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Abstract—The integrate and fire converter (IFC) transforms an
analog signal into a train of biphasic pulses. The pulse train has
information encoded in the timing and polarity of pulses. While it
has been shown that any finite bandwidth analog signal can be
reconstructed from these pulse trains with an error as small as
desired, there is a need for fundamental signal processing
techniques to operate directly on pulse trains without signal
reconstruction. In this paper, the feasibility of performing online
the operations of addition, multiplication, and convolution of
analog signals using their pulses train representations is presented.
The theoretical framework to perform signal processing with IFC
pulse trains imposing minimal restrictions is derived, and
algorithms for online implementation of the operators is
developed. The performance of the proposed algorithms is studied
by quantifying the variations in instantaneous occurrence of
pulses. Comparisons are performed with digital processing of
reconstructed pulse trains. Moreover, an application of noise
subtraction and representation of relevant features of interest in
electrocardiogram signal is demonstrated with a sparse data rate
of less than 20 IFC pulses per second, and an absolute error in
heart rate of 0.16 + 0.18 bpm.

Index Terms— Analog to pulse converter, biphasic pulse trains,
convolution, pulse signal processing, semantic information.

I. INTRODUCTION

One of the central principles in digital signal processing is
the Whittaker—Shannon—-Nyquist sampling theorem, which
states that there is no loss of information between bandlimited
analog signals and digital representations if the sampling rate is
at least twice the maximum frequency present in the analog
signal of interest [1]-[3]. Driven by sampling theory,
programming flexibility and transistor scaling, nearly all data
acquisition, processing and communication has progressed
from continuous domain to the digital domain [4]. These
advances along with the availability of high fidelity, low cost
analog to digital converters (ADC) and digital signal processors
(DSP) have led to an exponential increase in the digitalization
of information processed from analog world sources [5]. The
sampling theorem is a worst—case theorem, because it assumes
that the highest frequency of input signal is always present,
which is not always the case. Therefore, conventional Nyquist
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sampling results in redundant sample representations that can
overwhelm bandwidth in communications, and DSPs in real—
time portable applications [5]. Recent developments in
alternative sampling schemes such as compressive sensing [6],
finite rate of innovation [7], and signal-dependent time—based
samplers [8]-[10] show the ability to reconstruct signals well
below the Nyquist rate. These approaches normally use
conventional ADC followed by a compression step recognizing
that useful information in real world signals is sparser than the
raw data generated by sensors. The focus of this paper is to
present an alternative to achieve lower data rates and the
potential for ultra—low power computation by combining
sensing and compression in a single step. We focus on pulse
trains created by a special type of analog to pulse converter
named integrate and fire converter (IFC), which converts an
analog signal of finite bandwidth into a train of pulses where a
given area under the curve of the analog signal constrains the
time difference between pulses [10].

The IFC is inspired by the leaky integrator and fire neuron
model [11], which is a reasonable approximation for how
neurons in our brain processes information. It takes advantage
of the local time structure of the input, enabling users to select
the IFC parameters according to the specified accuracy required
by the application; conceptually, it provides a compressed
representation of the analog signal, using the physical charge
time of the capacitor as the sparseness constraint [12]-[14].
Rastogi et al. [10] studied the hardware implementation of the
IFC and showed that the power consumption and area required
is smaller than most of the ADCs available: a single channel
IFC has ~ 30 transistors with a figure of merit of 0.6 pJ/conv
for an 8-bit converter, implemented using CMOS 0.6 um
technology in a layout box of 100 um X 100 pm. The authors
in [15] proved mathematically the conditions to approximately
reconstruct a finite bandwidth analog signal from the train of
IFC pulses with an error as small as desired. Unfortunately, the
simplicity in IFC sampling produces complex reconstruction
algorithms at the backend.

One of the interesting features of the IFC is that the
information is contained in the time of the occurrence of pulses.
When there are no pulses the processor is idle, which is totally
different from the design of current DSP algorithms that are
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implemented in computers. Since the pulses in the IFC are zero
or one, this converter can also lead to digital implementation,
but they can be asynchronous, potentially saving lots of power
and leading to new compromises between power and
computation as required for Internet of Things (IoT)
applications.

Various processing schemes have been proposed in the
literature to reconstruct pulse trains generated by the IFC. The
simplest technique counts pulses in time bins to create a coarse
time structure of the pulse train and apply standard algorithms
on the vector space representation. Alvarado et al. [12] used this
approach to solve the heartbeat classification problem with
linear discriminant classifiers and binned pulses as features.
McCormick [16] proposed asynchronous finite state machines
to perform piecewise linear operations and reconstruct binary
codes from input pulses. Signal processing is performed on the
binary code followed by conversion back to pulses. In order to
avoid the reconstruction, Nallathambi and Principe [13] applied
attribute grammars and automata directly to the pulse timing for
performing non—numeric processing of pulse trains and
identification of QRS complexes in the electrocardiogram
(ECG) signal with high accuracy. In the neuroscience literature,
the pulse trains created by neurons are modeled as stochastic
point processes [17], and many machine learning techniques are
used to compute with pulses [18], [19]. Another alternative,
which is the focus of this paper, is to avoid the reconstruction
by directly applying arithmetic operators to the IFC pulses
under a deterministic framework, i.e., assuming the signal is
created from a deterministic source and the conversion is also
deterministic, as used in sampling theory. In principle,
functional algebras are necessary for computation as the pulse
trains are time functions. However, because of the special
characteristic of IFC pulse trains (difference between pulses is
constrained by a constant area in the analog signal), we define
much simpler algorithms that operate online and produce a
range of accuracies (30 to 70 dB of SNR) compatible with many
IoT applications.

The main contributions of this paper are as follows. First, a
theoretical framework for performing the basic signal
processing operations of addition, multiplication, and
convolution is derived. Secondly, algorithms for online
implementation of pulse—based arithmetic and convolution is
proposed, and tested.

The rest of the paper is organized as follows: Section II
describes the IFC in detail and presents the related works on
pulse—based signal processing. Section III derives the
theoretical framework for operating with pulse trains to perform
addition, multiplication, and convolution. Section IV proposes
algorithms for online implementation of the theoretical
framework. Section V describes the datasets and performance
metrics used for validation. Section VI quantifies the
performance of the algorithms using synthetic and natural data.
Section VII discusses the possibilities offered by the present
work. Detailed derivations for the theorems are presented in
the Appendix. MATLAB scripts for the algorithms are made
available in [20].

II. INTEGRATE AND FIRE CONVERTER

Pulse trains are waveforms where the information is
contained in the timing of pulses instead on their amplitude. The
use of pulses for signal processing is not a new idea. Early
efforts include works on arithmetic using pulse encoding
methods such as pulse-based rate, width, edge, burst, phase,
delay, and amplitude [21]-[24].

Since its inception, many studies such as pulse—based
population encoding for single or multiple sensors in video
processing [8], [9], [25], time—embedding based on the inter—
pulse intervals [26], learned input—output mappings based on a
stochastic model for the events [18], [19], stochastic point
process models [17], projections into reproducing kernel
Hilbert spaces [27], and others [28] based on pulse streams have
been proposed. Based on these works, various implementation
schemes for pulse signal processing are proposed using
magnetic cores [29], reconfigurable analog systems [30], fourth
order Palmo filter [31], etc. The trends in silicon technology
with a decrease in voltage and an increase in speed are making
pulse—based representations more appealing.

In this paper, we focus our discussion on the biphasic IFC,
which converts real world analog signals to analog time
between pulses. The IFC output encodes information on both
the timing of the pulses (analog) and polarity of pulses (digital).
The methodology developed in this work can be easily applied
to single polarity pulse trains as well.
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Fig. 1. Block diagram of the biphasic integrate and fire analog to
pulse converter.

The IFC block diagram used in this paper is shown in Fig. 1.
The analog input x(t) is integrated, and the result is compared
against two thresholds. When either the positive or negative
threshold 6 is reached, a pulse is generated at time t, with
positive or negative polarity p; respectively. Unlike the
integrate and fire neuron model, two thresholds are used to
substantially reduce the mean data rate [32]. Fundamentally,
each pulse interval satisfies the condition

Lkt
6 = f x(t)e~*Ck+1=Dd¢ (1)

tk
where a, the rate of decay, models the leakage of the integrator

in practical implementations [15], [32]. The pulse timings, the
threshold and the rate of decay completely define the IFC pulse
train output.

The IFC pulse train representation is rather different from
discrete time representations. Pulses occur asynchronously in
time, controlled by the amplitude of the analog signal, and the
values of 6 and a. There are several regimes possible for the
IFC. Since the concept is very similar to the Asynchronous
Delta Modulator, when the threshold is set very low, it produces
a high—density pulse train that approximates the analog signal



when integrated. This regime simplifies the reconstruction (low
pass filter similar to the reconstruction filter in digital to analog
converter), but it produces a very high data rate when compared
with the Nyquist frequency. We seek another point in the
computation/data rate domain where the selection of the
threshold is such that the data rates are comparable, or inferior
to the Nyquist rate, which saves power but complicates the
reconstruction. The dynamic range of the density of pulses
depends upon the local structure of the input, with more pulses
occurring in the large amplitude region of the analog signal, and
fewer pulses appearing in the low amplitude portions of the
analog signal. This creates a fundamental constraint for
reconstruction and processing of pulse trains. Feichtinger et al.
[15] studied the reconstruction of the analog signal from the
pulses using frame theory and showed that it is possible to
approximately reconstruct a bandlimited signal in L*norm with
an error proportional to the threshold 6. In [15] a simpler
procedure employing finite bandlimited spaces is presented
based on least squares using splines or Fourier bases such that
2(t) = XM, apdy(t), where a; is given by the linear
regression 6=5 d, S is obtained by integrating the basis set
over the reconstruction interval, and ||x(t) — £(t)|l. < CO
where C is a constant solely dependent on the window of
analysis and the choice of the bases functions.

We explain next a theoretical framework for performing
basic signal processing operations such as arithmetic and
convolution directly on pulse trains. Moreover, algorithms to
implement these operators are also proposed, where the
processing of information is online and entirely in the time
domain as the inputs and output of the system are pulse trains.

III. THEORY OF PULSE SIGNAL PROCESSING FOR IFC

A. Setting up the problem for online operation.

IFC maps a continuous time, continuous amplitude signal
into the structure of train of pulses in analog time such that the
distance between any consecutive pulses ¢, and ¢t,,; is
fundamentally constrained by the threshold 8, which controls
the density of pulses; therefore, any arithmetic operation on
pulse trains (addition or multiplication of pulses) also must be
constrained by 6. From eqn. (1), it is observed that 6 is equal to
the leaky area under x(t) between t;, and t; ., where the rate of
decay is given by «. Hence, any operation on pulse trains
corresponds to equivalent operations on underlying areas.

Intuitively, it is straight—forward to determine from eqn. (1),

0
under the
ter1—tk

assumption that x(t) is constant between t; and t,,q, with a
rate of decay of zero. We will explain first the main ideas for
addition in this simplified framework, assuming that all the
pulses are positive and the rate of decay is zero. Subsequently,
this framework will be extended to bipolar pulses and non—zero
rate of decay.

The goal is to perform arithmetic operations between pairs of
continuous time signals x(¢) and y(¢), i.e., s(t) = x(t) + y(t),
using the corresponding pulse trains. Let us denote the polarity
of the pulse train created from the signal x(¢) as X = {py, k =
1,2, ... }. The timing of the pulses in X is very important, so we
will also refer to their timings as t,, . Obviously, the addition

a relation between areas and time as x(t;) =

can only be carried out when a new pulse occurs in either of the
asynchronous pulse—based representations of each pulse train.
The general procedure is to estimate the integral between the
two most recent pulses in a pair of signals, which will be
denoted by the current interval (ty,ty). In this framework, t,
and t;, may belong to the same pulse train, i.e., t; = ty,, t, =
txy,, OF alternatively between both pulse trains, i.e., t; = ty,,
tp = ty, depending on the local time structure of the signals.
The consecutive pulses that compose the sum pulse train S still
have to obey the IFC threshold 8, which means that, very likely,
somewhere in the interval (t,, t;,) a new pulse for ¢;, should be
created at a time when the sum of the areas reach 6. This
methodology has two implications: first, areas must be
converted online with high precision into pulse timing; second,
because in general the pulse at t;, does not coincide with any
of the pulses in the addend or augend, there will be an excess
area (EA) that needs to be stored and taken into consideration
when evaluating the area for the next pair of pulses (carry over).

Suppose that t; = denotes the pulse time of the resultant sum
of augend pulse train and addend pulse train, and 0 = t,, =
by, <ty <ty <ty <t, (Fig. 2). Let us define A; =
ty, — tx,_,and B; = t, —t,,  forthe augend and addend pulse
trains respectively. The sequence of computing the rate of areas
in each current interval (t,,t;,) is illustrated in Table 1. The
resultant area (RA) due to addition at the end of each interval
is given by the sum of rate of area per unit time in the augend
and addend. To compute the exact area since the last pulse in
the sum, the EA from the previous interval must be added to RA
in current interval to obtain the fotal area (TA) due to addition.
The exact timing to establish the location of ¢, is obtained
when TA exceeds one constant area.

Augend pulse train
+1 +1 1 +1

t0=0 ta te ta tym

Addend pulse train "

t,0=0 Ty
(a)
Relative position of first pulse in resultant sum with respect to other pulse timings

1 +1 al +1 +1 41

ta ta te L%} txm tyl
(b}

Relative position of second pulse in resultant sum with respect to other pulse timings

txo =tyo

+1 +1 +1 +1 +1 +1 +]

txo=tyo tg ta  to te ty3 tm t

(©)
Fig. 2. lllustration of addition of pulse trains with positive polarities.



TABLE I
ILLUSTRATION OF AREA CALCULATIONS IN EACH INTERVAL

(ta, ty) RA TA EA
ty L Ay Ay Ay
( Yo, X1 1+ B_1 1+ B_1 B_1
(txbtxz 1+ & 1+ i2=1Ai lZ 1A
By B, B;
(txz,tx3 1+ é 1+ i3=1Ai ?=1Ai
By B, B;

B. General case for a single pair of pulses

Let us now address the general case of a pair of bipolar pulses
with non-zero decay rates in the IFC for addition,
multiplication and convolution. In this section, the RA due to an
operation for a single pair of pulses is treated first for simplicity
(no carryover). In section IV, we propose algorithms for
updating recursively areas with carryovers by computing EA
and TA, and discuss the choice of the overlapping time interval
(tg, tp) for online implementation.

Suppose A; (t]-, t]-H) 0 Az(t]-, t]-+1), where O represents the
operator (+ or *) on pulse trains, t; and t;,, are the most recent
pulse times from the original pulse trains, and A;(t;, tj4) is the
underlying area of the i*" pulse train (i = 1, 2) during (&, ti1)-
For the single pair of pulses case, (t4, t,) reduces to (tj, tj+1)
because this is always the most recent pair of pulses. The
framework solves A;(tg, tp) 0 A,(ty, tp) = 00 for n and t,
where 1 is the RA and the pulse timing t; due to the operation
occurs when n = 1.

To solve deterministically and online the above equation, it
is assumed that the input signal is constant between ¢;, and tj,4.
This simple signal model is an approximation controlled by the
threshold 8 and depends upon the local structure of the pair of
pulses, but it was surprisingly shown sufficient for many loT
applications such as continuous health monitoring. For
completeness, the corresponding error bounds due to this
assumption are also studied.

Observation 1: If 6§ = ft’:‘“x(t)e-“(fkﬂ-f)dt and x(t) is
constant  between t; and  tp,,, then &0 =
J‘ x(t)e “Ckr1=0dt, where & = _ 9(kr1-ta) =g (tpr1— tb)’ t, <

9(tx41—tK)
ta <tp<tgs, and gt)=1—e* for a>0. This
observation is critical in the derivation of theorems for
arithmetic as it enables generalization of the results in any
interval (t, t;) between two consecutive pulses.

Derivations of the subsequent theorems is provided in the
Appendix. The only assumption in this framework is that the
input signal is constant between two consecutive pulses. The
errors in pulse train arithmetic due to this assumption are also

derived in the Appendix, and studied in section V1.

Theorem 1 — Addition of single pair of pulses: Consider two
analog signals (continuous amplitude and time) x(t) and y(t)
corresponding to augend and addend pulse trains X and Y

respectively. Suppose the X pulses occur at t, J with polarity
Pxj» Y pulses occur at ty; . with polarity Py and the pulses of

the sum pulse train S occur at ts; with polarity Ps; such that

b by St <tp <ty ty,,,, then the distance between
. . -1 .

consecutive pulses of S is t —t; = 7ln{1 — Kyg} with

K = sgn(Ms)Pxpqq and Vs =

Pyn+1
g(txn+1_txn)g(tYn+1_tYn)
Pans19(txns1 ~ten) +Pxns19(typ s —tyn)
of the pulses of S, ps, ., =sgn(ns) where sgn(.) is the

signum function, and

. Furthermore, the polarity

t)] pyn+1[g(tYn+1 = ta) = 9(ty,., —to)]

 Pona [, — ta) ~ 9 (b, —
9(ty,., — ty,)

9(tr,, =ty

Theorem 2 — Multiplication of single pair of pulses: Consider
two analog signals x(t) and y(t) corresponding to
multiplicand and multiplier pulse trains X and Y respectively
and let r(t) = 1 correspond to the identity (reference) pulse
train R. Then the distance between consecutive pulses in the
-t

product pulse train P is t = %ln{l —yp} where

Pn+1 Pn
9(Exns1=txn) 9 (Eyns s ~tyn)
g(trn+1_trn)
given by Ppns, = Sgn(mp) where
[pxn+1pyn+1g(trn+l ~trn) [g(txnﬂ ~ta)=9(txpss— tb)

9(trnpq—ta)=9(trpp—tn)] 9(txniq—txn)
[g(tYn+1 ~ta)=9(tynsq _tb)]

g(t}'n+1_t)'n)

Yp = . The polarity of the pulses of P is

Np =

Theorem 3 — Convolution of a single pair of pulse train
segments: Consider two analog signals x(t) and y(t)
corresponding to pulse train X and pulse train Y respectively
and let r(t) = 1 correspond to the identity (reference) pulse
train R. Then, the distance between the pulses in the

convolution pulse train C is t —t, = _71 In{1 — y.} with

Cn+1
_ 9(txnss —txn)9(tynis —tyn) —
c= - S B= B
g(frn+1 trn)(ﬁz B1)
intersection of the two pulse trains, and the polarity of the pulses

Cn

— B, is the period of

of C Pensy = Sgn(c), where Ne =

-1 [pxn+1pyn+1g(trn+1 trn)] I:g(txn+1 ta)- g(txn+1—tb)]

a g(tryyy=ta)=9(trpes—tn) 9(txpq—txn) ’

[g(ty”Jr1 ta+22)=g(tyy,q—th+Az)— g(tyn_H—ta+ll)+g(tyn+1—tb+/11)]
g(tJ/n+1_tJ/n) ’

and A = A, — A, is the time offset (shift).

This framework computes one instance of the output pulse
t, resulting from RA due to addition, multiplication and
convolution. Notice that the formulas have the same general
form, only differing on the specifics of the operation regarding
the area and rate of area calculations. In the next section, online
algorithms for pulse trains extend this theoretical framework,
where the focus is on the recursive computation of areas using
carryovers when there are multiple pulse instances.

IV. ALGORITHMS FOR PULSE TRAIN ARITHMETIC

A. Online pulse train arithmetic algorithms

In Table II, the algorithm for computing online arithmetic of
two pulse trains is presented. The time interval (t,, t;) may be
selected to shift forward in fixed or variable contiguous
windows across time. Sliding t, and ¢, in fixed intervals
requires prior knowledge of the minimum value of the inter—
pulse interval to ensure the observation window lies within



(tx, tr+1) as per Observation 1. In this paper, to ensure online
implementation, contiguous sliding windows are used where
the interval shifts forward at the arrival of every new pulse in
the operands, i.e., variable window lengths, as described in
Section III A. We could also use shifting based on the pulse
timing of only one of the pulse trains, but this would
compromise the accuracy of the result, since fewer updates to
the areas would have been calculated, so we recommend the
former.

The only algorithmic difference to recursively update the
area for online operation, when compared with the pair of
pulses case presented in section III, is the need to consider
carryovers in both timing and area, namely excess time (t,,) and
excess area (”ex) as demonstrated in the beginning example. As
the online algorithm is based on an integration window defined
by the original pulse trains, the pulses of the output pulse train
for the arithmetic operation may occur before the end of the
current integration window. As such the time difference
between the upper time limit of the integration window and the
occurrence of the output pulse (i.e., t,,) should be added to the
evaluation of the pulse timing for the next interval. Likewise,
the area corresponding to the excess time (nex) should be added
to resultant area (n) to yield TA. In order to perform addition,
multiplication and convolution, excess time and EA are
included in the calculation of TA and new pulse timing at every
computation as shown in Table II. The carryovers ensure higher
precision in the calculation and guarantee that the output pulse
timings always fall within the current integration window

(ta' tb)-

TABLE II
ALGORITHM FOR PULSE TRAIN ARITHMETIC
Select computation time points: t,, t;,
2. Obtain pulse intervals corresponding to computation time points:
Cenrrr b Cymass Eyns SEE Moy tex — 0 nitially.
3. Calculate n, where n =rn; for addition and 7 =7, for
multiplication.
4. Compute output pulse timing and polarity: T, py

—

Calculate g(tkn+1 - tkn), where g(tk7l+1 - tkn) = Kys for
addition and g(tknﬂ - tkn) = y, for multiplication.

while [ + 1., | = 1
-1
T, = —ln{l - g(tknﬂ - tkn)|59n(77) - Uex|} +To1 + tex

a

P = sgn(n)
Update:
ty= Ty

Calculate n
Newrtex = 0, k> k+1
end

Nex € 1Nt Nex
lex < tp — Tk

Thus the process involves selection of the observation
window and its associated pulse intervals, and calculation of the
TA (i.e,, n +1n,,) as per Table II. When TA exceeds +1 or —1,
the pulse occurs at that time instant Tj, with corresponding

polarity py.

B. Approximations

As the values of inter—pulse intervals are inversely
proportional to signal amplitude, in high inter—pulse intervals
compared to noise floor, g(m) is well approximated by am
without degrading performance. With this approximation, it is
straight—forward to show from first principles that n reduces to

_ Py (tp—ta) + Pyny1(to—ta) _ pxn+1p)’n+1(tb’ta)(trn+17trn)

and 75, = for
Mla tyn+1~tyn Mla (txn+17txn)(tyn+17t)’n)

addition and multiplication respectively. Likewise, ¢, —t,
reduces 10 tig,,, ~tx, = for both addition and
multiplication. It is to be noted that n = n, when the rate of
decay is zero. Unlike Table II, the simplified equations rely
directly on the inter—pulse intervals; therefore, the real-time
hardware implementation of pulse—based systems is straight—
forward. Moreover, the update step does not require
recalculation of n, as shown in Table 111, which will speed up
the computation in hardware. In section VI, we compare
performance of the more accurate algorithm in Table II with
this approximate algorithm.

bxpyq ~txn

TABLE III
SIMPLIFIED ALGORITHM FOR PULSE TRAIN ARITHMETIC
Select computation time points: t,, tj,.
2. Obtain pulse intervals corresponding to computation time points:
Cenrrr s ymass Eyns SEE Moy tex = O initially.
Calculate n,,.
4. Compute output pulse timing and polarity: Ty, Dra-

—_

(5]

Calculate tyq,,, — tia,

while [, + 7.,| = 1
Tka = (tkanﬂ - tkan)lsgn(na) - nexl + Tka—l T tex
Pka = Sgn(na)
Update:
Na = Na = (591(N2) = Nex)
Nexrtex =0, k> k+1
end

Nex < MNa + Nex
lex < tp — Tka

C. Pulse convolution algorithm

The algorithm for computing the convolution of two pulse
trains X and Y is presented in Table IV. The pulse timings of ¥
are reversed and shifted by A, which is given by the minimum
distance required for pulses of Y to reach one of the pulses of X
upon shifting. The overlap f between the two pulse trains after
shifting is computed; so, unlike pulse arithmetic, there is a
vector of computation time points t,;, tp;, and an associated
vector of pulse intervals corresponding to all pulses in the
region of overlap. Each element of these vectors results in an
area 7); and TA resulting during a shift operation is given by the
sum of 7;’s. When TA exceeds +1 or —1, the component of 1)
at which this occurs determines the timing T, and polarity p,
of the pulse resulting from the convolution of pulse trains.

Similar to Table III, the equations for convolution is
— Pxns1Pynss o=ta) (trnyq —trn) A2 —41)

and
(txn+1_txn)(tyn+1 _tyn)

approximated by 7,

t —t = (txn+1_txn)(tYn+1_tyn)
kap41 kan (B2=B1)(trpyq—try)




V. PERFORMANCE VALIDATION

A. Performance measures

Measures based on inter—pulse intervals: The quality of
performance is evaluated in terms of measures of accuracy
between instantaneous amplitude values Z and z calculated
from the inter—pulse intervals of the algorithmic pulse train
output Z and true pulse train output Z respectively, which is
calculated in simulations for the analysis. The instantaneous

amplitude Z of a pulse train with consecutive pulses t; and ;.4
A [ .
and Z = z for the IFC with
tk+1—tk

1-e~ % (tg+1~tk)
zero and non—zero rate of decay respectively. Peak signal to

noise ratio, PSNR = —10log (ZN=°(Z—‘Z)2
N(Zmax—2min)?
I, Gimmy) (zi=my)
JEN imma)® (5 i)’
used to quantify the accuracy between instantaneous amplitude
values of the algorithmic and true outputs, where m, and m,
are the sample mean of Z and z respectively.

isgivenby Z =

>, and correlation

coefficient, r = , are the measures

TABLE IV
ALGORITHM FOR PULSE TRAIN CONVOLUTION
Choose time offset A = A, — A;; set 1y, ter — O initially.
2. Shift the pulse timings of the reversed pulse train by A.
3.  Find the overlap f = 8, — B; between the pulse trains after
shifting.
4. Select computation time points t,,, t;,, for all pulses in the region
of intersection.
5. Obtain pulse intervals corresponding to all computation time

points in the region of intersection: txn+1i' txni' t)’n+1i' tJ’nL

6.  Calculate n; for all computation time points tg, t;,
7. Compute output pulse timing and polarity: Ty, py

i

g(txnﬂi_t’fni)g(tmﬂi_tYni)

(B2=B9(tr 1, ~tr,

Calculate t, = _71111 {1 - } for all

computation time points.
Calculate n = sum(ny, M, ,My)

while [ + 1., | = 1
Find first j at which |nex + sum(nl,nz, ~--,17}-)| =1
g = sgn(n;) = Nex — sum(ny, mz,+,0j-1)
Ty = {|n1tkl| 4ot |nj_1tkl._1 + |atk2|} + Ty + Loy

P = sgn(o)
Update:
nj—n;—o

Ny M2, Mj—1 = 0

1 = sum(n;,Mj1, 1)
Newrtex = 0, k> k+1

end
nex « n + nex
Lox < 22 - Tk

Region of analysis: As the pulse representation is dependent
upon the structure of the input, the analysis window is
subdivided into four regions namely 4, B,C, and D based on
amplitude quartiles. Unlike conventional DSP, pulse-based
computation has relatively lower incidence of pulses near the
noise floor (region A) and high pulse density in the other
regions of interest. Hence it is necessary to quantify the
performance in the individual regions and the overall

performance is reported in terms of mean + standard deviation
of all regions.

Comparative studies: The focus of the paper is on processing
the semantic information directly with pulse trains without
signal reconstruction. However, to ensure completeness, the
algorithmic pulse train output Z is reconstructed to get Z.(n),
and then compared with z,.(n) obtained using digital arithmetic
of x,(n) and y, (n), which are reconstructed from input pulse
trains X and Y respectively as per [15]. The performance is
assessed by computing PSNR and r between Z,(n) and z,(n).
Note that the PSNR as calculated here is a pessimistic estimate
because the reconstruction algorithm is not ideal [37] as the
inverse needs to be regularized. Nevertheless, it is useful to
understand the overall peak performance in practical
applications to compare with ADC converters.

B. Data analysis

Synthetic data: Aperiodic pulse trains X and Y generated
from 1V, 1Hz sinusoidal signals x(t) and y(t) respectively are
selected to demonstrate the performance of the algorithm. Note
that the frequency of the signal should not be considered in
absolute terms, because what matters is the ratio of the
frequency of the signal and the threshold in the IFC, i.e., the
density of pulses. As a result, the performance of the algorithm
is quantified for variations in the IFC parameters, and we
directly show the number of pulses/sec in each part of the
dynamic range of the signal, because equivalent PSNR can be
expected in practical applications provided that this ratio is
similar.

A two—sample t—test at 5% significance level is used to study
the significant differences in the mean PSNR and data rate of
the algorithms with and without approximations from Table II
and Table III respectively. Comparative studies are performed
using the synthetic data in terms of the aforementioned
performance measures.

Real ECG data: An application of subtraction of baseline
wander from ECG signal is used to demonstrate the feasibility
of the proposed pulse-based algorithm for semantic
information processing in continuous patient monitoring
systems. Baseline wander is a very low frequency noise related
to amplifier and electrode drift. In practice, a high pass filter
(HPF) preprocessor with a cutoff frequency of 0.05 to 0.67 Hz
is applied to the signal to attenuate the drift [33]. Here, we want
to demonstrate that a pulse—based preprocessor can be applied
instead with the same basic goal of attenuating the drift.

Input ECG pulse train X is obtained by corrupting an ECG
signal of l-minute duration from MIT-BIH arrhythmia
database [34] (dataset 100) with 300uV, 0.2Hz sinusoidal
baseline wander, and converting to pulses with the IFC
parameters chosen as in [13]. Pulse subtraction of pulse train Y
corresponding to sinusoidal baseline wander from pulse train X
is used to obtain noise—free pulse train Z. Further, to evaluate
the accuracy of the noise removal and demonstrate the semantic
information processing of the features in ECG, the baseline
corrupted ECG signal is filtered using a digital high pass
bidirectional IIR filter [33] of order 2 and cut—off frequency
0.5Hz, and converted to pulse train Z with the same IFC
parameter values. Then, QRS complexes are detected from both
the pulse trains Z and Z using the automaton method [13], and



the performance of detection is assessed in terms of sensitivity
and positive predictive value. Finally, the heart rate (HR) is
calculated from the beat-to—beat R—to—R intervals, and the
absolute error between the HR computed from pulse trains Z
and Z is studied to demonstrate that the cardiac events are well
represented in Z after pulse-based processing of the ECG
signal.

VI. RESULTS

A.  Algorithmic performance in regions of analysis

The algorithmic outputs of synthetic data for pulse train
addition, multiplication, and convolution with 8 = 0.01 and
rate of decay of zero is studied. Performance analysis of pulse
train addition shows overall PSNR, r, and data rate of 32.58 +
18.35dB, 0.92 £ 0.14, and 31.0 + 36.57 pulses per second (p/s)
respectively. The performance of the algorithm is dependent
upon the regions of activity as demonstrated in Table V for
pulse train addition where PSNR is greater than 40dB with r =
1 in regions C and D, and less than 25dB with reduced data rate
in regions A and B. Likewise, pulse train multiplication has
PSNR, r, and data rate of 31.45 + 13.7 dB, 0.95 + 0.07, and
12.25 + 12.75 p/s respectively, while pulse train convolution
has PSNR, r, and data rate 0of29.61 +4.73 dB, 0.98 £ 0.03, and
12.38 + 11.49 p/s respectively, which means that precision in
multiplication and addition are similar.

TABLE V
PERFORMANCE IN THE REGIONS OF ANALYSIS (ADDITION)
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Fig. 3. lllustration of error bound in addition of pulse trains due to the
simple signal model. The density of pulses is calculated in non—
overlapping bins of width 100ms.

B. Effect of IFC parameters

The effect of IFC threshold on the performance is studied
across the regions of analysis. While the PSNR in regions C and
D decreases gradually as the IFC threshold increases, the PSNR
near the noise floor is consistently less than 20dB. Moreover,
as the IFC threshold increases, the mean data rate decreases
exponentially. From Fig. 4, it is evident that proper selection of
IFC threshold guarantees lower data rates without degrading
performance.

Region PSNR, dB r Data rate, p/s
Region A 14.10 0.71 3.33
Region B 20.60 0.97 10.67
Region C 42.36 1.0 26
Region D 53.47 1.0 84

80

—=— mPSNR
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These results demonstrate that the proposed algorithm is
capable of producing accurate results in portions of the input
that yield modest concentration of pulses (42 dB reconstruction
for 26 pulses/sec), which is similar to 8-bit resolution with
ADC. More pulses per sec increase the accuracy, but regions A
and B where the data rate is very low, the errors are severe. This
is a direct consequence of the assumption that the input signal
is constant between t; and t;.;. The error &y, due to this
assumption shown in Fig. 3 indicates the simple signal model
results in higher errors when the density of pulses is extremely
sparse. But, this does not incur a huge penalty in many real
world applications as the low amplitude portions of signals have
poor SNR (i.e., additive noise affects the signal fidelity
substantially), and it is wasteful to use an ADC with large
output wordlength to represent such regions. On the other hand,
in the proposed methodology, the overall performance is
constrained by the low density regions; hence, in practice, the
user should set the minimum accuracy requirement for such
regions (given the specified SNR for the application). However,
when better accuracy is needed in the low amplitude regions of
the signal near the noise margin, then the compromise is the
increase in computation load (more pulses), which in turn yields
a large data rate for transmission.
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Fig. 4. Effect of IFC threshold on performance. mPSNR and sPSNR
denote the mean and standard deviation of PSNR respectively, and
mPR denotes the mean of data (pulse) rate.

The increase in PSNR variability for smaller IFC thresholds
is expected. There are two basic components: first, the high
variability in the data rate can be explained by the very different
number of pulses in each of the percentiles of the amplitude
dynamic range as shown in Table V. Second, because of the
local nature of the sampling for the small time constants, which
make measurements very local in time, we can expect larger
variability (and lower repeatability across runs) for smaller
thresholds.

The effect of IFC rate of decay and the zero decay
approximation to the algorithm is presented in Fig. 5.



Comparison of performance of algorithm with and without
approximation reveals PSNR at regions A and B to be similar
in both cases while PSNR at regions C and D are significantly
different (p<0.05) with the approximated algorithm having
lower mean PSNR as shown in Fig. 5a. Moreover, the mean
data rate of the algorithm with and without approximation
across variations in IFC rate of decay is significantly different
(p<0.05) as shown in Fig. 5b, where the approximated solution
displays lower data rate. While the approximated algorithm in
Table III offers simpler implementation dependent only on
pulse intervals and provides sparse representation at higher
rates of decay, there is a trade—off in PSNR at high amplitude
regions when compared with the algorithm in Table II.
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Fig. 5. Effect of IFC rate of decay and approximations on
performance. The subscript ‘a’ in legend denotes the approximated
algorithms.

C. Comparison with digital processing

In Fig. 6, the performance curves for the comparison of the
proposed algorithm with digital processing is presented. The
performance characteristics are similar to Fig. 4 with PSNR
being proportional to the signal amplitude for a given IFC
threshold. It is to be noted that exact reconstruction for IFC is
impossible and these results are obtained with the approximate
method developed by Feichtinger et al. [15], which suffer from

the need to regularize the solution, decreasing the accuracy.
Moreover, the size of the matrix for the reconstruction
algorithm increases with the decrease in IFC threshold (more
pulses are created). Therefore, the error in the reconstruction
algorithm is not constant across different IFC thresholds,
because the regularization constant to invert the sampling
matrix increases towards the low thresholds. Due to this
confounding problem, we can expect an increase in error in the
reconstruction algorithm. As a result, the plotted result in Fig. 6
is a worst case bound combining two errors, but we could not
find other ways of evaluating the comparative results.

While processing of reconstructed signals from pulse trains
is not the focus of the paper, substantially higher data rates than
corresponding Nyquist rates may be required for applications
that necessitates high fidelity after signal reconstruction.

D. Semantic information processing in ECG

The processing and representation of relevant information
in ECG signal using pulse trains is demonstrated in Fig. 7.
The top panel of Fig. 7 shows an ECG signal with (corrupted
data) and without baseline wander (digital high pass filtered).
During baseline deviations, pulses corresponding to cardiac
events are obfuscated by higher pulse density due to the shift
in baseline as shown in pulse train X of Fig. 7. Subsequently,
after pulse—based processing to remove baseline wander, the
boundaries of relevant ECG features of interest such as P
wave, QRS complex, and T wave are clearly delineated in
the pulse representation of Z.

70

—— mPSNR
T sPSNR

0.03 0.04 005 006 007 008 0.09 0.1
IFC threshold

Fig. 6. Comparison of proposed algorithm with digital processing
after reconstruction of operand pulse trains

Performance testing determined the sensitivity and
positive predictive value of QRS peak detection is 100%, and
the absolute error in HR is 0.16 + 0.18 bpm. Moreover, the
data rate of ECG signal is reduced substantially from 61.31
+ 100.73 TFC p/s to 14.99 + 10.14 IFC p/s after processing.
In our previous article [13], we have shown through
extensive testing that the accuracy of QRS detection from
pulse trains is as good as traditional techniques in the absence
of baseline noise, and these results indicate that the
performance can be generalized to an end-to—end pulse
computation system with a pulse—based preprocessor. Thus,



the proposed pulse—based signal processing can be used in
continuous vital sign monitoring systems to represent the
semantic information content in ECG signals with a sparse
representation.

ECG signal

amplitude, mV
Lo AN

|
I
©

[T
(@3
1

HR, bpm
<
L &
w <
—
\
\

13 14 15 16
time, s

=)
~

Fig. 7. Semantic processing of ECG signal using pulse trains. 'BW'
denotes baseline wander in the signal.

VII. DISCUSSION

Representation and processing of semantic information in
signals is critical for mobile wireless sensor networks and IoT
applications [35]. Prior research has shown that the IFC pulse
conversion enable sparse representation of features of interest
in physiological signals such as ECG [12], [13], neural data
[32], and photoplethysmogram [14]. This article presented
algorithms for processing the pulse trains created by IFC
directly without signal reconstruction, and demonstrated
processing of the semantic information in ECG signal.

Simulations with synthetic data show that pulse—based signal
processing has PSNR proportional to signal amplitude, with
limited pulse representation accuracy near the noise floor.
Precision of the pulse—based operations is not uniform over the
dynamic range of the signal amplitude, which is desirable in
long term monitoring applications to represent semantic
information with high precision while not representing with
high resolution background noise, which saves data rates.

In DSP, to meet desired performance specifications, the
number of samples to which the digital data must be
interpolated is determined, and then the operations are
performed sample-by—sample. However, in pulse signal
processing, the IFC threshold that satisfies the required
performance criteria should be determined, by specifying the
minimum accuracy in the low amplitude portions of the signal
of interest. If this yields high data rates for transmission, then a
compromise should be established to meet approximately both
specification. Feichtinger et al. [15] showed that bandlimited
functions are not completely determined by the IFC and the
same results hold true for processing of multiple operands i.e.,
there are non—zero bandlimited signals that will never produce
pulses at the output even though the input operands have pulses.
The trade—offs in terms of accuracy for the IFC parameters is
studied in [32] and operating ranges are selected based on

specifications to provide the right balance between performance
and sparseness.

Hardware implementations of the proposed algorithms
require a time marker such as clock signals. Moreover,
implementing pulse signal processing in hardware also requires
new approaches as operations need to be performed on areas
between pulses that occur non—uniformly. Recently,
Nallathambi et al. [36], implemented a 16—bit pulse adder based
on the approximated algorithms in Table III. Their system,
synthesized in SMIC 0.18um (100MHz) CMOS process,
utilizes a clock and time counters as building blocks for a pulse—
based ALU. The preliminary results demonstrate the feasibility
of signal processing with pulse trains in hardware; however, the
digital adder for the same SNR is still much better in terms of
area and power, while the pulse multiplier is worse but in the
same range of performance as the digital multiplier [41].

The alternative approach to the present work is to
reconstruct signals from pulses, perform digital processing and
convert the processed signals to pulses. In such scenarios, the
accuracy of the operations will be limited by the approximate
reconstruction procedure [15], and increasing the fidelity
requires reduction of IFC threshold substantially, thereby
impacting the data rates. By processing the pulses directly with
the proposed algorithm, we circumvent both the complexity of
the signal reconstruction algorithm and the subsequent process
of IFC conversion. With the proposed algorithms, the focus is
on applications where reconstruction is not necessarily the goal
but tasks such as classification and anomaly detection in
continuous monitoring systems that require representation of
semantic features in signal.

In this article, an example of processing semantic
information in ECG signals using pulse trains is presented. The
data rate of the ECG is less than 20 IFC p/s, which is drastically
lower than existing loT-based cardiac patient monitors that
require at least 125 samples per second [37]. Additionally, the
accuracy in HR computations typifies the capability of the
pulse—based methods in continuous monitoring of real world
signals using sparse representations. In general, pulse trains are
well suited for processing semantic information in transient
data such as biosignals, seismological recordings, radar and
others, where the crucial information is in the transients
embedded in noisy backgrounds.

VIII. CONCLUSION

The present work provides an alternative to conventional
DSP techniques for performing arithmetic operations on
continuous time/amplitude signals using pulse trains generated
from an IFC. The IFC is conceptually similar to an
asynchronous sigma delta converter, however it does not use
oversampling to create an accurate representation in the sample
domain. Nevertheless, its output is still in continuous time and
creates far fewer pulses that represent the input signal
sufficiently to describe properties and perform equivalent signal
processing operations in the analog input. This newly
discovered region in the precision/data rate plane could not
have been anticipated by the theory of sigma delta converters.

We show in this paper for the first time a methodology to
perform online arithmetic operations using pulse trains. The
results with synthetic and natural data demonstrate the



capability of the algorithms to manipulate signal properties
using arithmetic operators. This opens the door to implement
linear models in the pulse domain because the convolution
operator in the pulse domain was presented.

The sparse representation achieved with the IFC sampler,
implies that the arithmetic operations have limited accuracy
near the low amplitude regions (noise floor), so we present a
methodology to allow wusers to properly meet design
specification. In general, more precision requires a decrease of
the IFC threshold 6 to create more pulses and smaller time
between pulses, at the expenses of more computation (more
pulses) and higher data rates. This presents a continuum of
choices unlike the conventional ADC where the computation
load (number of operations per second) is dictated by the
algorithm and sampling frequency. In this methodology there is
no sampling frequency, so what matters is the time between the
pulses for the computation complexity, which is controlled by
the threshold and depends also on the local structure of the
signals.

The ability of selectively capturing and processing the
semantic information in the signal is important in many
continuous and event monitoring applications for the IoT and
mobile wireless sensor networks [35]. Applications where the
goal is detection or classification of vital events and not
necessarily signal reconstruction, are ideal for the proposed
pulse—based algorithms, which represent the features of interest
in the signal while suppressing the background noise. An
application of noise reduction in ECG signal is demonstrated
with sparse pulse representation while preserving the sematic
features of interest.

There are many aspects that require further study, since this
is a new field. First, the assumption that the input signal is
constant between pulses is an approximation that is only valid
for signals that vary slowly within the charge time of the
capacitor until the threshold is reached. While this is satisfied
in the high amplitude portions of the signal, it is not met in the
low amplitude portions of the signal. Therefore, ways to
improve this aspect should be pursued. The first step is to define
a constraint that the amplitude during the charge time of the
capacitor increases linearly instead of being constant. This
would improve the accuracy of the overall method, but the
implications to the theory and the computational cost in the
algorithm is unknown. Alternatively, an equalization
preprocessor (such as a log amplifier) may mitigate some of the
issues. But, an exponential transformation in the pulse domain
would be needed to recover the original signal features. We
don’t know yet the practicality of creating an accurate
exponential warping in time.

APPENDIX

Proof of Theorem I: Based on the proposed framework, the
addition operation on pulse trains is performed by solving eqn.
(2) for ug and tg . . Assuming x(t) and y(t) to be constant
between consecutive pulses, we have

ty tp
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Using Observation 1, eqn. (2) is written as 1g = py,,, , u +
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and the integration is over a pulse interval. By substituting y
and L in eqn. (2), we obtain
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Proof of Theorem 2: Multiplication of pulse trains requires
normalization by the identity pulse train R, which is a periodic
pulse train corresponding to r(t) = 1. Hence, by assuming x(t)
and y(t) to be constant between consecutive pulses, we have
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Substituting pp in eqn. (4), we obtain
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Proof of Theorem 3: Convolution of pulse trains requires
convolution of underlying areas and hence, we have

fttb xe~txni—t) g ® fttb ye—a(tyn+1—t)dt

tp — Tne1—
t fta e~ (trn =) gt (6)
‘n+1
= uc j [x ® yle *(enii~Ode
t

Eqn. (6) is expressed as follows:




e~ (tyny1—tr+2)

fttb e —a(txn+1 —‘L’) dT 1 A2
f:b e~(trni1=0 gy [E -[1

_ e—“(fyn+1—tb+/1)) dﬂ] (7)

tCn+1
= uc [ ] ~a(tens =gt
B=p1

Using Observation 1, the above equation is written as 1, =

Prn e d) oy gy = Sl —ta) =0l =ty)
APrp4+1” g(txn+1—txn)
I(trpyq—ta)=9(trpi—tn)
L B ue = Incl, Py, =sgne), d=

9(trpyq—trn)

I(tynss—tatiz)=g(typyq —to+iz)- g(t)’n+1_ta+)‘1)+g(t}m+1_tb+/11)
g(tYn+1 tyn)
By substituting i in eqn. (7), we obtain
g(txn+1 B txn)g(tJ/nﬂ — (8)
( 2 - ﬁl)g(trn_,.l - trn

Thus, from eqn. (8), the polarity and timing of the product of
the pulse trains is given by p., ., = sgn(n¢) and ¢, —
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Error bounds for pulse arithmetic: The assumption that x(t) is
a constant x between t, and t;, in eqns. (2), (4), and (6) yields
an error Jy in the area of the pulse train X generated by IFC,

where 6y = f:b [x(t) — x]e‘“(txml—t)dt. From the mean value
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. Hence, the error in each interval depends on the

The error dy,y resulting from the addition of two pulses, with
the assumption of x(t) = x and y(t) = y between consecutive
pulses, is given by the quadrature formula [39],

(8% + (8%

min _(y(2)-y)?
z€(tq tp)

eza(tyn+1_ta)

Ox4y =
min _(x(z)-x)2

z€ta.tp]
Za(txn+1 tll)
max (y(z)-y)?
z€[tq,tp]
eza(tyn+1—tb)

and bounded by

max _(x(z)—x)?
ZE[ta b]

eza(txn+1—tb)

5X+Y
- (tb_ta)2 -

The error dyy due to the product of two pulses, with the
assumption of x(t) = xand y(t) =y between consecutive

K1K20| [/ 6x \2
2] |(2%)
1
-
@) T J x(@e“nna~de = K, 6,
2 a
f:b y(t)e_a(t}’n+1_t)dt = K205 fttb

pulses, is given by the formula [39], 6xy =

where

e~ (trns1=)dt = K,0, and

min _(¥(2)-y)?
z€|tq, b]

za(tYnH_ta)

max (y(z)-y)?
z€[ta,tp]

eZ“(tYn+1‘tb)

KZ min (x(2)-x)? K2
b ZE[tg_ tp)

y 2a(txn+1—ta)
K% max _(x(z)-x)? K
z€[tq,tp] +

eza(txn+1_tb)

bounded

2
K3 ) 2

<

(tb—ta Oy <

Likewise, it is straight—forward to show that error §yg, due to

the convolution of two overlapping pulse segments, with the

assumption of x(t) = x and y(t) =y between consecutive
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Notice that these errors refers to a local error within a pulse
interval. The global mean error during a segment of a signal is
the sum of local errors divided by the number of pulse intervals
in that segment. However, this number depends upon the
structure of the input signal, and the values of IFC parameters.
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