolved
on an Agilent ZORBAX SB-C18 column (2.1 X 150 mm, 3.5 pm bead size) with a flow rate of 0.3 mL/min
and the following parameters: column temperature: 25 °C; solvent A: 0.1% formic acid in H,O; solvent
B: 0.1% formic acid in acetonitrile; gradient: 4% B for 5 min, 4% to 15% B over 15 min, 15 to 20% B for
5 min, and 20 to 100% B for 5 min. The high-performance liquid chromatography column was coupled
to an Agilent G6470A Triple Quadrupole mass spectrometer with an electrospray ionization source in
positive mode with the following parameters: gas flow, 10 L/min; nebulizer pressure, 30 psi; drying
gas temperature, 325 °C; and capillary voltage, 3000 V. Multiple reaction monitoring modes were used
for the detection of ions derived from the precursor ions, with all the instrument parameters optimized
for maximal sensitivity (retention time in min, precursor ion m/z, fagmentor voltage, product ion m/z
and collision energy for qualitation, product ion 1/z and collision energy for quantification): d(ApsA),
10. 4,581,102V, 348,18 V, 136. 1,38 V; d(ApsC), 11.3, 557, 102 V, 81.1, 42 V, 136, 30 V; d(ApsG), 11. 9,
597,118 V, 81.1, 54 V, 152, 22 V;d(ApsT), 13.1, 572,102 V, 81.1, 50 V, 136, 18 V; d(CppsA), 9. 5, 557, 102V,
348.1, 18 V, 136, 30 V; d(Cp,sC), 8.5, 533, 86 V, 81.1,42 V, 112 V, 22 V; d(CsG), 9.3, 573, 118 V, 81.1, 74 V,
152.1,30 V; d(CpsT), 12.8, 548,86 V, 81,54 V, 112, 14 V; d(GpsA), 15.8,597.14, 118 V, 81.1, 12V, 136, 32 V;
d(GpsC), 11.9, 573,86 V, 152.1,26 V, 112, 34 V; d(GpsT), 18.2, 588.13, 102 V, 81.1, 24 V, 152, 75V; d(GpsG),
124,613,102V, 462.1,8 V, 152.1, 30 V;d(TpsA), 18. 0,572,118 V, 81.1, 74 V, 136, 18 V; d(TpsC), 16. 0, 548,
102V, 81.1, 66 V, 112, 18 V; d(TpsG), 13. 0, 588, 70 V, 135, 70 V, 152.1, 18 V; d(TysT), 15.2, 563, 110 V,
81.1,56 V, 127, 37 V. The hydrolyzed mono nucleosides were quantified by high-performance liquid
chromatography, as described [8].

3. Results

3.1. PT Genes Are Widely Distributed in the Human Microbiome

We searched for PT-modifying genes in over 40,000 bacterial genomes under the human microbiome
category from websites (https://www.ncbi.nlm.nih.gov/genome/, https://www.ebi.ac.uk/, and https:
/[www.hmpdacc.org/). Multiple sequence alignments were performed using the genomes for strains
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harboring PT-modifying genes. A total of 2621 strains harboring PT-modifying genes (dataset) were
obtained from the results queried by the PT-modifying genes. The amino acid sequences of DndC/SspD
were used to construct a phylogenetic tree (Figure 1). The strains in the same genus are clustered
into different branches according to sequence similarity (Figure 1). The bubbles represent collapsed
clades and each bubble clustered strains with sequence identities over 60%. These bubbles were
used to show the distribution of homogeneous sequences due to the strong correlation between
modifying types and amino acid sequences [17]. The PT-linked dinucleotides of GpsA/GpsT, GpsG,
and CpsC were separated on relatively independent clades with sequence identities over 30%. The
boundaries of these clades were defined by the brackets (Figure 1). It was reported that strains with the
same PT-linked dinucleotides were presumed to be closer on the phylogenetic tree [11]. Intriguingly,
over 60% of the strains were clustered on distinct branches far from the clades marked with PT-linked
dinucleotides (Figure 1). Thus, we speculated that unknown modification patterns could exist in the
human microbiome.

Colored ranges
. Acinetobacter
[] Mycobacterium
. Escherichia
] saimonella
. Clostridioides
Il vibrio

B Pseudomonas
[ Clostridium

- Bacillus
\:\ Others

] Bacteroides
. Burkholderia
[] Kiebsiella
D Prevotella

Figure 1. Phylogenetic distribution of the strains containing PT-modifying genes. The DndC/SspD
in 2623 strains were created by MEGA7 with the maximum likelihood method with 500 bootstrap
replications and was visualized using iTOL. V. cyclitrophicus FF75 contains CpsC, and P. fluorescens Pf0-1
contains GpsG. E. coli B7A and S. enterica serovar Cerro 87 both contain GpsA/GpsT.

We speculated that PT-harboring species spread across the entire human body due to the
distribution of PT genes in diverse species (Figure 1). Thus, we collected bacterial genomes directly
from distinct anatomical sites on the human body (https://www.hmpdacc.org/) to perform multiple
sequence alignments. Although the total number of genomes is limited, we found diverse species
harboring PT in four body parts (Table 1). Notably, there are species differences in the distribution of
dnd genes and ssp genes (Table 1). Intriguingly, the PT-modifying gene-harboring strains in the genus
Prevotella were found only in the oral and urogenital systems (Table 1), despite the relatively abundant
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distribution of Prevotella species in the human intestinal tract [19]. All the data above (Figure 1, Table 1)

50f12

confirm that strains harboring PT-modifying genes are widely distributed in the human body.

Table 1. Strains containing PT-modifying genes from the human body.

Body Parts Queried by dnd Genes Queried by ssp Genes
Escherichia coli MS 45-1 Dysgonomonas mossii DSM 22836
Escherichia coli MS 117-3 Alistipes indistinctus YIT 12060
Enterobacter cloacae NCTC 9394 Prevotella HGA0225
Escherichia coli SE11 Bacteroides dorei 5_1_36/D4
Lachnospiraceae bacterium 6_1_37FAA Bacteroides 1_1_14
Desulfovibrio piger ATCC 29098 Roseburia inulinivorans DSM 16841
Helicobacter bilis ATCC 43879 Roseburia intestinalis M50/1
Paraprevotella xylaniphila YIT 11841 Roseburia intestinalis 11-82
Gut system Lachnospiraceae bacterium 2_1_58FAA Eubacterium ventriosum ATCC 27560

Clostridium asparagiforme DSM 15981
Peptoclostridium difficile 70-100-2010
Bacteroides 2_1_33B
Bacteroides xylanisolvens XB1A

Eubacterium siraeum V10Sc8a
Megamonas funiformis YIT 11815
Mitsuokella multacida DSM 20544

Butyrivibrio fibrisolvens 16/4

Clostridium citroniae WAL-17108
Faecalibacterium prausnitzii M21/2
Fusobacterium necrophorum
Sfunduliforme 1_1_36S

Prevotella salivae FO493
Prevotella F0O055
Prevotella tannerae ATCC 51259

Neisseria 020
Neisseria subflava NJ9703 N
Neisseria bacilliformis ATCC BAA-1200
Eikenella corrodens ATCC 23834
Lachnospiraceae bacterium F0431
Selenomonas CM52

Prevotella amnii CRIS 21A-A
Mycobacterium parascrofulaceum ATCC BAA-614
Prevotella bivia JCVIHMP010

Skin Acinetobacter baumannii 6014059

Oral system

Prevotella oralis ATCC 33269

Urogenital system Prevotella denticola CRIS 18C-A

3.2. Species Difference of PT-Related Genes

It has been reported that PT gene clusters can be spread by horizontal transfer [17,20], and we
find that the distribution of PT-modifying genes varied among genera. For instance, over 90% of the
Moycobacterium strains harbor dnd genes rather than ssp genes (Figure 2). On the other hand, over 60%
of the Pseudomonas strains harbor ssp genes rather than dnd genes (Figure 2). Notably, dnd genes are
widely distributed in Mycobacterium, Salmonella, and Escherichia rather than the other genera (Figure 2).
To further investigate the role of PT, we performed a multiple sequence alignment for dndF-H and
PbeA-D. Notably, the dndF-H gene cassette was “missing” in 90% of strains of Mycobacterium, which
means that most Mycobacterium strains lack the R component (Figure 3). On the contrary, the dndF-H
gene cassette was widely distributed in Escherichia strains. Meanwhile, the pbeA-D gene cassette existed
in 10% of the Mycobacterium and Vibrio, which suggests that most human microorganisms lack the
antiviral component (Figure 3). We speculated that PT may play other roles in these species without
both dndF-H and PbeA-D. It seems that there exist undiscovered PT-dependent genes in their genomes.
On the contrary, over 60% of the Bacillus strains harbor the R component without any modifying genes
(Figure 3), which means these strains harbor undiscovered modifying systems to protect their DNA
against nickase [3].
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Figure 2. Distribution of PT-modifying gene cluster in different genera. Query genes were from
S. enterica serovar Cerro 87 (CP008925: 3477655...3481641) and V. cyclitrophicus FF75 (NZ_ATLT01000001:

2194844...2200061), respectively.
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Figure 3. Distribution of PT-related gene cassettes in different genera. “R” means strains harboring
dndF-H without PT-modifying genes. “M” means strains harboring PT-modifying genes without
dndF-H. “"RM” means strains harboring dndF-H and PT-modifying genes. “MA” means strains
harboring PT-modifying genes and pbeA-D. “RMA” means strains harboring PT-modifying genes,

dndF-H and pbeA-D.

3.3. Atypical PT Gene Clusters of Different Genera
The organization of the PT-related genes varied among the genera (Figure 4). In 146 strains of E. coli
and 20 strains of Bacillus cereus, the genes surrounding the PT-modifying genes encoded homologs
of dndA (cysteine desulfurase) [5], dndB (negative transcriptional regulator) [18], and dndD (possibly
related to DNA structure alteration) [21,22]. For instance, the identities are 23.98% between DndB and
its homolog from E. coli Ecol_316 (NCBI: CP018957). Genomic islands may facilitate the horizontal
transfer of PT systems and result in multiple copies of genes for E. coli and B. cereus [23]. Several strains
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from Bacteroidales (Prevotella and Bacteroides) showed a rare dndEi in PT-modifying genes that have
an additional DNA helicase domain compared to canonical DndE [24]. In 211 Acinetobacter strains,
the histidine kinase genes are adjacent to the SspE, which is the R component of the ssp system [4].
We speculate that the histidine kinase genes (Figure 4) involve in a two-component system to regulate
the expression of SspE. Moreover, it was previously reported that there are complex interactions
between DNA methylation and PT [25]. Intriguingly, 72% of PT-modifying genes in Mycobacterium
strains lack both dndF-H and pbeA-D (Figure 3) and are adjacent to methyltransferase genes (Figure 4).
This suggests that there is a shared mechanism linking the R system between DNA methylation and the
PT [25] in Mycobacterium strains. These results indicate that PT plays various roles in different species.

Modifying genes

S. enterica Cerro 87 I S 3,987 bp
V. cyclitrophicus FF75 D D S 5,218 bp
Atypical gene clusters
Bacj/[us D D B ) D B 20 strains
Escherichia I 146 strains
Prevotella/Bacterioides D I T— —_—_—_—_— 8 strains
Mycobacterium I —— — 206 strains
Acinetobacter I B 211 strains
I DndC/SspD I DndD/SspC I DndE/Ei DndB I SspB
B DndA B HTHdomain g Methyltransferase
Histidine Kinase SspE

Figure 4. Atypical PT gene clusters in different genera. Genes are indicated as arrows and are colored
based on their predicted function. DndC/SspD: ATP pyrophosphatase. DndD/SspC: ATPase. DndE/Ei:
helicase. DndB: regulatory protein. SspB: nickase. DndA: cysteine desulfurase. SspE: nickase.

3.4. Detection of PT-Linked Dinucleotides in Human Fecal DNA

For DNA methylation, restriction-modification systems are classified into four types depending
on multiple factors, including subunits and target motifs [26]. In bacteria, the sequence specificity
of DNA methylation depends on the target recognition domains (TRDs) of the modifying complex,
and the variation in the TRDs impacts the sequence specificity upon modification [27]. For PT, although
the TRDs have not been demonstrated, there is a strong correlation between the PT sequence contexts
and modifying complex sequences [17]. Based on the variation in the dndC/sspD genes (Figure S1) and
the phylogenic distribution of PT-linked dinucleotides (Figure 1), it remains a possibility that there are
undiscovered modifying patterns, including different motifs and PT-linked dinucleotides. Exploiting
the fact that most strains possessing PT-modifying genes were assigned to the gut microbiome
(Table 1), we initiated a search for new PT consensus sequences by analyzing the diversity of PT-linked
dinucleotides in human fecal DNA. Notably, six new PT-linked dinucleotides (CpsG, CpsT, ApsG,
TpsG, GpsC, ApsT) were detected from human fecal DNA (Table 2, Figure S2). Additionally, two PT
nucleotides (CpsA, TpsA) previously discovered in mutants were detected, which were previously
discovered in E. coli DH10B expressing PT-modifying genes from S. enterica 87 [17].
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Table 2. PT-linked dinucleotides in the human fecal DNA.

PT-Linked Precursor Product - 2 23 1488 1489 1494 1493

Dinucleotides Ion Ion
d(CpsG) 573 152 Y Y N
d(CpsC) 533 112 Y Y Y Y
d(GpsG) 613 152 Y Y Y Y
d(CpsA) 557 136 Y * Y * Y * Y *
d(CpsT) 548 112 N** N ** Y N ** N Y
d(ApsG) 597 136 Y Y
d(TpsG) 588 152 Y Y Y Y
d(GpsA) 597 136 Y Y
d(GpsC) 573 112 N Y N Y
d(GpsT) 588 152 Y N Y Y N Y
d(ApsA) 581 136
d(TpsA) 572 136 Y Y N
d(ApsC) 557 112 Y * Y * Y * Y *
d(TpSC) 548 112 N ** Y N Y
d(ApsT) 572 136 Y Y Y Y N
d(TpsT) 563 127

d(GpsA) Sp 597 136

Blank means not detected; “Y” means sufficient levels to be quantified; “N” means close to detection limit; “*” means
retention time slightly shifted from expected values; “**” means retention time shift.

3.5. The Abundance of PT Modifications Varied Among Individuals

Although we could detect PT-linked dinucleotides in the fecal DNA, the abundance of PT genes
and the modification types remain unknown in the gut microbiome without quantitative analysis.
Meanwhile, we speculated that the distribution of the dnd/ssp genes and modification patterns varied
among individuals. Thus, we performed a quantitative analysis of the PT genes and modifications in
human fecal DNA. Based on the metagenomic sequencing performed on 109 human fecal DNA samples,
a gene catalog with ~ 2 million non-redundant human gut microbial genes was constructed [15].
By BLAST alignment, 209 potential PT genes with at least 30% identity and 80% coverage compared
with the PT references were identified. We were able to assemble 118 high-quality draft genomes of
prevalent gut bacteria from these metagenomic data. Among these bacterial genomes, nine harbored
PT genes: Bacteroides plebeius CAG00296, Bacteroidesplebeius CAG0079, Klebsiella sp. CAG00146, and
Faecalibacterium prausnitzii CAG00158 were queried by dnd genes, while Bacteroides sp. CAG00020,
Eubacterium ventriosu CAG00166, Clostridium bolteae CAG00012, Clostridiales bacterium CAG00239, and
Clostridiales bacterium CAGO00048 were queried by ssp genes. To further investigate the PT landscapes
in the human gut microbiome, we analyzed the strains harboring PT-modifying genes (dataset) in the
14 individuals (Figure 5A). Then, we quantified the PT-linked dinucleotides in these fecal samples and
found seven different PT-dinucleotides (Figure 5B).
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Figure 5. (A)The abundance of strains harboring PT-modifying genes in the fecal DNA from 14
individuals. (B) Quantification of PT-linked dinucleotides in fecal DNA from 14 individuals. Data are
shown as mean + SD. “dnd” means strains harboring dnd genes. “ssp” means strains harboring
ssp genes.

4. Discussion

Over 80% of the strains harboring PT-modifying genes could be assigned to Actinobacteria,
Proteobacteria, and Bacteroidetes [11]. Notably, our survey in the human microbiome shows that
PT-modifying genes are distributed in these phyla (Figure 1). The phylogenic tree (Figure 1) was
used to demonstrate the distribution of homogeneous sequences rather than the genera distribution,
though it exhibits the horizontal transfer of PT-modifying genes, which is consistent with the
previous conclusions [28]. Although we could not demonstrate DndC/SspD-containing TRDs,
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the DndC/SspD may play the role of site recognition according to their function of inserting sulfur into
the sugar-phosphate backbone of DNA [4]. Thus, we built the tree by DndC/SspD and assumed that
the human microbiome contained new PT-linked dinucleotides due to the phylogenic distribution
of GpsA/GpsT, GpsG, and GpsC (Figure 1). Fortunately, we discovered new PTs in human fecal DNA.
We speculated that 5 pg of fecal DNA was not enough to detect multiple PT-linked dinucleotides. Thus,
we tested 30 ug of fecal DNA with a control group of 1493. However, we found no more new PT-linked
dinucleotides compared to 5 pg of fecal DNA. Additionally, the variety of PT-linked dinucleotides
varied among the fecal DNA samples, which suggested that the PT-containing strains carried by
each person could be classified through metadata. As shown in Table 2, z1 and z3 both carried GpsT,
assigned to species queried by dnd genes (Figure 1); z2 and z3 both carried CpsC and ApsC, assigned to
species queried by ssp genes (Figure 1); z2 and z3 both carried ApsT, assigned to unknown species.
The qualitation and quantification of PT-linked dinucleotides confirmed the existence of PT in the
human gut microbiome with a strong correlation between the PT-modifying gene abundance and the
modified dinucleotide yield. Thus, the abundance of PT modifications varied among individuals due
to the different quantities of PT-harboring bacteria.

Intriguingly, our data showed that the PT-modifying genes seemed widely distributed in different
pathogens or opportunistic pathogens, such as the strains that belonged to A. baumannii, P. aeruginosa,
C. difficile, and M. abscessus (Dataset). The different bioinformatic approaches including this work
confirmed that PT-modifying genes widely spread in human microbiome-associated strains, especially
pathogenic candidates [11,20,23]. The previous study reported that nearly half of the US clinical isolates
of M. abscessus exhibited the PT phenotype during pulsed field gel electrophoresis [29]. It was also
reported that PT-modifying genes were frequently found in pathogenic E. coli [28]. One of the possible
causes is that PT modifications were presumed to enhance the antioxidative ability of these bacteria
against environmental stress [14,30]. In contrast, halogens could induce PT-linked DNA breaks, which
implicated that PT reduced the fitness for bacterial pathogens during human infections [12]. Thus,
it remains a possibility that the microenvironment or drugs may intervene in the abundance of bacteria
with PT in the human microbiome, while there are few related reports. Additionally, there are few
reports about how PT-modifying genes spread in human pathogens or opportunistic pathogens.

5. Conclusions

PT confers bacteria with multiple physiological functions, making them a specific microbial
population sharing unusual characteristics [10-12]. However, our understanding of PT-containing
bacteria tends to be restricted to isolated strains rather than a community in the ecosystem. This study,
to our knowledge, is the first time to systematically investigate the wide distribution of PT-containing
microbes in the human microbiome. Our results firstly reveal the landscape of PT modifications
in the gut microbiome. This work will guide future research on the transmission of PT among
microbial communities in the micro-ecosystem of the human body. With the rapid growth of the
human microbiome database, more PT-containing bacteria could be found to analyze the routine of
PT transmission and discover the unknown motive force behind this phenomenon with effects on
human health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/8/1175/s1,
Supplementary data and Datasets.
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