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We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first set of
positive results that go beyond the standard but unrealistic setting of item-independence. In particular, we
consider settings where bidders’ valuations are drawn from correlated distributions that can be captured by
Markov Random Fields or Bayesian Networks — two of the most prominent graphical models. We establish
parametrized sample complexity bounds for learning an up-to-¢ optimal mechanism in both models, which
scale polynomially in the size of the model, i.e. the number of items and bidders, and only exponential in the
natural complexity measure of the model, namely either the largest in-degree (for Bayesian Networks) or the
size of the largest hyper-edge (for Markov Random Fields).

We obtain our learnability results through a novel and modular framework that involves first proving a
robustness theorem. We show that, given only “approximate distributions” for bidder valuations, we can learn
a mechanism whose revenue is nearly optimal simultaneously for all “true distributions” that are close to the
ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to learn approximate
distributions. When item values are independent, learning in Prokhorov distance is immediate, hence our
framework directly implies the main result of Gonczarowski and Weinberg [36]. When item values are sampled
from more general graphical models, we combine our robustness theorem with novel sample complexity
results for learning Markov Random Fields or Bayesian Networks in Prokhorov distance, which may be of
independent interest. Finally, in the single-item case, our robustness result can be strengthened to hold under
an even weaker distribution distance, the Lévy distance.
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1 INTRODUCTION

A central problem in Economics and Computer Science is the design of revenue-optimal auctions.
The problem involves a seller who wants to sell one or more items to one or more strategic bidders.
As bidders’ valuation functions are private, no meaningful revenue guarantee can be achieved
without any information about these functions. To remove this impossibility, it is standard to make
a Bayesian assumption, whereby a joint distribution from which bidders’ valuations are drawn is
assumed common knowledge, and the goal is to design an auction that maximizes expected revenue
with respect to this distribution.

In the single-item setting, a celebrated result by Myerson characterizes the optimal auction when
bidder values are independent [49]. The quest for optimal multi-item auctions has been quite more
challenging. It has been recognized that revenue-optimal multi-item auctions can be really complex
and may exhibit counter-intuitive properties [9, 22, 23, 39, 40]. As such, it is doubtful that there is a
clean characterization similar to Myerson’s for the optimal multi-item auction. On the other hand,
there has been significant recent progress in efficient computation of revenue-optimal auctions [2-
4,8, 10, 12-14, 16, 18, 19, 24]. This progress has enabled the identification of simple auctions (mostly
variants of sequential posted pricing mechanisms) that achieve constant factor approximations to
the optimum revenue [6, 15, 17, 20, 56], under item-independence assumptions.l

Making Bayesian assumptions in the study of revenue-optimal auctions is both crucial and fruitful.
However, to apply the theory to practice, we would need to know the underlying distributions.
Where does such knowledge come from? A common answer is that we estimate the distributions
through market research or observation of bidder behavior in previously run auctions. Unavoidably,
errors will creep in to the estimation, and a priori it seems possible that the performance of our
mechanisms may be fragile to such errors. This has motivated a quest for optimal or approximately
optimal mechanisms under imperfect knowledge of the underlying distributions.

This problem has received lots of attention from Theory of Computation recently. The focus has
been on whether optimal or approximately optimal mechanisms are learnable given sample access
to the true distributions. In single-item settings, where Myerson’s characterization result applies,
it is possible to learn up-to-¢ optimal auctions [21, 28, 32, 35, 41, 46, 48, 52].2 A recent paper by
Guo et al. [37] provides upper and lower bounds on the sample complexity, which are tight up to
logarithmic factors, thereby rendering a nearly complete picture for the single-item case.

In multi-item settings, largely due to the lack of simple characterizations of optimal mechanisms,
results have been sparser. Recent work [11, 34, 48, 55] has shown how to learn simple mechanisms
which attain a constant factor of the optimum revenue using polynomially many samples in the
number of bidders and items. Last year, a surprising result by Gonczarowski and Weinberg [36]
shows that the sample complexity of learning an up-to-¢ optimal mechanism is also polynomial.®
However, all these results rely on the item-independence assumption mentioned earlier, which limits
their applicability. A main goal of our work is the following:

Goal I: Push the boundary of learning (approximately) optimal multi-item auctions to the
important setting of item dependence.

Unfortunately, it is impossible to learn approximately optimal auctions from polynomially many
samples under general item dependence. Indeed, an exponential sample complexity lower bound

ntuitively, item independence means that each bidder’s value for each item is independently distributed, and this definition
has been suitably generalized to set value functions such as submodular or subadditive functions [53].

2The term “up-to-¢ optimal” introduced in [36] means an additive ¢ - H approximation for distributions supported on [0, H].
Under tail assumption on the distribution, it is also possible to obtain (1 — ¢)-multiplicative approximations.

3In particular, they learn a mechanism that is O(¢)-truthful and has up-to-¢ optimal revenue.
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has been established by Dughmi et al. [31] for even a single unit-demand buyer. Arguably, however,
in auction settings, as well as virtually any high-dimensional setting, the distributions that arise are
not arbitrary. Arbitrary high-dimensional distributions cannot be represented efficiently, and are
known to require exponentially many samples to learn or even perform the most basic statistical
tests on them; see e.g. [25] for a discussion. Accordingly a large focus of Statistics and Machine
Learning has been on identifying structural properties of high-dimensional distributions, which
enable succinct representation, efficient learning, and efficient statistical inference. In line with this
literature, we propose learning multi-item auctions under the assumption that item values are jointly
sampled from a high-dimensional distribution with structure.

There are several widely-studied probabilistic frameworks which allow modeling structure in a
high-dimensional distribution. In this work we consider two of the most prominent ones: Markov
Random Fields (MRFs) and Bayesian Networks, a.k.a. Bayesnets, which are the two most common types
of graphical models. Both MRFs and Bayesnets have been studied in Machine Learning and Statistics
for decades. Both frameworks can be used to express arbitrary high-dimensional distributions.
Their advantage, however, is that they are associated with natural complexity parameters which
allow tuning the dependence structure in the distributions they model, from product measures
all the way up to arbitrary distributions. In Figure 1, we show a very simple example illustrating
how naturally these models express dependence structure in a distribution. The figure shows a
Bayesnet, which samples the values of a buyer for four items. The structure of the Bayesnet implies
(see Definition 11) that these values are sampled conditionally independently, conditioning on
the value of the variable at the root of the Bayesnet which is the state of the buyer’s residence.
The node is shaded because we assume that the corresponding variable is not observable. The
pertinent question is how we might exploit the structure of the distribution, as captured by the
natural complexity parameter of an MRF or a Bayesnet, to efficiently learn a good mechanism. At a
high level, there are two components to the problem of learning approximately optimal auctions.
One is inference from samples, i.e. extracting information about the distribution using samples. The
other is mechanism design, i.e. constructing a good mechanism using the information extracted. A
main goal of our work is:

Goal II: Provide a modular approach for learning multi-item auctions which decouples the
Inference and Mechanism Design components, so that one may leverage all techniques
from Machine Learning and Statistics to tackle the first and, independently, leverage
all techniques from Mechanism Design to address the second.

Unfortunately, the Statistical and Mechanism design components are complexly intertwined
in prior work on learning multi-item auctions. Specifically, [11, 36, 47, 55] are PAC-learning
approaches, which require a fine balance between (i) selecting a class of mechanisms that is rich
enough to contain an approximately optimal one for a class of distributions; and (ii) having small
enough statistical complexity so that the performance of all mechanisms in the class on a small
sample is representative of their performance with respect to the whole distribution, and so that a
small sample suffices to select a good mechanism in the class. See the related work section for a
detailed discussion of these works and their natural limitations. Our goal in this work is to avoid a
joint consideration of (i) and (ii). Rather we want to obtain a learning framework that separates
Mechanism Design from Statistical Inference, based on the following:

(i) find an algorithm M, which given a distribution F in some family of distributions ¥, computes
an (approximately) optimal mechanism M(F) when bidders’ valuations are drawn from F;

(ii)’ find an algorithm £, which given sample access to a distribution F from the family of
distributions ¥ learns a distribution £ (F) that is close to F in some distribution distance d.
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Achieving (i)’ and (ii)’ is of course not enough, unless we also guarantee the following:

(iii)’ given an (approximately) optimal mechanism M for some F there is a way to transform M
to some M’ that is approximately optimal for any distribution F’ that is close to F under
distribution distance d.

Given (i)’ (iii)’, the learnability of (approximately) optimal mechanisms for a family of distributions
¥ can be established as follows: (a) Given sample access to some distribution F € ¥ we use
L to learn some distribution F’ that is close to F under d; (b) we then use M to compute an
(approximately) optimal mechanism M’ for F’; and (c) finally, we use (iii)’ to argue that M’ can be
converted to a mechanism M that is (approximately) optimal for F because M is (approximately)
optimal for any distribution that is close to F’.

Clearly, (iii)’ is important for decoupling (i)’ —i.e. computing (approximately) optimal mechanisms
for a family of distributions ¥, and (ii)’—i.e. learning distributions in . At the same time, it is
important in its own right:

Goal III: Develop robust mechanism design tools, allowing to transform a mechanism M
designed for some distribution F into a mechanism Myt Which attains similar per-
formance simultaneously for all distributions that are close to F in some distribution
distance of interest.

The reason Goal Il is interesting in its own right is that oftentimes we actually have no sample
access to the underlying distribution over valuations. It is possible that we estimate that distribution
through market research or econometric analysis in related settings, so we only know some
approximate distribution. In other settings, we may have sample access to the true distribution but
there might be errors in measuring or recording those samples. In both cases, we would know some
approximate distribution F that is close to the true distribution under some distribution distance,
and we would want to use F to identify a good mechanism for the unknown distribution that is
close to F. Clearly, outputting a mechanism M that attains good performance under F might be a
terrible idea as this mechanism might very well overfit the details of F. So we need to “robustify”
M. A similar goal was pursued in the work of Bergemann and Schlag [7], for single-item and
single-bidder settings, and in the work of Cai and Daskalakis [11], for robustifying a specific class
of mechanisms under item-independence. Our goal here is to provide a very general robustification
result.

1.1  Our Results

We discuss our contributions in the setting of additive bidders, whose values for the items are not
necessarily independent. Our results hold for quite more general valuations, including constrained
additive and any family of Lipschitz valuations (Definition 2), but we do not discuss these here to
avoid overloading our notation. We will denote by n the number of bidders, and by m the number
of items. We will also assume that the bidders’ values for the items lie in some bounded interval
[0, H].

Our Robustness Results (cf. Goal IIl above). The setting we consider is the following. We are given
a collection of model distributions D = {D;};c[n], one for each bidder i = 1, ..., n. We do not know
the true distributions D = {D i samphng the valuations of the bidders, and the only information
we have about each D is that d(D;, D; i) < ¢, under some distribution distance d(-, -)—we will
discuss distances shortly.

Our goal is to design a mechanism that performs well under any possible collection of true
distributions {@,} ; that are close to their corresponding distributions {9;}; under d. We show that
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Setting Distance d Robustness Continuity

A J Rev (1, @) 2 OPT (D) - O (nHe) |OPT (D) - OPT(.’D)) < O(nHe)
Single || Kolmogrov M is IR and DSIC (Theorem 5)

Item (Theorem 5) eore

Rev (1\71 13) > OPT (13) - O(nHe)
Lévy M is IR and DSIC
(Theorem 4)

|oPT (D) - OPT(D)| < O(nHe)
(Corollary 1)

Rev (i, D) 2 OPT, (D) - O (wmHe + nmH ne) ‘OPT(@) —OPT(D)’ < O (w2mHe + nmHV)

Multiple 1Y M is IR and n- BIC w.rt. D, where n =0 (n*mHze)
(Theorem 6)
Items (Theorem 7)
Rev (A71 f)) > OPT, (f)) -0 (nn + n\/qu) |OPT(D) - OPT(5)| <0 (ng + m/mH_f)
Prokhorov | 7 is IR and n- BIC w.rt. D, where n=0 (ans + mVan) where £ = O (ans + mVan)
(Theorem 7) (Theorem 6)

Table 1. Summary of Our Robustness and Revenue Continuity Results. Recall that the true bidder distributions D are unknown, and
that M is the robustified mechanism returned by our algorithm given an optimal mechanism M for a collection of bidder distributions
D that are e-close to D under distribution distance d. REV(]VI, 23) denotes the revenue of M when the bidder distributions are D. For a
collection of bidder distributions ¥, OPT(¥) is the optimal revenue attainable by any BIC and IR mechanism under distributions ¥, and
OPT,(¥) denotes the optimum revenue attainable by any 1-BIC and IR mechanism under #. Not included in the table are approximation
preserving robustification results under TV and Prokhorov closeness. We show that we can transform any c-approximation M w.r.t. D to a
robust mechanism M, so that M is almost a c-approximation w.r.t. D. The results included in the table are corollaries of this more general
result when ¢ = 1. See our theorem statements for the complete details. Moreover, if there is only a single bidder, we can strengthen our
robustness results in multi-item settings so that M is IC instead of n-1C (see Theorem 8). Our continuity results hold for any O and D as
long as d(D;, D;) < & for each bidder i.

there are robustification algorithms, which transform a mechanism M into a robust mechanism
M that attains similar revenue to that of M under D, except that M’s revenue guarantee holds
simultaneously for any collection D that is close to D. Applying our robustification algorithm to
the optimum mechanism for D allows us to obtain the results reported in the first three columns of
Table 1. DSIC and BIC refer to the standard properties of Dominant Strategy and Bayesian Incentive
Compatibility of mechanisms, IR refers to the standard notion of Individual Rationality, and y-BIC
is the standard notion of approximate Bayesien Incentive Compatibility. For completeness these
notions are reviewed in Appendix B.

Some remarks are in order. First, in multi-item settings, it is unavoidable that our robustified
mechanism is only approximately BIC, as we do not know the true distributions. In single-item
settings, the optimal mechanism is DSIC, and we can indeed robustify it into a mechanism M that is
DSIC. In the multi-item case, however, it is known that DSIC mechanisms sometimes can extract at
most a constant fraction of the optimal revenue [57], so it is necessary to consider BIC mechanisms
and the BIC property is fragile to errors in the distributions.

Second, we consider several natural distribution distances. In multi-item settings, we consider
both the Prokhorov and the Total Variation distance. In single-item settings, we consider both the
Lévy and the Kolmogorov distance. Please see Section 2 for formal definitions of these distances and
a discussion of their relationships, and their relationship to other standard distribution distances.
We note that the Lévy distance for single-dimensional distributions, and the Prokhorov distance for
multi-dimensional distributions are quite permissive notions of distribution distance. This makes
our robustness results for these distances stronger, automatically implying robustness results under
several other common distribution distances.

Finally, en route to proving our robustness results, we show a result of independent interest,
namely that the optimal revenue is continuous with respect to the distribution distances that we consider.
Our continuity results are summarized in the last column of Table 1. Note that the continuity results
are substantially easier to establish than the robustness results, please see Section 1.2 for details.
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Learning Multi-Item Auctions Under Item Dependence (cf. Goal I above). In view of our robustness
results, presented above, the challenge of learning near-optimal auctions given sample access to the
bidders’ valuation distributions, becomes a matter of estimating these distributions in the required
distribution distance, depending on which robustification result we want to apply.

When the item values are independent, learning bidders’ type distributions in our desired
distribution distances is immediate. So we easily recover the guarantees of the main theorem
of [36]. These guarantees are summarized in the second row of Table 2, and are expanded upon in
Theorem 9.

But a main goal of our work (namely Goal I from earlier) is to push the learnability of auctions well
beyond item-independence. As stated earlier, it is impossible to attain learnability from polynomially
many samples for arbitrary joint distributions over item values so we consider the well-studied
frameworks of MRFs and Bayesnets. These frameworks are flexible and can model any distribution,
but they have a tunable complexity parameter whose value controls the dependence structure.
This parameter is the maximum clique size of an MRF and maximum in-degree of a Bayesnet. We
will denote this complexity parameter d in both cases. Recall that we also used d(:, -) to denote
distribution distances. To disambiguate, whenever we study MRFs or Bayesnets, we make sure
to use d(-,-), with parentheses, to denote distribution distances. Note that a small value of the
complexity parameter d does not mean that the corresponding MRF or Bayesnet does not have
correlations among every pair of item values. Many natural MRF structures, with d = 2, and
Bayesnet structures, with d = 1, permit distributions where all the variables are correlated, and
indeed any pair of variables remain correlated even after conditioning on the values of all the other
variables. In Figure 1, we show a simple such example where the values of a bidder on four items
are sampled from a Naive Bayes Model, which is a very simple type of Bayesnet with d = 1. While
even small values of d allow all pairs of variables to be correlated even conditioning on everything
else, the complexity parameter d forbids arbitrary dependence structures. Indeed, this is the reason
why MRFs and Bayesnets are so prevalent. They allow rich dependent structures but not arbitrary
ones, unless their complexity parameter d is tuned up to its maximum possible value, i.e. equal
to the total number of variables, in which case they can express any dependence structure. In
particular, a model of complexity d can express arbitrary dependence on subsets of d (for MRFs)
or d + 1 (for Bayesnets) variables, and it allows some dependence structures on larger subsets of
variables depending on the graphical structure of the model.

State of
Residence

sunglasses surfboard

Fig. 1. The values of a buyer for an umbrella, a pair of sunglasses, a pair of skis, and a surfboard are sampled from a Naive Bayes model.
These values are sampled conditionally independently conditioning on the value of the variable at the root of the network, which is the state
of the buyer’s residence. This variable is latent, i.e. non-observable, and this is why the corresponding node of the network is shaded blue.
The distribution over (Vumbrellas Usunglassess Uskis» Usurtboard) has the property that any pair of values remain correlated even conditioning
on all the other values, unless the conditional distributions in the Bayesnet have special structure.

Now, in order to learn near-optimal mechanisms when item values for each bidder are sampled
from an MRF or a Bayesnet of certain complexity d, our robustness results reassure us that it
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suffices to learn MRFs and Bayesnets under Total Variation or Prokhorov distance, depending on
which multi-item robustenss theorem we seek to apply. So we need an upper bound on the sample
complexity necessary to learn MRFs and Bayesnets. One of the contributions of our paper is to
provide very general sample complexity bounds for learning these distributions, as summarized in
Theorems 12 and 13 for MRFs and Bayesnets respectively. In both theorems, V is the set of variables,
d is the complexity measure of the underlying distribution, and ¢ is the distance within which we
are seeking to learn the distribution. Each theorem has a version when the variables take values in
a finite alphabet ¥, and a version when the variables take values in some interval ¥ = [0, H]. In
the first case, we provide bounds for learning in the stronger notion of Total Variation distance.
In the second case, since we are learning from finitely many samples, we need to settle for the
weaker notion of Prokhorov distance. For the same reason, we need to make some Lipschitzness
assumption on the density, so our sample bounds depend on the Lipschitzness C of the MRF’s
potential functions and the Bayesnet’s conditional distributions.

The sample bounds we obtain for learning MRFs and Bayesnets are directly reflected in the
sample bounds we obtain for learning multi-item auctions when the item-values are sampled
from an MRF or a Bayesnet respectively, as summarized in the last two rows of Table 2. Indeed,
the sample complexity for learning auctions is entirely due to the sample complexity needed to
learn the underlying item-distribution. In all cases we consider, the complexity is polynomial in
number of variables n = |V| and only depends exponentially in d, the complexity of the distribution,
and this is unavoidable. 4

Setting Revenue Guarantee and Sample Complexity | Prior Result Technique
Item up-to-¢ optimal, #-BIC (Theorem 9) recovers main Prokhorov Robustness +
Independence poly (n, m, H, 1/¢, 1/n, log(1/6)) result of [36] Learnability of Product Dist. (Folklore)

up-to-¢ optimal, #7-BIC (Theorem 10)
MRF poly (n, m, |21, H, 1/1, 1/e, log(1/5)) (Finite 3) unknown Prokhorov Robustness +

 CHd Learnability of MRFs (Theorem 12)
poly (n, m?", (S2)4, 1/, log(1/8)) (= = [0, H])

up-to-¢ optimal, #-BIC (Theorem 11)
Bayesnet poly (n, d, m, |Z|9 H, 1/n, 1/e, log(l/ﬁ)) (Finite %) unknown I?rlokhorov Robustness +

d+1 . d+1 (CH\d+1 Learnability of Bayesnets (Theorem 13)
poly (. d*1, m+1, (CH )41, 1/ 10g(1/3)) (5 = [0, H])

Table 2. Summary of Our Sample-based Results. We denote by X the support of each item-marginal, taken to equal the interval [0, H] in
the continuous case, we use § for the failure probability, and use d to denote the standard complexity measure of the graphical model used
to model item dependence, namely the size of the maximum hyperedge in MRFs and the largest in-degree in Bayesnets. For both MRFs
and Bayesnets we allow latent variables and we also do not need to know the underlying graphical structure. Moreover, for continuous
distributions, our results require Lipschitzness of potential functions in MRFs and conditional distributions in Bayesnets, which we denote
with C. Finally, if there is only a single bidder, the mechanism we learnt is strengthened to be IC instead of 7-IC. See our theorem statements
for our complete results.

Our sample bounds improve if the underlying graph of the MRF or Bayesnet are known and,
importantly, without any essential modifications our sample bounds hold even when there are latent,
i.e. unobserved, variables in the distribution. This makes both our auction and our distribution learning
results much more richly applicable. As a simple example of the modeling power of latent variables,
situations can be captured where an unobserved random variable determines the type of a bidder,

and conditioning on this type the observable values of the bidder for different items are sampled.

4Note that the example by Dughmi et al. [31] can be captured by an MRF or Bayesnet with d = O(m), and it is shown
in [31] that the sample complexity for learning a mechanism that is a constant factor approximation to the optimal revenue
in this example is at least 220"
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Finally, it is worth noting that our sample bounds for learning MRFs (i.e. Theorem 12) provide
broad generalizations of the bounds for learning Ising models and Gaussian MRFs presented in
recent work of Devroye et al [30]. Their bounds are obtained by bounding the VC complexity
of the Yatracos class induced by the distributions of interest, while our bounds are obtained by
constructing e-nets of the distributions of interest, and running a tournament-style hypothesis
selection algorithm [1, 26, 29] to select one distribution from the net. Since the distribution families
we consider are non-parametric, our main technical contribution is to bound the size of an ¢-net
sufficient to cover the distributions of interest. Interestingly, we use properties of linear programs
to argue through a sequence of transformations that the net size can be upper bounded in terms of
the bit complexity of solutions to a linear program that we construct.

1.2 Roadmap and Technical Ideas

In this section, we provide a roadmap to the paper and survey some of our technical ideas.

Single-item Robustness (Appendix C). We consider first the setting where the model distribution
D is e-close to the true, but unknown distribution D in Kolmogorov distance. In this case, we
argue directly that Myerson’s optimal mechanism [49] for D is approximately optimal for any
distribution that is in the e-Kolmogorov-ball around 9, which includes D (Theorem 5). The idea
is that the revenue of the optimal mechanism can be written as an integral over probabilities of
events of the form: does v; lie in a certain interval [a, b]? Since D and D are e-close in Kolmogorov
distance, the probabilities of all such events are within ¢ of each other, which implies that the
revenues under D and D are also close. Finally, note that Myerson’s optimal mechanism is DSIC
and IR, so it is truthful and IR w.r.t. any distribution.

Unfortunately, the same idea fails for Lévy distance, as the difference in the probabilities of the
event that a certain v; lies in some interval [a, b] under D and D can be as large as 1 even when
D and D are e-close in Lévy distance. (Indeed, consider two single point distributions: a point
mass at A and a point mass at A — ¢; their probabilities of falling in the interval [A — ¢/2, A + /2]
are respectively 1 and 0.) We thus prove our robustness result for Lévy distance via a different
route. Given any model distribution D, we first construct the “worst” distribution D and the “best”
distribution D in the ¢-Lévy ball around D: this means that, for any D that lies in the e-Lévy ball
around D, D first-order stochastically dominates © and is dominated by D (see Definition 7). We
choose our robust mechanism M to be Myerson’s optimal mechanism for D. It is not hard to argue
that M’s revenue under D is at least OPT(D), the optimal revenue under the “worst” distribution
(Lemma 8), due to the revenue monotonicity lemma (Lemma 7) shown in [28]. The statement
provides a lower bound of M’s revenue under the unknown true distribution 9. To complete the
argument, we need to argue that OPT(@) cannot be too much larger than OPT(D). Indeed, we
relax OPT(ZS) to OPT(D), and show that even the optimal revenue under the “best” distribution
OPT(D) ~ OPT(D). To do so, we construct two auxiliary distributions P and Q, such that (i)
OPT(P) ~ OPT(Q); and (ii) P and D are e-close in Kolmogorov distance, and Q and D are e-close
also in Kolmogorov distance. Our robustness theorem under Kolmogorov distance (Theorem 5)
implies then that OPT(P) ~ OPT(D) and OPT(Q) ~ OPT(D). Hence, OPT(D) ~ OPT(D), which
completes our proof.

Multi-item Robustness (Section 3). We first discuss our result for total variation distance. Unfortu-
nately, our approach for Lévy distance—of simply choosing the optimal mechanism for the “worst,”
in the first-order stochastic dominance sense, distribution in the e-TV-ball around D to be our robust
mechanism—no longer applies. Indeed, it is known that the optimal revenue in multi-item auctions
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may be non-monotone with respect to first-order stochastic dominance [40], i.e. a distribution may
be stochastically dominated by another but result in higher revenue. However, if O and D are
e-close in total variation distance, this means that there is a coupling between D and D under
which the valuation profiles are almost always sampled the same. If we take the optimal mechanism
M for D, and apply to bidders from 13, it will produce almost the same revenue under @, and
vice versa. Indeed, the only event under which M may generate different revenue under the two
distributions is when the coupling samples different profiles, but this happens with small probability.
Similarly, the BIC and IR properties of M under D become slightly approximate under D. We
claim that we can massage M, in a way oblivious to D, to produce a (poly(n, m, H) - ¢)-truthful and
exactly IR mechanism M for D, which achieves an up-to-(poly(n, m, H) - ¢) revenue (Theorem 1).

The main challenge is when D and D are only ¢-close in Prokhorov distance. Note that two
distributions within Prokhorov distance ¢ may have total variation distance 1. Just imagine two
point masses: one at A and another at A — ¢. So Prokhorov robustness is not directly implied
by TV robustness.

Why Standard Discretization Arguments are Insufficient? Unlike standard algorithmic
problems, discretization is subtle in mechanism design. Due to the presence of incentives, a small
change in the bidders’ value distributions may change the distribution of outcomes of the mech-
anism dramatically. To perform discretization in mechanism design, a standard procedure goes
as follows [5, 36, 45]: let D be the true distribution, and D be the distribution after discretiza-
tion; design the optimal mechanism M for O; to run M on a bid vector b from D, discretize it to

y(®) = (y1(b1), . - ., yn(by)) and apply mechanism M on y(b). This procedure can be generahzed to
any pair of distributions 9 and D as long as, we are e given a coupling y(-) between D and D that
maps any bid vector b in the support of distribution D to a bit vector y(b) in the support of D. If for
every bidder i, b; and y;(b;) are close with all but small probability, we can apply similar arguments
as in the total variation robustness result to massage the mechanism above to be nearly-truthful
and exactly IR for D, and argue it is approximately revenue optimal. Clearly, in the context of
discretization, b; and y;(b;) are guaranteed to be close if the discretization is sufficiently fine.

At first glance, this procedure may seem applicable to our problem. A characterization of
Prokhorov distance due to Strassen (Theorem 2) shows that: two distributions P and Q are ¢-
close in Prokhorov distance if and only if there exists a (potentially randomized) coupling y such
that if random variable s is distributed according to P, then y(s) is distributed according to Q and
Pr [Ils -yl > s] < &.If M is the optimal mechanism for the model distribution D, and D is the
true distribution that is e-close to D, why can’t we combine the procedure above with the coupling
Y to establish our Prokhorov robustness result?

Unfortunately, this approach is insufficient due to the following two issues: (i) The procedure
relies on knowing the coupling y. As we do not even know D, how can we know the coupling? (ii)
Even if we can identify the coupling y between D and a specific D, the procedure above constructs
a mechanism that depends on the coupling y. However, y may change for every different D in the
e-Prokhorov-ball around D, so the procedure generates a different mechanism for every possible
true distribution. 3

To satisfy our requirement for a robust mechanism in Goal III, we need to construct a single
mechanism that is nearly truthful, IR, and near-optimal simultaneously for every distribution
in the e-Prokhorov-ball around 9. Our proof relies on a novel way to “simultaneously couple”

5Tt is worth noting that the procedure can indeed be employed to prove the Prokhorov continuity, as the the pure existence
of a good coupling y between D and D suffices.
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D with every distribution D in the e-Prokhorov-ball around D. If we round both O and any
D to a random grid G with width Ve, we can argue that the expected total variation distance
(over the randomness of the grid) between the two rounded distributions D¢ and Dg is O(We)
(Lemma 2). Now consider the following mechanism: choose a random grid G, round the bids to
the random grid, apply the optimal mechanism Mg that is designed for Dg. Our robustness result
under the total variation distance implies that for every realization of the random grid G, Mg is

0] (poly(n, m,H) - || D¢ - Dg TV)-truthful and up-to-O (poly(n, m,H) - ‘

D¢ — DGH ) revenue
TV

optimal for any Dg. Since the expected value (over the randomness of the grid) of

Do - @GH
TV

is O(+/e) for any D in the e-Prokhorov-ball of D, our randomized mechanism is simultaneously
O (poly(n, m, H) - v¢)-truthful and up-to-O (poly(n, m, H) - v/¢) revenue optimal for all distribu-
tions in the e-Prokhorov-ball around D.¢

Sample Complexity Results. In Section F, we apply our robustness theorem to obtain sample
bounds for learning multi-item auctions under the item-independence assumption (Theorem 9).
Our result provides an alternative proof of the main result of [36]. In Section H, we combine our
robustness theorem with our sample bounds for learning Markov Random Fields and Bayesian
Networks discussed earlier to derive new polynomial sample complexity results for learning multi-
item auctions when the distributions have structured correlation over the items. Theorem 10
summarizes our results when item values are generated by an MRF, and Theorem 11 our results
when item values are generated by a Bayesenet.

2 PRELIMINARIES

We first define a series statistical distances that we will use in the paper and discuss their relation-
ships.

DEFINITION 1 (STATISTICAL DISTANCE). Let P and Q be two probability measures. We use ||P — Q|| v,
IP = Qllg, and ||P — Q|| to denote the total variational distance, the Kolmogorov distance, and
the Lévy distance between P and Q, respectively. See Appendix B for more details. Prokhorov Dis-
tance is a generalization of the Lévy Distance to high dimensional distributions. Let (U, d) be a metric
space and B be a o-algebra on U. For A € B, let A* = {x : Jy € A s.t d(x,y) < €}. Then two
measures P and Q on B have Prokhorov distance

inf{e > 0:P(A) < Q(A®) +¢, Q(A) < P(A®) +e VA € B}

We consider distributions supported on R for some k € N, so U will be the k-dimensional Euclidean
Space, and we choose d to be the {, -distance. We denote the Prokhorov distance between distributions

F, F by H?" - %”P.

Relationships between the Statistical Distances. Among the four metrics, the Lévy distance and
the Kolmogorov distance are only defined for single dimensional distributions, while the Prokhorov
distance and the total variation distance are defined for general distributions. In the single dimen-
sional case, the Lévy distance is a very liberal metric. In particular, for any two single dimensional
distributions P and Q,

IP=QllL <IIP=Qllxk < IP=Qllry -
Note that a robustness result for a more liberal metric is more general. For example, the robustness
result for single-item auctions under the Lévy metric implies the robustness under the total variation

%Since we round the bids to a random grid, we will also need to accommodate the rounding error. Please see Theorem 3 for
details.
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and Kolmogorov metric, because the ¢-ball in Lévy distance contains the ¢-ball in total variation
and Kolmogorov distance. An astute reader may wonder whether one can find a more liberal metric
in the single dimensional case. Interestingly, for the most common metrics studied probability
theory, including the Wasserstein distance, the Hellinger distance, and the relative entropy, the
Lévy distance is the most liberal up to a polynomial factor. That is, if the Lévy distance is ¢, the
distance under any of these metrics is at least poly(e). Indeed, the polynomial is simply the identity
function or the quadratic function 2 in most cases. Please see the survey by Gibbs and Su [33] and
the references therein for more details.

The Prokhorov distance, also known as Lévy-Prokhorov Distance, is the generalization of the
Lévy distance to multi-dimensional distributions. It is also the standard metric in robust statistical
decision theory, see Huber [42] and Hampel et al. [38]. The Prokhorov distance is almost as liberal
as the Lévy distance. 7 First, for any two distributions P and Q,

1P =Qllp < IP=Qllzv -

Second, if we consider other well studied metrics such as the Wasserstein distance, the Hellinger
distance, and the relative entropy, the Prokhorov distance is again the most liberal up to a polynomial
factor.

Multi-item Auctions. We focus on revenue maximization in the combinatorial auction with n
bidders and m heterogenous items. We use X to denote the set of possible allocations, and each
bidder i € [n] has a valuation function/type v;(-) : X +— Ry¢. In this paper, we assume the function
v;(+) is parametrized by (v; 1, ..., Vi m), Where v; ; is bidder i’s value for item j. We assume that
bidder’s types are distributed independently. Throughout this paper, we assume all bidders types
lie in [0, H]™. We adopt the valuation model in Gonczarowski and Weinberg [36] and consider
valuations that satisfy the following Lipschitz property.

DEFINITION 2 (LIPSCHITZ VALUATIONS). There exists an absolute constant L such that if type
vi = (Vi1,...,Vm) and v{ = (v} ,,...,v] ) are within {; distance ¢, then for the corresponding
valuations v;(-) and v{(-), |vi(x) = v{(x)| < L - ¢ forallx € X.

This for example includes common settings such as additive and unit demand with Lipschitz
constant £ = 1. More generally, £ = 1 holds for constrained additive valuations ® and even in
some settings with complementarities. Please see [36] for further discussion.

A mechanism M consists of an allocation rule x(-) and a payment rule p(-). For any input
bids b = (by, ..., by,), the allocation rule outputs a distribution over allocations x(b) € A(X) and
payments p(b) = (p1(b), . . ., pn(b)). If bidder i’s type is v;, her utility under input b is u; (v;, M(b)) =
E [v; (x(b)) - pi(D)].

Truthfulness and Revenue: We use the standard notion ¢-BIC and IR (see Appendix B for details).
If M is a e-BIC mechanism w.r.t. some distribution 9, we use REvy(M, D) to denote the revenue of
mechanism M under distribution 9 assuming bidders are bidding truthfully. Clearly, REvr(M, D) =
ReEV(M, D) when M is BIC w.r.t. D. We denote the optimal revenue achievable by any ¢-BIC (or
BIC) mechanism by OPT (D) (or OPT(D)). Although it is conceivable that permitting mechanisms
to be e-BIC allows for much greater expected revenue than if they were restricted to be BIC, past
results show that this is not the case.

"Note that for single dimensional distributions, the Prokhorov distance is not equivalent to Lévy distance. In particular,
[P - Qllp < |IP - Qllp for any single dimensional distributions P and Q.
80;(-) is constrained additive if v;(X) = Maxpcs, ReT 2 jeR Vi,j> for some downward closed set system I C 2lml and § =

{j:xi,j= I}A
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Lemma 1. [27, 53] In any n-bidder m-item auction, let D be any joint distribution over arbitrary
L-Lipschitz valuations, where the valuations of different bidders are independent. The maximum
revenue attainable by any IR and e-BIC auction for a given product distribution is at most 2nVmLHe
greater than the maximum revenue attainable by any IR and BIC auction for that distribution.

Notations: We allow the bidders to submit a special type L, which represents not participating
the auction. If anyone submits L, the mechanism terminates immediately, and does not allocate
any item to any bidder or charge any bidder. A bidder’s utility for submitting type L is 0. We will
sometimes refer to L as the IR type.Throughout the paper, we use D= Xzt D; to denote the
true type distributions of the bidders. We use D = X, D; to denote the model type distributions
or our learned type distributions from samples. We use D; | Xj”él[w,-j, wij + ) to denote the
distribution induced by D; conditioned on being in the m-dimensional cube Xj”il[w,- i, Wij +0),
and supp(%) to denote the support of distribution 7.

3 ROBUSTNESS FOR MULTI-ITEM AUCTIONS

In this section, we prove our robustness results under the total variation distance and the Prokhorov
distance in multi-item settings. As discussed in Section 1.2, the proof strategy for single-item
auctions fails miserably in multi-item settings due to the lack of structure of the optimal mechanism.
In particular, one of the crucial tools we relied on in single-item settings, the revenue monotonicity,
no longer holds in multi-item settings [40]. Nevertheless, we still manage to provide robustness
guarantees in multi-item auctions. The plan is to first prove the robustness result under the total
variation distance in Section 3.1, then we show show to relate the Prokhorov distance with the
total variation distance using randomized rounding in Section 3.2, and reduce the robustness under
the Prokhorov distance to the robustness under the total variation distance in Section 3.3.

3.1 TV-Robustness for Multi-item Auctions

THEOREM 1 (TV-ROBUSTNESS FOR MULTI-ITEM AUCTIONS). Given any distribution D = Xi_, D;,
where each D; is a distribution supported on [0, H|™, and a n-BIC and IR mechanism M w.r.t. D,
we can construct a mechanism M such that for any distribution D = X, D; € [0, H]"™, if we

lete; = ||D; — DiHTV foralli € [n] and p = };¢[n) €15 then M is 2mLHp + n-BIC w.rt. D and IR.

Moreover, REVT(M, 23) > Revr(M, D) — nmLHp. Note that our construction 0f]\71 only depends on
D and does not require any knowledge of D.

We briefly describe the ideas behind the proof. If D and D share the same support, it is not hard
to see that M is already (2mLHp + n)-BIC w.r.t. D. The reason is that for any bidder i and any type
v;, her expected utility under any report can change by at most m£Hp when the other bidders’

bids are drawn from D_; rather than D_;, as ”ZSJ - Dj“TV = ¢j for all j € [n]. The bulk of the

proof is dedicated to the case, where D and D have different supports. We construct mechanism
M, which first takes each bidder i’s report and maps it to the “best” possible report from supp(D;),
then runs essentially M on the transformed reports. We show that Mis 2mLH p + n-BIC w.r.t. D
and generates at most nmLHp less revenue. The proof of Theorem 1 is postponed to Appendix E.1.

3.2 Connecting the Prokhorov Distance with the Total Variation Distance

In this section, we provide a randomized rounding scheme that relates the Prokhorov distance
to the total variation distance. We first state a characterization of the Prokhorov distance due to
Strassen [54] that is useful for our analysis.
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THEOREM 2 (CHARACTERIZATION OF THE PROKHOROV METRIC [54]). Let ¥ and F be two distri-
butions supported on R¥. HT - %”P < ¢ if and only if there exists a coupling y of ¥ and F, such that
Pr(x,y)~y [d(x,y) > €] < €, where d(:, ) is the {1 distance.

Theorem 2 states that ¥ and ¥ are within Prokhorov distance ¢ of each other if and only if there
exists a coupling between the two distributions such that the two random variables are within ¢ of

each other with probability at least 1 — €. Next, we show that if ¥ and F are close to each other
in Prokhorov distance, then one can use a randomized rounding scheme to round both # and ¥
to discrete distributions so that the two rounded distributions are close in total variation distance
with high probability.

First, let us fix some notations.

DEFINITION 3 (ROUNDED DISTRIBUTION). Let F be a distribution supported on Rk Foranyd >0
and € € [0, 5%, we define function r:%) . Rk — R¥ as follows: r )(x) = max H J -0+ 4, 0}
foralli € [k]. Let X be a random variable sampledfrom distribution . We deﬁne LF 1¢5 as the
distribution for the random variable r'-%)(X), and we call | F | ¢.5 as the rounded distribution of ¥

LEMMA 2. Let & and F be two distributions supported on R¥, and HT - %Hp < e Foranyé > 0,
s (7], ] | <o

We only sketch the idea and postpone the formal proof to Appendlx E.2. Let x be a random

sample € from the uniform distribution over [0, 5], Ee uro, 1% [

TV

variable sampled from 7 and y be a random variable sampled from F. Since 7 and F are close in
Prokhorov distance, we can couple x and y according to Theorem 2 such that they are within ¢ of
each other with probability at least 1 — . The rounding scheme chooses a random origin ¢ from

[0, 5]F and rounds ¥ and F to the corresponding random grid with width §. More specifically,
we round 7 and F to [F1¢s and lﬁ?J[ respectively. For simplicity, consider § = ©(+/¢). The

key observation is that when x and y are within ¢;-distance ¢ of each other, they lie in the same
grid with probability at least 1 — O(y/¢) over the randomness of £. If x and y are in the same grid,
they will be rounded to the same point. In other words, the coupling between x and y induces a

coupling between | ¥ |, s and {%Jf s such that, in expectation over the choice of ¢, the event that

the corresponding two rounded random variables have different values happens with probability
at most £ + (1 — €) - O(v/e) = O(\/e). By the definition of total variation distance, this implies that

the expected total variation distance between | ¥ ], 5 and P}J s is also at most O(+/¢). A similar
. 3

argument applies to other choices of §.

3.3 Prokhorov-Robustness for Multi-item Auctions

In this section, we show that even in multi-item settings, if every bidder’s approximate type distri-
bution D; is within Prokhorov distance ¢ of her true type distribution D, given any BIC and IR
mechanism M for D = X! | D;, we can construct a mechanism M that is O(poly(n,m, L, H,¢))-

BIC wrt D = " 5,~, IR, and its revenue under truthful bidding REVT(A//\I,Z’)\) is at most
O(poly(n,m, L, H, ¢)) worse than REV(M, D).

THEOREM 3. Suppose we are given D = X_; D;, where D; is an m-dimensional distribution for
each i € [n], and a BIC and IR mechanism M w.r.t. D. Suppose D = X_; D; is the true but unknown
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type distribution such that || D; — D; H < ¢ foralli € [n]. We can construct a randomized mechanism

M, oblivious to the true distribution D, such that for any D the followings hold:
(1) M is x-BIC w.r:t. D and IR, where k = (nmLHe + mL~VnH 8);
(2) the expected revenue of]VI under truthful bidding is REvy (M, 23) > REv(M, D) — O (nk) .

We postpone the formal proof of Theorem 3 to Appendix E.3. We provide a complete sketch here.
Our construction consist of the following five steps.

e Step (1): After receiving the bid profile, first sample ¢ from U[0, §]™. For every realization
of ¢, we construct a mechanism M¥) and execute M*) on the reported bids. In the next
several steps, we show how to construct MO via two intermediate mechanisms Mgf) and
Mgf) for every realization of ¢ based on M. Since ¢ is a random variable, M is a randomized

mechanism.
e Step (2): Round D; to | D; ], s for every bidder i. We construct mechanism Mif) based on M

and show that Mif) is O(m.L5)-BIC w.rt. X, [ D], s and IR. Moreover,

REvT

n
MO, >< LDl 5) > Rev(M, D) — O(nmL5).
i=1
Here is the idea behind the construction: for any bidder i and type w; drawn from | D; ], s,
we resample a type from D; | Xj"il [wij, wij + 9), which is the distribution induced by D;
conditioned on being in the cube Xj"il [wij, wij + 8). We use the allocation rule of M and a
slightly modified payment rule on the resampled type profile. This guarantees that the new
mechanism is O(m.L5)-BIC w.r.t. X[, | D;], s and IR. The formal statement and analysis
are shown in Lemma 3.

o Step (3): We use 55[) to denote for our sample ¢ and every i €

Diles - | D

Diles 0ol
[n], and p'© to denote 2ieln] gff). We transform Mgf) into a new mechanism Mgf) using
Theorem 1. In particular, Mgf) is O (mLS +mLH - p¥)-BIC wrt. X, Pi‘J[ s and IR.
©) ’

i

Importantly, the construction of Mgf) is oblivious to X1, [ZS,-J[ s and {e } (' Moreover,
. i€|ln

REvr (M(g) =1 [ZA)'JK 5) > Revy (Mif), i1 I.DiJé’,S) — O (nmLH - pY).

e Step (4): We convert M;E) to M so that it is O (mLs+mLH - p([))—BIC wrt O, 1R and

Revr (M, D) > Revy [ M, [f)-J — nmL3§.
Evr( ) EVT | M, Z§ s nm/L
Here is the idea behind the construction of M©): for every bidder i and her type w; drawn
from D;, round it to r )(w,) (see Definition 3). We use the allocation rule of M( ) and a
slightly modified payment rule on the rounded type profile. This guarantees that the new

mechanism is O (m£LS + mLH - p([)) BIC w.r.t. D and IR. Note that our construction only

requires knowledge of Mgo, ¢, and 4, and is completely oblivious to D and X, { iJ[ 5

The formal statement and analysis are shown in Lemma 4.
e Step (5): Since for every realization of £, M) is O (m£L35 + mLH - p©)-BIC w.rt. D and IR,

M must be O (m.[,5 +m.LH - EBe ypo,51m [p(f)] )-BIC w.rt. D and IR. According to Lemma 2,
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E¢-ulo,s5)m [p([)] = Yie[n] Be~vlo,81m [556)] =n-(1+ %) ¢. Therefore, M is
O (mLSs+nmLH (1+ %) €)-BIC w.r.t. D and IR. Moreover, REVT (M, 13) > Rev(M, D) —
O (nmLSs+n*mLH(1+3)¢).
LEMMA 3. Given any§ > 0,¢ € [0,5]™, and a BIC and IR mechanism M w.r.t. D, we can construct
a &y =0(mL>O)-BIC wrt. D = Xi_; | Dils s and IR mechanism MO, such that

Revy (M§"), Q) > Rev(M, D) — nmL5.

The proof of Lemma 3 can be found in Appendix E.3. In the next Lemma, we make Step (4)
formal.

LEmMMA 4. For any 6 > 0, { € [0,6]™, and distribution @, ifo) is a &-BIC w.rt. @ =
Xy {@iJ[ s and IR mechanism, we can transform M({) into a mechanism M(f>, so that M is (& +

3mL5)-BIC wer.t. D, IR, and has revenue under truthful bidding REvr (M([) Z)) > REvr (M(f) ) -
nmL3§. Moreover, the transformation does not rely on any knowledge on) or Z)

The proof of Lemma 4 is postpone to Appendix E.3.

3.4 Applications of Multi-ltem Robustness

Lipschitz Continuity of the Optimal Revenue in Multi-item Auctions. Equipped with Theorem 1
and 3, we can easily argue the Lipschitz continuity of the optimal revenue in multi-item auctions
(Theorem 6) as stated in the last column of the second half of Table 1. Due to Theorem 1 and 3, we
know that the optimal revenue of a O(poly(n, m, L, H, ¢£))-BIC and IR mechanism w.r.t. distribution
F = Xien 7" is atleast as large as the optimal revenue of a BIC and IR mechanism w.r.t. distribution

F = Xien) Fis 1f”7: ?’H <eVior
revenue of a O(poly(n, m, L, H €))-BIC and IR mechanism is at most O(poly(n, m, .£ H,¢)) larger

than the optimal revenue of a BIC and IR mechanism. Hence, OPT(¥) ~ OPT(T). Please see
Appendix E.4 for the formal statement and the proof of Theorem 6.

‘7—” Fi || < ¢,Vi. According to Lemma 1, the optimal

Approximation Preserving Transformation. One interesting implication of Theorem 6 is that the
transformations of Theorems 1 and 3 are also approximation preserving. Given a a c-approximation
mechanism M to the optimal revenue under distribution D, applying the transformation in Theo-
rem 3 (or Theorem 1) to M, we obtain a new mechanism M that is O(poly(n, m, L, H, ¢))-BIC w.r.t.
D andIRif‘Z)i —ZA)I- » < &, Vi (or if || D; —231- .
bidding is at least c¢ fraction of the optimal O(poly(n, m, L, H, ¢))-BIC revenue under D less a small
additive term. The result is formally stated as Theorem 7 in Appendix E.5. Note that the third
column of the second half of Table 1 is simply Theorem 7 with ¢ = 1. Furthermore, if there is only
a single bidder, the mechanism M becomes exactly IC instead of approximately IC (Theorem 8).

< ¢,Vi). Moreover, its revenue under truthful

Learning Multi-item Auctions under Item Independence. Since independent distributions are
straightforward to learn within Prokhorov distance ¢ with polynomially many samples, the result
of Gonczarowski and Weinberg [36] follows easily from our robustness result (see Theorem 9 in
Appendix F).

Learning Multi-item Auctions under Structured Item Dependence. Going beyond product measures,
we initiate the study of learning multi-item auctions when every bidder’s item-values are depen-
dent, but sampled from a joint distribution with structure. As we have already noted, arbitrary
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joint distributions are both unnatural from a modeling perspective, as they require exponentially
many bits to describe, and are also known to require exponentially many samples to even learn
approximately optimal auctions [31]. We thus propose studying the learnability of auctions under
the assumption that each bidder’s item values are sampled from a Markov Random Field (MRF) or
a Bayesian network (a.k.a. Bayeset). In fact, this is not really an assumption. These well-studied
probabilistic frameworks, defined formally in Definitions 10 and 11 of Appendix H due to lack of
space, are very flexible in that they can represent any distribution. The reason they are attractive
from a modeling perspective is that they have a natural complexity parameter that controls how
expressive they are, namely the maximum hyperedge size of an MRF and the maximum in-degree
of a Bayesnet. Under the assumption that each bidder’s item-values are drawn from an MRF or
a Bayesnet of complexity d, we establish the results summarized in the last two rows of Table 2,
whose main feature is that the sample complexity to learn an up-to-e optimal auction is polynomial
in the number of bidders n, the number of items m, the inverse approximation parameter 1/¢, and
other relevant parameters, and is only exponential in the complexity parameter d of the bidders’
MREFs or Bayesian networks, as it should given the known lower bounds [31].

Our results for learning near-optimal auctions under MRF and Bayesnet assumptions are stated
in more detail as Theorems 10 and 11 of Appendix H, and can also accommodate unobservable
variables which makes their applicability very broad. In turn, these results are proven by combining
our robustness result (Theorem 7) with new learnability results for MRFs and Bayesnets that we also
establish, namely Theorems 12 and 13 of Appendix H respectively. These results are of independent
interest and provide broad generalizations of the recent upper bounds of [30] for Gaussian MRFs
and Ising models. While this recent work bounds the VC dimension of the Yatracos class of these
families of distributions, for our more general families of non-parametric distributions we construct
instead covers under either total variation distance or Prokhorov distance, and combine our cover-
size upper bounds with generic tournament-style algorithms; see e.g. [1, 26, 29]. The details are
provided in Appendix J. While there are many details, we illustrate one snippet of an idea used
in constructing a £-cover, in total variation distance, of the set of all MRFs with hyper-edges E of
size at most d and a discrete alphabet ¥ on every node. The proof argues that (i) the (appropriately
normalized) log-potential functions of the MRF can be discretized to take values in the negative
integers at a cost of ¢ in total variation distance; (ii) using properties of linear programming, it
argues that using negative integers of bit complexity polynomial in |E|, |2|? and log(1/e) suffices
at another cost of ¢ in total variation distance. It thus argues that all MRFs can be covered by a
set of MRFs of size exponential in poly (|E, 124, log(%)), which is sufficient to yield the required
sample bounds using the tournament algorithm.
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A FURTHER RELATED WORK

As described earlier, most prior work on learning multi-item auctions follows a PAC-learning
approach, bounding the statistical complexity of classes of mechanisms that are (approximately)
optimal for the setting of interest. The statistical complexity measures that are used for this purpose
are the standard notions of pseudodimension, which generalizes VC dimension to real valued
functions, and Rademacher complexity. In particular, Morgenstern and Roughgarden [47] and
Syrgkanis [55] bound respectively the pseudodimension and Rademacher complexity of simple
classes of mechanisms that have been shown in the literature to contain approximately optimal
mechanisms in multi-item multi-bidder settings satisfying item-independence [6, 15, 17, 19, 56].
The classes of mechanisms studied by these works contain approximately optimal mechanisms in
multi-item settings with item-independence and either multiple unit-demand/additive bidders, or
a single subadditive bidder. More powerful classes of simple mechanisms are also known in the
literature. The state-of-the-art is the sequential two-part tariff mechanism considered by Cai and
Zhao [17], which is shown to approximate the optimal revenue in multi-item settings even with
multiple bidders whose valuations are fractionally subadditive, again under item-independence.
Unfortunately, both the pseudodimension and the empirical Rademacher complexity of sequential
two-part tariff mechanisms are already exponential even in two bidder settings, making these
measures unsuitable tools for showing the learnability of two-part tariff mechanisms.

An important feature of the afore-described works is that bounding the pseudo-dimension
or empirical Rademacher complexity of mechanism classes is oblivious to the structure in the
distribution. Hence, while the mechanisms considered in these works are only approximately
optimal under item-independence, the independence cannot be exploited. In contrast to empirical
Rademacher complexity, Rademacher complexity is sensitive to the underlying distribution, but
bounds exploiting the structure of the distribution are not easy to obtain. This observation motivated
another line of work which heavily exploits the structure of the distributions of interest to choose
both the class of mechanisms and the statistical complexity measure to bound their learnability. So
far, this approach has only been applied to settings satisfying item-independence. Indeed, Cai and
Daskalakis [11] propose a statistical complexity measure that is tailored to product distributions, and
use their new measure to establish learnability of sequential two-part tariff mechanisms under item-
independence. Gonczarowski and Weinberg [36] choose a finite class of mechanisms so that an up-to-
¢ optimal mechanism is guaranteed to exist in the class. For item-independent distributions, the size
of this class is only singly exponential implying polynomial sample learnability. Unfortunately, the
size becomes doubly exponential for correlated items turning the sample complexity exponential.

Finally, Goldner and Karlin [34] do not use a PAC-learning based approach. They show how to
learn approximately optimal auctions in the multi-item multi-bidder setting with additive bidders
using only one sample from each bidder’s distribution, assuming that it is regular and independent
across items. Their approach is tailored for a mechanism designed by Yao [56] and does not apply
to broader settings.

B ADDITIONAL PRELIMINARIES

DEFINITION 4 (TOTAL VARIATION DISTANCE). The total variation distance between two probability
measures P and Q on a o-algebra F of subsets of some sample space Q, denoted ||P — Q||rv, is defined
as

sup |P(E) — Q(E)| .
EeF
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DEFINITION 5 (KoLMOGOROV DisTANCE). The Kolmogorov distance between two distributions P
and Q overR, denoted ||P — Q||g, is defined as

sup| Pr [X <x]- Pr [X <x]|.
xe% X‘“P[ ] X~Q[ ]
DEFINITION 6 (LEVY DISTANCE). Let Dq and D, be two probability distributions on R with cumu-
lative distribution functions F and G respectively. Then we denote their Lévy distance by

D1 — Dyl =inf{e >0:F(x—¢)—¢ < G(x) < F(x +¢)+¢, Vx € R}

Multi-item Auctions: We focus on revenue maximization in the combinatorial auction with n
bidders and m heterogenous items.

The outcomes of the auction liein X C {0, 1} such that for any allocation x € X, x; ; is the prob-
ability that bidder i receives item j. Formally, X = {(xi,j)l-e[,,]’je[m] e {0, 1} | Vj: X xi; < 1}.
Each bidder i € [n] has a valuation function v;(-) : X — R that maps an allocations of items to a
real number. In this paper, we assume the function v;(-) is parametrized by (v; 1, . . ., Vi, m), Where
v; ; is bidder i’s value for item j. We will refer to the vector (v; 1,. .., v; m) as bidder i’s type, and
we assume that each bidder’s type is drawn independently from some distribution. ° Throughout
this paper, we assume all bidders types lie in [0, H]™.

Mechanisms, Payments, and Utility: We use p = (p1,. .., pn) to specify the payments for the
bidders. Given some prices p = (p1, - . ., pn), allocation x and type v;, denote the quasilinear utility
of bidder i € [n] by u;(v;, (x, p)) = vi(x) — pi. Let M = (x(-), p(-)) be a mechanism with allocation
rule x(-) and payment rule p(-). For any input bid vector b = (by,...,b,), the allocation rule
outputs a distribution over allocations x(b) € A(X) and payments p(b) = (p1(), . . ., pn(b)). Then
u;(vi, M(b)) = vi(x(b)) — pi(b). If bidder i’s type is v;, then her utility under input bid vector b is
u; (v;, M(b)) = E [v; (x(b)) — pi(b)], where the expectation is over the randomness of the allocation
and payment rule.

e-Incentive Compatible and Individually Rational:
e Ex-post Individually Rational (IR): M is IR if for all types v € [0, H]" ™ and all bidders i € [n],

u;(vi, M(v;,v-;)) = 0.

e ¢-Dominant Strategy Incentive Compatible (e-DSIC): if for all i € [n], v € [0,H]*™ and
potential misreports v; € [0, H]™ of bidder i, u;(vi, M(v;, v—;)) > ui(vi, M((v],v_;))) — e. A
mechanism is DSIC if it is 0-DSIC.

e ¢-Bayesian Incentive Compatible (¢-BIC): if bidders draw their values from some distribution
F =(F1,...,Fn), then define M to be &-BIC with respect to F if

Eo i~q [ui(vi, M(vi,0-1))] 2 Eo_ g [wi(vi, M(v], 0-1))] — ¢,
for all potential misreports v/, in expectation over all other bidders bid v_;. A mechanism is
BIC if it is 0-BIC.

If there is only one bidder, the definition of DSIC coincides with the definition of BIC, and we
simply use ¢-IC to describe the incentive compatibility of single bidder mechanisms.

In single-bidder case, there is a well known transformation, Lemma 5, that maps any &-IC
mechanism to an IC mechanism with negligible revenue loss. To the best of our knowledge, the
result is attributed Nisan in [18, 36, 39] and many other papers.

9We will not explicitly write bidder i’s valuation as v; v;(-) where v; = (v 1, . . ., Vi m)-

B
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LEMMA 5 (NISAN, CIRCA 2005). Let M be an IR and &-IC mechanism for a single bidder, and D be
the bidder’s type distribution. Modifying each possible allocation and payment pair by multiplying
the payment by 1 — +/e and letting the bidder choose the (modified) allocation and payment pair
that maximizes her utility yields an IR and IC mechanism M’ with expected revenue at least (1 —
Ve)(Revr (M, D) — ve). Importantly, the modification does not require any knowledge of D.

Interested readers can find a proof of Lemma 5 in [36].

Up-to-¢ Optimal Mechanisms: We say a mechanism M is up-to-¢ optimal under distribution D, if
Revr (M, D) > OPT(D) — ¢.

C LEVY-ROBUSTNESS FOR SINGLE-ITEM AUCTIONS

In this section, we show the robustness result under the Lévy distance in the single-item setting. If
we are given a model distribution D; that is e-close to the true distribution ZSi, in Lévy distance,
for every bidder i € [n], we show how to design a mechanism M* only based on D = X, D; and
extracts revenue that is at most O(nH - ¢) less than the optimal revenue under any possible true
distribution D = X D;.

THEOREM 4 (LEVY-ROBUSTNESS FOR SINGLE-ITEM AUCTIONS). Given D = X | D;, where D; is
an arbitrary distributions supported on [0, H] for all i € [n]. We can design a DSIC and IR mechanism

M based on D such that for any product distribution D= X, D; satisfying ”Z)i - @,-HL < ¢ for

alli € [n], we have:
REV(M*, D) > OPT(D) — O(nH - ¢).
Let us sketch the proof of Theorem 4. We prove our statement in three steps.

o Step (i): We first identify the “best” and “worst” distributions (Definition 7), in terms of the
first-order stochastic dominance (Definition 8), among all distributions in the e-Lévy-ball
around the model distribution 9. We construct the optimal mechanism M* w.r.t. the “worst”
distribution, and show that its revenue under any possible true distribution is at least M*’s
revenue under the “worst” distribution (Lemma 8). The statement provides a lower bound
of M*’s revenue under the unknown true distribution. Its proof follows from the revenue
monotonicity lemma (Lemma 7) shown in [28].

e Step (ii): We use the revenue monotonicity lemma again to show the optimal revenue
under the true distribution D is upper bounded by the optimal revenue under the “best”
distribution(Lemma 9).

o Step (iii): We complete the proof by argueing that M*’s revenue under the “worst” distribution
can be at most O(nH - ¢) worst than the optimal revenue under the “best” distribution
(Lemma 10). The statement follows from a robustness theorem for single-item auctions under
the Kolmogorov distance (Theorem 5).

We show Step (i) and (ii) in Section C.1 and Step (iii) in Section C.2.

C.1 Best and Worst Distributions in the ¢e-Lévy-Ball

We formally define the “best” and “worst” distributions in the e-Lévy-ball around the model
distribution.

DEFINITION 7. For every i € [n], we define D; and D, based on D;. D; is supported on [0, H + €],
and its CDF is defined as F5. (x) = max {Fz),- (x—¢)—ce¢, O}. D, is supported on [—e¢, H], and its CDF
is defined as Fp (x) = min {Fz)l.(x +¢)+e, 1}.
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We provide a more intuitive interpretation of D; and D, here. To obtain D;, we first shift all
values in D; to the right by ¢, then we move the bottom ¢ probability mass to H + ¢. To obtain
D,, we first shift all values in D; to the left by ¢, then we move the top ¢ probability mass to
—e. It is not hard to see that both Ei and D, are still in the -ball around D; in Lévy distance.

More importantly, D; and D, are the “best” and “worst” distributions in the e-Lévy-ball under
first-order-stochastic-dominance.

DEFINITION 8 (FIRST-ORDER STOCHASTIC DOMINANCE). We say distribution B first-order stochas-
tically dominates A iff Fg(x) < Fa(x) for all x € R. We use A < B to denote that distribution B
first-order stochastically dominates distribution A. If A = X[_ | A; and B = x| B; are two product
distributions, and A; < B; for all i € [n], we slightly abuse the notation < to write A < B.

LEMMA 6. For any 5,~, such that

D - D)

<e wehave D, < D; < D;.
. L

Proor. It follows from the definition of Lévy distance and Definition 7. For any x,
F5 (x) € [Fp,(x —¢) — &, Fp,(x + &) + €].
Clearly, 0 < Fp, (x) < 1, so we have Fp. (x) < Fg, (x) < Fp,(x) for all x. O
The plan is to construct the optimal mechanism for D = Xi_; D. and show that this mechanism
achieves up-to-O(nH - ¢) optimal revenue under any possible true distribution D.

Next, we state a revenue monotonicity lemma that will be useful. We first need the following
definition.

DEFINITION 9 (EXTENSION OF A MECHANISM TO ALL VALUES). Suppose a mechanism M = (x, p) is
defined for all value profiles in T = X T;. Define its extension M’ = (x’, p’) to all values. We only
specify x’, asp’ can be determined by the payment identity given x’. x" first rounds the bid of each
bidder i down to the closest value in T;, and then apply allocation rule x on the rounded bids. If some
bidder i’s bid is smaller than the lowest value in T;, x" does not allocate the item to any bidder.

Observe that the extension provides a DSIC and IR mechanism for all values if the original
mechanism is DSIC and IR.

LEMMA 7 (STRONG REVENUE MONOTONICITY [28]). Let F = X, F; be a product distributions.
There exists an optimal DSIC and IR mechanism M for ¥ such that, for any product distribution
F'=XinF = F,

Rev(M’, ') = Rev(M, F) = OPT(F).
M’ is the extension of M. In particular, this implies OPT(F"’) > OPT(F).

Combining Lemma 6 and 7, we show that if M* is the extension of the optimal mechanism for

D, it achieves at least OPT(D) under any distribution D with Hﬁ, - Z)iHL <e

LEMMA 8. Let M* be the extension of the optimal DSIC and IR mechanism for D. For any product
distribution D = X D; with Hﬁ, - Z),-“L < ¢ for alli € [n], we have the following:
ReV(M*, D) > OPT(D).
PROOF. Since D > D (Lemma 6), the claim follows from Lemma 7. O

Lemma 8 shows that with only knowledge of the model distribution D, we can design a mecha-
nism whose revenue under any possible true distribution D is at least OPT(D). Next, we upper

bound the optimal revenue under D with the optimal revenue under D.
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LEMMA 9. For any product distribution D with H@l - Z)iHL < ¢ for alli € [n], we have the
following:
OPT(D) > OPT(D).

PROOF. Since D > D (Lemma 6), the claim follows from Lemma 7. m]

C.2 Comparing the Revenue of the Best and Worst Distributions

In this section, we show that our lower bound of M*’s revenue under the true distribution D and
our upper bound of the optimal revenue under D are at most O(nH - ¢) away.

LEMMA 10. .
OPT(D) > OPT(D) — O(nH - ¢).

It is a priori not clear why Lemma 10 should be true, as 9 is the “best” distribution and D is the
“worst” distribution in the e-Lévy-ball around 9. We prove Lemma 10 by introducing another two
auxiliary distributions 9 and D.In particular, we construct D; by shifting all values in D; to the
right by ¢, and construct D; by shifting all values in D; to the left by ¢. There are two important
properties of these two new distributions: (i) one can couple D; with D; so that the two random
variables are always exactly 2e away from each other; (ii) O; and D, are within Kolmogorov
distance ¢, and D; and D; are also within Kolmogorov distance ¢. Property (i) allows us to prove
that ’OPT(@) - OPT(@)‘ < 2¢ (see Claim 2). To make use of property (ii), we prove the following
robustness theorem w.r.t. the Kolmogorov distance.

THEOREM 5. For any buyeri € [n], let D; and D; be two arbitrary distributions supported on
(=00, H] such that ||D; — Dy|| < e We have the following:
K

OPT(ZS) > OPT(D) - 3nH - ¢.
where D = X", D; and D = X", D;.

The proof of Theorem 5 is postponed to Appendix D. Equipped with Theorem 5, we can immedi-
ately show that |OPT(D) — OPT(D)| < O(nH - ¢) and |OPT(Z~)) - OPT(5)| < O(nH - ¢). Lemma 10
follows quite easily from Claim 2 and the two inequalities above. The complete proof of Lemma 10
can be found in Appendix D.

We are now ready to prove Theorem 4.
Proof of Theorem 4: We first construct D based on D and let M* be the extension of the optimal

mechanism for 9. By Lemma 8, we know REV(M*, @) is at least OPT(®D) for any D. We also know

that the optimal revenue under D is at most OPT(D) by Lemma 9, and OPT(D) < OPT(D) +
O(nH - ¢) by Lemma 10. Therefore,

Rev(M*, D) > OPT(D) — O(nH - £) > OPT(D) — O(nH - ¢).
O

A simple corollary of Theorem 4 is the continuity of the optimal revenue under Lévy distance in
single-item settings.

CoROLLARY 1. IfD; and D; are supported on [0, H], and HZ)i - 131|‘L < ¢ foralli € [n], then

OPT(D) — OPT(ZA))| <O(nH-¢),
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where D = X, D; and D = X, D..

D MISSING PROOFS FROM SECTION C

Proof of Theorem 5: We prove the claim using a hybrid argument. We construct a collection of
distributlons, where DO = D, DD = D x - X D; X Dy XX D, forall1 < i < n, and
D™ = D. We first show the following claim

CLamm 1.
orT (D) 2 OPT(DIV) - 3H -,
foralli € [n].

ProOF. W.lo.g, we can assume the optimal mechanism for DY is a deterministic. We use
M = (x,p) to denote it. In particular, there exists a collection of monotone non-decreasing func-
tions {¢£;(*)} (je[ny such that p; : supp (D](.i_l)) — R. We extend the function y;(-) to the whole
interval (—oo, H]. We slightly abuse notation and still call the extended function y;(-). For any
Z € supp (Z)](.i_l)), 1j(x) remains the same. For any z > inf supp (Z)](.i_l)), let

pj(z) = sup {pj(w) | w < zand w € supp (Z);i_l))} .

If z < inf supp (Z)j(.i_l)) and ¢ supp (Z)j(.i_l)), let y1j(z) = —co.

Now we define a mechanism M’ = (x’,p’) for D) based on the extended {1i()}(jen)y- For
every profile v, let the bidder j* with the highest positive y1;(v;) be the winner. If no bidder j has
positive p;(v;), the item is unallocated. When there are ties, break the tie in alphabetical order.
Clearly, the allocation rule is monotone. According to Myerson’s payment identity, if a bidder wins
the item, she should pay inf{z | z is a winning bid}.

To prove the claim, we demonstrate the following two statements: for every fixed v_; (A1:)
bidder i’s expected payments under D and D~V are within O(H - ¢); (A2:) the total expected
payments of all bidders except i under D and D~V are within O(H - ¢). We first prove Al.

Proof of A1: For every fixed v_;, let {* = argmax,,; i¢(v¢). For bidder i to win the item, y;(v;)
needs to be greater than p-(vg+). Therefore, there exists a threshold 0(v_;) for every fixed v_;, such
that bidder i wins the item iff v; > 0(v_;). Clearly,

E, 5 piiv-i)]=0(-;) - Pr_[v; > 6(v-y)],
vi~D;

and
Eo;~o; [pi(vi, v-i)] = 0(v-;) - 0_122)_ [vi > 0(v_)].

Since Hﬂi - 23Z~HK <eg,

Pr, g, [0; 2 0(0-)] = Pro,p, [0; = 0(v_p)]| < &, which implies that

i

B po [P}(0)] = Eqy_ i [ (@)]]

<B, oo |[Bor- 5,010 0-0] = Boyo, piCon, 00|
< Ev,pD(fi) [0(v=;) - €]
<H-¢

This completes the argument for statement Al. Next, we prove statement A2.
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Proof of A2: Since there is only one item, only the winner ¢* has non-zero payment and ). ,.; pe(v) =
pe+(v) for any v;. Our goal now is to bound the difference between E,,~.p, [pe+(v)] andE 5 [P}* ('u)] .
Note that

H
Bopen, lpe@) = [ Pr o) > .

When pp<(t) > pe=(ves), Pro,~o,[pe(v) > t] = 0, so we only consider the case where pg-(t) <
pe-(ver). Let @ = maxes; or ¢+ pe(ve). pes(v) > t is equivalent to having max{a, p;(v;)} > pe(t) and
1i(v;) < pe=(ve=) it € > i (or p;(v;) < pes(ve) if € < i). Since p;(+) is monotone, it is not hard to
observe that this is equivalent to having v; lying in some interval that only depends on v_;. Let the
lower bound of the interval be a(v_;) and the upper bound be b(v_;). Similarly, we know

H
B, [P ()] = /0 Pr_[p;.(v) > t]dt,

and Pr, 5, [p;.(v) > t] is also the probability that v; lies between a(v-;) and b(v-;). Since
||Di - 51”1{ <e, |Prv,~~D,~ [pes(v) > t] - Pr, 3, [p;.(v) > t]| < 2¢forallt € [0,H], and

Boro, e @) - B, _g, [pp@)]| < H- 2.
Combining statement (i) and (ii), we complete the proof. o
By Claim 1, it is clear that
OPT (5) - OPT (1)<">) > OPT (1)“”) —3nH-¢ = OPT(D)—3nH - ¢
m]

Proof of Lemma 10: For every i € [n], we construct two extra distributions D; and D; as follows.
D; is supported on [¢, H + ¢], and its CDF is defined as F (x) = Fp,(x — ¢). D; is supported on
[—&, H — ¢], and its CDF is defined as Fp (x) = Fp,(x + ¢). In other words, D; is the distribution by
shifting all values in O; to the right by ¢, and D; is the distribution by shifting all values in D; to
the left by ¢.

CramM 2. Let M be any DSIC and IR mechanism for D = X", D;, there exists a DSIC and IR

mechanism M’ for D = X, D; such that
Rev(M', D) > Rev(M, D) — 2e.

Proo¥. Based on the construction of D and D, we can couple the two distributions so that
whenever we draw a value profile v = (v, . .., vy,) from D, we also draw a value profile v — 2¢ =
(v1—2¢,...,v,—2¢) from D. Given mechanism M = (x, p), we construct mechanism M’ as follows.
For every bid profile v, we offer bidder i the item with probability x;(v + 2¢) and asks her to pay

pi(v + 2¢) — 2¢ - x;(v + 2¢). Why is M’ a DSIC and IR mechanism? For any value profile v and any
bidder i, her utility for reporting the true value is

(vi + 2¢) - xi(v + 2¢) — pi(v + 2¢),
and her utility for misreporting to ] is
(vi + 2¢) - x; (v, v=;) + 2¢) — pi((v], v_;) + 2¢).

Now consider a different scenario, where we run mechanism M and all the other bidders report
v_; + 2¢. The former is bidder i’s utility in M when her true value is v; + 2¢ and she reports
truthfully. The latter is bidder i’s utility in M when she lies and reports v; + 2¢. As M is a DSIC
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and IR mechanism, (v; + 2¢) - x;(v + 2¢) — p;(v + 2¢) is nonnegative and greater than (v; + 2¢) -
xi ((v],v=;) + 2¢) = pi((v], v_;) + 2¢). Thus, M’ is also a DSIC and IR mechanism. Since there is
only one item for sale, }}; x;(v + 2¢) < 1. For every value profile v, the total payment in M’ for
this profile is at most 2¢ smaller than the total payment in M for value profile v + 2¢. Therefore,
REV(M’, D) > REV(M, D) — 2. ]

An easy corollary of Claim 2 is that
OPT(D) > OPT(D) — 2. (1)

Next we will use this corollary and Theorem 5 to prove our claim. Note that HZ), -D IH x S¢eand

”51 - 5in < ¢for all i € [n]. Theorem 5 implies that

OPT(D) > OPT(D) —3nH - ¢ 2
and
OPT(D) = OPT(D) —3n(H +¢) - ¢. (3)
Chaining inequalities (2), (1), and (3), we have
OPT(D) > OPT(D) — (6nH + 3ne + 2) - €.

O

E MISSING DETAILS FROM SECTION 3
E.1 Proof of Theorem 1

Proof of Theorem 1:

We first construct a mechanism M, and we show that M, is (2mLHp + 1)-BIC w.r.t. F and IR.
We first define a mapping 7; for every bidder i:

ri(vy) = {vi, if v; € supp(F7) @

argmax g on(#yus Bb i~ [Ui(vi, Mi(z,b-;))],  otherwise.

Note that By ¢, [u;(vi, Mi(L, b—;))] = 0. For any bid profile v, we use 7(v) to denote the vector
(r1(v1), . . ., tn(vy)). Let x(-) and p(-) be the allocation and payment rule for M;. We now define
Mj’s allocation rule x’(-) and payment rule p’(-). For any bid profile v, x"(v) = x(z(v)). If 7;(v;) # v;
and 7y(vg) #L for all bidders € € [n], then

Ep_,~&, [pi(Ti(vi), b_;)]
b7, [0i (x (i (v), b-i))]

pi(vi,v-i) = vi(x(z(v))) -

Otherwise, p/(v) = pi(r(v)).
An important property of p’(-) is that E;_, ., [p;(vi, b_,-)] =Ep_,~7, [pi(7i(v;i), b_;)] for any v;.
We first argue that M, is IR.

M, is IR:. For any bidder i and any bid profile v, if any of 7¢(v,) =L bidder i’s utility is clearly 0.
So we only need to consider the case where 7;(v¢) #.L for all £ € [n].

o vai = T,'(Ul‘), bidder i’s utility is vi(x(vi, T_i(U_i))) —pl‘(’()i, r_i(v_i)) = Uj (’Ui, Ml(Ui, T_i(’()_i))),
which is non-negative as v; € supp(¥;) and M; is IR.
o If v; # 7;(v;), since 7;(v;) #L by our assumption,

Ep ,~&, [vi (x (1:(vi), b_i))] = Bp_,~ 5, [pi(7i(vi), b_i)] = Bp_, &, [wi(vi, My(7i(v3), b-;))],
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which is non-negative due to the definition of 7;(-). Equivalently, this means that
Ep ~7, [pi7i(vi), b-i)] <1
Ep i~ [0i (x (7i(vi), b-i))] —
and p;(v;, v-;) < vi(x(7(v))) = vi(x'(v)).
Next, we argue that M, is (2mLHp + n)-BIC.

M, is (2mLHp + n)-BIC:. Consider any bidder i and any type v; and t, we first bound the
difference between E;,_..# , [u;(v;, M1(7;(t), b-;))] and EIS,,-N%,[ [ui(vi, My(t,b_;))|. Note that
Ep_j~q; [wi(vi, My(7i(t), b-))] = Bp_,~ g, [wi(vi, Ma(t, b-))] - ©)
This is because
x'(t,b-;) = x(z;(t), b-;) Yb_; € supp(F_;)
and
Ep o5, [pi(t.b-1)| = Bo_ oo, [pi(mi(t), b-1)] .

Since “7} - 7—}HTV = ¢, we can couple b_; and l;_i so that
Pr(b_; # b_;] < p.
Clearly, when b_; = b_;, u; (v, Ma(t, b_;)) = us(v;, Ma(t, b_;)). When b_; # b_;,

]uim,Mz(t, b_)) — ui(r, Ma(t, b_))| < mLH,

as u;(v;, Ma(t, b’ ;)) € [0,mLH] for any b’ ;. Hence, for any v; and ¢

)Eb—iN‘}:i [u;(v;, Ma(t, b-;))] — Eb:iN%i [ui(vi,Mz(t, I;—i))” <mLHp. (6)
Combining Inequality (5) and (6), we have the following inequality

B lusCor, M), b)) ~ By [wiCon, Mot b-0))|| < mLH). )

Suppose bidder i has type v;, how much more utility can she get by misreporting? Since Mj is
IR, she clearly cannot gain by reporting a type t, whose corresponding 7;(¢) =L. Next, we argue
that she cannot gain much by reporting any other possible types either. If all other bidders report
truthfully, bidder i’s interim utility for reporting her true type

E; 7, [wi0n Ma@i b)) | 2 Bo o, [ui(0i, Mi(5i(©1), b-i))] = mLHp

2 max Eb_i~7':i [ui(vi’ Ml(x’ b—l))] - m‘EHp -n

x esupp(F;)

> max By ¢, [ui(vi, Mi(7i(t),b-;))] = mLHp -1
t:ri(t)#L

> max B; -~ ui(vi,Mg(t,l;_i)) -2mLHp -1
tir(H)zL  O-ivT-i

The first inequality is due to Inequality (7). The second inequality is true because (a) if v; = 7;:(v;),
then

Ep_~7, [wi(s, My(7i(v), b-))] = max By .o, [ui(v;, My(x, b)) —
x esupp(F;)

as My is n-BIC; (b) if v; ¢ supp(¥7), then by the definition of 7;(v;),

Eb,i~7’:[ [ui(viaMl(Ti(Ui)7 b*l))] 2 max ElL,‘N?:i [ui(viaMl(x’ b*l))] .
x€supp(F3)
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The third inequality is because when 7;(t) #.L it must lie in supp(¥7). The last inequality is again
due to Inequality (7).

Finally, we show that REvy(M;, %) is not much less than REvy (M, ). Let b ~ ¥ and b~ %
There exists a coupling of b and b so that they are different w.p. less than p. When b = b, M;(b) =
My(b). When b # b, the revenue in M;(b) is at most nmLH more than the revenue in M,(b), as
both mechanisms are IR. Therefore,

RevT(M,, 7?) > Revr(My, F) —nmLHp.
O

E.2 Proof of Lemma 2
Proof of Lemma 2: According to Theorem 2, there exists a coupling y of ¥ and F so that

Pr [d(x,y)>¢] <e.
(6 y)~y

Now we bound the probability that r-%)(x) # r(é-9)(y), when (x, y) is drawn from y, and ¢ is drawn
from U[0, 5].

Pry_yo,51%, (x,y)~y [r(f’a)(x) # r(f,é)(y)]
=Pr, 0,515, (x.y)~y [r([’(s)(x) #rey) A d(x,y) > 5]
+Pro_yio,1%, (x,y)~y [r(["s)(x) * r(["s)(y) A d(x,y) < E]

< P oy 140 3) > ]+ Proppo g [FO0) # 140w) | d(xy) < ] - LD ldGey) <]
Y)Yy

<e +Pry_ypo.s7F [r(w)(x) #re(y) | d(x,y) < s]

Now, we bound the probability that r%)(-) rounds two points x and y to two different points
when x and y are within distance ¢. For any fixed x and y, we have the following.

Pr,_yo,s1¢ [7(5’5)(3() # r<t’,5)(y)]

65 65
< Z Pre,~ulo,s] [Ff (x) # rl( )(y)]
i€[k]

i€lk
i — il
<y kvl
i€[k]
_dkx.y)
é
The first inequality follows from the union bound. Why is the second inequality true? If |x; —y;| > §,

the inequality clearly holds, so we only need to consider the case where |x; — y;| < §. W.lo.g. we

assume y; > x; and we consider the following two cases: (i) L%J = L%J and (ii) [%J = [%J + 1.

In case (i), rgf’a)(x) * rgf’(s)(y) if and only if ¢ € [xi - [%J 20,y — L%J -5]. Since ¢ is drawn
from the uniform distribution over [0, §], this happens with probability exactly % In case (ii),
rf[’a)(x) * rfg’m(y) if and only if € € [x; — L%J -8,8| U0,y - [%J - 8]. This again happens with

Yi—Xi

probability “5=*. Therefore,

Pty 0.5t [r(["s)(x) # 1) | d(x,y) < s] < %
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and

1
Pre_yo,51%, (x,y)~y [T([’é)(x) # V(f’a)(y)] < (1 + 5) E. ®)

< Prix,y)~y [r(["s)(x) * r(["s)(y)]. Combining

Clearly, for any choice of ¢, H [Fles — [(}}J .5
Clity

this inequality with Inequality (8), we have

Er o, 1% [ LFles — PTJM ]
oy
<E/ upo,s1 [ Pr [r(["s)(x) * r(f’a)(y)”
(e y)~y

=Pry_yi0,81%, (x,y)~y [r(f’a)(x) # r(f’é)(y)]
<|1+ !
= 5 £

E.3 Missing Proofs from Section 3.3

Proof of Lemma 3: We first define MY). If the bid profile w ¢ supp(D), the mechanism allocates
nothing and charges no one. If the bid profile w € supp(D), for each bidder i sample w; inde-
pendently from the distribution D; | XL, B(w;;), where B(w;;) is defined to be [0, {;) if w;; = 0
and [w;j, w;i; + §) otherwise. Bidder i receives allocation xp,;(w’) and pays (pu, i(w') — mLS)" =
max{0, py,i(w’) — mL5}. Note that, for any i € [n], if w; is drawn from | D; |, s then w] is drawn
from D;. If all bidders bid truthfully in Mgf), the revenue is at least REv(M, D) — nm.L5. Next, we
argue that Mif) is IR and &;-BIC with & = O(mLJ).

Note that for every bidder i and w; € supp(| D; |, s) her interim utility in Mgf) when all other
bidders bid truthfully is at least Evwi~o, X Blwi)w! i~ D [u,—(w,—, M(w}, wii))] due to the definition

O

of Mif). Now consider every realization of w}, it must hold that

Ewii~Z)_,- [ui(wi,M(Wl{a Wll))]
2B <o, [u,-(w{,M(wlf,wli))] -mL§

> max B, .o, [wi(w),M(x,w,)| -mLS
xesupp(D;) 7!

> max By .p, [u,»(w,»,M(x, wli))] -2mLd
xesupp(D;)

The first and the last inequalities are both due to the fact that the valuation is £-Lipschitz and
||w,- - w{“l < md. The second inequality is because M is BIC w.r.t. D. Hence, bidder i’s interim
utility in Mif) is at least maxy coupp(D) Ew ~p, [u,-(w,-, M(x, wii))] -2m/Lé.

If bidder i misreports, her utility is no more than

max B, _p, [ui(wi, M(x,w’,))| + mLS,
xesupp(D;)

due to the definition of Mgf). Therefore, misreporting can increase bidder i’s utility by at most
3m/L6, and Mif) is 3mL6-BIC.
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Next, we argue that Mif) is IR. If the w_; ¢ supp(D_,), bidder i’s utility is 0. So we focus on the

case where w_; € supp(D _;). We will show that for any realization of w; and w’ ;, bidder i’s utility
is non-negative. If the payment is 0, the claim is trivially true. If the payment is nonzero, bidder i
pays pu,i(w’)—mLS and has utility u;(w;, M(w!, w’)))+m.L5 which is at least u;(w], M(w], w’))),
since the valuation is £-Lipschitz and Hw,- - w{“l < mé. As M is IR, u;(w], M(w},w’,))) = 0. Thus,
bidder i’s utility is non-negative and Mgf) is IR.O
Proof of Lemma 4:
We first construct M), For any bid profile w, construct w’ = (r&®(wy), ..., r%%(w,)), and run
Mgf) on w’. Bidder i receives allocation ngp)’i(w’) and pays max{O,pMéa’i(w’) — m/L§5}. Note that
if w; ~ @i, then w; ~ lﬁ,J e Assuming all other bidders bid truthfully and bidder i’s type is w;,
bidder i’s interim utility for bidding truthfully is

E, 5, [u,-(w,-J\’/](")(wi, b_,-))] > Ebiﬁ@_i [u,-(w,-,Mgf)(wlf, bii))]

2B, 5 |w MO b)) - mLs

> max E, .5 [ui(wl{, Mgf)(x, bii))] -&-mLs
xesupp([DiJf’(s) B

> max By, 5 |wow MO b)| - & - 2mLs
xesupp({Z)iJ[,a) o=

> max_ E, 5 [ui(wi,M(f)(y, b_l-))] -&-3mLS

—i~ -0

yesupp(D)

The first inequality and the last equality are due to the definition of M. The second and the
fourth inequalities are due to the £-Lipschitzness of the valuation function and ||wl - w’“l < mé.
The third inequality is because M( Visa &-BIC mechanism w.r.t. Z) By this chain of inequalities,
we know that M is a (& + 3mL5)-BIC mechanism w.r.t. D.

Next, we argue that M is also IR. Consider any bidder i and type profile w, M (w) has the
same allocation as Mgf)(w'). When bidder i’s payment is 0, her utility is clearly non-negative.
When bidder i’s payment is ngz)’i(w’) — mLJ, her utility is at least ui(w;,M;f)(w’)) due to the
L-Lipschitzness of the valuation function and ||w,~ - wlf”1 < mé. Since Mgf) is IR, bidder i’s utility
in M¥) is also non-negative.

Finally, if all bidders bid truthfully in M when their types are drawn from D, its revenue under
truthful bidding is

REvT (M(f), 23) > Revr (M(f) ) —nmZL§.
O

Proof of Theorem 3: First, sample £ uniformly from [0, §]™, and construct [ D; ], s for all i € [n].
According to Lemma 3, we can construct a mechanism MY) based on M that is ¢&; = O(mLJ)-BIC

w.rt. Xi_; [ Dily s, IR, and has revenue REVT (M([), ) LZ),-JK,[;) > Rev(M, D) — nm.L6.
TV

[Diles — l@zJ
() is

for our sample £ and every i € [n], and p*) to denote 2ieln] gl(f). For every realization of £, M,

Next, we transform Mif) to Mgf) using Lemma 1. We use EE.'K) to denote

£,6
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& = (2mLHPY + &)-BIC wrt. X1, {ﬁ,J s and IR. Its revenue under truthful bidding satisfies

REvy (M;[), >< {@iJ[ 5) > REVT (Mif), >< LDiJ[’(S) - nmLHp(g).

i=1 i=1
Lemma 4 shows that we can construct M) using M([), such that M is a (& +3m.LS5)-BIC w.rt.
D and IR mechanism with revenue

REVT (M“) Z)) > REVT (5) >< {54 —nmL§.
i=1 “o
Since M is O(mL5+mLH p'O)-BIC w.rt. D and IR for every realization of £, our mechanism M

is clearly O (mL5 +mZLH - Eeyfo,s)m [p(f)] )—BIC wrt. D and IR. Moreover, its expected revenue
under truthful bidding satisfies

REVT (M Z)) > Rev(M, D) - O(nm£5+nm£H E¢-ujo,s)m [ ()])

According to Lemma 2,
(9] 1
EgNU[O,(st p <n|l+ 5 €.

We choose 6 to be VnHe, and M becomes x-BIC w.r.t. ZS, where x = O (nmLHf + mLVnHe),
and IR. Furthermore,
REvT (M,ﬁ) > Rev(M, D) - O (nk).
(]

E.4 Lipschitz Continuity of the Optimal Revenue in Multi-item Auctions

Using Theorem 3, we can easily prove that the optimal BIC revenue w.r.t. D and the optimal BIC
revenue w.r.t. D are close as long as D; and D; are close in either the total variation distance or
the Prokhorov distance for all i € [n].

THEOREM 6 (LipscHITZ CONTINUITY OF THE OPTIMAL REVENUE). Consider the general mechanism
design setting of Section 2. Recall that L is the Lipschitz constant of the valuations. For any distributions

D =X, D; and D = X D;, where D; and D; are supported on [0, H]™ for everyi € [n]

v < ¢ foralli € [n], then

‘OPT(Z)) - OPT(ﬁ)‘ < O (nmLH (ne + Vhne)) ;

o if||D; - 5iup < ¢ foralli € [n], then

‘OPT(Z)) - OPF(Z'S)| <0 (m< + nm) ,
wherex = O (nm.EHe + mL\/E).

Proof of Theorem 6: Let M* be the optimal BIC mechanism for 9. We first prove the Prokorov
case. According to Theorem 3, there exists a mechanism M such that it is k-BIC w.r.t. D and IR.

Moreover,
Revr(M*, D) > REV(M*, D) — O(nk).
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By Lemma 1, REvr (M Z)) < OPT ( ) + 2nVmLHxk. Combining the two inequalities, we have

OPT (2'5) > OPT(D) - O (mc + nm) .
By symmetry, we can also argue that
OPT(D) > OPT (ﬁ) -0 (mc + nm) .
In the TV case, REVT (1\’/}*,1’5) > Rev(M*, D) — O(n*mLHe). Since M* is O(mnLHe)-BIC,
OPT (5) > REvr (M*, ZS) — O(nmLH+/ne¢) due to Lemma 1. By symmetry and the inequalities
OPT(D) — OPT (13)’ < O (nmLH(ne + y/ne)). O

above, we have

E.5 Approximation Preserving Transformation

THEOREM 7 (APPROXIMATION PRESERVING TRANSFORMATION). Consider the general mechanism
design setting of Section 2. Recall that L is the Lipschitz constant of the valuations. Given D = X, D;,
where D; is a m-dimensional distribution supported on [0, H]™ for alli € [n], and a BIC w.r.t. D and

IR mechanism M. We use D = X, D; to denote the true but unknown type distribution, and D; is
supported on [0, H|™ for alli € [n].

If||D; - D; < ¢ for alli € [n], we can construct a mechanism M, ina way that is completely
TV

oblivious to the true distribution 13 such that

(1) M is n-BIC w.r.t. D and IR, where n = O(nmLHe);
(2) if M is a c-approximation to the optimal BIC revenue for D, then

Revy (M1,D) 2 ¢ OPT, (D) - O (nm.LH (ne + Viz)) .

IfHZ)l - @iHP < ¢ foralli € [n], we can again construct a mechanism M, ina way that is completely
oblivious to the true distribution 5, such that
(1) M is k-BIC w.r:t. D and IR, wherex = O (nmLHs + mLVan);

(2) if M is a c-approximation to the optimal BIC revenue for D, then M is almost a c-approximation
to the optimal x-BIC revenue for D, that is,

Revy (AZ,@) > c- OPT, (@) -0 (mc + nm) .

Proof of Theorem 7: For the TV case, by Theorem 1, we can construct a n-BIC w.r.t. D and IR
mechanism M such that REvy (M, 13) > Rev(M, D) - O (n*mLHe) > ¢ - OPT(D) — O (n*mLHze).

By Theorem 6, OPT(D) is at least OPT(D) — O (nm LH(ne + v/ne)). Finally, OPT(D) > OPT, (D) -
2ny/mLHpn due to Lemma 1, so

REvT (]\71, 13) > c-OPT, (ﬁ) — O (nmLH(ne + Vne)) .

For the Prokhorov case, according to Theorem 3, we can construct a k-BIC w.r.t. D and IR
mechanism M such that REvy (1\2, 23) > ReEv(M, D) -0 (nk) = ¢-OPT(D) - O (nk). By Theorem 6

and Lemma 1, OPT(D) > OPT (23) -0 (nK + n\/m) > OPTK(Zs) -0 (mc + n\/m)
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Chaining all the inequalities above, we have
REVT (1\71 13) > ¢ OPT(D) - O (mc + n\/mLch) .
O

If there is a single bidder, we can strengthen Theorem 7 and make constructed mechanism M
exactly IC with essentially the same guarantees.

THEOREM 8 (SINGLE-BIDDER APPROXIMATION PRESERVING TRANSFORMATION). Consider the gen-
eral mechanism design setting of Section 2. Recall that L is the Lipschitz constant of the valuations.
Given a m-dimensional distribution D supported on [0, H]m and a IC and IR mechanism M. We use
D to denote the true but unknown type distribution, and D is also supported on [0, H]™.

. If“D - D“TV < ¢, we can construct an IC and IR mechanism M, in a way that is completely

oblivious to the true distribution D, such that if M is a c-approximation to the optimal BIC
revenue for D, then

H Rev (M, D) 2 ¢ (1- 0 (VmLHe)) - OPT(D) - O ((mLH + VmZH) - Ve) .
o If|D-D

oblivious to the true distribution D, such that if M is a c-approximation to the optimal BIC
revenue for D,

REV(AZ,z'S) > ¢ (1- k) - OPT(z'S) —o(;c+ (\/m.E_H+ 1) : \/E)
wherex = O (mLHg + mL\/I—ﬁ)

< ¢, we can again construct an IC and IR mechanism ]\71 in a way that is completely
P

Proof of Theorem 8: We only sketch the proof here. Let M’ be the mechanism constructed using
Theorem 7, and we construct another mechanism M by modifying M’ using Lemma 5. Clearly, M

is IC and IR. It is not hard to verify that Rev (1\2, 23) satisfies the guarantees in the statement by
combining the revenue guarantees for REvr (M ’ 23) as provided by Theorem 7 and the relation

between REV (M, 13) and REvr (M’, 23) as stated in Lemma 5. O

F LEARNING MULTI-ITEM AUCTIONS UNDER ITEM INDEPENDENCE

In this section, we show how to derive one of the state-of-the-art learnability results for learning
multi-item auctions via our robustness results. We consider the case where every bidder’s type
distribution is a m-dimensional product distribution. We will show that a generalization of the
main result by Gonczarowski and Weinberg [36] follows easily from our robustness result. The
main idea is that it suffices to learn the distribution #; within small Prokhorov distance for every
bidder i, and it only requires polynomial many samples when each ¥; is a product distribution.

THEOREM 9. Consider the general mechanism design setting of Section 2. Recall that L is the
Lipschitz constant of the valuations. For every ¢,8 > 0, and for every n < poly(n,m, L,H, ¢), we
can learn a distribution D = X ;¢ je[m] Dij Withpoly (n,m, L, H,1/e,1/n,log(1/5)) samples from

D= Xielnl,jelm] Z)U, such that, with probability 1 — §, we can transform any BIC w.rt. D, IR, and

c-approximation mechanism M to an n-BIC w.r.t. D and IR mechanism M, whose revenue under
truthful bidding satisfies

REvVT (]\2,23) > ¢ OPT), (23) — €.
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Ifn = 1, the mechanism M will be IR and IC, and

Rev (M. D) 2 ¢+ (1= yi) - OPT(D) ~ & = i

In particular, Gonczarowski and Weinberg [36] proved the ¢ = 1 case, and our result applies to
any ¢ € (0, 1]. The proof is given in Appendix I. We provide a proof sketch here. We first prove
Lemma 12, which shows that polynomially many samples suffice to learn a distribution D that is
close to D in Prokhorov distance. Now the statement simply follows from Theorem 7.

G MISSING PROOFS FROM SECTION F

We first show that for any product distribution 7, we can learn the rounded distribution of ¥
within small TV distance with polynomially many samples.

Lemma 11. Let & = XL, F;, where F; is an arbitrary distribution supported on [0, H] for every

j € [m]. Given N = O (mUSH (log1/6 + log m)) samples, we can learn a product distribution F =
X 57; such that

|7~ 7, <
P
with probability at least 1 — 6.

Proor. We denote the samples assl, ..., Round each sample to multiples of n” = n/m. More
specifically, let §' = (|_s J .. |_s / r]’J ) for every sample i € [N]. Let T be the uniform
distribution over sJ Let TJ = [?}J Note that 7" is the empirical distribution of N
samples from ?j‘ As ‘supp(?'j)| = [7J mH with N = O (M (log1/6 + log m) | samples,

the empirical distribution % should satisfy “T} - TjHTV < 5’ with probability at least 1 — §/m. By
the union bound

-7

%j - 7_7]-HTV < n’ for all j € [m] with probability at least 1 — §, which implies

|TV < n with probability at least 1 — §. Observe that ¥ and F can be coupled so that the

two samples are always within 7 in ¢; distance. When “% ~-F . < 1, consider the coupling

between ¥ and F by composing the optlmal coupling between F and 7 and the coupling between
F and F. Clearly, the two samples from F and F are within £ 1 distance n with probability at least
7 - 7:HP <7 O

1 — 1. Due to Theorem 2, the existence of this coupling implies that

Proof of Theorem 9: We only consider the case, where 1 < « - min { a is an absolute

n’ nzm.CH}
constant and we will specify its choice in the end of the proof.

In light of Lemma 12, we take N = O (’";{J - (log 5 + log m)) from D and learn a distribution D
so that, with probability at least 1 — &, ||Z),~ — @i“P < o forall i € [n]. According to Theorem 7, we

can transform M into mechanism M that is O (nmLH o +mLVnH cr)-BIC w.rt. D and IR. Choose
o in a way so that Mis n-BIC w.r.t. D. Moreover, M’s revenue under truthful bidding satisfies

RV, (]\71 f)) > ¢ OPT, (13) ~0 (my + n\/WHU) .
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If we choose « to be sufficiently small, then
Revy (M,ﬁ) > c- OPT, (13) —&.

When there is only a single-bidder, we can apply Lemma 5 to transform M to an IC and IR
mechanism, whose revenue satisfies the guarantee in the statement.0

H OPTIMAL MECHANISM DESIGN UNDER STRUCTURAL ITEM DEPENDENCE

In this section, we go beyond the standard assumption of item-independence, which has been
employed in most of prior literature, to consider settings where, as is commonly the case in practice,
item values are correlated. Of course, once we embark onto a study of correlated distributions, we
should not go all the way to full generality, since exponential sample-size lower bounds are known,
even for learning approximately optimal mechanisms in single-bidder unit-demand settings [31].
Besides those sample complexity lower bounds, however, fully general distributions are also not
very natural. In practice, high-dimensional distributions are not arbitrary, but have structure, which
allows us to perform inference on them and learn them more efficiently. We thus propose the study
of optimal mechanism design under the assumption that item values are jointly sampled from a
high-dimensional distribution with structure.

There are many probabilistic frameworks that allow modeling structure in a high-dimensional
distribution. In this work we consider one of the most prominent ones: graphical models, and in
particular consider the two most common types of graphical models: Markov Random Fields and
Bayesian Networks.

DEeFINITION 10. A Markov Random Field (MRF) is a distribution defined by a hypergraph G =
(V,E). Associated with every vertexv € V is a random variable X,, taking values in some alphabet %,
as well as a potential function y, : £ — [0, 1]. Associated with every hyperedge e C V is a potential
function . : ¢ — [0, 1]. In terms of these potentials, we define a probability distribution p associating
to each vector x € 3V probability p(x) satisfying:

p0) = > [T vleo) [ T et ©)
veV ecE

where for a set of nodes e and a vector x we denote by x, the restriction of x to the nodes in e, and Z
is a normalization constant making sure that p, as defined above, is a distribution. In the degenerate
case where the products on the RHS of (9) always evaluate to 0, we assume that p is the uniform
distribution over V. In that case, we get the same distribution by assuming that all potential functions
are identically 1. Hence, we can in fact assume that the products on the RHS of (9) cannot always
evaluate to 0.

DErFINITION 11. A Bayesian network, or Bayesnet, specifies a probability distribution in terms of
a directed acyclic graph G whose nodes V are random variables taking values in some alphabet X.
To describe the probability distribution, one specifies conditional probabilities px,|x;, (Xv|xm, ), for
all vertices v in G, and configurations x,, € % and xr1,, € 2, where I, represents the set of parents
of v in G, taken to be 0) if v has no parents. In terms of these conditional probabilities, a probability
distribution over XV is defined as follows:

p(x) = nva X, (Xolxm, ), for all x € V.

It is important to note that both MRFs and Bayesnets allow the study of distributions in their
full generality, as long as the graphs on which they are defined are sufficiently dense. In particular,
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the graph (hypergraph and DAG respectively) underlying these models captures conditional inde-
pendence relations, and is sufficiently flexible to capture the structure of intricate dependencies in
the data. As such these models have found myriad applications; see e.g. [43, 44, 50, 51] and their
references. A common way to control the expressiveness of MRFs and Bayesnets is to vary the
maximum size of hyperedges in an MRF and indegree in a Bayesnet. Our sample complexity results
presented below will be parametrized according to this measure of complexity in the distributions.

In our results, presented below, we exploit our modular framework to disentangle the iden-
tification of good mechanisms for these settings from the intricacies of learning a good model
of the underlying distribution from samples. In particular, we are able to pair our mechanism
design framework presented in earlier sections with learning results for MRFs and Bayesnets to
characterize the sample complexity of learning good mechanisms when the item distributions are
MRFs and Bayesnets. Below, we first present our results on the sample complexity of learning good
mechanisms in these settings, followed by the learning results for MRFs and Bayesnets that these
are modularly dependent on.

H.1 Learning Multi-item Auctions under Structural Item Dependence

In this section, we state our results for learning multi-item auctions when each bidder’s values
correlated. In particular, we consider two cases: (i) every bidder’s type is sampled from an MRF, or
(ii) every bidder’s type is sampled from a Bayesnet. Our results can accommodate latent variables,
that is, some of the variables/nodes of the MRF or Bayesnet are not observable in the samples. We
show that the sample complexity for learning an -BIC and IR mechanism, whose revenue is at most
¢ less than the optimal revenue achievable by any -BIC and IR mechanisms, is polynomial in the
size of the problem and scales gracefully with the parameters of the graphical models that generate
the type distributions. If there is only a single bidder, the mechanism we learn will be exactly IC
rather than approximately IC. We derive the sample complexity by combining our robustness result
(Theorem 7) with learnability results for MRFs and Bayesnets (Theorem 12 and 13).

THEOREM 10 (OPTIMAL MECHANISM DESIGN UNDER MRF ITEM DI1STRIBUTIONS). Consider the
general mechanism design setting of Section 2. Recall that L is the Lipschitz constant of the valuations.
LetD = Xieln] D;, where each D; is a m-dimensional distribution generated by an MRF p;, as in
Definition 10, defined on a graph with N; > m nodes, hyper-edges of size at most d, and supp(l) ) C
3™ C [0,H]™. When N; > m, we say D; is generated by an MRF with N; — m latent variables. We
use N to denote max;en{N;}.

For every e, §>0,andn < poly(n m, L,H, ¢), we can learn, with probability at least 1 — 8, an

n-BIC w.r.t. D and IR mechanism M, whose revenue under truthful bidding is at most ¢ smaller than
the optimal revenue achievable by any n-BIC w.r.t. D and IR mechanism, given

. poly(n,N9,|3|%, £,H,1/n,log(1/5))
pe;

is defined is known for each bidder i, then
where k is an upper bound on the number of edges in all the graphs;

° poly(  N¥, (%) ,C4, L1/, log(l/&)) samples if the alphabet > = [0,H], and the log
potentials ¢7' (-) = log (¢5’()) and ¢%' () = log (tﬁf’()) for every node v and every edge e are
C-Lipschitz w.r.t. the £;-norm, for every bidder i; when the graph on which p; is defined is known
for each bidder i, then poly (n N, k4 ( ) ce, L,1/n, log(1/5)) -many samples suffice, where
Kk is an upper bound on the number of edges in all the graphs.

samples if the alphabet Y. is finite; when the graph on which p;
poly(n,N,x,|2|%, ./: H,1/n,log(1/8))

-many samples suffice,
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Ifn = 1, the mechanism M will be IR and IC, and
REV(M@) > (1-+/07)- OPT(ZA)) —e—A/1.

THEOREM 11 (OPTIMAL MECHANISM DESIGN UNDER BAYESNET ITEM DISTRIBUTIONS). Consider
the general mechanism deszgn setting ofSectlon 2. Recall that L is the Lipschitz constant of the
valuations. Let D = Xieln] D;, where each D; is a m- dlmenstonal distribution generated by a
Bayesnet p;, as in Deﬁnition 11, defined on a DAG with N; > m nodes, in-degree at most d, and
supp(ﬁi) C 3™ C [0,H]™. When N; > m, we say D; is generated by an MRF with N; — m latent
variables. We use N to denote max;e[n){N;}.

For every ¢, §>0,andn < poly(n m, L,H, ¢), we can learn, with probability at least 1 — 8, an
n-BIC w.r.t. D and IR mechanism M, whose revenue under truthful bidding is at most ¢ smaller than
the optimal revenue achievable by any n-BIC w.r.t. D and IR mechanism, with

e poly (n,d, N, |29, £,H,1/n,1/e,log(1/8)) samples if the alphabet . is finite;

e poly (n, ddt N+ (HC)d+ )y, log(l/(S)) samples if the alphabet 3. = [0, H], and for
every p;, the conditional probability of every node v is C-Lipschitz in the {1-norm (see Theorem 13
for the definition).

Ifn =1, the mechanism M will be IR and IC, and

REV(M,ZS) > (1-+/) - OPT(ZS) —e— /.

H.2 Sample Complexity for Learning MRFs and Bayesnets

In this section, we present the sample complexity of learning an MRF or a Bayesnet. Our sample
complexity scales gracefully with the maximum size of hyperedges in an MRF and indegree in a
Bayesnet. Furthermore, our results hold even in the presence of latent variables, where we can only
observe the values of k variables, out of the total |V| variables, in a sample.

THEOREM 12 (LEARNABILITY OF MRFs IN TOTAL VARIATION AND PROKHOROV DISTANCE). Suppose
we are given sample access to an MRF p, as in Definition 10, defined on an unknown graph with
hyper-edges of size at most d.

d d
o Finite alphabet X: Given poly(V] IZI log(3)) samples from p we can learn some MRF q whose

hyper-edges also have size at most d such that ||p — qll;y < e. If the graph on which p is
poly(IV1, |EJ, I2]%,log(3))
EZ

defined is known, then
dependence of the sample complexity on |2|¢ cannot be improved, and the dependence on ¢ is
tight up to poly(log 1) factors.

o Alphabet s = [0,H]: If the log potentials ¢,,(-) = log (},(+)) and ¢ () = log (Y.(-)) for every
node v and every edge e are C-Lipschitz w.r.t. the {1-norm, then given poly (|V|d2, (%)d, Cd)

-many samples suffice. Moreover, the polynomial

samples from p we can learn some MRF q whose hyper-edges also have size at most d such that
llp = qllp < €. Ifthe graph on which p is defined is known, then poly (|V|, |E|9, (%)d, Cd)-many
samples suffice.

Our sample complexity bounds can be easily extended to MRFs with latent variables, i.e. to the case
where some subset V' C V of the variables are observable in each sample we draw from p. Suppose
k = |V'| < |V| is the number of observable variables. In this case, for all settings discussed above, our
sample complexity bound only increases by a k - log |V| multiplicative factor.
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THEOREM 13 (LEARNABILITY OF BAYESNETS IN TOTAL VARIATION AND PROKHOROV DISTANCE).
Suppose we are given sample access to a Bayesnet p, as in Definition 11, defined on an unknown DAG
with in-degree at most d.

dIV [1og |V [+]V]- || log( 112!

€2

e Finite alphabet 3: Given O -many samples from p we can learn

some Bayesnet q defined on a DAG whose in-degree is also bounded by d such that ||p — ql|;, < €

V-1 log( 142

If the graph on which p is defined is known, then O = )-many samples suffice.

Moreover, the dependence of the sample complexity on |£|?*' and % is tight up to logarithmic
factors.
e Alphabet 3 = [0, H]: Suppose that the conditional probability distribution of every node v
is C-Lipschitz in the {;-norm, that is, X1, =0 ~ PX, |XHU=U'HTV <C:|lo-0c’|l;, Yv and
1V log v [+ |V 224040) " pog 12140

2

0,0’ € 2. Then, given O -many samples from p, we

can learn some Bayesnet q defined on a DAG whose in-degree is also bounded by d such that
|V‘_(H|V\dC)d+1 log(lV\HdC)

€2

llp = qllp < e. If the graph on which p is defined is known, then O (

-many samples suffice.

Our sample complexity bounds can be easily extended to Bayesnets with latent variables, i.e. to the
case where some subset V' C V of the variables are observable in each sample we draw from p. Suppose
k = |V'| < |V| is the number of observable variables. In this case, for all settings discussed above, our
sample complexity bound only increases by a k - log |V| multiplicative factor.

In our proof of Theorem 12, we first carefully construct an ¢-net over all MRFs with hyperedges
of size at most d in either total variation distance or Prokhorov distance, then apply a tournament-
style density estimation algorithm [1, 26, 29] to learn a distribution from the e-net that is at most
O(¢) away from the true distribution using polynomially many samples. Our proof of Theorem 13
follows a similar recipe. The main difference is how we construct the e-net over all Bayesnets with
in-degree at most d. Both proofs are presented in Appendix J.

I MISSING PROOFS FROM SECTION F

We first show that for any product distribution ¥, we can learn the rounded distribution of ¥
within small TV distance with polynomially many samples.

Lemma 12. Let F = XL, F;, where F; is an arbitrary distribution supported on [0, H] for every

j € [m]. Given N = O (m”3H . (log 1/6 + log m)) samples, we can learn a product distribution F =
Xt % such that
_F <
|77, =
with probability at least 1 — 6.

Proor. We denote the samples assl,...,s
specifically, let §' = ([ i J .. [s /U'J ) for every sample i € [N]. Let T be the uniform

distribution over §]1., . N Let 7:] = |_7'}J Note that 7" is the empirical distribution of N

Round each sample to multiples of " = n/m. More

samples from 7_7j. As ‘supp(Tj)| = {%J = mTH with N = O (% - (log 1/6 + log m) | samples,
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the empirical distribution % should satisfy ”% - 7_'-jHTV < n’ with probability at least 1 — §/m. By

the union bound %} - ?j”TV < n’ for all j € [m] with probability at least 1 — §, which implies

||§} - ?H < n with probability at least 1 — §. Observe that ¥ and ¥ can be coupled so that the

two samples are always within 5 in ¢; distance. When ”T 7’“ < 1, consider the coupling

between ¥ and F by composing the optlmal coupling between F and F and the coupling between
F and F. Clearly, the two samples from F and F are within ¢ 1 distance n with probability at least

1 — 7. Due to Theorem 2, the existence of this coupling implies that HT - T”P <n. O

Proof of Theorem 9: We only consider the case, where < « - min { } a is an absolute

n m
constant and we will specify its choice in the end of the proof.

In light of Lemma 12, we take N = O (’";H - (log 5 + log m)) from D and learn a distribution D

so that, with probability at least 1 — 6, |

D; - ZS,-“P < o foralli € [n]. According to Theorem 7, we

can transform M into mechanism M that is O (nmLH o+ mLNnH G)-BIC w.rt. D and IR. Choose

o in a way so that M is n-BIC w.r.t. D. Moreover, M’s revenue under truthful bidding satisfies
REvVT (/\71, 13) > c- OPT, (@) -0 (nr] + n\/WHU) .
If we choose « to be sufficiently small, then
ReEvT (M,ﬁ) > c- OPT, (23) — €.

When there is only a single-bidder, we can apply Lemma 5 to transform M to an IC and IR
mechanism, whose revenue satisfies the guarantee in the statement.
mi

J MISSING PROOFS FROM SECTION H
J.1  Proof of Theorem 12

Proof of Theorem 12: For the purposes of this proof we take n = |V|. We first prove the finite
alphabet case, we then extend the result to the infinite alphabet case, and finally we discuss how to
accommodate latent variables.

Finite alphabet 3.: We will prove our first sample complexity bound by constructing an e-cover, in
total variation distance, of the set P of all MRFs with hyperedges of size at most d. We can assume
that all p € P satisfy the following:

(A1) : pisdefined on the hypergraph G = (V, E), whose edge setis E = (Z), and all its node potential
functions are constant and equal 1.

The reason we can assume (A1) for all p € P is that potentials of nodes and smaller-size hyperedges
can always be incorporated into the potentials of some size-d hyperedge that contains them, and the
potentials of size-d hyperedges that are not present can always be taken to be constant 1 functions.

Moreover, we can assume the following property for all MRFs p € P:
(A2): max,ese Ye(0) = 1,Ve € E.
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The reason we can assume (A2) for all p € P is that the density of an MRF is invariant to multiplying
any single potential function by some scalar.

Now, given some MRF p € P, satisfying (A1) and (A2), which we can assume without loss of
generality, we will make a sequence of transformations to arrive at some MRF p”’ € P such that
llp = p”ll7v < € and p” can be described using B = poly (|E|, |2|%,log()) bits. This, in turn, will
imply that there exists an e-cover P’ C P that has size 25, and the existence of an e-cover of this
size implies that O(B/¢%)-many samples from any p € P suffice to learn some q € P such that
llp — gll7v < O(e), using a tournament-style density estimation algorithm; see e.g. [1, 26, 29] and
their references.

Here are the steps to transform an arbitrary p € # into some p”’ € P of low bit complexity:

o (Notation:) From now on we will use p to denote unnormalized densities. Le. if p is defined
in terms of potential functions (Y2 (-))ecr, then p(x) = [Tocp Y2 (xe), Vx € =V.

(Step 1:) Given some arbitrary p € P, we construct some p’ € P such that |[p —p’||;y < e,
p’ satisfies (A1) and (A2) and, moreover, the unnormalized density of p’ satisfies that, for all

xexV, pl(x) = (1 + ZnLd) ", for some integer i,. The existence of such p’ follows from the
invariance of MRFs with respect to multiplying their potential functions by scalars, and the
following.
Cram 3. Suppose p,p’ € P satisfy (A1) and are defined in terms of potential functions (y£),
and (Y2, respectively. Moreover, suppose that Ve, € 3¢ :
’ £ ’

W <t < 1455 v

Then |lp —p'llpy < e

Proof of Claim 3: 1t follows from the condition in the statement of the claim that, for all
xexV:

(@)
P() < ple) < (1 + #) P/() < e/ (x) < (1+ )/ ().
Using the above, let us compare the normalized densities. For all x € =V
pE) o0 +e)
2ypy) — Xy ')

p(x) = < p'(x)(1 + ¢).

Moreover,

) )
PO =5 5w Z S Pt o)

Using the above, let us bound the total variation distance between p and p”:

Ip=p'llry = 5 2 o)~ ')

> p'(x)/(1 +e).

1 ! 1 ’
=2 D, PPy D 00 -p)
x:p(x)=2p’(x) x:p(x)<p’(x)
< - Z ep’(x) + % Z ep(x) < e.
x:p(x)=p’(x) x:p(x)<p’(x)
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e (New Notation:) We introduce some further notation. Let ((ﬁf ) be the potential functions
e

defining distribution p’ € P from Step 1. We reparametrize these potential functions as
follows:

Ve, x € ¢ : {fl(x) = log (wf,(x)) /log (1 + ﬁ) .

Given the definition of p” in Step 1, our new potential functions satisfy the following linear
equations:

VrexV: ) & (x) = i, (10)

ecE

where, because of Assumption (A2), satisfied by p’, the integers i, < 0, for all x.

(Step 2:) We define p”’ by setting up a linear program with variables &7 ”(xe), Ve,x, € XF. In
particular, the number of variables of the linear program we are about to write is L = |E| - |Z|¢.
To define our linear program, we first define x* = argmax, iy, and partition >V into two
sets ¥ = G U B, by taking G = {x | iy > iy — T}, and B the complement of G, for
T = %(n log |Z| + log(%)). In particular, all configurations in 8 have probability p’(x) <
e/|Z|™. Our goal is to exhibit that there exists p” € P that (i) satisfies properties (A1) and
(A2); (ii) can be described with poly (|E|, DL log(%)) bits; and (iii) satisfies X, cg p”'(x) < ¢
and p”(x) = p'(x) - (1 + §) Vx € G, where § € [—s, ﬁ] We note that (iii) implies that
lp" = p”llrv < & aseither p”’(x) > p’(x) for all x € G simultaneously or p”(x) < p’(x) for all
x € G simultaneously, and the total mass in 8 under both p” and p”’ are at most ¢. Combining
(iii) and Claim 3, we have (iv) ||p — p”|ly < 2e. To exhibit the existence of p”’ we write the
following linear program:

Ve e G\ {x'}: ) & () = D 8 () = i — i (11)
ecE ecE
VieB: ) & (k) - Y &' (x)) < -T
ecE ecE

Note that, because LP (10) is feasible, it follows that LP (11) is feasible as well. Moreover,
the coefficients and constants of LP (11) have absolute value less than T and bit complexity
polynomial in d, logn, log(%) and loglog ||, and the number of variables of this LP is
L = |E| - |2|%. From the theory of linear programming it follows that there exists a solution
to LP (11) of bit complexity polynomial in |E|, |Z|¢, log n, and log(%). Why is (iii) true? It is
not hard to see that for any x € 8B, p”(x) < ¢/|Z|" due to the second type of constraints in

LP (11). Forany x € G \ {x*}, % = I% due to the first type of constraints in LP (11), so
p”(x) =p’(x) - (1+6) Vx € G for some constant §. Since both ¥, cg p’(x) and ¥, cg p”(x)

liein [1 —¢,1], 6 lies in [—e, ﬁ .

To summarize the above (setting ¢ < ¢/2 in the above derivation), given an arbitrary p €
we can construct p” € P such that: p”’ can be described using B = poly (|E|, |=|%, log()) bits—by

specifying the low complexity solution (5‘3//) to LP (11), and p”’ satisfies ||[p — p” || < €. As we

e
have noted above, the existence of such p”’ for every p € P implies the existence of an e-cover, in
total variation distance, of P that has size 28, and tournament-style arguments imply then that any
p € P can be learned to within O(¢) in total variation distance from O(:%)—many samples, i.e. from

poly(|E, [219,log(3))

= -many samples.
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We now prove the second part of the statement. If the hypergraph (V, E,) with respect to which
p is defined is known, we redo the above argument, except we take P to be all MRFs defined on the
graph G = (V, E), where E is the union of E, and all singleton sets corresponding to the nodes V.

For the third part of the statement, we note that an arbitrary distribution p on d variables, each
taking values in X, can be expressed as a MRF with maximum hyperedge-size d. As such, it is
folklore (see e.g. [29]) that Q(|Z|¢ /&%) samples are necessary to learn p to within ¢ in total variation
distance. This completes the proof for the finite alphabet case.

Next, we show how to extend our sample complexity to the case where the alphabet 3 = [0, H].

AlphabetY = [0,H]: Let § = m, and X be the set of all multiples of § between 0 and H.10

We first define distribution p to be the rounded version of p using the following coupling. For any
sample x drawn from p, create a sample X drawn from p such that ¥, = [%”J - foreveryv e V.
Note that (i) this coupling makes sure that the two samples from p and p are always within ¢ of
each other in ¢;-distance. Our plan is to show that we can (ii) learn an MRF g with polynomially
many samples from distribution p such that ||q — p||; = O(e). Why does this imply our statement?
First, we can generate a sample from p using a sample from p due to the coupling between the two
distributions. Second, ||g — pll; = O(¢) means that we can couple g and p in a way that the two
samples are the same with probability at least 1 — O(¢). Composing this coupling with the coupling
between p and p, we have a coupling between p and g so that the two samples are within ¢ of each
other in ¢;-distance with probability at least 1 — O(¢). According to Theorem 2, ||p — gl = O(e).
Now, we focus on proving (ii).

We separate the proof into two steps. In the first step, we show that for any p, there is a discretized
MREF ¢’ supported on 2:; with hyperedges of size at most d such that ||p — ¢’||; < € and g’ can be
described with B = poly (|E|, =519, log(%)) bits. In other words, there is a 2B-sized e-cover over
all possible distributions p. In the second step, we show how to learn an MRF q with O(B/&?)
samples from p using a tournament-style density estimation algorithm; see e.g. [1, 26, 29] and their
references. Before we present the two steps of our proof, and in order to simplify our notation and
avoid carrying around node potentials, let us introduce into the edge set E of our hypergraph a
singleton edge for every node v, and take the potential of every such edge e = {v} to equal the
node potential of node v.

o (Step 1:) We first define a discrete MRF p’ on the same graph G = (V, E) as p with alphabet 2.

Distribution p’ is defined by choosing its log-potential QSE (x.) to be exactly ¢?(x,) for every
hyperedge e € E and every possible value x, € X§. Next, we show that (iii) [|[p" - pll 7y, < &/2.
We use A, to denote the n-dimensional cube XX, ¢y [x4, X, + 8) for any x € 2:;. Note that

fi exp (Ze #(wo)) dy 8" exp (Ze ¢ (x0)) - exp(dIEICS)
<
S & (Ze 2wa) dy 6" 2y exy exp (Ze $E(5e)) - exp(~dIEICS)

The first inequality is due the C-Lipschitzness of the log potential functions and the second
inequality is due to the definition of §. Similarly,

<p'(x)(1+e/2).

plx) =

_ Ax exp (Ze ¢f(ye)) dy . " exp (Ze ¢€(xe)) - exp(—d|E|CS) . ) |
Jue 0 (Ze#h@0) dy 07 Zyary exp (2 #llw) - exp@iEice) - 1+ /2

p(x)

10We further assume that H is a multiple of 8. If not, let k be the integer such that § € 2%’ zk%] and change J to be zﬁk
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We complete the proof of (iii) by combining the two inequalities.

> B~

xexy

2D Gw-p e, Y @)
x:p(x) 2p’ (x) x:p(x)<p’(x)

S Wy Y Siwsen

x:p(x) 2p’ (x) x:p(x)<p’(x)

“1; _p,”TV

IA

Let P be the set of all MRFs with hyperedges of size at most d and alphabet X 5. By redoing
Step 1 and 2 of the proof for the finite alphabet case, we can show that (iv) for any p € P,
there exists another p’ € P describable with B = poly (|E|, |25|d,10g(%)) bits such that
lp —p'll;y < e/2. Since p’ € P, there exists a g’ € P describable with B bits such that
lp" = ¢’ll7y < €/2. Combining this inequality with (iii), we have [[p — ¢’||l7 < €.

o (Step 2:) Let P’ C P be the set of all MRFs in $ with bit complexity at most B from Step 1.
Since mingepr ||§ — plly < &, we can learn an MRF g € P’ such that ||q — p||;, < O(e) with
O(B/¢?*) samples from p using a tournament-style density estimation algorithm [1, 26, 29].

£

To sum up, we can learn an MRF q such that ||g — p||p < & with poly (|V|d2, (H)d,Cd) many
samples from p. If the graph G on which p is defined is known, we can choose § to be O (W)

and improve the sample complexity to poly (|V|, |E|4, (%)d, Cd).

Latent Variable Models: Finally, we consider the case where only k out of the n variables of the
MREF are observable. Let S be the set of observable variables, and use pg to denote the marginal
of p on these variables. We will first consider the finite alphabet case. Consider the ¢-cover we
constructed earlier. We argued that for any MRF p there exists an MRF g in the cover such that
llp — gll7v < €. For that g we clearly also have ||ps — gs|l; < €. The issue is that we do not know
for a given q in the cover which subset of its variables set S might correspond to. But this is not a big
deal. We can use our cover to generate an e-cover of all possible marginals pg of all possible MRFs
p as follows. Indeed, for any ¢’ in the original e-cover, we include in the new cover the marginal
distribution g5, of every possible subset S” of its variables of size k. This increases the size of our
original cover by a multiplicative factor of at most n*. As a result, the number of samples required
for the tournament-style density estimation algorithm to learn a good distribution increases by a
multiplicative factor of k log n. For the infinite alphabet case, our statement follows from applying
the same modification to the e-cover of p. O

J.2 Proof of Theorem 13

Proof of Theorem 13: We first prove the theorem statement for the finite alphabet case, we then
extend it to the infinite alphabet case, and finally show how we can accommodate latent variables
as well.

Finite alphabet 3.: We prove the claims in the theorem statement in reverse order.

For the third part of the statement, we note that an arbitrary distribution p on d + 1 variables,
each taking values in X, can be expressed as a Bayesnet with maximum indegree d. As such, it
is folklore (see e.g. [29]) that Q(|Z|9*!/e?) samples are necessary to learn p to within ¢ in total
variation distance.
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To prove the second part of the statement, we show that there is an e-cover, in total variation

d+1
n|2\)"|2|

distance, of all Bayesnets # on a given DAG G of indegree at most d, which has size B = ( .

where n = |V|. The existence of an e-cover of this size implies that O(log(B)/e?)-many samples
from any p € P suffice to learn some g € P such that ||p — ql|; < O(e), using a tournament-style
density estimation algorithm; see e.g. [1, 26, 29] and their references. Thus, to prove the second
part of the theorem statement it suffices to argue that an e-cover of size B exists. We prove the
existence of this cover by exploiting the following lemma.

>

LEMMA 13. Supposep and q are Bayesenets on the same DAG G = (V, E). Suppose that, forallv € V,
for all o € 31®), where TI(v) are the parents of v in G (using the same notation as in Definition 11), it
holds that

&
|Iva‘XI'I-U=0' - qu‘Xn,Uza'”TV < W_l

Then |lp — gllpy < e.

Proof of Lemma 13: We employ a hybrid argument. First, let us denote n = |V| and label the nodes in
V with labels 1, . . ., n according to some topological sorting of G. In particular, the parents (if any)
of any node i have indices < i. Now, for our hybrid argument we construct the following auxiliary
distributions, fori = 0, ..., n:

R (x) = [ | pxoin, Golrm,) || axixa, (rolxn, ), for all x € 3V

v=1 v=i+1

In particular, h° = g and h" = p, and the rest are fictional distributions. By triangle inequality, we
have that:

llp = qllry < Z ”hi - hi_l”rv .

i=1
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We will bound each term on the RHS by ¢/n to conclude the proof of the lemma. Indeed,

5l
=2

X

i n i-1 n
[ [ox0a, olxny) - [ | axoisa, Geolxm,) = [ | pxxn, (ol - | | i, Geolxn, )
v=1 v=i+1 v=1 v=i
i—1 n
X X, (¥olxm,) - (PX,-|an.(xi|xH,-) - CIX,»|Xni(xi|xH,-)) : 1—1 qx, X, (Xolxm,)
1 v=i+1

v=
i—1

1

Z X X0, (Xolxm,) -

v=1
i—1

= Z PX, 1xu, (Xolxm,,)-

> ( P, (xiln,) = @, o, Ceiln) [+ (]_[ Qvanv(xv|va)))

X Xit1...n \v=i+1

Px;|xn, (xi|xm;) = gx, | X, (¢ |xm,)

n
: 1_[ 9x, X, (Xo|x11,,)

v=i+1

i-1
Z ( Px, |xn,, (Xolx11,,) - Z (‘PXi\Xni(xilei)_qX,-lxni(xilxl'Ii) ))
v=1 Xi

X1...i-1

i—-1
< Z (]_[va|xnv(xv|xl'lv)' é‘/n)

X1...i-1 \v=1

=¢/n,
where for the inequality we used the hypothesis in the statement of the lemma.n

Now suppose p € P is an arbitrary Bayesnet defined on G. It follows from Lemma 13 that p
lies e-close in total variation distance to a Bayesnet q such that, forallv € V,and all o € o
the conditional distribution gx, |x;, = is a discretized version of px, |x;, = thatis £ -close in total
variation distance. Note that px, |x;;, =0 is an element of the simplex over | 2| elements, and it is easy
to see that this simplex can be %-covered, in total variation distance, using a discrete set of at most

3| 2

. -many distributions. As there are at most n - |%|? conditional distributions to discretize, a

d+1

3 n|%|

B= (M)
&

total number of

discretized distributions suffice to cover all .

To prove the first part of the theorem statement, we proceed in the same way, except that now
that we do not know the DAG our cover will be larger. Since there are at most n%" DAGs of indegree
at most d on n labeled vertices, and for each DAG there is a cover of all Bayesnets defined on that
DAG of size at most B, as above, it follows that there is an ¢-cover, in total variation distance, of all
Bayesnets of indegree at most d of size:

n" . B.

Given the bound on the cover size, the proof concludes by appealing to tournament-style density
estimation algorithms, as we did earlier. This completes our proof for the finite alphabet case.
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Alphabet 3. = [0,H]: Let§ = &, and 35 be the set of all multiples of § between 0 and H."!
For any set of nodes S and x = (x,),es, We use | x] 5 to denote the corresponding rounded vector
(I_%”J . 5)UE - We first define distribution p to be the rounded version of p using the following
coupling. For any sample x drawn from p, create a sample X = | x] 5 drawn from p. Note that (i)
this coupling makes sure that the two samples from p and p are always within ¢ of each other
in {;-distance. Our plan is to show that we can (ii) learn a Bayesnet ¢ with in-degree at most d
using polynomially many samples from distribution p such that ||g — p||; = O(e). Why does this
imply our claim? First, we can generate a sample from p using a sample from p due to the coupling
between the two distributions. Second, ||q — || = O(¢) means that we can couple g and p in a
way that the two samples are the same with probability at least 1 — O(¢). Composing this coupling
with the coupling between p and p, we have a coupling between p and ¢ such that the two samples
are at most ¢ away from each other in ¢;-distance with probability at least 1 — O(e). This implies,
according to Theorem 2, that ||p — q||p = O(¢). Now, we focus on proving (ii) and separate the proof
into three steps.

o (Step 1:) We first prove that there is a Bayesnet p”” with in-degree at most d and alphabet X5
such that ||p — p”’||; < e. We first construct a Bayesnet p” on the same DAG as p, where the
conditional probability distribution for every node v, and o € 3! is defined as

’ —_
Px, [Xni(0)=o — PXo | Xnw)=1os *

Clearly, for any node v, and ¢ € sHo

&

<C-llo-lolsll, < Cdd <

v = Hp o | X(v)=0 _valxn(v):[o'jg v V]

’
prv Xnwr=e ~ PX, |Xno)eo

Hence, Lemma 13 implies that: (iii) [|p — p’|| 1y < &2

Next, we construct the rounded distribution p”’ of p’ via the following coupling. For any
sample x” drawn from p’, create a sample x”’ = | x’| s from p”’. It is not hard to verify that p”’
can also be captured by a Bayesnet defined on the same DAG as p and p’. In particular, for
every node v, every x,, € X5, and xy1,, € ZI;", the conditional probability is

Xy +8
144 ’
Px,\1xu, (o |xm,,) =/ Px,1xu, (zlxm,, ) dz.
X

As p” is the rounded distribution of p’, p is the rounded distribution of p, and ||p — p’|| 1 < &,
it must be the case that ||p” — pll;, < e.
o (Step 2:) Let P be the set of all Bayesnets defined on a DAG with n nodes and in-degree at

n|y s |4+1
n|Ss| | §|
£

most d, and which have alphabet % 5. We argue that there is a size A = n%" -
e-cover P’, in total variation distance, of P, and P’ C P. This follows from the same
argument we did in the proof for the finite alphabet case. First, there are n®" different DAGs
with n nodes and in-degree at most d. Second, for each DAG there are at most n - |59
conditional distributions. Finally, it suffices to £ -cover each conditional distribution, in total

[Zsl
variation distance, which can be accomplished by a discrete set of at most (@) -many

distributions. Since p”’ € P and |[p” — pll; < ¢, there exists a Bayesnet ¢ from the e-cover
P’ such that || — pll;y < 2e.
1We further assume that H is a multiple of §. If not, let k be the integer such that § € 2%’ 2,{% , and change § to be zﬂk

12Eyen though Lemma 13 was only proved earlier for a finite alphabet, the same proof extends to when the alphabet is
infinite.
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e (Step 3:) Since ming e ||qg" — pll;y, < 26, we can use a tournament-style density estimation

algorithm (see e.g. [1, 26, 29] and their references) to learn a Bayesnet ¢ € ' such that

llg — pllry = O(e) given O (loggZA) samples from p .

To sum up, we can learn a Bayesnet q defined on a DAG with in-degree at most d using

aIVlog V] + V] - (1144) " jog (ittac)

2

0]

£

samples from p such that ||g — pl|p, < e. If the DAG that p is defined on is known, the sample
|V|.(H|‘/t\dc)d+l log('V‘HdC)

€2

complexity improves to O (

Latent Variable Model: Finally, we consider the case where only k out of the n variables of the
Bayesnet p are observable. Let S be the set of observable variables, and use pg to denote the marginal
of p on these variables. We will first consider the finite alphabet case. Consider the ¢-cover we
constructed earlier. We argued that for any Bayesnet p there exists an Bayesnet g in the cover
such that ||p — g||; < e. For that g we clearly also have ||ps — gs||; < €. The issue is that we
do not know for a given g in the cover which subset of its variables set S might correspond to.
But this is not a big deal. We can use our cover to generate an ¢-cover of all possible marginals
ps of all possible Bayesnets p as follows. Indeed, for any ¢’ in the original e-cover, we include in
the new cover the marginal distribution gy, of every possible subset S’ of its variables of size k.
This increases the size of our original cover by a multiplicative factor of at most n*. As a result,
the number of samples required for the tournament-style density estimation algorithm to learn a
good distribution increases by a multiplicative factor of k log n. For the infinite alphabet case, our
statement follows from applying the same modification to the e-cover of p. O
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