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Abstract—The integrate and fire converter (IFC) transforms an 

analog signal into a train of biphasic pulses. The pulse train has 
information encoded in the timing and polarity of pulses. While it 
has been shown that any finite bandwidth analog signal can be 
reconstructed from these pulse trains with an error as small as 
desired, there is a need for fundamental signal processing 
techniques to operate directly on pulse trains without signal 
reconstruction. In this paper, the feasibility of performing online 
the operations of addition, multiplication, and convolution of 
analog signals using their pulses train representations is presented. 
The theoretical framework to perform signal processing with IFC 
pulse trains imposing minimal restrictions is derived, and 
algorithms for online implementation of the operators is 
developed. The performance of the proposed algorithms is studied 
by quantifying the variations in instantaneous occurrence of 
pulses. Comparisons are performed with digital processing of 
reconstructed pulse trains. Moreover, an application of noise 
subtraction and representation of relevant features of interest in 
electrocardiogram signal is demonstrated with a sparse data rate 
of less than 20 IFC pulses per second, and an absolute error in 
heart rate of 0.16 ± 0.18 bpm.  
 

Index Terms— Analog to pulse converter, biphasic pulse trains, 
convolution, pulse signal processing, semantic information. 
 

I. INTRODUCTION 
One of the central principles in digital signal processing is 

the Whittaker–Shannon–Nyquist sampling theorem, which 
states that there is no loss of information between bandlimited 
analog signals and digital representations if the sampling rate is 
at least twice the maximum frequency present in the analog 
signal of interest [1]–[3]. Driven by sampling theory, 
programming flexibility and transistor scaling, nearly all data 
acquisition, processing and communication has progressed 
from continuous domain to the digital domain [4]. These 
advances along with the availability of high fidelity, low cost 
analog to digital converters (ADC) and digital signal processors 
(DSP) have led to an exponential increase in the digitalization 
of information processed from analog world sources [5].  The 
sampling theorem is a worst–case theorem, because it assumes 
that the highest frequency of input signal is always present, 
which is not always the case. Therefore, conventional Nyquist 
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sampling results in redundant sample representations that can 
overwhelm bandwidth in communications, and DSPs in real–
time portable applications [5]. Recent developments in 
alternative sampling schemes such as compressive sensing [6], 
finite rate of innovation [7], and signal–dependent time–based 
samplers [8]–[10] show the ability to reconstruct signals well 
below the Nyquist rate. These approaches normally use 
conventional ADC followed by a compression step recognizing 
that useful information in real world signals is sparser than the 
raw data generated by sensors. The focus of this paper is to 
present an alternative to achieve lower data rates and the 
potential for ultra–low power computation by combining 
sensing and compression in a single step. We focus on pulse 
trains created by a special type of analog to pulse converter 
named integrate and fire converter (IFC), which converts an 
analog signal of finite bandwidth into a train of pulses where a 
given area under the curve of the analog signal constrains the 
time difference between pulses [10].  

The IFC is inspired by the leaky integrator and fire neuron 
model [11], which is a reasonable approximation for how 
neurons in our brain processes information. It takes advantage 
of the local time structure of the input, enabling users to select 
the IFC parameters according to the specified accuracy required 
by the application; conceptually, it provides a compressed 
representation of the analog signal, using the physical charge 
time of the capacitor as the sparseness constraint [12]–[14]. 
Rastogi et al. [10] studied the hardware implementation of the 
IFC and showed that the power consumption and area required 
is smaller than most of the ADCs available: a single channel 
IFC has ~ 30 transistors with a figure of merit of 0.6 pJ/conv 
for an 8–bit converter, implemented using CMOS 0.6 µ𝑚 
technology in a layout box of 100 µ𝑚 X 100 µ𝑚. The authors 
in [15] proved mathematically the conditions to approximately 
reconstruct a finite bandwidth analog signal from the train of 
IFC pulses with an error as small as desired. Unfortunately, the 
simplicity in IFC sampling produces complex reconstruction 
algorithms at the backend.  

One of the interesting features of the IFC is that the 
information is contained in the time of the occurrence of pulses. 
When there are no pulses the processor is idle, which is totally 
different from the design of current DSP algorithms that are 
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implemented in computers. Since the pulses in the IFC are zero 
or one, this converter can also lead to digital implementation, 
but they can be asynchronous, potentially saving lots of power 
and leading to new compromises between power and 
computation as required for Internet of Things (IoT) 
applications.  

Various processing schemes have been proposed in the 
literature to reconstruct pulse trains generated by the IFC. The 
simplest technique counts pulses in time bins to create a coarse 
time structure of the pulse train and apply standard algorithms 
on the vector space representation. Alvarado et al. [12] used this 
approach to solve the heartbeat classification problem with 
linear discriminant classifiers and binned pulses as features. 
McCormick [16] proposed asynchronous finite state machines 
to perform piecewise linear operations and reconstruct binary 
codes from input pulses. Signal processing is performed on the 
binary code followed by conversion back to pulses. In order to 
avoid the reconstruction, Nallathambi and Principe [13] applied 
attribute grammars and automata directly to the pulse timing for 
performing non–numeric processing of pulse trains and 
identification of QRS complexes in the electrocardiogram 
(ECG) signal with high accuracy. In the neuroscience literature, 
the pulse trains created by neurons are modeled as stochastic 
point processes [17], and many machine learning techniques are 
used to compute with pulses [18], [19]. Another alternative, 
which is the focus of this paper, is to avoid the reconstruction 
by directly applying arithmetic operators to the IFC pulses 
under a deterministic framework, i.e., assuming the signal is 
created from a deterministic source and the conversion is also 
deterministic, as used in sampling theory. In principle, 
functional algebras are necessary for computation as the pulse 
trains are time functions. However, because of the special 
characteristic of IFC pulse trains (difference between pulses is 
constrained by a constant area in the analog signal), we define 
much simpler algorithms that operate online and produce a 
range of accuracies (30 to 70 dB of SNR) compatible with many 
IoT applications.    

The main contributions of this paper are as follows. First, a 
theoretical framework for performing the basic signal 
processing operations of addition, multiplication, and 
convolution is derived. Secondly, algorithms for online 
implementation of pulse–based arithmetic and convolution is 
proposed, and tested.  

The rest of the paper is organized as follows: Section II 
describes the IFC in detail and presents the related works on 
pulse–based signal processing. Section III derives the 
theoretical framework for operating with pulse trains to perform 
addition, multiplication, and convolution. Section IV proposes 
algorithms for online implementation of the theoretical 
framework. Section V describes the datasets and performance 
metrics used for validation. Section VI quantifies the 
performance of the algorithms using synthetic and natural data. 
Section VII discusses the possibilities offered by the present 
work.  Detailed derivations for the theorems are presented in 
the Appendix. MATLAB scripts for the algorithms are made 
available in [20]. 

II. INTEGRATE AND FIRE CONVERTER  
Pulse trains are waveforms where the information is 

contained in the timing of pulses instead on their amplitude. The 
use of pulses for signal processing is not a new idea. Early 
efforts include works on arithmetic using pulse encoding 
methods such as pulse–based rate, width, edge, burst, phase, 
delay, and amplitude [21]–[24].  

Since its inception, many studies such as pulse–based 
population encoding for single or multiple sensors in video 
processing [8], [9], [25], time–embedding based on the inter–
pulse intervals [26], learned input–output mappings based on a 
stochastic model for the events [18], [19], stochastic point 
process models [17], projections into reproducing kernel 
Hilbert spaces [27], and others [28] based on pulse streams have 
been proposed. Based on these works, various implementation 
schemes for pulse signal processing are proposed using 
magnetic cores [29], reconfigurable analog systems [30], fourth 
order Palmo filter [31], etc. The trends in silicon technology 
with a decrease in voltage and an increase in speed are making 
pulse–based representations more appealing.  

In this paper, we focus our discussion on the biphasic IFC, 
which converts real world analog signals to analog time 
between pulses. The IFC output encodes information on both 
the timing of the pulses (analog) and polarity of pulses (digital). 
The methodology developed in this work can be easily applied 
to single polarity pulse trains as well.  

 

 
Fig. 1. Block diagram of the biphasic integrate and fire analog to 
pulse converter. 

The IFC block diagram used in this paper is shown in Fig. 1. 
The analog input 𝑥(𝑡) is integrated, and the result is compared 
against two thresholds. When either the positive or negative 
threshold 𝜃 is reached, a pulse is generated at time 𝑡𝑘 with 
positive or negative polarity 𝑝𝑘 respectively. Unlike the 
integrate and fire neuron model, two thresholds are used to 
substantially reduce the mean data rate [32]. Fundamentally, 
each pulse interval satisfies the condition  
 

 
𝜃 = ∫ 𝑥(𝑡)𝑒−𝛼(𝑡𝑘+1−𝑡)𝑑𝑡

𝑡𝑘+1

𝑡𝑘

 (1) 

where 𝛼, the rate of decay, models the leakage of the integrator 
in practical implementations [15], [32]. The pulse timings, the 
threshold and the rate of decay completely define the IFC pulse 
train output.  

The IFC pulse train representation is rather different from 
discrete time representations. Pulses occur asynchronously in 
time, controlled by the amplitude of the analog signal, and the 
values of 𝜃 and 𝛼. There are several regimes possible for the 
IFC. Since the concept is very similar to the Asynchronous 
Delta Modulator, when the threshold is set very low, it produces 
a high–density pulse train that approximates the analog signal 



when integrated. This regime simplifies the reconstruction (low 
pass filter similar to the reconstruction filter in digital to analog 
converter), but it produces a very high data rate when compared 
with the Nyquist frequency. We seek another point in the 
computation/data rate domain where the selection of the 
threshold is such that the data rates are comparable, or inferior 
to the Nyquist rate, which saves power but complicates the 
reconstruction. The dynamic range of the density of pulses 
depends upon the local structure of the input, with more pulses 
occurring in the large amplitude region of the analog signal, and 
fewer pulses appearing in the low amplitude portions of the 
analog signal. This creates a fundamental constraint for 
reconstruction and processing of pulse trains. Feichtinger et al. 
[15] studied the reconstruction of the analog signal from the 
pulses using frame theory and showed that it is possible to 
approximately reconstruct a bandlimited signal in 𝐿∞norm with 
an error proportional to the threshold 𝜃. In [15] a simpler 
procedure employing finite bandlimited spaces is presented 
based on least squares  using splines or Fourier bases such that 
𝑥̂(𝑡) = ∑ 𝑎𝑘𝜙𝑘(𝑡)𝑀

𝑘=1 , where 𝑎𝑘 is given by the linear 
regression 𝜃⃗ = 𝑆𝑎⃗, S is obtained by integrating the basis set 
over the reconstruction interval, and  ‖𝑥(𝑡) − 𝑥̂(𝑡)‖∞ ≤ 𝐶𝜃 
where 𝐶 is a constant solely dependent on the window of 
analysis and the choice of the bases functions.  

We explain next a theoretical framework for performing 
basic signal processing operations such as arithmetic and 
convolution directly on pulse trains. Moreover, algorithms to 
implement these operators are also proposed, where the 
processing of information is online and entirely in the time 
domain as the inputs and output of the system are pulse trains. 

III. THEORY OF PULSE SIGNAL PROCESSING FOR IFC 

A. Setting up the problem for online operation.  
IFC maps a continuous time, continuous amplitude signal 

into the structure of train of pulses in analog time such that the 
distance between any consecutive pulses 𝑡𝑘 and 𝑡𝑘+1 is 
fundamentally constrained by the threshold 𝜃, which controls 
the density of pulses; therefore, any arithmetic operation on 
pulse trains (addition or multiplication of pulses) also must be 
constrained by 𝜃. From eqn. (1), it is observed that 𝜃 is equal to 
the leaky area under 𝑥(𝑡) between 𝑡𝑘 and 𝑡𝑘+1 where the rate of 
decay is given by 𝛼. Hence, any operation on pulse trains 
corresponds to equivalent operations on underlying areas. 

Intuitively, it is straight–forward to determine from eqn. (1), 
a relation between areas and time as 𝑥(𝑡𝑘) =

𝜃

 𝑡𝑘+1−𝑡𝑘
 under the 

assumption that 𝑥(𝑡) is constant between 𝑡𝑘 and 𝑡𝑘+1, with  a 
rate of decay of zero. We will explain first the main ideas for 
addition in this simplified framework, assuming that all the 
pulses are positive and the rate of decay is zero. Subsequently, 
this framework will be extended to bipolar pulses and non–zero 
rate of decay. 

The goal is to perform arithmetic operations between pairs of 
continuous time signals x(t) and y(t), i.e., 𝑠(𝑡) = 𝑥(𝑡) + 𝑦(𝑡), 
using the corresponding pulse trains. Let us denote the polarity 
of the pulse train created from the signal x(t) as 𝑋 = {𝑝𝑥𝑘,𝑘 =

1,2, … }. The timing of the pulses in X is very important, so we 
will also refer to their timings as 𝑡𝑥𝑘

. Obviously, the addition 

can only be carried out when a new pulse occurs in either of the 
asynchronous pulse–based representations of each pulse train. 
The general procedure is to estimate the integral between the 
two most recent pulses in a pair of signals, which will be 
denoted by the current interval (𝑡𝑎, 𝑡𝑏). In this framework, 𝑡𝑎 
and 𝑡𝑏 may belong to the same pulse train, i.e., 𝑡𝑎 = 𝑡𝑥𝑘

, 𝑡𝑏 =

𝑡𝑥𝑘+1
 or alternatively between both pulse trains, i.e., 𝑡𝑎 = 𝑡𝑥𝑘

, 
𝑡𝑏 = 𝑡𝑦𝑘

  depending on the local time structure of the signals. 
The consecutive pulses that compose the sum pulse train S still 
have to obey the IFC threshold 𝜃, which means that, very likely, 
somewhere in the interval (𝑡𝑎, 𝑡𝑏) a new pulse for 𝑡𝑠𝑘

 should be 
created at a time when the sum of the areas reach 𝜃. This 
methodology has two implications: first, areas must be 
converted online with high precision into pulse timing; second, 
because in general the pulse at 𝑡𝑠𝑘

 does not coincide with any 
of the pulses in the addend or augend, there will be an excess 
area (𝐸𝐴) that needs to be stored and taken into consideration 
when evaluating the area for the next pair of pulses (carry over).  

Suppose that 𝑡𝑠𝑚
 denotes the pulse time of the resultant sum 

of augend pulse train and addend pulse train, and 0 = 𝑡𝑥0
=

𝑡𝑦0
< 𝑡𝑥1

< 𝑡𝑥2
⋯ < 𝑡𝑥𝑚

< 𝑡𝑦1
 (Fig. 2). Let us define 𝐴𝑖 =

𝑡𝑥𝑖
− 𝑡𝑥𝑖−1

and 𝐵𝑖 = 𝑡𝑦𝑖
− 𝑡𝑦𝑖−1

 for the augend and addend pulse 
trains respectively. The sequence of computing the rate of areas 
in each current interval (𝑡𝑎, 𝑡𝑏) is illustrated in Table I. The 
resultant area (𝑅𝐴) due to addition at the end of each interval 
is given by the sum of rate of area per unit time in the augend 
and addend. To compute the exact area since the last pulse in 
the sum, the 𝐸𝐴 from the previous interval must be added to 𝑅𝐴 
in current interval to obtain the total area (𝑇𝐴) due to addition. 
The exact timing to establish the location of 𝑡𝑠𝑘

 is obtained 
when 𝑇𝐴 exceeds one constant area. 

 

 
Fig. 2. Illustration of addition of pulse trains with positive polarities. 

 
 
 
 
 



 
TABLE I 

ILLUSTRATION OF AREA CALCULATIONS IN EACH INTERVAL  
 

(𝑡𝑎 , 𝑡𝑏) RA TA EA 

(𝑡𝑥0 ,𝑡𝑥1
) 

1 +
𝐴1

𝐵1

 1 +
𝐴1

𝐵1

 
𝐴1

𝐵1

 

(𝑡𝑥1 ,𝑡𝑥2
) 

1 +
𝐴2

𝐵1

 1 +
∑ 𝐴𝑖

2
𝑖=1

𝐵1

 
∑ 𝐴𝑖

2
𝑖=1

𝐵1

 

(𝑡𝑥2 ,𝑡𝑥3
) 

1 +
𝐴3

𝐵1

 1 +
∑ 𝐴𝑖

3
𝑖=1

𝐵1

 
∑ 𝐴𝑖

3
𝑖=1

𝐵1

 

 

B. General case for a single pair of pulses 
Let us now address the general case of a pair of bipolar pulses 

with non–zero decay rates in the IFC for addition, 
multiplication and convolution. In this section, the 𝑅𝐴 due to an 
operation for a single pair of pulses is treated first for simplicity 
(no carryover). In section IV, we propose algorithms for 
updating recursively areas with carryovers by computing 𝐸𝐴 
and 𝑇𝐴, and discuss the choice of the overlapping time interval 
(𝑡𝑎, 𝑡𝑏) for online implementation.  

Suppose 𝐴1(𝑡𝑗, 𝑡𝑗+1) Ο 𝐴2(𝑡𝑗, 𝑡𝑗+1), where Ο represents the 
operator (+ or ∗) on pulse trains, 𝑡𝑗 and 𝑡𝑗+1 are the most recent 
pulse times from the original pulse trains, and 𝐴𝑖(𝑡𝑗, 𝑡𝑗+1) is the 
underlying area of the 𝑖𝑡ℎ pulse train (𝑖 = 1, 2) during (𝑡𝑗 , 𝑡𝑗+1). 
For the single pair of pulses case, (𝑡𝑎, 𝑡𝑏) reduces to (𝑡𝑗, 𝑡𝑗+1) 
because this is always the most recent pair of pulses. The 
framework solves 𝐴1(𝑡𝑎, 𝑡𝑏) Ο 𝐴2(𝑡𝑎, 𝑡𝑏) = 𝜂𝜃 for 𝜂 and 𝑡𝑘, 
where 𝜂 is the 𝑅𝐴 and the pulse timing 𝑡𝑘 due to the operation 
occurs when 𝜂 = 1.  

To solve deterministically and online the above equation, it 
is assumed that the input signal is constant between 𝑡𝑘 and 𝑡𝑘+1. 
This simple signal model is an approximation controlled by the 
threshold 𝜃 and depends upon the local structure of the pair of 
pulses, but it was surprisingly shown sufficient for many IoT 
applications such as continuous health monitoring. For 
completeness, the corresponding error bounds due to this 
assumption are also studied. 
Observation 1: If  𝜃 = ∫ 𝑥(𝑡)𝑒−𝛼(𝑡𝑘+1−𝑡)𝑑𝑡

𝑡𝑘+1

𝑡𝑘
 and 𝑥(𝑡) is 

constant between 𝑡𝑘 and 𝑡𝑘+1, then 𝜉𝜃 =

∫ 𝑥(𝑡)𝑒−𝛼(𝑡𝑘+1−𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎
, where 𝜉 =

𝑔(𝑡𝑘+1−𝑡𝑎)−𝑔(𝑡𝑘+1−𝑡𝑏)

𝑔(𝑡𝑘+1−𝑡𝑘)
, 𝑡𝑘 ≤

𝑡𝑎 < 𝑡𝑏 ≤ 𝑡𝑘+1, and 𝑔(𝑡) = 1 − 𝑒−𝛼𝑡 for 𝛼 > 0. This 
observation is critical in the derivation of theorems for 
arithmetic as it enables generalization of the results in any 
interval (𝑡𝑎, 𝑡𝑏) between two consecutive pulses.  
     Derivations of the subsequent theorems is provided in the 
Appendix.  The only assumption in this framework is that the 
input signal is constant between two consecutive pulses. The 
errors in pulse train arithmetic due to this assumption are also 
derived in the Appendix, and studied in section VI. 

Theorem 1 – Addition of single pair of pulses: Consider two 
analog signals (continuous amplitude and time) 𝑥(𝑡) and 𝑦(𝑡) 
corresponding to augend and addend pulse trains 𝑋 and 𝑌 
respectively. Suppose the 𝑋 pulses occur at 𝑡𝑥𝑗

 with polarity 
𝑝𝑥𝑗

, 𝑌 pulses occur at 𝑡𝑦𝑗
 with polarity 𝑝𝑦𝑗

, and the pulses of 
the sum pulse train 𝑆 occur at 𝑡𝑠𝑗

 with polarity 𝑝𝑠𝑗
 such that 

𝑡𝑥𝑛
, 𝑡𝑦𝑛

≤ 𝑡𝑎 < 𝑡𝑏 ≤ 𝑡𝑥𝑛+1
, 𝑡𝑦𝑛+1

, then the distance between 
consecutive pulses of 𝑆 is 𝑡𝑠𝑛+1

− 𝑡𝑠𝑛
=

−1

𝛼
𝑙𝑛{1 − 𝐾𝛾𝑆} with 

𝐾 =
𝑠𝑔𝑛(𝜂𝑆)𝑝𝑥𝑛+1

𝑝𝑦𝑛+1

 and 𝛾𝑆 =

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

𝑝𝑥𝑛+1𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)+𝑝𝑥𝑛+1𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
. Furthermore, the polarity 

of the pulses of 𝑆,  𝑝𝑠𝑛+1
= 𝑠𝑔𝑛(𝜂𝑆)  where 𝑠𝑔𝑛(. ) is the 

signum function, and  
 

𝜂𝑆 =
𝑝𝑥𝑛+1

[𝑔(𝑡𝑥𝑛+1
− 𝑡𝑎) − 𝑔(𝑡𝑥𝑛+1

− 𝑡𝑏)]

𝑔(𝑡𝑥𝑛+1
− 𝑡𝑥𝑛

)
+

𝑝𝑦𝑛+1
[𝑔(𝑡𝑦𝑛+1

− 𝑡𝑎) − 𝑔(𝑡𝑦𝑛+1
− 𝑡𝑏)]

𝑔(𝑡𝑦𝑛+1
− 𝑡𝑦𝑛

)
 

Theorem 2 – Multiplication of single pair of pulses: Consider 
two analog signals 𝑥(𝑡) and 𝑦(𝑡)  corresponding to 
multiplicand and multiplier pulse trains 𝑋 and 𝑌 respectively 
and let 𝑟(𝑡) = 1 correspond to the identity (reference) pulse 
train 𝑅. Then the distance between consecutive pulses in the 
product pulse train 𝑃 is 𝑡𝑝𝑛+1

− 𝑡𝑝𝑛
=

−1

𝛼
𝑙𝑛{1 − 𝛾𝑃} where 

𝛾𝑃 =
𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)
. The polarity of the pulses of P is 

given by 𝑝𝑝𝑛+1
= 𝑠𝑔𝑛(𝜂𝑃) where 𝜂𝑃 =

[
𝑝𝑥𝑛+1𝑝𝑦𝑛+1𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)

𝑔(𝑡𝑟𝑛+1−𝑡𝑎)−𝑔(𝑡𝑟𝑛+1−𝑡𝑏)
].[

𝑔(𝑡𝑥𝑛+1−𝑡𝑎)−𝑔(𝑡𝑥𝑛+1−𝑡𝑏)

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)
]. 

[
𝑔(𝑡𝑦𝑛+1−𝑡𝑎)−𝑔(𝑡𝑦𝑛+1−𝑡𝑏)

𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
]. 

Theorem 3 – Convolution of a single pair of pulse train 
segments: Consider two analog signals 𝑥(𝑡) and 𝑦(𝑡)  
corresponding to pulse train 𝑋 and pulse train 𝑌 respectively 
and let 𝑟(𝑡) = 1 correspond to the identity (reference) pulse 
train 𝑅. Then, the distance between the pulses in the 
convolution pulse train 𝐶 is 𝑡𝑐𝑛+1

− 𝑡𝑐𝑛
 =

−1

𝛼
𝑙𝑛{1 − 𝛾𝐶} with 

𝛾𝐶 =
𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)(𝛽2−𝛽1)
, 𝛽 = 𝛽2 − 𝛽1 is the period of 

intersection of the two pulse trains, and the polarity of the pulses 
of 𝐶 is 𝑝𝑐𝑛+1

= 𝑠𝑔𝑛(𝜂𝐶), where 𝜂𝐶 =
−1

𝛼
[

𝑝𝑥𝑛+1𝑝𝑦𝑛+1𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)

𝑔(𝑡𝑟𝑛+1−𝑡𝑎)−𝑔(𝑡𝑟𝑛+1−𝑡𝑏)
].[

𝑔(𝑡𝑥𝑛+1−𝑡𝑎)−𝑔(𝑡𝑥𝑛+1−𝑡𝑏)

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)
]. 

[
𝑔(𝑡𝑦𝑛+1−𝑡𝑎+𝜆2)−𝑔(𝑡𝑦𝑛+1−𝑡𝑏+𝜆2)−𝑔(𝑡𝑦𝑛+1−𝑡𝑎+𝜆1)+𝑔(𝑡𝑦𝑛+1−𝑡𝑏+𝜆1)

𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
], 

and 𝜆 = 𝜆2 − 𝜆1 is the time offset (shift). 
   This framework computes one instance of the output pulse 

𝑡𝑘 resulting from 𝑅𝐴 due to addition, multiplication and 
convolution. Notice that the formulas have the same general 
form, only differing on the specifics of the operation regarding 
the area and rate of area calculations. In the next section, online 
algorithms for pulse trains extend this theoretical framework, 
where the focus is on the recursive computation of areas using 
carryovers when there are multiple pulse instances.  

IV. ALGORITHMS FOR PULSE TRAIN ARITHMETIC 

A. Online pulse train arithmetic algorithms 
In Table II, the algorithm for computing online arithmetic of 

two pulse trains is presented. The time interval (𝑡𝑎, 𝑡𝑏)  may be 
selected to shift forward in fixed or variable contiguous 
windows across time. Sliding 𝑡𝑎 and 𝑡𝑏 in fixed intervals 
requires prior knowledge of the minimum value of the inter–
pulse interval to ensure the observation window lies within 



(𝑡𝑘, 𝑡𝑘+1) as per Observation 1. In this paper, to ensure online 
implementation, contiguous sliding windows are used where 
the interval shifts forward at the arrival of every new pulse in 
the operands, i.e., variable window lengths, as described in 
Section III A. We could also use shifting based on the pulse 
timing of only one of the pulse trains, but this would 
compromise the accuracy of the result, since fewer updates to 
the areas would have been calculated, so we recommend the 
former.  

The only algorithmic difference to recursively update the 
area for online operation, when compared with the pair of 
pulses case presented in section III, is the need to consider 
carryovers in both timing and area, namely excess time (𝑡𝑒𝑥) and 
excess area (𝜂

𝑒𝑥
) as demonstrated in the beginning example. As 

the online algorithm is based on an integration window defined 
by the original pulse trains, the pulses of the output pulse train 
for the arithmetic operation may occur before the end of the 
current integration window. As such the time difference 
between the upper time limit of the integration window and the 
occurrence of the output pulse (i.e., 𝑡𝑒𝑥) should be added to the 
evaluation of the pulse timing for the next interval. Likewise, 
the area corresponding to the excess time (𝜂

𝑒𝑥
) should be added 

to resultant area (𝜂) to yield 𝑇𝐴. In order to perform addition, 
multiplication and convolution, excess time and 𝐸𝐴 are 
included in the calculation of 𝑇𝐴 and new pulse timing at every 
computation as shown in Table II. The carryovers ensure higher 
precision in the calculation and guarantee that the output pulse 
timings always fall within the current integration window 
(𝑡𝑎, 𝑡𝑏). 

 
TABLE II 

ALGORITHM FOR PULSE TRAIN ARITHMETIC 
1. Select computation time points: 𝑡𝑎 , 𝑡𝑏 
2. Obtain pulse intervals corresponding to computation time points: 

𝑡𝑥𝑛+1
, 𝑡𝑥𝑛

, 𝑡𝑦𝑛+1
, 𝑡𝑦𝑛

; set 𝜂𝑒𝑥, 𝑡𝑒𝑥 → 0 initially. 
3. Calculate 𝜂, where 𝜂 = 𝜂

𝑆
 for addition and 𝜂 = 𝜂

𝑃
 for 

multiplication.  
4. Compute output pulse timing and polarity: 𝑇𝑘 , 𝑝𝑘 

 
Calculate 𝑔(𝑡𝑘𝑛+1

− 𝑡𝑘𝑛
), where 𝑔(𝑡𝑘𝑛+1

− 𝑡𝑘𝑛
) = 𝐾𝛾𝑆 for 

addition and 𝑔(𝑡𝑘𝑛+1
− 𝑡𝑘𝑛

) = 𝛾𝑃 for multiplication.   
 
while |𝜂 + 𝜂𝑒𝑥| ≥ 1 
    𝑇𝑘 =

−1

𝛼
ln{1 − 𝑔(𝑡𝑘𝑛+1

− 𝑡𝑘𝑛
)|𝑠𝑔𝑛(𝜂) − 𝜂𝑒𝑥|} + 𝑇𝑘−1 + 𝑡𝑒𝑥 

    𝑝𝑘 = 𝑠𝑔𝑛(𝜂) 
    Update:     
    𝑡𝑎 =  𝑇𝑘 
    Calculate 𝜂       
    𝜂𝑒𝑥, 𝑡𝑒𝑥 → 0, 𝑘 → 𝑘 + 1 
end 
 
𝜂𝑒𝑥 ← 𝜂 + 𝜂𝑒𝑥 
𝑡𝑒𝑥 ← 𝑡𝑏 − 𝑇𝑘 

 
 
Thus the process involves selection of the observation 

window and its associated pulse intervals, and calculation of the 
𝑇𝐴 (i.e., η + η𝑒𝑥) as per Table II. When 𝑇𝐴 exceeds +1 or −1, 
the pulse occurs at that time instant 𝑇𝑘 with corresponding 
polarity 𝑝𝑘. 

B. Approximations 
As the values of inter–pulse intervals are inversely 

proportional to signal amplitude, in high inter–pulse intervals 
compared to noise floor, 𝑔(𝑚) is well approximated by 𝛼𝑚 
without degrading performance. With this approximation, it is 
straight–forward to show from first principles that 𝜂 reduces to 
𝜂𝑎 =

𝑝𝑥𝑛+1
(𝑡𝑏−𝑡𝑎)

𝑡𝑥𝑛+1−𝑡𝑥𝑛

+
𝑝𝑦𝑛+1

(𝑡𝑏−𝑡𝑎)

𝑡𝑦𝑛+1−𝑡𝑦𝑛

 and 𝜂𝑎 = [
𝑝𝑥𝑛+1𝑝𝑦𝑛+1

(𝑡𝑏−𝑡𝑎)(𝑡𝑟𝑛+1−𝑡𝑟𝑛)

(𝑡𝑥𝑛+1−𝑡𝑥𝑛)(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
]  for 

addition and multiplication respectively. Likewise, 𝑡𝑘𝑛+1
− 𝑡𝑘𝑛

 
reduces to 𝑡𝑘𝑎𝑛+1

− 𝑡𝑘𝑎𝑛
=

𝑡𝑏−𝑡𝑎

|𝜂𝑎|
 for both addition and 

multiplication.  It is to be noted that 𝜂 = 𝜂𝑎 when the rate of 
decay is zero. Unlike Table II, the simplified equations rely 
directly on the inter–pulse intervals; therefore, the real–time 
hardware implementation of pulse–based systems is straight–
forward. Moreover, the update step does not require 
recalculation of 𝜂𝑎  as shown in Table III, which will speed up 
the computation in hardware. In section VI, we compare 
performance of the more accurate algorithm in Table II with 
this approximate algorithm.  

 
TABLE III 

SIMPLIFIED ALGORITHM FOR PULSE TRAIN ARITHMETIC 
1. Select computation time points: 𝑡𝑎 , 𝑡𝑏. 
2. Obtain pulse intervals corresponding to computation time points: 

𝑡𝑥𝑛+1
, 𝑡𝑥𝑛

, 𝑡𝑦𝑛+1
, 𝑡𝑦𝑛

; set 𝜂𝑒𝑥, 𝑡𝑒𝑥 → 0 initially. 
3. Calculate 𝜂𝑎. 
4. Compute output pulse timing and polarity: 𝑇𝑘𝑎 , 𝑝𝑘𝑎. 

 
Calculate 𝑡𝑘𝑎𝑛+1

− 𝑡𝑘𝑎𝑛
. 

 
while |𝜂𝑎 + 𝜂𝑒𝑥| ≥ 1 
    𝑇𝑘𝑎 = (𝑡𝑘𝑎𝑛+1

− 𝑡𝑘𝑎𝑛
)|𝑠𝑔𝑛(𝜂𝑎) − 𝜂𝑒𝑥| + 𝑇𝑘𝑎−1 + 𝑡𝑒𝑥 

    𝑝𝑘𝑎 = 𝑠𝑔𝑛(𝜂𝑎) 
    Update:     
    𝜂𝑎 → 𝜂𝑎 − (𝑠𝑔𝑛(𝜂𝑎) − 𝜂𝑒𝑥) 
    𝜂𝑒𝑥, 𝑡𝑒𝑥 → 0, 𝑘 → 𝑘 + 1 
end 
 
𝜂𝑒𝑥 ← 𝜂𝑎 + 𝜂𝑒𝑥 
𝑡𝑒𝑥 ← 𝑡𝑏 − 𝑇𝑘𝑎 

 
 

C. Pulse convolution algorithm 
The algorithm for computing the convolution of two pulse 

trains X and Y is presented in Table IV. The pulse timings of Y 
are reversed and shifted by 𝜆, which is given by the minimum 
distance required for pulses of Y to reach one of the pulses of X 
upon shifting. The overlap 𝛽 between the two pulse trains after 
shifting is computed; so, unlike pulse arithmetic, there is a 
vector of computation time points 𝑡𝑎𝑖

, 𝑡𝑏𝑖
 and an associated 

vector of pulse intervals corresponding to all pulses in the 
region of overlap. Each element of these vectors results in an 
area 𝜂𝑖 and 𝑇𝐴 resulting during a shift operation is given by the 
sum of 𝜂𝑖’s. When 𝑇𝐴 exceeds +1 or −1, the component of η 
at which this occurs determines the timing  𝑇𝑘 and polarity 𝑝𝑘 
of the pulse resulting from the convolution of pulse trains. 
Similar to Table III, the equations for convolution is 
approximated by 𝜂𝑎 = [

𝑝𝑥𝑛+1𝑝𝑦𝑛+1
(𝑡𝑏−𝑡𝑎)(𝑡𝑟𝑛+1−𝑡𝑟𝑛)(𝜆2−𝜆1)

(𝑡𝑥𝑛+1−𝑡𝑥𝑛)(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
] and 

𝑡𝑘𝑎𝑛+1
− 𝑡𝑘𝑎𝑛

=
(𝑡𝑥𝑛+1−𝑡𝑥𝑛)(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

(𝛽2−𝛽1)(𝑡𝑟𝑛+1−𝑡𝑟𝑛)
.  



V. PERFORMANCE VALIDATION 

A. Performance measures 
Measures based on inter–pulse intervals: The quality of 

performance is evaluated in terms of measures of accuracy 
between instantaneous amplitude values 𝑧̂ and 𝑧 calculated 
from the inter–pulse intervals of the algorithmic pulse train 
output 𝑍̂ and  true pulse train output 𝑍 respectively, which is 
calculated in simulations for the analysis. The instantaneous 
amplitude 𝑧̂ of a pulse train with consecutive pulses 𝑡𝑘 and 𝑡𝑘+1 
is given by 𝑧̂ =

𝜃

 𝑡𝑘+1−𝑡𝑘
 and  𝑧̂ =

𝜃𝛼

1−𝑒−𝛼(𝑡𝑘+1−𝑡𝑘) 
 for the IFC with 

zero and non–zero rate of decay respectively. Peak signal to 

noise ratio, 𝑃𝑆𝑁𝑅 = −10𝑙𝑜𝑔 (
∑ (𝑧̂𝑖−𝑧𝑖)2𝑁

𝑖=0

𝑁(𝑧̂𝑚𝑎𝑥−𝑧̂𝑚𝑖𝑛)2), and correlation 

coefficient, 𝑟 =
∑ (𝑧̂𝑖−𝑚𝑧̂)(𝑧𝑖−𝑚𝑧)𝑁

𝑖=1

√∑ (𝑧̂𝑖−𝑚𝑧̂)𝑁
𝑖=1

2
√∑ (𝑧𝑖−𝑚𝑧)𝑁

𝑖=1

2
, are the measures 

used to quantify the accuracy between instantaneous amplitude 
values of the algorithmic and  true outputs, where 𝑚𝑧̂ and 𝑚𝑧 
are the sample mean of 𝑧̂ and 𝑧 respectively.    

 
TABLE IV 

ALGORITHM FOR PULSE TRAIN CONVOLUTION  
1. Choose time offset 𝜆 = 𝜆2 − 𝜆1; set 𝜂𝑒𝑥, 𝑡𝑒𝑥 → 0 initially. 
2. Shift the pulse timings of the reversed pulse train by 𝜆. 
3. Find the overlap 𝛽 = 𝛽2 − 𝛽1 between the pulse trains after 

shifting.  
4. Select computation time points 𝑡𝑎𝑖

, 𝑡𝑏𝑖
 for all pulses in the region 

of intersection.  
5. Obtain pulse intervals corresponding to all computation time 

points in the region of intersection: 𝑡𝑥𝑛+1𝑖
, 𝑡𝑥𝑛𝑖

, 𝑡𝑦𝑛+1𝑖
, 𝑡𝑦𝑛𝑖

 
6. Calculate 𝜂𝑖 for all computation time points 𝑡𝑎𝑖

, 𝑡𝑏𝑖
   

7. Compute output pulse timing and polarity: 𝑇𝑘 , 𝑝𝑘 
 

Calculate 𝑡𝑘𝑖
=

−1

𝛼
ln {1 −

𝑔(𝑡𝑥𝑛+1𝑖
−𝑡𝑥𝑛𝑖

)𝑔(𝑡𝑦𝑛+1𝑖
−𝑡𝑦𝑛𝑖

)

(𝛽2−𝛽1)𝑔(𝑡𝑟𝑛+1𝑖
−𝑡𝑟𝑛𝑖

)
} for all 

computation time points. 
Calculate 𝜂 = 𝑠𝑢𝑚(𝜂1, 𝜂2, ⋯ , 𝜂𝑛) 
 
while |𝜂 + 𝜂𝑒𝑥| ≥ 1 
    Find first 𝑗 at which |𝜂𝑒𝑥 + 𝑠𝑢𝑚(𝜂1, 𝜂2, ⋯ , 𝜂𝑗)| ≥ 1 
    𝜎 = 𝑠𝑔𝑛(𝜂𝑗) − 𝜂𝑒𝑥 − 𝑠𝑢𝑚(𝜂1, 𝜂2, ⋯ , 𝜂𝑗−1) 
    𝑇𝑘 = {|𝜂1𝑡𝑘1

| + ⋯ + |𝜂𝑗−1𝑡𝑘𝑗−1
| + |𝜎𝑡𝑘2

|} + 𝑇𝑘−1 + 𝑡𝑒𝑥 
  𝑝𝑘 = 𝑠𝑔𝑛(𝜎) 

    Update:     
    𝜂𝑗 → 𝜂𝑗 − 𝜎 
    𝜂1, 𝜂2, ⋯ , 𝜂𝑗−1 → 0 
    𝜂 = 𝑠𝑢𝑚(𝜂𝑗 , 𝜂𝑗+1, ⋯ , 𝜂𝑛) 
    𝜂𝑒𝑥, 𝑡𝑒𝑥 → 0, 𝑘 → 𝑘 + 1 
end 
 
𝜂𝑒𝑥 ← 𝜂 + 𝜂𝑒𝑥 
𝑡𝑒𝑥 ← 𝜆2 − 𝑇𝑘 

 
 
Region of analysis: As the pulse representation is dependent 
upon the structure of the input, the analysis window is 
subdivided into four regions namely 𝐴, 𝐵, 𝐶, and 𝐷 based on 
amplitude quartiles. Unlike conventional DSP, pulse–based 
computation has relatively lower incidence of pulses near the 
noise floor (region 𝐴) and high pulse density in the other 
regions of interest. Hence it is necessary to quantify the 
performance in the individual regions and the overall 

performance is reported in terms of mean ± standard deviation 
of all regions.  

Comparative studies: The focus of the paper is on processing 
the semantic information directly with pulse trains without 
signal reconstruction. However, to ensure completeness, the 
algorithmic pulse train output 𝑍̂ is reconstructed to get  𝑧𝑟̂(𝑛), 
and then compared with 𝑧𝑟(𝑛) obtained using digital arithmetic 
of  𝑥𝑟(𝑛) and 𝑦𝑟(𝑛), which are reconstructed from input pulse 
trains 𝑋 and 𝑌 respectively as per [15]. The performance is 
assessed by computing 𝑃𝑆𝑁𝑅 and 𝑟 between 𝑧𝑟̂(𝑛) and 𝑧𝑟(𝑛). 
Note that the PSNR as calculated here is a pessimistic estimate 
because the reconstruction algorithm is not ideal [37] as the 
inverse needs to be regularized. Nevertheless, it is useful to 
understand the overall peak performance in practical 
applications to compare with ADC converters.  

B. Data analysis 
Synthetic data: Aperiodic pulse trains 𝑋 and 𝑌 generated 

from 1V, 1Hz sinusoidal signals 𝑥(𝑡) and 𝑦(𝑡)  respectively are 
selected to demonstrate the performance of the algorithm. Note 
that the frequency of the signal should not be considered in 
absolute terms, because what matters is the ratio of the 
frequency of the signal and the threshold in the IFC, i.e., the 
density of pulses. As a result, the performance of the algorithm 
is quantified for variations in the IFC parameters, and we 
directly show the number of pulses/sec in each part of the 
dynamic range of the signal, because equivalent PSNR can be 
expected in practical applications provided that this ratio is 
similar.  

A two–sample t–test at 5% significance level is used to study 
the significant differences in the mean PSNR and data rate of 
the algorithms with and without approximations from Table II 
and Table III respectively. Comparative studies are performed 
using the synthetic data in terms of the aforementioned 
performance measures. 

Real ECG data: An application of subtraction of baseline 
wander from ECG signal is used to demonstrate the feasibility 
of the proposed pulse–based algorithm for semantic 
information processing in continuous patient monitoring 
systems. Baseline wander is a very low frequency noise related 
to amplifier and electrode drift. In practice, a high pass filter 
(HPF) preprocessor with a cutoff frequency of 0.05 to 0.67 Hz 
is applied to the signal to attenuate the drift [33]. Here, we want 
to demonstrate that a pulse–based preprocessor can be applied 
instead with the same basic goal of attenuating the drift.  

Input ECG pulse train 𝑋 is obtained by corrupting an ECG 
signal of 1–minute duration from MIT–BIH arrhythmia 
database [34] (dataset 100) with 300µV, 0.2Hz sinusoidal 
baseline wander, and converting to pulses with the IFC 
parameters chosen as in [13]. Pulse subtraction of pulse train 𝑌 
corresponding to sinusoidal baseline wander from pulse train 𝑋 
is used to obtain noise–free pulse train 𝑍̂. Further, to evaluate 
the accuracy of the noise removal and demonstrate the semantic 
information processing of the features in ECG, the baseline 
corrupted ECG signal is filtered using a digital high pass 
bidirectional IIR filter [33] of order 2 and cut–off frequency 
0.5Hz, and converted to pulse train 𝑍 with the same IFC 
parameter values. Then, QRS complexes are detected from both 
the pulse trains 𝑍 and 𝑍̂ using the automaton method [13], and 



the performance of detection is assessed in terms of sensitivity 
and positive predictive value. Finally, the heart rate (HR) is 
calculated from the beat–to–beat R–to–R intervals, and the 
absolute error between the HR computed from pulse trains 𝑍 
and 𝑍̂ is studied to demonstrate that the cardiac events are well 
represented in 𝑍̂ after pulse–based processing of the ECG 
signal. 

VI. RESULTS  

A.  Algorithmic performance in regions of analysis 
The algorithmic outputs of synthetic data for pulse train 

addition, multiplication, and convolution with 𝜃 = 0.01 and 
rate of decay of zero is studied. Performance analysis of pulse 
train addition shows overall PSNR, 𝑟, and data rate of 32.58 ± 
18.35 dB, 0.92 ± 0.14, and 31.0 ± 36.57 pulses per second (p/s) 
respectively. The performance of the algorithm is dependent 
upon the regions of activity as demonstrated in Table V for 
pulse train addition where PSNR is greater than 40dB with 𝑟 =
1 in regions 𝐶 and 𝐷, and less than 25dB with reduced data rate 
in regions 𝐴 and 𝐵. Likewise, pulse train multiplication has 
PSNR, 𝑟, and data rate of 31.45 ± 13.7 dB, 0.95 ± 0.07, and 
12.25 ± 12.75 p/s respectively, while pulse train convolution 
has PSNR, 𝑟, and data rate of 29.61 ± 4.73 dB, 0.98 ± 0.03, and 
12.38 ± 11.49 p/s respectively, which means that precision in 
multiplication and addition are similar.  

 
TABLE V 

PERFORMANCE IN THE REGIONS OF ANALYSIS (ADDITION) 
 

Region PSNR, dB r Data rate, p/s 
Region A 14.10 0.71 3.33 
Region B 20.60 0.97 10.67 
Region C 42.36 1.0 26 
Region D 53.47 1.0 84 

 
These results demonstrate that the proposed algorithm is 

capable of producing accurate results in portions of the input 
that yield modest concentration of pulses (42 dB reconstruction 
for 26 pulses/sec), which is similar to 8–bit resolution with 
ADC. More pulses per sec increase the accuracy, but regions 𝐴 
and 𝐵 where the data rate is very low, the errors are severe. This 
is a direct consequence of the assumption that the input signal 
is constant between 𝑡𝑘 and 𝑡𝑘+1. The error  𝛿𝑥+𝑦 due to this 
assumption shown in Fig. 3 indicates the simple signal model 
results in higher errors when the density of pulses is extremely 
sparse. But, this does not incur a huge penalty in many real 
world applications as the low amplitude portions of signals have 
poor SNR (i.e., additive noise affects the signal fidelity 
substantially), and it is wasteful to use an ADC with large 
output wordlength to represent such regions. On the other hand, 
in the proposed methodology, the overall performance is 
constrained by the low density regions; hence, in practice, the 
user should set the minimum accuracy requirement for such 
regions (given the specified SNR for the application). However, 
when better accuracy is needed in the low amplitude regions of 
the signal near the noise margin, then the compromise is the 
increase in computation load (more pulses), which in turn yields 
a large data rate for transmission. 

 
Fig. 3. Illustration of error bound in addition of pulse trains due to the 
simple signal model. The density of pulses is calculated in non–
overlapping bins of width 100ms. 

B. Effect of IFC parameters 
The effect of IFC threshold on the performance is studied 

across the regions of analysis. While the PSNR in regions 𝐶 and 
𝐷 decreases gradually as the IFC threshold increases, the PSNR 
near the noise floor is consistently less than 20dB. Moreover, 
as the IFC threshold increases, the mean data rate decreases 
exponentially. From Fig. 4, it is evident that proper selection of 
IFC threshold guarantees lower data rates without degrading 
performance.  

 
Fig. 4. Effect of IFC threshold on performance. mPSNR and sPSNR 
denote the mean and standard deviation of PSNR respectively, and 
mPR denotes the mean of data (pulse) rate. 

The increase in PSNR variability for smaller IFC thresholds 
is expected. There are two basic components: first, the high 
variability in the data rate can be explained by the very different 
number of pulses in each of the percentiles of the amplitude 
dynamic range as shown in Table V. Second, because of the 
local nature of the sampling for the small time constants, which 
make measurements very local in time, we can expect larger 
variability (and lower repeatability across runs) for smaller 
thresholds. 

The effect of IFC rate of decay and the zero decay 
approximation to the algorithm is presented in Fig. 5. 



Comparison of performance of algorithm with and without 
approximation reveals PSNR at regions 𝐴 and 𝐵 to be similar 
in both cases while PSNR at regions 𝐶 and 𝐷 are significantly 
different (p<0.05) with the approximated algorithm having 
lower mean PSNR as shown in Fig. 5a. Moreover, the mean 
data rate of the algorithm with and without approximation 
across variations in IFC rate of decay is significantly different 
(p<0.05) as shown in Fig. 5b, where the approximated solution 
displays lower data rate. While the approximated algorithm in 
Table III offers simpler implementation dependent only on 
pulse intervals and provides sparse representation at higher 
rates of decay, there is a trade–off in PSNR at high amplitude 
regions when compared with the algorithm in Table II.  
 

 
Fig. 5. Effect of IFC rate of decay and approximations on 
performance. The subscript ‘a’ in legend denotes the approximated 
algorithms. 
 

C. Comparison with digital processing 
In Fig. 6, the performance curves for the comparison of the 

proposed algorithm with digital processing is presented. The 
performance characteristics are similar to Fig. 4 with PSNR 
being proportional to the signal amplitude for a given IFC 
threshold.  It is to be noted that exact reconstruction for IFC is 
impossible and these results are obtained with the approximate 
method developed by Feichtinger et al. [15], which suffer from 

the need to regularize the solution, decreasing the accuracy. 
Moreover, the size of the matrix for the reconstruction 
algorithm increases with the decrease in IFC threshold (more 
pulses are created). Therefore, the error in the reconstruction 
algorithm is not constant across different IFC thresholds, 
because the regularization constant to invert the sampling 
matrix increases towards the low thresholds. Due to this 
confounding problem, we can expect an increase in error in the 
reconstruction algorithm. As a result, the plotted result in Fig. 6 
is a worst case bound combining two errors, but we could not 
find other ways of evaluating the comparative results. 
 

While processing of reconstructed signals from pulse trains 
is not the focus of the paper, substantially higher data rates than 
corresponding Nyquist rates may be required for applications 
that necessitates high fidelity after signal reconstruction. 

D. Semantic information processing in ECG 
The processing and representation of relevant information 

in ECG signal using pulse trains is demonstrated in Fig. 7. 
The top panel of Fig. 7 shows an ECG signal with (corrupted 
data) and without baseline wander (digital high pass filtered). 
During baseline deviations, pulses corresponding to cardiac 
events are obfuscated by higher pulse density due to the shift 
in baseline as shown in pulse train 𝑋 of Fig. 7. Subsequently, 
after pulse–based processing to remove baseline wander, the 
boundaries of relevant ECG features of interest such as P 
wave, QRS complex, and T wave are clearly delineated in 
the pulse representation of 𝑍̂.  
 

 
Fig. 6. Comparison of proposed algorithm with digital processing 
after reconstruction of operand pulse trains 
 

Performance testing determined the sensitivity and 
positive predictive value of QRS peak detection is 100%, and 
the absolute error in HR is 0.16 ± 0.18 bpm. Moreover, the 
data rate of ECG signal is reduced substantially from 61.31 
± 100.73 IFC p/s to 14.99 ± 10.14 IFC p/s after processing. 
In our previous article [13], we have shown through 
extensive testing that the accuracy of QRS detection from 
pulse trains is as good as traditional techniques in the absence 
of baseline noise, and these results indicate that the 
performance can be generalized to an end–to–end pulse 
computation system with a pulse–based preprocessor. Thus, 



the proposed pulse–based signal processing can be used in 
continuous vital sign monitoring systems to represent the 
semantic information content in ECG signals with a sparse 
representation. 

 
Fig. 7. Semantic processing of ECG signal using pulse trains. 'BW' 
denotes baseline wander in the signal. 

VII. DISCUSSION 
Representation and processing of semantic information in 

signals is critical for mobile wireless sensor networks and IoT 
applications [35]. Prior research has shown that the IFC pulse 
conversion enable sparse representation of features of interest 
in physiological signals such as ECG [12], [13], neural data 
[32], and photoplethysmogram [14]. This article presented 
algorithms for processing the pulse trains created by IFC 
directly without signal reconstruction, and demonstrated 
processing of the semantic information in ECG signal.  

Simulations with synthetic data show that pulse–based signal 
processing has PSNR proportional to signal amplitude, with 
limited pulse representation accuracy near the noise floor. 
Precision of the pulse–based operations is not uniform over the 
dynamic range of the signal amplitude, which is desirable in 
long term monitoring applications to represent semantic 
information with high precision while not representing with 
high resolution background noise, which saves data rates.  

In DSP, to meet desired performance specifications, the 
number of samples to which the digital data must be 
interpolated is determined, and then the operations are 
performed sample–by–sample. However, in pulse signal 
processing, the IFC threshold that satisfies the required 
performance criteria should be determined, by specifying the 
minimum accuracy in the low amplitude portions of the signal 
of interest. If this yields high data rates for transmission, then a 
compromise should be established to meet approximately both 
specification. Feichtinger et al. [15] showed that bandlimited 
functions are not completely determined by the IFC and the 
same results hold true for processing of multiple operands i.e., 
there are non–zero bandlimited signals that will never produce 
pulses at the output even though the input operands have pulses. 
The trade–offs in terms of accuracy for the IFC parameters is 
studied in [32] and operating ranges are selected based on 

specifications to provide the right balance between performance 
and sparseness. 

Hardware implementations of the proposed algorithms 
require a time marker such as clock signals. Moreover, 
implementing pulse signal processing in hardware also requires 
new approaches as operations need to be performed on areas 
between pulses that occur non–uniformly. Recently, 
Nallathambi et al. [36], implemented a 16–bit pulse adder based 
on the approximated algorithms in Table III. Their system, 
synthesized in SMIC 0.18µm (100MHz) CMOS process, 
utilizes a clock and time counters as building blocks for a pulse–
based ALU. The preliminary results demonstrate the feasibility 
of signal processing with pulse trains in hardware; however, the 
digital adder for the same SNR is still much better in terms of 
area and power, while the pulse multiplier is worse but in the 
same range of performance as the digital multiplier [41].  

 The alternative approach to the present work is to 
reconstruct signals from pulses, perform digital processing and 
convert the processed signals to pulses. In such scenarios, the 
accuracy of the operations will be limited by the approximate 
reconstruction procedure [15], and increasing the fidelity 
requires reduction of IFC threshold substantially, thereby 
impacting the data rates. By processing the pulses directly with 
the proposed algorithm, we circumvent both the complexity of 
the signal reconstruction algorithm and the subsequent process 
of IFC conversion. With the proposed algorithms, the focus is 
on applications where reconstruction is not necessarily the goal 
but tasks such as classification and anomaly detection in 
continuous monitoring systems that require representation of 
semantic features in signal. 

In this article, an example of processing semantic 
information in ECG signals using pulse trains is presented. The 
data rate of the ECG is less than 20 IFC p/s, which is drastically 
lower than existing IoT–based cardiac patient monitors that 
require at least 125 samples per second [37]. Additionally, the 
accuracy in HR computations typifies the capability of the 
pulse–based methods in continuous monitoring of real world 
signals using sparse representations. In general, pulse trains are 
well suited for processing semantic information in transient 
data such as biosignals, seismological recordings, radar and 
others, where the crucial information is in the transients 
embedded in noisy backgrounds. 

VIII. CONCLUSION 
The present work provides an alternative to conventional 

DSP techniques for performing arithmetic operations on 
continuous time/amplitude signals using pulse trains generated 
from an IFC. The IFC is conceptually similar to an 
asynchronous sigma delta converter, however it does not use 
oversampling to create an accurate representation in the sample 
domain. Nevertheless, its output is still in continuous time and 
creates far fewer pulses that represent the input signal 
sufficiently to describe properties and perform equivalent signal 
processing operations in the analog input. This newly 
discovered region in the precision/data rate plane could not 
have been anticipated by the theory of sigma delta converters.   

We show in this paper for the first time a methodology to 
perform online arithmetic operations using pulse trains. The 
results with synthetic and natural data demonstrate the 



capability of the algorithms to manipulate signal properties 
using arithmetic operators. This opens the door to implement 
linear models in the pulse domain because the convolution 
operator in the pulse domain was presented.     

The sparse representation achieved with the IFC sampler, 
implies that the arithmetic operations have limited accuracy 
near the low amplitude regions (noise floor), so we present a 
methodology to allow users to properly meet design 
specification. In general, more precision requires a decrease of 
the IFC threshold  to create more pulses and smaller time 
between pulses, at the expenses of more computation (more 
pulses) and higher data rates. This presents a continuum of 
choices unlike the conventional ADC where the computation 
load (number of operations per second) is dictated by the 
algorithm and sampling frequency. In this methodology there is 
no sampling frequency, so what matters is the time between the 
pulses for the computation complexity, which is controlled by 
the threshold and depends also on the local structure of the 
signals.  

The ability of selectively capturing and processing the 
semantic information in the signal is important in many 
continuous and event monitoring applications for the IoT and 
mobile wireless sensor networks [35]. Applications where the 
goal is detection or classification of vital events and not 
necessarily signal reconstruction, are ideal for the proposed 
pulse–based algorithms, which represent the features of interest 
in the signal while suppressing the background noise. An 
application of noise reduction in ECG signal is demonstrated 
with sparse pulse representation while preserving the sematic 
features of interest.  

There are many aspects that require further study, since this 
is a new field. First, the assumption that the input signal is 
constant between pulses is an approximation that is only valid 
for signals that vary slowly within the charge time of the 
capacitor until the threshold is reached. While this is satisfied 
in the high amplitude portions of the signal, it is not met in the 
low amplitude portions of the signal. Therefore, ways to 
improve this aspect should be pursued. The first step is to define 
a constraint that the amplitude during the charge time of the 
capacitor increases linearly instead of being constant. This 
would improve the accuracy of the overall method, but the 
implications to the theory and the computational cost in the 
algorithm is unknown. Alternatively, an equalization 
preprocessor (such as a log amplifier) may mitigate some of the 
issues. But, an exponential transformation in the pulse domain 
would be needed to recover the original signal features. We 
don’t know yet the practicality of creating an accurate 
exponential warping in time.     

APPENDIX 
Proof of Theorem 1: Based on the proposed framework, the 

addition operation on pulse trains is performed by solving eqn. 
(2) for µ𝑆 and  𝑡𝑠𝑛+1

.  Assuming 𝑥(𝑡) and 𝑦(𝑡) to be constant 
between consecutive pulses, we have 

 
∫ 𝑥𝑒−𝛼(𝑡𝑥𝑛+1−𝑡)𝑑𝑡

𝑡𝑏

𝑡𝑎

+ ∫ 𝑦𝑒−𝛼(𝑡𝑦𝑛+1−𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎

= µ𝑆 ∫ [𝑥+𝑦]𝑒−𝛼(𝑡𝑠𝑛+1−𝑡)𝑑𝑡
𝑡𝑠𝑛+1

𝑡𝑠𝑛

 

(2) 

Using Observation 1, eqn. (2) is written as 𝜂𝑆 = 𝑝𝑥𝑛+1
𝑢 +

𝑝𝑦𝑛+1
𝑑, where 𝑢 =

𝑔(𝑡𝑥𝑛+1−𝑡𝑎)−𝑔(𝑡𝑥𝑛+1−𝑡𝑏)

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)
,  𝑑 =

𝑔(𝑡𝑦𝑛+1−𝑡𝑎)−𝑔(𝑡𝑦𝑛+1−𝑡𝑏)

𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
, µ𝑆 = |𝜂𝑆|, and 𝑝𝑠𝑛+1

= 𝑠𝑔𝑛(𝜂𝑆). 

Moreover, y is expressed in terms of x as 𝑦 =
𝑝𝑥𝑛+1𝑥𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)

𝑝𝑦𝑛+1𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
 since 𝑝𝑥𝑛+1 ∫ 𝑥𝑒−𝛼(𝑡𝑥𝑛+1−𝑡)𝑑𝑡

𝑡𝑥𝑛+1
𝑡𝑥𝑛

=

𝑝𝑦𝑛+1 ∫ 𝑦𝑒−𝛼(𝑡𝑦𝑛+1−𝑡)𝑑𝑡
𝑡𝑦𝑛+1

𝑡𝑦𝑛
, because the same IFC is used 

and the integration is over a pulse interval. By substituting 𝑦 
and µ𝑆 in eqn. (2), we obtain 

 
𝑔(𝑡𝑠𝑛+1

− 𝑡𝑠𝑛
) =  

𝐾𝑔(𝑡𝑥𝑛+1
− 𝑡𝑥𝑛

)𝑔(𝑡𝑦𝑛+1
− 𝑡𝑦𝑛

)

𝑝𝑥𝑛+1
𝑔(𝑡𝑥𝑛+1

− 𝑡𝑥𝑛
) + 𝑝𝑦𝑛+1

𝑔(𝑡𝑦𝑛+1
− 𝑡𝑦𝑛

)
     (3) 

where  𝐾 =
𝑠𝑔𝑛(𝜂𝑆)𝑝𝑥𝑛+1

𝑝𝑦𝑛+1

, 𝐾 ∈ (1, −1). 

Thus, from eqn. (3), the polarity and timing of the sum of the 
pulse trains is given by 𝑝𝑠𝑛+1

= 𝑠𝑔𝑛(𝜂𝑆) and 𝑡𝑠𝑛+1
− 𝑡𝑠𝑛

=
−1

𝛼
ln {1 −

𝐾𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

𝑝𝑥𝑛+1𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)+𝑝𝑥𝑛+1𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
} respectively.  

 
Proof of Theorem 2: Multiplication of pulse trains requires 

normalization by the identity pulse train R, which is a periodic 
pulse train corresponding to 𝑟(𝑡) = 1. Hence, by assuming 𝑥(𝑡) 
and 𝑦(𝑡) to be constant between consecutive pulses, we have     

 ∫ 𝑥𝑒−𝛼(𝑡𝑥𝑛+1−𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎
∫ 𝑦𝑒−𝛼(𝑡𝑦𝑛+1−𝑡)𝑑𝑡

𝑡𝑏

𝑡𝑎

∫ 𝑒−𝛼(𝑡𝑟𝑛+1−𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎

= µ𝑃 ∫ [𝑥𝑦]𝑒−𝛼(𝑡𝑝𝑛+1−𝑡)𝑑𝑡
𝑡𝑝𝑛+1

𝑡𝑝𝑛

 

(4) 

 
Using Observation 1, eqn. (4) is written as 𝜂𝑃 =

(𝑝𝑥𝑛+1𝑢)(𝑝𝑦𝑛+1𝑑)

𝑝𝑟𝑛+1𝑟
, where 𝑢 =

𝑔(𝑡𝑥𝑛+1−𝑡𝑎)−𝑔(𝑡𝑥𝑛+1−𝑡𝑏)

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)
,  𝑑 =

𝑔(𝑡𝑦𝑛+1−𝑡𝑎)−𝑔(𝑡𝑦𝑛+1−𝑡𝑏)

𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
, 𝑟 =

𝑔(𝑡𝑟𝑛+1−𝑡𝑎)−𝑔(𝑡𝑟𝑛+1−𝑡𝑏)

𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)
, µ𝑃 = |𝜂𝑃| 

and 𝑝𝑝𝑛+1
= 𝑠𝑔𝑛(𝜂𝑃).  

Substituting µ𝑃 in eqn. (4), we obtain  
 

𝑔(𝑡𝑝𝑛+1
− 𝑡𝑝𝑛

) =
𝑔(𝑡𝑥𝑛+1

− 𝑡𝑥𝑛
)𝑔(𝑡𝑦𝑛+1

− 𝑡𝑦𝑛
)

𝑔(𝑡𝑟𝑛+1
− 𝑡𝑟𝑛

)
 (5) 

Thus, from eqn. (5), the polarity and timing of the product of 
the pulse trains is given by 𝑝𝑝𝑛+1

= 𝑠𝑔𝑛(𝜂𝑃) and 𝑡𝑝𝑛+1
− 𝑡𝑝𝑛

=
−1

𝛼
ln {1 −

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)
} respectively. 

 
Proof of Theorem 3: Convolution of pulse trains requires 
convolution of underlying areas and hence, we have  
 

 ∫ 𝑥𝑒−𝛼(𝑡𝑥𝑛+1−𝑡)𝑑𝑡 ⊗
𝑡𝑏

𝑡𝑎
∫ 𝑦𝑒−𝛼(𝑡𝑦𝑛+1−𝑡)𝑑𝑡

𝑡𝑏

𝑡𝑎

∫ 𝑒−𝛼(𝑡𝑟𝑛+1−𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎

= µ𝐶 ∫ [𝑥 ⊗ 𝑦]𝑒−𝛼(𝑡𝑐𝑛+1−𝑡)𝑑𝑡
𝑡𝑐𝑛+1

𝑡𝑐𝑛

 

(6) 

Eqn. (6) is expressed as follows: 



 ∫ 𝑒−𝛼(𝑡𝑥𝑛+1−𝜏)𝑑𝜏
𝑡𝑏

𝑡𝑎

∫ 𝑒−𝛼(𝑡𝑟𝑛+1−𝜏)𝑑𝜏
𝑡𝑏

𝑡𝑎

[
1

𝛼
∫ (𝑒−𝛼(𝑡𝑦𝑛+1−𝑡𝑏+𝜆)

𝜆2

𝜆=𝜆1

− 𝑒−𝛼(𝑡𝑦𝑛+1−𝑡𝑏+𝜆)) 𝑑𝜆]

= µ𝐶 ∫ [∫ 𝑑𝛽
𝛽2

𝛽=𝛽1

] 𝑒−𝛼(𝑡𝑐𝑛+1−𝑡)𝑑𝑡
𝑡𝑐𝑛+1

𝑡𝑐𝑛

 

(7) 

 
Using Observation 1, the above equation is written as 𝜂𝐶 =

(𝑝𝑥𝑛+1𝑢)(𝑝𝑦𝑛+1𝑑)

𝛼𝑝𝑟𝑛+1𝑟
, where 𝑢 =

𝑔(𝑡𝑥𝑛+1−𝑡𝑎)−𝑔(𝑡𝑥𝑛+1−𝑡𝑏)

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)
,  𝑟 =

𝑔(𝑡𝑟𝑛+1−𝑡𝑎)−𝑔(𝑡𝑟𝑛+1−𝑡𝑏)

𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)
, µ𝐶 = |𝜂𝐶|, 𝑝𝑐𝑛+1

= 𝑠𝑔𝑛(𝜂𝐶), 𝑑 =

𝑔(𝑡𝑦𝑛+1−𝑡𝑎+𝜆2)−𝑔(𝑡𝑦𝑛+1−𝑡𝑏+𝜆2)−𝑔(𝑡𝑦𝑛+1−𝑡𝑎+𝜆1)+𝑔(𝑡𝑦𝑛+1−𝑡𝑏+𝜆1)

𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)
. 

By substituting µ𝐶  in eqn. (7), we obtain 
 

𝑔(𝑡𝑐𝑛+1
− 𝑡𝑐𝑛

) =
𝑔(𝑡𝑥𝑛+1

− 𝑡𝑥𝑛
)𝑔(𝑡𝑦𝑛+1

− 𝑡𝑦𝑛
)

(𝛽2 − 𝛽1)𝑔(𝑡𝑟𝑛+1
− 𝑡𝑟𝑛

)
   (8) 

Thus, from eqn. (8), the polarity and timing of the product of 
the pulse trains is given by 𝑝𝑐𝑛+1

= 𝑠𝑔𝑛(𝜂𝐶) and 𝑡𝑐𝑛+1
−

𝑡𝑐𝑛
=

−1

𝛼
ln {1 −

𝑔(𝑡𝑥𝑛+1−𝑡𝑥𝑛)𝑔(𝑡𝑦𝑛+1−𝑡𝑦𝑛)

(𝛽2−𝛽1)𝑔(𝑡𝑟𝑛+1−𝑡𝑟𝑛)
} respectively.  

 
Error bounds for pulse arithmetic: The assumption that 𝑥(𝑡) is 
a constant 𝑥 between 𝑡𝑎 and 𝑡𝑏 in eqns. (2), (4), and  (6) yields 
an error 𝛿𝑋 in the area of the pulse train 𝑋 generated by IFC, 
where 𝛿𝑋 = ∫ [𝑥(𝑡) − 𝑥]𝑒−𝛼(𝑡𝑥𝑛+1−𝑡)𝑑𝑡.

𝑡𝑏

𝑡𝑎
 From the mean value 

theorem [38], we have 𝛿𝑋 = [𝑥(𝑧1) − 𝑥]𝑒−𝛼(𝑡𝑥𝑛+1−𝑧1)(𝑡𝑏 −
𝑡𝑎) where 𝑡𝑎 ≤ 𝑧1 ≤ 𝑡𝑏. This quantity of error is bounded by 
|𝑡𝑏 − 𝑡𝑎| |

𝑥(𝑧1)−𝑥

𝑒
𝛼(𝑡𝑥𝑛+1−𝑡𝑎)

| ≤ |𝛿𝑋| = |𝑡𝑏 − 𝑡𝑎| |
𝑥(𝑧1)−𝑥

𝑒
𝛼(𝑡𝑥𝑛+1−𝑧1)

| ≤

|𝑡𝑏 − 𝑡𝑎| |
𝑥(𝑧1)−𝑥

𝑒
𝛼(𝑡𝑥𝑛+1−𝑡𝑏)

| since 𝑒−𝑡 is a monotonically decreasing 

function for 𝑡 > 0. So, we have 
min

𝑧∈[𝑡𝑎,𝑡𝑏]
|𝑥(𝑧)−𝑥|

𝑒
𝛼(𝑡𝑘𝑛+1

−𝑡𝑎)
≤

|𝛿𝑋|

(𝑡𝑏−𝑡𝑎)
≤

max
𝑧∈[𝑡𝑎,𝑡𝑏]

|𝑥(𝑧)−𝑥|

𝑒
𝛼(𝑡𝑘𝑛+1

−𝑡𝑏)
. Hence, the error in each interval depends on the 

length of the interval (𝑡𝑏 − 𝑡𝑎) and the deviation of 𝑥(𝑡) from 
𝑥 in [𝑡𝑎, 𝑡𝑏].  
 
The error 𝛿𝑋+𝑌 resulting from the addition of two pulses, with 
the assumption of 𝑥(𝑡) = 𝑥 and 𝑦(𝑡) = 𝑦 between consecutive 
pulses, is given by the quadrature formula [39],  𝛿𝑋+𝑌 =   

{(𝛿𝑋)2 + ( 𝛿𝑌)2}
1

2 and bounded by 
min

𝑧∈[𝑡𝑎,𝑡𝑏]
(𝑥(𝑧)−𝑥)2

𝑒
2𝛼(𝑡𝑥𝑛+1−𝑡𝑎)

+

min
𝑧∈[𝑡𝑎,𝑡𝑏]

(𝑦(𝑧)−𝑦)2

𝑒
2𝛼(𝑡𝑦𝑛+1−𝑡𝑎)

≤
𝛿𝑋+𝑌

2

(𝑡𝑏−𝑡𝑎)2 ≤
max

𝑧∈[𝑡𝑎,𝑡𝑏]
(𝑥(𝑧)−𝑥)2

𝑒
2𝛼(𝑡𝑥𝑛+1−𝑡𝑏)

+
max

𝑧∈[𝑡𝑎,𝑡𝑏]
(𝑦(𝑧)−𝑦)2

𝑒
2𝛼(𝑡𝑦𝑛+1−𝑡𝑏)

. 
 
The error 𝛿𝑋𝑌 due to the product of two pulses, with the 
assumption of 𝑥(𝑡) = 𝑥 and 𝑦(𝑡) = 𝑦 between consecutive 

pulses, is given by the formula [39], 𝛿𝑋𝑌 = |
𝐾1𝐾2𝜃

𝐾3
| [(

𝛿𝑋

𝐾1𝜃
)

2

+

(
𝛿𝑌

𝐾2𝜃
)

2

]

1

2
 where ∫ 𝑥(𝑡)𝑒−𝛼(𝑡𝑥𝑛+1−𝑡)𝑑𝑡 =

𝑡𝑏

𝑡𝑎
𝐾1𝜃, 

∫ 𝑦(𝑡)𝑒−𝛼(𝑡𝑦𝑛+1−𝑡)𝑑𝑡 =
𝑡𝑏

𝑡𝑎
𝐾2𝜃, ∫ 𝑒−𝛼(𝑡𝑟𝑛+1−𝑡)𝑑𝑡 =

𝑡𝑏

𝑡𝑎
𝐾3𝜃, and 

bounded by  
𝐾2

2 min
𝑧∈[𝑡𝑎,𝑡𝑏]

(𝑥(𝑧)−𝑥)2

𝑒
2𝛼(𝑡𝑥𝑛+1−𝑡𝑎)

+
𝐾1

2 min
𝑧∈[𝑡𝑎,𝑡𝑏]

(𝑦(𝑧)−𝑦)2

𝑒
2𝛼(𝑡𝑦𝑛+1−𝑡𝑎)

≤

(
𝐾3

𝑡𝑏−𝑡𝑎
)

2

𝛿𝑋𝑌
2 ≤

𝐾2
2 max

𝑧∈[𝑡𝑎,𝑡𝑏]
(𝑥(𝑧)−𝑥)2

𝑒
2𝛼(𝑡𝑥𝑛+1−𝑡𝑏)

+
𝐾1

2 max
𝑧∈[𝑡𝑎,𝑡𝑏]

(𝑦(𝑧)−𝑦)2

𝑒
2𝛼(𝑡𝑦𝑛+1−𝑡𝑏)

. 
 
Likewise, it is straight–forward to show that error 𝛿𝑋⊗𝑌 due to 
the convolution of two overlapping pulse segments, with the 
assumption of 𝑥(𝑡) = 𝑥 and 𝑦(𝑡) = 𝑦 between consecutive 

pulses, is bounded by 
𝐾2

2 min
𝑧∈[𝑡𝑎,𝑡𝑏]

(𝑥(𝑧)−𝑥)2

𝑒
2𝛼(𝑡𝑥𝑛+1−𝑡𝑎)

+

𝐾1
2 min

𝑧′∈[ 𝜆1−𝑡𝑏 ,𝜆2− 𝑡𝑎]
(𝑦(𝑧′)−𝑦)2

𝑒
2𝛼(𝑡𝑦𝑛+1−(𝜆1−𝑡𝑏 ))

≤ (
𝐾3

(𝑡𝑏−𝑡𝑎)(𝜆2−𝜆1)
)

2

𝛿𝑋⊗𝑌
2 ≤

𝐾2
2 max

𝑧∈[𝑡𝑎,𝑡𝑏]
(𝑥(𝑧)−𝑥)2

𝑒
2𝛼(𝑡𝑥𝑛+1−𝑡𝑏)

+ 

𝐾1
2 max

𝑧′∈[ 𝜆1− 𝑡𝑏,𝜆2− 𝑡𝑎 ]
(𝑦(𝑧′)−𝑦)2

𝑒
2𝛼(𝑡𝑦𝑛+1−(𝜆2−𝑡𝑎 ))

. 
 
Notice that these errors refers to a local error within a pulse 
interval. The global mean error during a segment of a signal is 
the sum of local errors divided by the number of pulse intervals 
in that segment. However, this number depends upon the 
structure of the input signal, and the values of IFC parameters. 
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