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The main goal of the field of neuromorphic computing is to build machines that emulate aspects
of the brain in its ability to perform complex tasks in parallel and with great energy efficiency.
Thanks to new computing architectures, these machines could revolutionize high-performance
computing and find applications to perform local, low-energy computing for sensors and
robots. The use of organic and soft materials in neuromorphic computing is appealing in many
respects, for instance, because it allows better integration with living matter to seamlessly meld
sensing with signal processing, and ultimately, stimulation in a closed-feedback loop. Indeed,
not only can the mechanical properties of organic materials match those of tissue, but also, the
working mechanisms of these devices involving ions, in addition to electrons, are compatible
with human physiology. Another advantage of organic materials is the potential to introduce
novel fabrication techniques relying on additive manufacturing amenable to one-of-a-kind form
factors. This field is still nascent, therefore many concepts are still being proposed, without a clear
winner. Furthermore, the field of application of organic neuromorphics, where bioinspiration and
biointegration are extremely appealing, calls for a co-design approach from materials to systems.

Neuromorphic computing

With the ultimate aspiration of crafting an “artificial brain,”
since the earliest stages of development, the fields of com-
puter science and neurobiology have been intricately linked,
as advances in each field have motivated reconsideration in the
other.? With the advancement of very large-scale integration
(VLSI) frameworks, neuromorphic systems were introduced
in the late 1980s to early 1990s as a methodology by which
computers could better emulate the brain’s natural processes,
and thereby harness the associated advantages in power con-
sumption and complexity of computation.?

In the intervening decades, much of the work toward a
synthetic neural system has been focused in one of two direc-
tions. For the purpose of distinction, we will use the terms
simulation and emulation to refer to two distinct processes.
Simulation is the process by which phenomenon A is replicated
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phenomenologically with no regard to how the implementation
may or may not mimic the original process. A familiar example
comes from the world of Monte Carlo simulations, wherein the
underlying physics need not be hard-coded into the simulation
in order to accomplish something useful. On the other hand,
emulation is the process by which phenomenon A is replicated
with an eye toward reproducing the processes of A in the most
faithful way possible. Consider, for example, the hardware
limitations that are put in place by console designers in order
to ensure backwards compatibility, thereby emulating an ear-
lier generation of devices. Along similar lines, we can consider
multiple avenues by which neural processes have been pursued
in the past decades.

Inspired by the feed-forward nature of neural signals, arti-
ficial neural networks were initially designed to simulate neu-
ral signal processing by way of a high-level analogy between
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Adapted with permission from Reference 4. © 2019 Wiley.
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Figure 1. High-level comparison between the hierarchy of the human neural system and
its implementation in an artificial neural network (ANN). The neural network graph shown
on the right represents a software-level abstraction of the interconnectivity inherent to
biological neural systems; for example, the visual network shown at the left. Recent
advances directly implement this architecture within the hardware of ANN accelerators
with crossbars serving as artificial neurons and the crossing points as artificial synapses.

A growing realization that the next
generation of neuromorphic computing
must more effectively emulate, not just
simulate, neural functions has led to a
recent surge in research activity to dis-
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from digital to analog computing to sim-
ulate the analog operation of the brain.'*
Most applications involving analog
accelerators for deep learning make
use of materials that can implement the
primary neural functions of synaptic
plasticity. Synaptic plasticity is the abil-
ity of synapses to strengthen or weaken

the functions being implemented within the algorithm and the
weight-adapted operations performed along a neuron’s length,
as discussed in Reference 4 and shown in Figure 1.* As the
available computational power increased with the progression
of Moore’s Law, great advances were made in the field of deep
learning,’ ranging from mastery of the game Go,® speech recog-
nition,” face recognition,® and machine translation,” among oth-
ers. The overwhelming majority of these advances have come
almost exclusively due to the development of dedicated hard-
ware optimized for the kinds of large-scale vector operations
associated with these platforms, including graphic processing
units (GPUs) and other custom designed application-specific
integrated circuits (ASICs).!°

Despite the occasionally staggering advances in deep
learning, the tremendous energetic cost associated with
developing, training, and ultimately inferring from the opti-
mized network architecture is often swept under the rug.
While some of the most advanced parallel computing plat-
forms available offer performance measured in 10" opera-
tions per second per watt,'" the brain is estimated to operate
orders of magnitude more efficiently, with approximately 10
operations per second per watt.> The stark contrast between
comparable (or even exceeding) levels of performance and
profound disparity of energy expenditure highlight the dis-
tinction. While these systems may simulate neuromorphic
functions, the restrictions imposed by the digital frame-
work and the traditional von-Neumann architecture lead to
immense power requirements that inhibit their use outside
of server-based or enterprise-class computational facilities.
Although various algorithmic proposals have been offered, no
complete solution exists.'?

in response to changes in activity. As

synapses connect neurons, the strength
of the synapse is equivalent to the weight of the connection.
Plasticity can be short-term and long-term. Short-term plastic-
ity is represented by rapid weight updates in a neural net, and
long-term plasticity by the nonvolatility of the memory. Recent
demonstrations of analog synapses using novel combinations
of capacitors,'s phase-change memory,'® conductive bridge
resistive random-access memory (RRAM),! or electrochemi-
cal RRAM'® devices speak to some of the promising directions
for future development* in neuromorphic computing.

Whereas neural networks allow for the simulation of neural
functions, much work has also been focused on analog VLSI
implementation of “silicon neurons” drawing directly from
Carver Mead’s vision of neuromorphism, whose ultimate
goal is to directly emulate various neural functions within a
fully analog VLSI system.'”? Models have existed for years
for generating an artificial neuron within VLSI systems that
generate trains of voltage spikes.?! A recent example however
offers a complete analog system in which the artificial neuron’s
response to ionic currents is both fully modeled and imple-
mented.”> Nevertheless, despite significant progress in silicon
neural emulation, a full implementation remains distant.

In an intriguing balance between simulation and emulation,
organic electronics offers a unique opportunity. On one hand, the
burgeoning field of organic bioelectronics offers the promise of
a more natural communication between ionic biological signals
and electronic device properties.”® On the other hand, utiliza-
tion of the same material systems have led to dramatic advances
toward artificial neural networks (ANNSs) acceleration by way of
an organic electrochemical RRAM architecture.'® Furthermore,
the ability of conjugated polymers to undergo redox reactions
with molecules present in the electrolyte lays out a hopeful
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future for various ways in which mixed ionic/electronic con-
ducting systems could allow for a more naturally synthetic neu-
ron by coupling chemical reactions to electronic signals.

Organic neuromorphic devices and systems:
A brief history
Many technologies and materials are currently being investi-
gated for applications in hardware for neuromorphic comput-
ing. The invention of electronically switchable logic gates in
1999 heralded the heyday of molecular electronics.?* In these
two-electrode devices, a monolayer of organic rotaxane mol-
ecules was sandwiched between an aluminum electrode and a
titanium electrode. The rotaxane acted as a nonvolatile switch
between an “open” insulating state and a “closed” conducting
state. The nonvolatile nature of this device made it immedi-
ately apparent that it could be used for architectures that take
advantage of in-memory computing. Further research in the
working mechanism of this device led to the development of
the metal-oxide memristor,” which has since become a work-
horse of architectures for neuromorphic computing. These
two-terminal devices can be set and reset in two distinct elec-
tronic states. Other devices giving rise to similar memristive
behavior include oxide-based resistive devices, where oxygen
defects give rise to filamentary conduction and nano-ionic
metal filament forming devices. Finally, phase-change mem-
ories have been proposed as tunable resistors that emulate the
fundamental nonvolatile and tunable nature of synapses.
Interestingly, while inorganic memristors can be traced
back to a device containing an organic molecule, a rich lit-
erature of organic memristors developed in parallel exists.?
In Figure 2, a schematic overview of organic-based conduc-
tive switching devices is presented. The ability to rationally
design organic molecules, which allows tuning the switching

voltage in addition to possibly accessing multiple redox states
are some of the advantages of organic memristors. Endurance,
reliability, and shelf life are their typical drawbacks. Recent
results by Venkatesan et al. demonstrated organic memristive
devices with excellent reproducibility, sub 50-ns switching,
endurance of more than 10'? cycles, and stability greater than
10 s.2” Polymers have also been used in organic memris-
tive devices, notably the poly(3.4-ethylenedioxythiophene)
poly(styrene sulfonate) (PEDOT:PSS) blend. Forrest et al.
reported a write-once-read-many-times (WORM) polymer-
based two-terminal memory that takes advantage of a cur-
rent-activated dedoping process to modulate the electrical
properties of the active layer.?® Shaheen et al. used these
devices as part of an organic “neuron” that performed simple
pattern recognition.”

A different family of devices includes a third-gate terminal.
As described in the van de Burgt and Gkoupidenis®® article in
this issue, organic electrochemical devices with three termi-
nals add a degree of freedom and allow for a different variety
of applications. Three-terminal neuromorphic devices present
advantages and added challenges compared to their two-ter-
minal counterparts. On one hand, the third terminal confers
an added degree of control to the electronic state of the device
channel allowing decoupling of the write and read operations
as those signals do not flow through the same terminals. Such
decoupling is the key to the low-energy operation of three-
terminal devices as it allows both write and read processes to
be performed at low voltages without any interference. On the
other hand, the third terminal complicates wiring and poses
problems in terms of integration and scaling as the device
and the wiring occupy more area than a two terminal device,
which is easily amenable to integration in an array of crossing
electrodes (crossbar array) for instance.
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Figure 2. Organic electronic materials with conductance tuning and related mechanism. (a) Organic resistive switching based on
conducting filaments or interface movements. (b) Redox-based switching with a counter redox reaction in a two-terminal configuration.
(c) Redox-based switching in organic electrochemical transistors. (d) Conductance tuning based on nanoparticle charge-trapping.*”
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The first organic three-terminal devices displaying some
neuromorphic electrical characteristics were designed to take
advantage of the kinetics of charge trapping in metal nanoparti-
cles scattered in the device channel.’! These devices were oper-
ated as field-effect transistors or as electrolyte-gated transistors®?
and displayed potentiation and depression effects, which could
be modulated by the gate pulsing frequency.** This behavior
does in fact bear an analogy to that of biological synapses.

The use of an electrolyte brings another analogy with bio-
logical synapses that has not been achieved with inorganic
neuromorphic devices. In the majority of biological synapses,
the signal transmitted across the synapse is not electrical but
chemical, carried by neurotransmitters that act on the recep-
tors, which then alter the state of the postsynaptic neuron in
an interplay with ions present in the surrounding medium.
It is thus attractive to use both ionic and electronic fluxes in
artificial synapses; in doing so, it may be easier to replicate
some of the important functions of the biological synapses in
neuromorphic computing operations. There is an entire family
of organic semiconductors that is capable of conducting ions
and electrons.** In recent years, these materials have indeed
been exploited to make organic neuromorphic devices. Other
materials, such as hybrid organic—inorganic perovskites also
display significant ionic transport and as a result, have also
been the object of attention for neuromorphic devices.

In the first example of an electrochemical transistor used
as a memristor, Erokhin et al. fabricated a device with a poly-
aniline channel, a polyethyleneoxide:LiCl electrolyte, and a
silver wire as a gate electrode.’® While the measured drain
current did not display the desired hysteretic behavior, which
would impart memristive properties to the device, the gate
current did, and as a result the differential current (i.e., drain
current minus gate current) did as well. These characteristics
were recognized as being caused by the kinetics of ion drift
and were hypothesized as the basis for the use of these devices
in networks that would display learning. The synapse-like
properties of these devices were further improved*® leading
to the demonstration of a two-layer network capable of XOR
logic classification.’” The same device architecture was used
in a more biomimicking function to simulate the synaptic dys-
function associated with Alzheimer’s disease.*®

More recently, the same group coupled cortical neurons in
brain slices with these organic artificial synapses and showed
communication between the neurons mediated by an organic-
based synapse.** The range of demonstrations where organic
electrochemical devices are used in a neuromorphic function is
a testament to their versatility and potential in brain—machine
interfaces. The biomimicking aspect of polymer-based electro-
chemical devices was further explored by Lee et al., who fab-
ricated a core-sheath structure reminiscent of a neuron axon.*’
The structure was formed by spraying a solution of a poly-
thiophene-based semiconductor and an electronically insulat-
ing, but ionically conducting polymer, through a metal nozzle.
The authors found that the materials self-assembled with a
semiconducting core and an insulating sheath. This structure

NT, AND FUTURE CHALLENGES

was successively covered in a gel electrolyte and connected
electrically to complete the device. A voltage imposed with
an electrode in the gel caused an excitatory postsynaptic cur-
rent that modulated the state of the device. Thanks to miniatur-
ization of the device channel down to ~300nm, potentiation,
depression and spike time-dependent plasticity were dem-
onstrated with energy consumption per synaptic event lower
than 10 fJ, an important milestone as this figure rivals that
usually associated with biological synaptic events. The use of
electrochemical transistors to perform typical neuromorphic
operations was further developed by Gkoupidenis et al., who
showed potentiation and adaptation in single devices.*! Device
arrays were used to simulate higher functions such as orienta-
tion selectivity, homeoplasticity, and functional connectivity
by global voltage oscillations (as described in the van de Burgt
and Gkoupidenis®® article in this issue).*>*

In another approach, the article by Perez and Shaheen in
this issue® presents a design strategy for using electrochemi-
cal transistors in neuromorphic circuits aimed at demonstrat-
ing Boolean and reversible logic. It utilizes neuronal circuit
structures similar to those of Emelyanov et al.,’” but based
solely on three-terminal electrochemical devices without the
need for memristors or CMOS transistors. They demonstrate
XOR logic classification that can then be scaled to larger cir-
cuits based on Boolean or reversible logic, while taking advan-
tage of the pathways to ultralow energy consumption afforded
by the underlying neuromorphic structure.

The architecture of conventional electrochemical transistors
makes it challenging for these devices to exhibit nonvolatility.
The use of redox-active molecules in the electrolyte was shown
to mitigate this problem to some extent, with these organic
memories displaying retention of a few seconds.* In a different
approach, van de Burgt et al. increased the capacitance of the
gate electrode while maintaining its polarizability.*® This new
device architecture enabled the demonstration of hundreds of
analog conductance states, linear tuneability, low write noise
and sub-us write-read cycles, while exhibiting state retention
on the order of hours. These devices were used to demonstrate
the parallel update of nine devices in a small 3 X 3 array."”

From the device perspective, there has been steady progress
in the architecture and the choice of organic materials optimized
for neuromorphic functions.*” Importantly, the material require-
ments may be different than for traditional thin-film devices such
as diodes or transistors. For instance, for scalability, organic
memories should exhibit high resistance, and as a result, low-
carrier mobilities are desirable. Furthermore, semiconductor
capacitance and ability to intercalate ions is of paramount impor-
tance, a property not relevant to conventional electronic devices.
As a result, this new promising application of organic semicon-
ductors opens up new design spaces for organic semiconductors.

Opportunities and challenges: The road ahead

Looking ahead, we believe that significant opportunities and
also challenges lie ahead for the field of organic neuromor-
phic devices along three important frontiers: integration with
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biology, manufacturing/customization of large area and three-
dimensional (3D) forms, and the application in novel computing
architectures. Finally, we discuss challenges and opportunities in
hybrid organic—inorganic halide perovskites for neuromorphics
(a topic covered by Harikesh and co-authors in this issue*).

Integration with biology

An obvious application for all neuromorphic devices is in bio-
medical applications. Biocompatibility, inherent sensitivity,
and soft mechanical properties make organic neuromorphic
devices particularly suitable for integration with biology. This
is a front that is receiving a great deal of attention. Juzekaeva
et al. recently provided a powerful demonstration wherein
an organic memristive device was used to connect two live
neurons.®® The device, based on polyaniline and a lithium
salt-doped polyethylene oxide, acted as an artificial synapse,
enabling the unidirectional and activity-dependent coupling of
the neurons. The spike-timing features of the device were engi-
neered to be similar to those of natural excitatory synapses,
therefore, the synaptic strength was regulated by neuronal

activity, allowing neuronal synchronization. In a similar vein,
the connection of live neurons to silicon neurons was dem-
onstrated by Serb et al.,* using inorganic memristors."*
Recently, it was demonstrated that biological cells can directly
modulate the long-term state of organic neuromorphic devices
depending on the amount of neurotransmitter released.’! This
work shows how integrated adaptive connections can work for
hybrid biological/neuromorphic systems.

Artificial sensory neurons capable of learning and signal
processing were demonstrated by Wan et al.*> and by Yoon et
al.*® using inorganic memristors. Kim et al. took this a step
further by developing a bioinspired artificial afferent nerve
(in biology, afferent nerves receive signals from sensory
organs and transmit them to the central nervous system)
based on a three-terminal organic neuromorphic device.** The
device used a conjugated polymer and an ion gel receiving
input from a ring oscillator connected to a pressure sensor, all
on a flexible substrate (Figure 3). This combination enabled
the sensing of pressure, the conversion of the signal to action
potential-like spike trains, and their subsequent processing
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Figure 3. (a) Schematic of the afferent nerve, where applied pressure initiates action potentials. (b) Concept of the artificial afferent nerve
comprising pressure sensors, a ring oscillator, and a three-terminal neuromorphic device (synaptic transistor). (c) Photograph of an artificial
afferent nerve. Reprinted with permission from Reference 54. © 2018 AAAS.
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by the neuromorphic device. The output of the device
drove the twitching motion of a cockroach leg, providing a
demonstration of a hybrid bioelectronic reflex.

These examples pave the way for adaptive systems, where
the coupling between organic active layers and biology allows
for a direct feedback and control of the material by the host
environment and vice versa.>> Smart neuromorphic biosensors
that not only sense, but also control, and act upon different
inputs from the environment in an optimized and personalized
manner will soon become available. These can lead to all hard-
ware-based, closed-loop, smart drug delivery systems in, for
instance, glucose sensing and insulin delivery, or seizure detec-
tion and release of antiepileptic drugs. Another opportunity is
in smart neuroprosthetics, where the interface between the
human nerve and prosthetic system can be trained by and learn
from the biological signals surrounding them, leading to an
optimized connection between the prosthetic and host. Osborn
et al. demonstrated a neuromorphic prosthesis in which artifi-
cial skin perceives touch and pain;* in silico neurons process
the signal and provide tactile information to an amputee. It is
only a matter of time before the in silico neurons are replaced
by neuromorphic devices, dramatically reducing device com-
plexity and energy consumption, and increasing portability.

Neuromorphic circuits based on organic materials are
promising platforms for inference in biosensing. Sensing
properties can be integrated with device operation. This
means that training sets and inference processes can readily
be biosensing primitives, thus merging signal acquisition and
feature extraction. Right now, the worlds of acquisition and
processing are still distinguishable,’**" especially in bioelec-
tronics. Another opportunity is in the area of point-of-care
diagnostics. Generic diagnostic systems are envisioned, with
functions defined by the end-user through training.’* This
approach has the potential to increase throughput in manu-
facturing, adopting the approach of “one platform for many
applications” in analogy with classic microcontrollers/FPGAs
(field-programmable gate arrays).

Finally, integration with biology can also inform the devel-
opment of more sophisticated neuromorphic devices. The
dynamic response of biological neurons is influenced by a
multitude of ionic and other biochemical signals, as described
in this issue in the article by van de Burgt and Gkoupidenis.*
This paradigm endows biological neural networks with inher-
ent parallelism and information processing efficiency. This
can serve as a model for the development of organic neuro-
morphic devices that are capable of receiving multiple inputs
from biological systems. Future communication between
neuromorphic circuits and living systems will rely on more
mechanisms than just capacitive coupling mediated by ions.

Challenges of scaling up and customization

Different applications of neuromorphic devices will require
different levels of integration. For example, high-performance
computing architectures require, in general, high levels of
integration, little device-to-device variability, high device

NT, AND FUTURE CHALLENGES

reliability, and possibly compatibility with high fabrication
temperatures for integration with conventional CMOS elec-
tronics. On the other hand, there are a number of applications
that would benefit from large area devices with a medium to
low level of integration, or even 3D device structures offering
better integration with their environment. These include sys-
tems for environmental intelligence and pattern recognition
in large areas/complex shapes (noise, moisture, mechanical
deformations, temperature, chemical and radiation profiling/
mapping in areas such as environmental sensing, agriculture,
and structure integrity). Such systems can also serve as a rough
collection of training sets for more advanced/finer in silico clas-
sification. Similarly, large areas and 3D forms would also be
useful in the field of bioelectronics, where spatially distributed
processing, classification, and actuation units can potentially
interact over space and time with the body or whole organs.

Photolithography has until now been the key fabrica-
tion technique used when fabricating organic neuromorphic
devices, such as those discussed so far in this article. This is
partly because the approach readily integrates with existing
electronic device and microfluidics fabrication processes, but
is often due to the existing confidence in and familiarity with
the process technology. Photolithography is often the ideal
choice for in-depth scientific research because of its high reso-
lution, ability to deliver high yields, and availability in research
labs. However, alternative routes to manufacturing should be
examined to address large-area, mass customization, and 3D
forms, where the use of lithography is challenging. Moreover,
there are significant trends observable in industry where low-
volume, niche, or late-stage customized manufacturing is
driving a shift away from standard high-throughput manufac-
turing techniques. This is especially true for healthcare tech-
nologies, with a shift toward remote monitoring, home testing,
and more personalized treatments.’® Organic neuromorphics
are anticipated to be beneficial in creating low-energy sensors,
and these same trends toward digitally enabled manufacturing
of devices have also been noted in printed electronics for use
in smart, sustainable building envelopes and consumer prod-
ucts, and functionalizing construction materials such as glass,
cement, or ceramic tiles.”

With this motivation to scale up product customization, a
wide range of techniques are available for late-stage, digitally
enabled functional material patterning, with inkjet printing,
3D printing by fused deposition modeling (FDM), and laser
deposition being the most commonly explored. There have
been many reported printed devices, such as transistors®® and
photovoltaics®' with inkjet printing and printed sensors with
FDM.% With the ease of formulation of organic semiconduc-
tors into functional fluids and gels along with their sensitiv-
ity to laser-based processes, additive manufacturing (AM)
by inkjet printing and FDM will be the key approaches for
customized device development and the future of organic
neuromorphics.

As devices shift toward digital fabrication, the final inte-
grated device behavior is very dependent on the processing

DEVA Bl IBSBAULLETINvoll 04 HIE idfsy e ALGUST 020 bemics.ongy baWletiBrary, on 30 Aug 2020 at 20:32:10, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1557/mrs.2020.196


https://www.cambridge.org/core/terms
https://doi.org/10.1557/mrs.2020.196
https://www.cambridge.org/core

ORGANIC NEUROMORPHIC DEVICES: PAST, PR

NT, AND FUTURE CHALLENGES

[a]

[b]

Formulation Ancillary | 5 Printhead and ‘I':g} e:"
and supply equipment nozzle flow -
= L
“ . Filament
I Layers or drop
L repeated for | formation
\ 3D printed ¥ 1
+ devices
N Impact and I
o spreading AL
e Drying/
Stability 1+ solidification

Figure 4. (a) During additive manufacturing, organic materials will undergo multiple
steps, where studies will be needed to determine the effect on final functionality.®

(b) Inkjet printing (left) and fused deposition modeling (right).®” Images courtesy of E. Rognin,
University of Cambridge. (c) Digital photo of a 3D printed transistor channel, with the overall
device 35 mm in length. Image courtesy of T. Mangoma, University of Cambridge.

solve. As indicated in Figure 4, these
challenges need to be considered as the
layers build up because of the differ-
ent underlying surface or thermal dis-
sipation that will be present. However,
if these are considered and taken care
of, neuromorphics can be scaled up to
many 100s of layers to create affordable
and complex devices.

By reviewing the known challenges
for fluid-based AM techniques, it is
also clear that fused deposition model-
ing may in fact provide an important
route forward. This AM technique has
a history of rapid functional filament
development, well-characterized noz-
zle flow behavior, requires almost no

steps, and manufacturing-related research challenges must be
tackled while still at a low “technology readiness.” The field
of organic neuromorphics can learn at this early stage from
both standard digital fabrication industry challenges® and
also challenges faced by other fields that have recently shifted
to AM patterning, such as in the field of pharmaceutics.®
Figure 4a summarizes the journey of functional materials
when fabricating a device by AM, and specifically with inkjet
printing or FDM (Figure 4b), with each step incorporating its
own challenges noted briefly here.

First, there must be a focus on reformulation to meet the
requirements for digital fabrication. Scaling up while ensur-
ing no reduction in functionality and stability under storage is
a major challenge for advanced functional materials.® When
printing functional macromolecules, it is important to under-
stand the forces they experience as they flow through pipes,
pumps, and ancillary equipment, and that the shear, exten-
sional, or thermal forces are not having a deleterious effect,*
as is also the case for flow through printheads and nozzles.®”¢
Once out of the nozzle, there are complex interdependencies
between the formulation and printing actuation that determine
if stable, repeatable drop or filament formation is feasible. This
is often a key point that then requires additional formulation
modification with the addition of viscosity and surface tension
modifiers. Stable line formation is especially challenging in
inkjet printing, with a complex balance between the interfa-
cial energies and substrate properties,* but again critical if
trying to ensure stable interconnects between printed compo-
nents. The drying or curing during inkjet printing and the layer
solidification for FDM then determine the final successful
transfer of function to a surface; however, to ensure scalabil-
ity, it is critical to also consider the lifetime of the device, the
surface adhesion and ability to withstand the forces present
in the device use. These are often neglected challenges until
high “technology readiness” is achieved but require significant
analysis, reformulation, or process technology modification to

surface preparation, has a long history
of easily controlled printability, and is
clearly suitable for structures of many hundreds of layers in
thickness. A simplified printed transistor channel is shown in
Figure 4c. The black electrodes at the edge are covered with a
white flexible insulator, all made by FDM. An inkjet printed
organic semiconductor in the middle is covered by a liquid
gate, ready for testing. The major challenge of integration
into future devices is going to be in design, where complex
3D printed, multimaterial structures do not lend themselves
to sharing an electrolyte. Again, the move to manufacturing
may require examination of another field, for example, learn-
ing from the field of tissue engineering. A similar challenge
of sharing and accessing a common functional fluid has led
to scaffold designs by FDM with complex vascularization.”

Novel computing architectures
A major opportunity for organic neuromorphic devices is in
novel computing architectures that offer low-power consump-
tion. Many neuromorphic applications are most useful at “the
edge,” which means that there is a clear benefit to train and
use these systems locally and not require a connection to the
cloud. One obvious example is driverless autonomous cars
that have to operate safely even in remote areas where internet
connectivity is scarce. The low-power use of organic neuro-
morphic materials offers this functionality.**”7> Another class
of devices where low-power use is critical are battery operated
devices such as lab-on-a-chip and point-of-care devices that
require some form of training and ability to continue to learn
and adapt, without the possibility of cloud connectivity.
Reservoir computing presents untapped opportunities to
apply organic semiconductors to hard computational problems.
Recent work has shown that reservoir computing can be used
for model-free estimation of Lyapunov exponents in prototyp-
ical chaotic dynamical systems such as the Lorenz system.”
The result can then be used to predict the short-term behavior
of the system with surprising precision or to simulate long-
term behavior while closely replicating its ergodic properties
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for arbitrary time into the future. This is possible since the res-
ervoir presents a high-dimensional space from which a subset
of dynamical components is chosen, through training of the
output weights that effectively capture the underlying structure
of the original system. Recent follow-up work has shown that
the technique can be improved by dynamical noise,”* a coun-
terintuitive but potentially useful result from the standpoint
of physical implementation in neuromorphic computing. The
implication for organic semiconductor-based approaches is
that variations in neuronal response due to imperfect fabrica-
tion, or noise and fluctuations in the electronic response of
individual neurons, may be harnessed as beneficial properties
in the correct regimes of operation.

As our understanding and control of mixed-mode, switch-
able behavior in organic semiconductors increases, so does the
application space of computing paradigms. Many approaches
to unconventional computing can be envisioned.” For exam-
ple, cellular automata (CA) computing with discrete organic
semiconductor devices can be envisioned, in which the state
of each cell in a matrix evolves with time according to simple
rules based on the prior state of that cell and its neighbors. At
smaller spatial scales, the dynamics of nanoscale and molecu-
lar materials could themselves be harnessed for computation
via in materio computing, in which a material is used directly
as the substrate for the computation; “One is instead comput-
ing ‘close to the physics,” doing what comes naturally, and
therefore (hopefully) efficiently.”’® Many of the exotic ideas
found in the arena of unconventional computing have been
circulating for many decades, dating back to von Neumann
and Turing. Now may be the time to revisit many of them in
the context of organic semiconductor materials given how far
the field has advanced in recent years.

Hybrid organic-inorganic halide perovskites

Organic—inorganic halide perovskites (HPs) have been exten-
sively re-explored in the last decade and have shown excit-
ing results in photovoltaics and light-emitting diodes. As the
hybrid moniker would suggest, these materials combine the
properties and advantages of organic semiconductors with
those of their inorganic counterparts. These ionic semicon-
ductors are processable via solution processing/vacuum
techniques while the organic cation in the hybrid struc-
ture enables structural and electronic tunability. Unique to
halide perovskites, is the coexistence and coupling of ionic
and electronic components of current allowing for a myriad
of mechanisms to be exploited.’® In terms of electrically
driven neuromorphic elements, the mechanisms noted are
ones that are used to explain switching in inorganic coun-
terparts (ionic migration, electrochemical metallization) as
well in organic semiconductors (ionic doping).®! Artificial
synapses utilizing vacancy-driven halogen migration and
electrochemical metallization reactions are the most widely
adopted to date.®3* The ability to regulate redox reactions
controlling the flux of ionic species makes this approach
widely applicable to all deep learning inference engines that

NT, AND FUTURE CHALLENGES

require a medium-to-high degree of computational precision.
Exploitation of the intrinsic ionic-electronic charge transport
in halide perovskites, that is, modulating the distribution of
ions within the perovskite layer to self-dope and regulate car-
rier injection barriers at the perovskite-charge injection layer
seems to be the most promising alternative.* Since the flux
of ionic species can also in turn be externally modulated via
spike-based input patterns, realization of unsupervised learn-
ing in spiking neural networks utilizing local learning rules
such as spike-timing dependent plasticity (STDP) is also fea-
sible. By exploiting the excellent optoelectronic properties
of HPs, new memristors that can be programmed via both
electrical and optical programming spikes have been recently
realized.®*¥” This paves the way for new optoelectronic neu-
romorphic architectures that combine multiple modalities for
accessing memory states.

Many of the challenges facing halide perovskite memristors
are ones common to any new material entrant, while the more
established oxide materials face some challenges as well.®
From a device physics perspective, achieving multiple pro-
grammable conductance states in a true analog fashion across
a wide dynamic conductance range with low write noise is very
challenging. Other challenges include limited retention of dis-
tinct memory states, endurance of the switching characteris-
tics and number of programmable conductance states. From a
system perspective, managing device-to-device variations and
scaling up to large arrays are other major concerns that need
to be addressed. Practical implementation of synaptic arrays
would finally require integration with CMOS digital circuits
(e.g., selectors and driver transistors) at some level. This inte-
gration is yet another challenge that needs to be solved.

From a materials point of view, the usage of Pb and toxic
solvents will have to be reduced. Initial indications point to this
being an easier substitution for memristors than for other areas
such as photovoltaics. Indicative of the nascent nature of this
area, most current HP-based memristive implementations are
limited to dot-point structures with analyses focused on conven-
tional digital logic parameters such as ON-OFF ratio. Crossbar
implementations and systematic analysis of the analog program-
ming window are lacking and hence, do not sufficiently address
the scaling and algorithm aspects pertaining to large-scale artifi-
cial neural networks (ANNs). Metallization reactions exploited
by most HP-based memristors result in irreversible metal-HP
electrochemical reactions, often limiting the device reliability,
endurance, and memory retention. In addition, most devices
require a forming process to induce stable switching behavior
that results in unnecessary power- and time-consuming steps
to program nonvolatile states during training and online infer-
encing. While elemental demonstrations of optoelectronic HP
memristors have been demonstrated, developing algorithms that
can cater to the physics of optoelectronic switching and realizing
optical interconnects to address these elements via light pulses at
a system level still remain major challenges.

The versatility of halide perovskites allow for multiple
avenues for exploration.® Halide perovskites are processable
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through a wide variety of techniques, including large-area
printing and thermal evaporation allowing them to be con-
sidered for printed neuromorphic sensor applications as well
as for heterogeneous integration with Si-CMOS technol-
ogy. Moreover, the compositional space possible in halide
perovskites is high and the inclusion of layered perovskites,
double perovskites, and other vacancy modulated halide
structures further boosts this versatility (>10° compositions).
Significantly, much of this compositional space can be tra-
versed through solution-based means by an appropriate choice
of'the starting precursors and mild processing. Due to the com-
plex interplay of templating organic ions, and the heavy metal
halide lattice, halide perovskites that display chiral optical
properties, piezoelectricity, spin-dependent charge transport,
ferroelectricity, and even multiferroic behavior are possible.
Such a myriad of properties has not yet been explored in the
fabrication of synapses and other neuromorphic elements.
This would allow halide perovskites to be examined for archi-
tectures beyond electrical control.

Conclusion

The field of brain-inspired computing is enjoying rapid expan-
sion at the moment, with intense interest across scales from
materials to devices to circuits and across the development
pipeline from fundamental science to industrial prototypes.
A side effect of this intense interest is that nearly any type
of switching behavior can be considered as the basis for a
brain-inspired approach, which might for instance exhibit
neuronal behavior such as short- and long-term potentiation
and spike-timing-dependent plasticity. One can attend many
conference talks that end in a statement about the promise of
a given material for brain-inspired computing simply founded
on an unexpected (and perhaps unexplained) switching behav-
ior. While such mass excitement about new ideas provides an
important propelling force for the field, it also creates many
dead-end pathways in which there may be no practical way
to implement a given switching behavior into a computing
system at industrial scale and in a competitive way. However,
to quote C. Rigetti, “pumping entropy out of the vision™”’ is
required to reduce the number of potential developmental
pathways toward practical, scalable brain-inspired computers.
A technique we have for this is co-design, in which the design
and implementation of materials, devices, systems, and appli-
cations are conceived of and worked on simultaneously.”®” In
this way, roadblocks that might have arisen are ideally fore-
seen at the onset of the design process. This is important since
with any complex material substrate, the information process-
ing behavior at the systems level is inexorably linked to the
physical behavior at the nanoscale molecular level.

Viewed from another angle, the link between structure
and performance raises the issue of lack of universality in
organic neuromorphics. There are many promising materials
approaches but still not a single/few champion material(s).
This is problematic because scientific effort is spread thin
among different materials and device architectures. As the

NT, AND FUTURE CHALLENGES

field advances in the future, winners are expected to emerge,
which will help concentrate the effort and yield a deeper
understanding of mechanisms and structure versus neuro-
morphic properties relationships. This will also help in under-
standing parasitic effects arising from for instance, reactions
of ions at interfaces, which are comparatively present more in
small devices, leading to improved retention of the conduc-
tance states and more stable materials and devices in general.

Finally, it is important to note that there is still a debate
in neuroscience about which are (and to which degree) the
computational primitives of biological neural networks that
contribute to intelligence (plasticity, spike coding, and global
phenomena). Our community should keep a close eye on this
debate, as future advances in materials science should go hand
in hand with advances in neuroscience in order to unravel the
full potential of organic materials for neuromorphic computing.
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in the Department of Materials Science at
Stanford University. He received his BA degree
in physics from Yeshiva University in 2014.
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2020 ELECTION

June 30, 2020.

Election rules require active membership status.
Membership must be in effect by 11:59 pm (ET),

George Malliaras is the Prince Philip Professor
of Technology at the University of Cambridge,
UK. He received his PhD degree from the
University of Groningen, The Netherlands. He
was a faculty member at Cornell University and
Ecole des Mines, France. He received awards
from the New York Academy of Sciences, the
National Science Foundation, and DuPont.
Malliaras received an honorary doctorate
from the University of Linképing, Sweden. He
is a Fellow of the Materials Research Society
and the Royal Society of Chemistry, and he
serves as deputy editor of Science Advances.
Malliaras can be reached by email at gm603@
cam.ac.uk.

NT, AND FUT

Candidate bios and statements are available
on the MRS website. Voting closes at
5:00 pm (ET), August 27, 2020.
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became Department Chair in 2019. He holds a
Laurea degree in chemistry from La Sapienza
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from the University of California, Berkeley,
in 2001. From 2001 to 2005, he was a post-
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Alto Research Center. He has served as prin-
cipal editor of MRS Communications since
2011. His awards include the National Science
Foundation Career Award, the 3M Untenured Faculty Award, the SPIE Early
Career Award, the Tau Beta Pi Excellence in Undergraduate Teaching Award, and
the Gores Award for Excellence in Teaching. He has been a Thomson Reuters
Highly Cited Researcher in Materials Science since 2015. Salleo can be reached
by email at asalleo@stanford.edu.
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