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We study the sample complexity of learning revenue-optimal multi-item auctions. We obtain the first set of

positive results that go beyond the standard but unrealistic setting of item-independence. In particular, we

consider settings where bidders’ valuations are drawn from correlated distributions that can be captured by

Markov Random Fields or Bayesian Networks – two of the most prominent graphical models. We establish

parametrized sample complexity bounds for learning an up-to-ε optimal mechanism in both models, which

scale polynomially in the size of the model, i.e. the number of items and bidders, and only exponential in the

natural complexity measure of the model, namely either the largest in-degree (for Bayesian Networks) or the

size of the largest hyper-edge (for Markov Random Fields).

We obtain our learnability results through a novel and modular framework that involves first proving a

robustness theorem. We show that, given only “approximate distributions” for bidder valuations, we can learn

a mechanism whose revenue is nearly optimal simultaneously for all “true distributions” that are close to the

ones we were given in Prokhorov distance. Thus, to learn a good mechanism, it suffices to learn approximate

distributions. When item values are independent, learning in Prokhorov distance is immediate, hence our

framework directly implies the main result of Gonczarowski andWeinberg [36]. When item values are sampled

from more general graphical models, we combine our robustness theorem with novel sample complexity

results for learning Markov Random Fields or Bayesian Networks in Prokhorov distance, which may be of

independent interest. Finally, in the single-item case, our robustness result can be strengthened to hold under

an even weaker distribution distance, the Lévy distance.
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1 INTRODUCTION
A central problem in Economics and Computer Science is the design of revenue-optimal auctions.

The problem involves a seller who wants to sell one or more items to one or more strategic bidders.

As bidders’ valuation functions are private, no meaningful revenue guarantee can be achieved

without any information about these functions. To remove this impossibility, it is standard to make

a Bayesian assumption, whereby a joint distribution from which bidders’ valuations are drawn is

assumed common knowledge, and the goal is to design an auction that maximizes expected revenue

with respect to this distribution.

In the single-item setting, a celebrated result by Myerson characterizes the optimal auction when

bidder values are independent [49]. The quest for optimal multi-item auctions has been quite more

challenging. It has been recognized that revenue-optimal multi-item auctions can be really complex

and may exhibit counter-intuitive properties [9, 22, 23, 39, 40]. As such, it is doubtful that there is a

clean characterization similar to Myerson’s for the optimal multi-item auction. On the other hand,

there has been significant recent progress in efficient computation of revenue-optimal auctions [2–

4, 8, 10, 12–14, 16, 18, 19, 24]. This progress has enabled the identification of simple auctions (mostly

variants of sequential posted pricing mechanisms) that achieve constant factor approximations to

the optimum revenue [6, 15, 17, 20, 56], under item-independence assumptions.
1

Making Bayesian assumptions in the study of revenue-optimal auctions is both crucial and fruitful.

However, to apply the theory to practice, we would need to know the underlying distributions.

Where does such knowledge come from? A common answer is that we estimate the distributions

through market research or observation of bidder behavior in previously run auctions. Unavoidably,

errors will creep in to the estimation, and a priori it seems possible that the performance of our

mechanisms may be fragile to such errors. This has motivated a quest for optimal or approximately

optimal mechanisms under imperfect knowledge of the underlying distributions.

This problem has received lots of attention from Theory of Computation recently. The focus has

been on whether optimal or approximately optimal mechanisms are learnable given sample access

to the true distributions. In single-item settings, where Myerson’s characterization result applies,

it is possible to learn up-to-ε optimal auctions [21, 28, 32, 35, 41, 46, 48, 52].
2
A recent paper by

Guo et al. [37] provides upper and lower bounds on the sample complexity, which are tight up to

logarithmic factors, thereby rendering a nearly complete picture for the single-item case.

In multi-item settings, largely due to the lack of simple characterizations of optimal mechanisms,

results have been sparser. Recent work [11, 34, 48, 55] has shown how to learn simple mechanisms

which attain a constant factor of the optimum revenue using polynomially many samples in the

number of bidders and items. Last year, a surprising result by Gonczarowski and Weinberg [36]

shows that the sample complexity of learning an up-to-ε optimal mechanism is also polynomial.
3

However, all these results rely on the item-independence assumption mentioned earlier, which limits

their applicability. A main goal of our work is the following:

Goal I: Push the boundary of learning (approximately) optimal multi-item auctions to the

important setting of item dependence.

Unfortunately, it is impossible to learn approximately optimal auctions from polynomially many

samples under general item dependence. Indeed, an exponential sample complexity lower bound

1
Intuitively, item independence means that each bidder’s value for each item is independently distributed, and this definition

has been suitably generalized to set value functions such as submodular or subadditive functions [53].

2
The term “up-to-ε optimal” introduced in [36] means an additive ε ·H approximation for distributions supported on [0, H ].
Under tail assumption on the distribution, it is also possible to obtain (1 − ε )-multiplicative approximations.

3
In particular, they learn a mechanism that is O (ε )-truthful and has up-to-ε optimal revenue.
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has been established by Dughmi et al. [31] for even a single unit-demand buyer. Arguably, however,

in auction settings, as well as virtually any high-dimensional setting, the distributions that arise are

not arbitrary. Arbitrary high-dimensional distributions cannot be represented efficiently, and are

known to require exponentially many samples to learn or even perform the most basic statistical

tests on them; see e.g. [25] for a discussion. Accordingly a large focus of Statistics and Machine

Learning has been on identifying structural properties of high-dimensional distributions, which

enable succinct representation, efficient learning, and efficient statistical inference. In line with this

literature, we propose learning multi-item auctions under the assumption that item values are jointly

sampled from a high-dimensional distribution with structure.

There are several widely-studied probabilistic frameworks which allow modeling structure in a

high-dimensional distribution. In this work we consider two of the most prominent ones: Markov

Random Fields (MRFs) and Bayesian Networks, a.k.a. Bayesnets,which are the twomost common types

of graphical models. Both MRFs and Bayesnets have been studied in Machine Learning and Statistics

for decades. Both frameworks can be used to express arbitrary high-dimensional distributions.

Their advantage, however, is that they are associated with natural complexity parameters which

allow tuning the dependence structure in the distributions they model, from product measures

all the way up to arbitrary distributions. In Figure 1, we show a very simple example illustrating

how naturally these models express dependence structure in a distribution. The figure shows a

Bayesnet, which samples the values of a buyer for four items. The structure of the Bayesnet implies

(see Definition 11) that these values are sampled conditionally independently, conditioning on

the value of the variable at the root of the Bayesnet which is the state of the buyer’s residence.

The node is shaded because we assume that the corresponding variable is not observable. The

pertinent question is how we might exploit the structure of the distribution, as captured by the

natural complexity parameter of an MRF or a Bayesnet, to efficiently learn a good mechanism. At a

high level, there are two components to the problem of learning approximately optimal auctions.

One is inference from samples, i.e. extracting information about the distribution using samples. The

other is mechanism design, i.e. constructing a good mechanism using the information extracted. A

main goal of our work is:

Goal II: Provide a modular approach for learning multi-item auctions which decouples the

Inference andMechanismDesign components, so that onemay leverage all techniques

from Machine Learning and Statistics to tackle the first and, independently, leverage

all techniques from Mechanism Design to address the second.

Unfortunately, the Statistical and Mechanism design components are complexly intertwined

in prior work on learning multi-item auctions. Specifically, [11, 36, 47, 55] are PAC-learning

approaches, which require a fine balance between (i) selecting a class of mechanisms that is rich

enough to contain an approximately optimal one for a class of distributions; and (ii) having small

enough statistical complexity so that the performance of all mechanisms in the class on a small

sample is representative of their performance with respect to the whole distribution, and so that a

small sample suffices to select a good mechanism in the class. See the related work section for a

detailed discussion of these works and their natural limitations. Our goal in this work is to avoid a

joint consideration of (i) and (ii). Rather we want to obtain a learning framework that separates

Mechanism Design from Statistical Inference, based on the following:

(i)’ find an algorithmM, which given a distribution F in some family of distributions F , computes

an (approximately) optimal mechanismM(F ) when bidders’ valuations are drawn from F ;
(ii)’ find an algorithm L, which given sample access to a distribution F from the family of

distributions F learns a distribution L(F ) that is close to F in some distribution distance d .
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Achieving (i)’ and (ii)’ is of course not enough, unless we also guarantee the following:

(iii)’ given an (approximately) optimal mechanismM for some F there is a way to transformM
to some M ′ that is approximately optimal for any distribution F ′ that is close to F under

distribution distance d .

Given (i)’–(iii)’, the learnability of (approximately) optimal mechanisms for a family of distributions

F can be established as follows: (a) Given sample access to some distribution F ∈ F we use

L to learn some distribution F ′ that is close to F under d ; (b) we then use M to compute an

(approximately) optimal mechanismM ′ for F ′; and (c) finally, we use (iii)’ to argue thatM ′ can be

converted to a mechanismM that is (approximately) optimal for F becauseM is (approximately)

optimal for any distribution that is close to F ′.
Clearly, (iii)’ is important for decoupling (i)’—i.e. computing (approximately) optimal mechanisms

for a family of distributions F , and (ii)’—i.e. learning distributions in F . At the same time, it is

important in its own right:

Goal III: Develop robust mechanism design tools, allowing to transform a mechanism M
designed for some distribution F into a mechanismMrobust which attains similar per-

formance simultaneously for all distributions that are close to F in some distribution

distance of interest.

The reason Goal III is interesting in its own right is that oftentimes we actually have no sample

access to the underlying distribution over valuations. It is possible that we estimate that distribution

through market research or econometric analysis in related settings, so we only know some

approximate distribution. In other settings, we may have sample access to the true distribution but

there might be errors in measuring or recording those samples. In both cases, we would know some

approximate distribution F that is close to the true distribution under some distribution distance,

and we would want to use F to identify a good mechanism for the unknown distribution that is

close to F . Clearly, outputting a mechanismM that attains good performance under F might be a

terrible idea as this mechanism might very well overfit the details of F . So we need to “robustify”

M . A similar goal was pursued in the work of Bergemann and Schlag [7], for single-item and

single-bidder settings, and in the work of Cai and Daskalakis [11], for robustifying a specific class

of mechanisms under item-independence. Our goal here is to provide a very general robustification

result.

1.1 Our Results
We discuss our contributions in the setting of additive bidders, whose values for the items are not

necessarily independent. Our results hold for quite more general valuations, including constrained

additive and any family of Lipschitz valuations (Definition 2), but we do not discuss these here to

avoid overloading our notation. We will denote by n the number of bidders, and bym the number

of items. We will also assume that the bidders’ values for the items lie in some bounded interval

[0,H ].

Our Robustness Results (cf. Goal III above). The setting we consider is the following. We are given

a collection of model distributionsD = {Di }i ∈[n], one for each bidder i = 1, . . . ,n. We do not know

the true distributions D̂ = {D̂i }i sampling the valuations of the bidders, and the only information

we have about each D̂i is that d(Di , D̂i ) < ε , under some distribution distance d(·, ·)—we will
discuss distances shortly.

Our goal is to design a mechanism that performs well under any possible collection of true

distributions {D̂i }i that are close to their corresponding distributions {Di }i under d . We show that
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Setting Distance d Robustness Continuity

Single

Item

Kolmogrov

Rev

(
M̂, D̂

)
≥ OPT

(
D̂

)
−O (nH ε )

M̂ is IR and DSIC

(Theorem 5)

���OPT (
D̂

)
− OPT (D)

��� ≤ O (nH ε )

(Theorem 5)

Lévy

Rev

(
M̂, D̂

)
≥ OPT

(
D̂

)
−O (nH ε )

M̂ is IR and DSIC

(Theorem 4)

���OPT (
D̂

)
− OPT (D)

��� ≤ O (nH ε )

(Corollary 1)

Multiple

Items

TV

Rev

(
M̂, D̂

)
≥ OPTη

(
D̂

)
−O

(
n2mH ε + nmH

√
nε

)
M̂ is IR and η- BIC w.r.t. D̂, where η = O

(
n2mH ε

)
(Theorem 7)

���OPT (
D̂

)
− OPT (D)

��� ≤ O (
n2mH ε + nmH

√
nε

)
(Theorem 6)

Prokhorov

Rev

(
M̂, D̂

)
≥ OPTη

(
D̂

)
−O

(
nη + n

√
mHη

)
M̂ is IR and η- BIC w.r.t. D̂, where η = O

(
nmH ε +m

√
nH ε

)
(Theorem 7)

���OPT(D) − OPT(D̂)��� ≤ O (
nξ + n

√
mH ξ

)
where ξ = O

(
nmH ε +m

√
nH ε

)
(Theorem 6)

Table 1. Summary of Our Robustness and Revenue Continuity Results. Recall that the true bidder distributions D̂ are unknown, and

that M̂ is the robustified mechanism returned by our algorithm given an optimal mechanism M for a collection of bidder distributions

D that are ε -close to D̂ under distribution distance d . Rev(M̂, D̂) denotes the revenue of M̂ when the bidder distributions are D̂. For a

collection of bidder distributions F, OPT(F) is the optimal revenue attainable by any BIC and IR mechanism under distributions F, and

OPTη (F) denotes the optimum revenue attainable by any η-BIC and IR mechanism under F. Not included in the table are approximation

preserving robustification results under TV and Prokhorov closeness. We show that we can transform any c-approximationM w.r.t. D to a

robust mechanism M̂ , so that M̂ is almost a c-approximation w.r.t. D̂. The results included in the table are corollaries of this more general

result when c = 1. See our theorem statements for the complete details. Moreover, if there is only a single bidder, we can strengthen our

robustness results in multi-item settings so that M̂ is IC instead of η-IC (see Theorem 8). Our continuity results hold for any D and D̂ as

long as d (Di , D̂i ) ≤ ε for each bidder i .

there are robustification algorithms, which transform a mechanismM into a robust mechanism

M̂ that attains similar revenue to that of M under D, except that M̂’s revenue guarantee holds

simultaneously for any collection D̂ that is close to D. Applying our robustification algorithm to

the optimum mechanism forD allows us to obtain the results reported in the first three columns of

Table 1. DSIC and BIC refer to the standard properties of Dominant Strategy and Bayesian Incentive

Compatibility of mechanisms, IR refers to the standard notion of Individual Rationality, and η-BIC
is the standard notion of approximate Bayesien Incentive Compatibility. For completeness these

notions are reviewed in Appendix B.

Some remarks are in order. First, in multi-item settings, it is unavoidable that our robustified

mechanism is only approximately BIC, as we do not know the true distributions. In single-item

settings, the optimal mechanism is DSIC, and we can indeed robustify it into a mechanism M̂ that is

DSIC. In the multi-item case, however, it is known that DSIC mechanisms sometimes can extract at

most a constant fraction of the optimal revenue [57], so it is necessary to consider BIC mechanisms

and the BIC property is fragile to errors in the distributions.

Second, we consider several natural distribution distances. In multi-item settings, we consider

both the Prokhorov and the Total Variation distance. In single-item settings, we consider both the

Lévy and the Kolmogorov distance. Please see Section 2 for formal definitions of these distances and

a discussion of their relationships, and their relationship to other standard distribution distances.

We note that the Lévy distance for single-dimensional distributions, and the Prokhorov distance for

multi-dimensional distributions are quite permissive notions of distribution distance. This makes

our robustness results for these distances stronger, automatically implying robustness results under

several other common distribution distances.

Finally, en route to proving our robustness results, we show a result of independent interest,

namely that the optimal revenue is continuous with respect to the distribution distances that we consider.

Our continuity results are summarized in the last column of Table 1. Note that the continuity results

are substantially easier to establish than the robustness results, please see Section 1.2 for details.
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Learning Multi-Item Auctions Under Item Dependence (cf. Goal I above). In view of our robustness

results, presented above, the challenge of learning near-optimal auctions given sample access to the

bidders’ valuation distributions, becomes a matter of estimating these distributions in the required

distribution distance, depending on which robustification result we want to apply.

When the item values are independent, learning bidders’ type distributions in our desired

distribution distances is immediate. So we easily recover the guarantees of the main theorem

of [36]. These guarantees are summarized in the second row of Table 2, and are expanded upon in

Theorem 9.

But a main goal of our work (namely Goal I from earlier) is to push the learnability of auctions well

beyond item-independence. As stated earlier, it is impossible to attain learnability from polynomially

many samples for arbitrary joint distributions over item values so we consider the well-studied

frameworks of MRFs and Bayesnets. These frameworks are flexible and can model any distribution,

but they have a tunable complexity parameter whose value controls the dependence structure.

This parameter is the maximum clique size of an MRF and maximum in-degree of a Bayesnet. We

will denote this complexity parameter d in both cases. Recall that we also used d(·, ·) to denote

distribution distances. To disambiguate, whenever we study MRFs or Bayesnets, we make sure

to use d(·, ·), with parentheses, to denote distribution distances. Note that a small value of the

complexity parameter d does not mean that the corresponding MRF or Bayesnet does not have

correlations among every pair of item values. Many natural MRF structures, with d = 2, and

Bayesnet structures, with d = 1, permit distributions where all the variables are correlated, and

indeed any pair of variables remain correlated even after conditioning on the values of all the other

variables. In Figure 1, we show a simple such example where the values of a bidder on four items

are sampled from a Naive Bayes Model, which is a very simple type of Bayesnet with d = 1. While

even small values of d allow all pairs of variables to be correlated even conditioning on everything

else, the complexity parameter d forbids arbitrary dependence structures. Indeed, this is the reason

why MRFs and Bayesnets are so prevalent. They allow rich dependent structures but not arbitrary

ones, unless their complexity parameter d is tuned up to its maximum possible value, i.e. equal

to the total number of variables, in which case they can express any dependence structure. In

particular, a model of complexity d can express arbitrary dependence on subsets of d (for MRFs)

or d + 1 (for Bayesnets) variables, and it allows some dependence structures on larger subsets of

variables depending on the graphical structure of the model.

Fig. 1. The values of a buyer for an umbrella, a pair of sunglasses, a pair of skis, and a surfboard are sampled from a Naive Bayes model.

These values are sampled conditionally independently conditioning on the value of the variable at the root of the network, which is the state

of the buyer’s residence. This variable is latent, i.e. non-observable, and this is why the corresponding node of the network is shaded blue.

The distribution over (v
umbrella

, v
sunglasses

, v
skis

, v
surfboard

) has the property that any pair of values remain correlated even conditioning

on all the other values, unless the conditional distributions in the Bayesnet have special structure.

Now, in order to learn near-optimal mechanisms when item values for each bidder are sampled

from an MRF or a Bayesnet of certain complexity d , our robustness results reassure us that it
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suffices to learn MRFs and Bayesnets under Total Variation or Prokhorov distance, depending on

which multi-item robustenss theorem we seek to apply. So we need an upper bound on the sample

complexity necessary to learn MRFs and Bayesnets. One of the contributions of our paper is to

provide very general sample complexity bounds for learning these distributions, as summarized in

Theorems 12 and 13 for MRFs and Bayesnets respectively. In both theorems,V is the set of variables,

d is the complexity measure of the underlying distribution, and ε is the distance within which we

are seeking to learn the distribution. Each theorem has a version when the variables take values in

a finite alphabet Σ, and a version when the variables take values in some interval Σ = [0,H ]. In
the first case, we provide bounds for learning in the stronger notion of Total Variation distance.

In the second case, since we are learning from finitely many samples, we need to settle for the

weaker notion of Prokhorov distance. For the same reason, we need to make some Lipschitzness

assumption on the density, so our sample bounds depend on the Lipschitzness C of the MRF’s

potential functions and the Bayesnet’s conditional distributions.

The sample bounds we obtain for learning MRFs and Bayesnets are directly reflected in the

sample bounds we obtain for learning multi-item auctions when the item-values are sampled

from an MRF or a Bayesnet respectively, as summarized in the last two rows of Table 2. Indeed,

the sample complexity for learning auctions is entirely due to the sample complexity needed to

learn the underlying item-distribution. In all cases we consider, the complexity is polynomial in

number of variables n = |V | and only depends exponentially in d , the complexity of the distribution,

and this is unavoidable.
4

Setting Revenue Guarantee and Sample Complexity Prior Result Technique

Item

Independence

up-to-ε optimal, η-BIC (Theorem 9)

poly (n,m, H, 1/ε, 1/η, log(1/δ ))
recovers main

result of [36]

Prokhorov Robustness +

Learnability of Product Dist. (Folklore)

MRF

up-to-ε optimal, η-BIC (Theorem 10)

poly

(
n,md , |Σ |d , H, 1/η, 1/ε, log(1/δ )

)
(Finite Σ)

poly

(
n,md2

, ( CHε )
d , 1/η, log(1/δ )

)
(Σ = [0, H ])

unknown

Prokhorov Robustness +

Learnability of MRFs (Theorem 12)

Bayesnet

up-to-ε optimal, η-BIC (Theorem 11)

poly

(
n, d,m, |Σ |d+1, H, 1/η, 1/ε, log(1/δ )

)
(Finite Σ)

poly

(
n, dd+1,md+1, ( CHε )

d+1, 1/η, log(1/δ )
)
(Σ = [0, H ])

unknown

Prokhorov Robustness +

Learnability of Bayesnets (Theorem 13)

Table 2. Summary of Our Sample-based Results. We denote by Σ the support of each item-marginal, taken to equal the interval [0, H ] in
the continuous case, we use δ for the failure probability, and use d to denote the standard complexity measure of the graphical model used

to model item dependence, namely the size of the maximum hyperedge in MRFs and the largest in-degree in Bayesnets. For both MRFs

and Bayesnets we allow latent variables and we also do not need to know the underlying graphical structure. Moreover, for continuous

distributions, our results require Lipschitzness of potential functions in MRFs and conditional distributions in Bayesnets, which we denote

with C. Finally, if there is only a single bidder, themechanismwe learnt is strengthened to be IC instead ofη-IC. See our theorem statements

for our complete results.

Our sample bounds improve if the underlying graph of the MRF or Bayesnet are known and,

importantly, without any essential modifications our sample bounds hold even when there are latent,

i.e. unobserved, variables in the distribution. Thismakes both our auction and our distribution learning

results much more richly applicable. As a simple example of the modeling power of latent variables,

situations can be captured where an unobserved random variable determines the type of a bidder,

and conditioning on this type the observable values of the bidder for different items are sampled.

4
Note that the example by Dughmi et al. [31] can be captured by an MRF or Bayesnet with d = O (m), and it is shown

in [31] that the sample complexity for learning a mechanism that is a constant factor approximation to the optimal revenue

in this example is at least 2
Ω(m)

.
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Finally, it is worth noting that our sample bounds for learning MRFs (i.e. Theorem 12) provide

broad generalizations of the bounds for learning Ising models and Gaussian MRFs presented in

recent work of Devroye et al [30]. Their bounds are obtained by bounding the VC complexity

of the Yatracos class induced by the distributions of interest, while our bounds are obtained by

constructing ε-nets of the distributions of interest, and running a tournament-style hypothesis

selection algorithm [1, 26, 29] to select one distribution from the net. Since the distribution families

we consider are non-parametric, our main technical contribution is to bound the size of an ε-net
sufficient to cover the distributions of interest. Interestingly, we use properties of linear programs

to argue through a sequence of transformations that the net size can be upper bounded in terms of

the bit complexity of solutions to a linear program that we construct.

1.2 Roadmap and Technical Ideas
In this section, we provide a roadmap to the paper and survey some of our technical ideas.

Single-item Robustness (Appendix C). We consider first the setting where the model distribution

D is ε-close to the true, but unknown distribution D̂ in Kolmogorov distance. In this case, we

argue directly that Myerson’s optimal mechanism [49] for D is approximately optimal for any

distribution that is in the ε-Kolmogorov-ball around D, which includes D̂ (Theorem 5). The idea

is that the revenue of the optimal mechanism can be written as an integral over probabilities of

events of the form: does vi lie in a certain interval [a,b]? SinceD and D̂ are ε-close in Kolmogorov

distance, the probabilities of all such events are within ε of each other, which implies that the

revenues under D and D̂ are also close. Finally, note that Myerson’s optimal mechanism is DSIC

and IR, so it is truthful and IR w.r.t. any distribution.

Unfortunately, the same idea fails for Lévy distance, as the difference in the probabilities of the

event that a certain vi lies in some interval [a,b] under D and D̂ can be as large as 1 even when

D and D̂ are ε-close in Lévy distance. (Indeed, consider two single point distributions: a point

mass at A and a point mass at A − ε ; their probabilities of falling in the interval [A − ε/2,A + ε/2]
are respectively 1 and 0.) We thus prove our robustness result for Lévy distance via a different

route. Given any model distribution D, we first construct the “worst” distribution D and the “best”

distribution D in the ε-Lévy ball around D: this means that, for any D̂ that lies in the ε-Lévy ball

around D, D̂ first-order stochastically dominates D and is dominated by D (see Definition 7). We

choose our robust mechanism M̂ to be Myerson’s optimal mechanism for D. It is not hard to argue

that M̂’s revenue under D̂ is at least OPT(D), the optimal revenue under the “worst” distribution

(Lemma 8), due to the revenue monotonicity lemma (Lemma 7) shown in [28]. The statement

provides a lower bound of M̂’s revenue under the unknown true distribution D̂. To complete the

argument, we need to argue that OPT(D̂) cannot be too much larger than OPT(D). Indeed, we

relax OPT(D̂) to OPT(D), and show that even the optimal revenue under the “best” distribution

OPT(D) ≈ OPT(D). To do so, we construct two auxiliary distributions P and Q , such that (i)

OPT(P) ≈ OPT(Q); and (ii) P and D are ε-close in Kolmogorov distance, and Q and D are ε-close
also in Kolmogorov distance. Our robustness theorem under Kolmogorov distance (Theorem 5)

implies then that OPT(P) ≈ OPT(D) and OPT(Q) ≈ OPT(D). Hence, OPT(D) ≈ OPT(D), which

completes our proof.

Multi-item Robustness (Section 3). We first discuss our result for total variation distance. Unfortu-

nately, our approach for Lévy distance—of simply choosing the optimal mechanism for the “worst,”

in the first-order stochastic dominance sense, distribution in the ε-TV-ball aroundD to be our robust

mechanism—no longer applies. Indeed, it is known that the optimal revenue in multi-item auctions
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may be non-monotone with respect to first-order stochastic dominance [40], i.e. a distribution may

be stochastically dominated by another but result in higher revenue. However, if D and D̂ are

ε-close in total variation distance, this means that there is a coupling between D and D̂ under

which the valuation profiles are almost always sampled the same. If we take the optimal mechanism

M for D, and apply to bidders from D̂, it will produce almost the same revenue under D̂, and

vice versa. Indeed, the only event under whichM may generate different revenue under the two

distributions is when the coupling samples different profiles, but this happens with small probability.

Similarly, the BIC and IR properties of M under D become slightly approximate under D̂. We

claim that we can massageM , in a way oblivious to D̂, to produce a (poly(n,m,H ) · ε)-truthful and

exactly IR mechanism M̂ for D̂, which achieves an up-to-(poly(n,m,H ) · ε) revenue (Theorem 1).

The main challenge is when D and D̂ are only ε-close in Prokhorov distance. Note that two

distributions within Prokhorov distance ε may have total variation distance 1. Just imagine two

point masses: one at A and another at A − ε . So Prokhorov robustness is not directly implied

by TV robustness.

Why Standard Discretization Arguments are Insufficient? Unlike standard algorithmic

problems, discretization is subtle in mechanism design. Due to the presence of incentives, a small

change in the bidders’ value distributions may change the distribution of outcomes of the mech-

anism dramatically. To perform discretization in mechanism design, a standard procedure goes

as follows [5, 36, 45]: let D̂ be the true distribution, and D be the distribution after discretiza-

tion; design the optimal mechanismM for D; to runM on a bid vector b from D̂, discretize it to

γ (b) = (γ1(b1), . . . ,γn(bn)) and apply mechanismM on γ (b). This procedure can be generalized to

any pair of distributions D and D̂ as long as, we are given a coupling γ (·) between D and D̂ that

maps any bid vector b in the support of distribution D̂ to a bit vector γ (b) in the support ofD. If for

every bidder i , bi and γi (bi ) are close with all but small probability, we can apply similar arguments

as in the total variation robustness result to massage the mechanism above to be nearly-truthful

and exactly IR for D̂, and argue it is approximately revenue optimal. Clearly, in the context of

discretization, bi and γi (bi ) are guaranteed to be close if the discretization is sufficiently fine.

At first glance, this procedure may seem applicable to our problem. A characterization of

Prokhorov distance due to Strassen (Theorem 2) shows that: two distributions P and Q are ε-
close in Prokhorov distance if and only if there exists a (potentially randomized) coupling γ such

that if random variable s is distributed according to P , then γ (s) is distributed according to Q and

Pr

[
∥s − γ (s)∥

1
> ε

]
≤ ε . IfM is the optimal mechanism for the model distributionD, and D̂ is the

true distribution that is ε-close toD, why can’t we combine the procedure above with the coupling

γ to establish our Prokhorov robustness result?

Unfortunately, this approach is insufficient due to the following two issues: (i) The procedure

relies on knowing the coupling γ . As we do not even know D̂, how can we know the coupling? (ii)

Even if we can identify the coupling γ betweenD and a specific D̂, the procedure above constructs

a mechanism that depends on the coupling γ . However, γ may change for every different D̂ in the

ε-Prokhorov-ball around D, so the procedure generates a different mechanism for every possible

true distribution.
5

To satisfy our requirement for a robust mechanism in Goal III, we need to construct a single

mechanism that is nearly truthful, IR, and near-optimal simultaneously for every distribution

in the ε-Prokhorov-ball around D. Our proof relies on a novel way to “simultaneously couple”

5
It is worth noting that the procedure can indeed be employed to prove the Prokhorov continuity, as the the pure existence

of a good coupling γ between D and D̂ suffices.
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D with every distribution D̂ in the ε-Prokhorov-ball around D. If we round both D and any

D̂ to a random grid G with width

√
ε , we can argue that the expected total variation distance

(over the randomness of the grid) between the two rounded distributions DG and D̂G is O(
√
ε)

(Lemma 2). Now consider the following mechanism: choose a random grid G, round the bids to

the random grid, apply the optimal mechanismMG that is designed for DG . Our robustness result

under the total variation distance implies that for every realization of the random grid G, MG is

O
(
poly(n,m,H ) ·




DG − D̂G





TV

)
-truthful and up-to-O

(
poly(n,m,H ) ·




DG − D̂G





TV

)
revenue

optimal for any D̂G . Since the expected value (over the randomness of the grid) of




DG − D̂G





TV

is O(
√
ε) for any D̂ in the ε-Prokhorov-ball of D, our randomized mechanism is simultaneously

O
(
poly(n,m,H ) ·

√
ε
)
-truthful and up-to-O

(
poly(n,m,H ) ·

√
ε
)
revenue optimal for all distribu-

tions in the ε-Prokhorov-ball around D.
6

Sample Complexity Results. In Section F, we apply our robustness theorem to obtain sample

bounds for learning multi-item auctions under the item-independence assumption (Theorem 9).

Our result provides an alternative proof of the main result of [36]. In Section H, we combine our

robustness theorem with our sample bounds for learning Markov Random Fields and Bayesian

Networks discussed earlier to derive new polynomial sample complexity results for learning multi-

item auctions when the distributions have structured correlation over the items. Theorem 10

summarizes our results when item values are generated by an MRF, and Theorem 11 our results

when item values are generated by a Bayesenet.

2 PRELIMINARIES
We first define a series statistical distances that we will use in the paper and discuss their relation-

ships.

Definition 1 (StatisticalDistance). Let P andQ be two probabilitymeasures.We use ∥P −Q ∥TV ,
∥P −Q ∥K , and ∥P −Q ∥L to denote the total variational distance, the Kolmogorov distance, and
the Lévy distance between P and Q , respectively. See Appendix B for more details. Prokhorov Dis-
tance is a generalization of the Lévy Distance to high dimensional distributions. Let (U ,d) be a metric

space and B be a σ -algebra on U . For A ∈ B, let Aε = {x : ∃y ∈ A s .t d(x ,y) < ε}. Then two

measures P and Q on B have Prokhorov distance

inf {ε > 0 : P(A) ≤ Q(Aε ) + ε, Q(A) ≤ P(Aε ) + ε ∀A ∈ B}
We consider distributions supported on Rk for some k ∈ N, soU will be the k-dimensional Euclidean

Space, and we choose d to be the ℓ1-distance. We denote the Prokhorov distance between distributions

F , F̂ by




F − F̂ 



P
.

Relationships between the Statistical Distances. Among the four metrics, the Lévy distance and

the Kolmogorov distance are only defined for single dimensional distributions, while the Prokhorov

distance and the total variation distance are defined for general distributions. In the single dimen-

sional case, the Lévy distance is a very liberal metric. In particular, for any two single dimensional

distributions P and Q ,
∥P −Q ∥L ≤ ∥P −Q ∥K ≤ ∥P −Q ∥TV .

Note that a robustness result for a more liberal metric is more general. For example, the robustness

result for single-item auctions under the Lévymetric implies the robustness under the total variation

6
Since we round the bids to a random grid, we will also need to accommodate the rounding error. Please see Theorem 3 for

details.
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and Kolmogorov metric, because the ε-ball in Lévy distance contains the ε-ball in total variation

and Kolmogorov distance. An astute reader may wonder whether one can find a more liberal metric

in the single dimensional case. Interestingly, for the most common metrics studied probability

theory, including the Wasserstein distance, the Hellinger distance, and the relative entropy, the

Lévy distance is the most liberal up to a polynomial factor. That is, if the Lévy distance is ε , the
distance under any of these metrics is at least poly(ε). Indeed, the polynomial is simply the identity

function or the quadratic function ε2 in most cases. Please see the survey by Gibbs and Su [33] and

the references therein for more details.

The Prokhorov distance, also known as Lévy-Prokhorov Distance, is the generalization of the

Lévy distance to multi-dimensional distributions. It is also the standard metric in robust statistical

decision theory, see Huber [42] and Hampel et al. [38]. The Prokhorov distance is almost as liberal

as the Lévy distance.
7
First, for any two distributions P and Q ,

∥P −Q ∥P ≤ ∥P −Q ∥TV .

Second, if we consider other well studied metrics such as the Wasserstein distance, the Hellinger

distance, and the relative entropy, the Prokhorov distance is again themost liberal up to a polynomial

factor.

Multi-item Auctions. We focus on revenue maximization in the combinatorial auction with n
bidders andm heterogenous items. We use X to denote the set of possible allocations, and each

bidder i ∈ [n] has a valuation function/type vi (·) : X 7→ R≥0. In this paper, we assume the function

vi (·) is parametrized by (vi,1, . . . ,vi,m), where vi, j is bidder i’s value for item j. We assume that

bidder’s types are distributed independently. Throughout this paper, we assume all bidders types

lie in [0,H ]m . We adopt the valuation model in Gonczarowski and Weinberg [36] and consider

valuations that satisfy the following Lipschitz property.

Definition 2 (Lipschitz Valuations). There exists an absolute constant L such that if type

vi = (vi,1, . . . ,vi,m) and v′i = (v
′
i,1, . . . ,v

′
i,m) are within ℓ1 distance ε , then for the corresponding

valuations vi (·) and v
′
i (·), |vi (x) −v

′
i (x)| ≤ L · ε for all x ∈ X .

This for example includes common settings such as additive and unit demand with Lipschitz

constant L = 1. More generally, L = 1 holds for constrained additive valuations
8
and even in

some settings with complementarities. Please see [36] for further discussion.

A mechanism M consists of an allocation rule x(·) and a payment rule p(·). For any input

bids b = (b1, . . . ,bn), the allocation rule outputs a distribution over allocations x(b) ∈ ∆(X ) and
payments p(b) = (p1(b), . . . ,pn(b)). If bidder i’s type isvi , her utility under input b isui (vi ,M(b)) =
E [vi (x(b)) − pi (b)].

Truthfulness and Revenue: We use the standard notion ε-BIC and IR (see Appendix B for details).

IfM is a ε-BIC mechanism w.r.t. some distributionD, we use RevT (M,D) to denote the revenue of
mechanismM under distributionD assuming bidders are bidding truthfully. Clearly, RevT (M,D) =
Rev(M,D) when M is BIC w.r.t. D. We denote the optimal revenue achievable by any ε-BIC (or

BIC) mechanism by OPTε (D) (or OPT(D)). Although it is conceivable that permitting mechanisms

to be ε-BIC allows for much greater expected revenue than if they were restricted to be BIC, past

results show that this is not the case.

7
Note that for single dimensional distributions, the Prokhorov distance is not equivalent to Lévy distance. In particular,

∥P −Q ∥L ≤ ∥P −Q ∥P for any single dimensional distributions P and Q .

8vi (·) is constrained additive if vi (X ) = maxR⊆S,R∈I
∑
j∈R vi, j , for some downward closed set system I ⊆ 2

[m]
and S =

{j : xi, j = 1}.
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Lemma 1. [27, 53] In any n-bidderm-item auction, let D be any joint distribution over arbitrary

L-Lipschitz valuations, where the valuations of different bidders are independent. The maximum

revenue attainable by any IR and ε-BIC auction for a given product distribution is at most 2n
√
mLHε

greater than the maximum revenue attainable by any IR and BIC auction for that distribution.

Notations: We allow the bidders to submit a special type ⊥, which represents not participating

the auction. If anyone submits ⊥, the mechanism terminates immediately, and does not allocate

any item to any bidder or charge any bidder. A bidder’s utility for submitting type ⊥ is 0. We will

sometimes refer to ⊥ as the IR type.Throughout the paper, we use D̂ =
>n

i=1 D̂i to denote the

true type distributions of the bidders. We use D =
>n

i=1Di to denote the model type distributions

or our learned type distributions from samples. We use Di |
>m

j=1[wi j ,wi j + δ ) to denote the

distribution induced by Di conditioned on being in them-dimensional cube

>m
j=1[wi j ,wi j + δ ),

and supp(F ) to denote the support of distribution F .

3 ROBUSTNESS FOR MULTI-ITEM AUCTIONS
In this section, we prove our robustness results under the total variation distance and the Prokhorov

distance in multi-item settings. As discussed in Section 1.2, the proof strategy for single-item

auctions fails miserably in multi-item settings due to the lack of structure of the optimal mechanism.

In particular, one of the crucial tools we relied on in single-item settings, the revenue monotonicity,

no longer holds in multi-item settings [40]. Nevertheless, we still manage to provide robustness

guarantees in multi-item auctions. The plan is to first prove the robustness result under the total

variation distance in Section 3.1, then we show show to relate the Prokhorov distance with the

total variation distance using randomized rounding in Section 3.2, and reduce the robustness under

the Prokhorov distance to the robustness under the total variation distance in Section 3.3.

3.1 TV-Robustness for Multi-item Auctions
Theorem 1 (TV-Robustness for Multi-item Auctions). Given any distribution D =

>n
i=1Di ,

where each Di is a distribution supported on [0,H ]m , and a η-BIC and IR mechanism M w.r.t. D,

we can construct a mechanism M̂ such that for any distribution D̂ =
>n

i=1 D̂i ∈ [0,H ]
nm

, if we

let εi =



D̂i − Di





TV

for all i ∈ [n] and ρ =
∑

i ∈[n] εi , then M̂ is 2mLHρ + η-BIC w.r.t. D̂ and IR.

Moreover, RevT (M̂, D̂) ≥ RevT (M,D) − nmLHρ . Note that our construction of M̂ only depends on

D and does not require any knowledge of D̂.

We briefly describe the ideas behind the proof. If D̂ and D share the same support, it is not hard

to see thatM is already (2mLHρ +η)-BIC w.r.t. D̂. The reason is that for any bidder i and any type

vi , her expected utility under any report can change by at mostmLHρ when the other bidders’

bids are drawn from D̂−i rather than D−i , as




D̂j − Dj





TV
= εj for all j ∈ [n]. The bulk of the

proof is dedicated to the case, where D̂ and D have different supports. We construct mechanism

M̂ , which first takes each bidder i’s report and maps it to the “best” possible report from supp(Di ),

then runs essentiallyM on the transformed reports. We show that M̂ is 2mLHρ + η-BIC w.r.t. D̂

and generates at most nmLHρ less revenue. The proof of Theorem 1 is postponed to Appendix E.1.

3.2 Connecting the Prokhorov Distance with the Total Variation Distance
In this section, we provide a randomized rounding scheme that relates the Prokhorov distance

to the total variation distance. We first state a characterization of the Prokhorov distance due to

Strassen [54] that is useful for our analysis.
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Theorem 2 (Characterization of the Prokhorov Metric [54]). Let F and F̂ be two distri-

butions supported on Rk .



F − F̂ 




P
≤ ε if and only if there exists a coupling γ of F and F̂ , such that

Pr(x,y)∼γ [d(x ,y) > ε] ≤ ε, where d(·, ·) is the ℓ1 distance.

Theorem 2 states that F and F̂ are within Prokhorov distance ε of each other if and only if there

exists a coupling between the two distributions such that the two random variables are within ε of

each other with probability at least 1 − ε . Next, we show that if F and F̂ are close to each other

in Prokhorov distance, then one can use a randomized rounding scheme to round both F and F̂

to discrete distributions so that the two rounded distributions are close in total variation distance

with high probability.

First, let us fix some notations.

Definition 3 (Rounded Distribution). Let F be a distribution supported on Rk
≥0
. For any δ > 0

and ℓ ∈ [0,δ ]k , we define function r (ℓ,δ ) : Rk
≥0
7→ Rk as follows: r (ℓ,δ )i (x) = max

{⌊
xi−ℓi
δ

⌋
· δ + ℓi , 0

}
for all i ∈ [k]. Let X be a random variable sampled from distribution F . We define ⌊F ⌋ℓ,δ as the

distribution for the random variable r (ℓ,δ )(X ), and we call ⌊F ⌋ℓ,δ as the rounded distribution of F .

Lemma 2. Let F and F̂ be two distributions supported on Rk , and



F − F̂ 




P
≤ ε . For any δ > 0,

sample ℓ from the uniform distribution over [0,δ ]k , Eℓ∼U [0,δ ]k

[



⌊F ⌋ℓ,δ − ⌊
F̂

⌋
ℓ,δ






TV

]
≤

(
1 + 1

δ

)
ε .

We only sketch the idea and postpone the formal proof to Appendix E.2. Let x be a random

variable sampled from F and y be a random variable sampled from F̂ . Since F and F̂ are close in

Prokhorov distance, we can couple x and y according to Theorem 2 such that they are within ε of
each other with probability at least 1 − ε . The rounding scheme chooses a random origin ℓ from

[0,δ ]k and rounds F and F̂ to the corresponding random grid with width δ . More specifically,

we round F and F̂ to ⌊F ⌋ℓ,δ and

⌊
F̂

⌋
ℓ,δ

respectively. For simplicity, consider δ = Θ(
√
ε). The

key observation is that when x and y are within ℓ1-distance ε of each other, they lie in the same

grid with probability at least 1 −O(
√
ε) over the randomness of ℓ. If x and y are in the same grid,

they will be rounded to the same point. In other words, the coupling between x and y induces a

coupling between ⌊F ⌋ℓ,δ and

⌊
F̂

⌋
ℓ,δ

such that, in expectation over the choice of ℓ, the event that

the corresponding two rounded random variables have different values happens with probability

at most ε + (1 − ε) ·O(
√
ε) = O(

√
ε). By the definition of total variation distance, this implies that

the expected total variation distance between ⌊F ⌋ℓ,δ and

⌊
F̂

⌋
ℓ,δ

is also at most O(
√
ε). A similar

argument applies to other choices of δ .

3.3 Prokhorov-Robustness for Multi-item Auctions
In this section, we show that even in multi-item settings, if every bidder’s approximate type distri-

bution Di is within Prokhorov distance ε of her true type distribution D̂i , given any BIC and IR

mechanismM for D =
>n

i=1Di , we can construct a mechanism M̂ that is O(poly(n,m,L,H , ε))-

BIC w.r.t. D̂ =
>n

i=1 D̂i , IR, and its revenue under truthful bidding RevT (M̂, D̂) is at most

O(poly(n,m,L,H , ε)) worse than Rev(M,D).

Theorem 3. Suppose we are given D =
>n

i=1Di , where Di is anm-dimensional distribution for

each i ∈ [n], and a BIC and IR mechanismM w.r.t.D. Suppose D̂ =
>n

i=1 D̂i is the true but unknown
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type distribution such that




Di − D̂i





P
≤ ε for all i ∈ [n]. We can construct a randomized mechanism

M̂ , oblivious to the true distribution D̂, such that for any D̂ the followings hold:

(1) M̂ is κ-BIC w.r.t. D̂ and IR, where κ = O
(
nmLHε +mL

√
nHε

)
;

(2) the expected revenue of M̂ under truthful bidding is RevT

(
M̂, D̂

)
≥ Rev(M,D) −O (nκ) .

We postpone the formal proof of Theorem 3 to Appendix E.3. We provide a complete sketch here.

Our construction consist of the following five steps.

• Step (1): After receiving the bid profile, first sample ℓ fromU [0,δ ]m . For every realization

of ℓ, we construct a mechanism M̂ (ℓ) and execute M̂ (ℓ) on the reported bids. In the next

several steps, we show how to construct M̂ (ℓ) via two intermediate mechanisms M (ℓ)
1

and

M (ℓ)
2

for every realization of ℓ based onM . Since ℓ is a random variable, M̂ is a randomized

mechanism.

• Step (2): Round Di to ⌊Di ⌋ℓ,δ for every bidder i . We construct mechanismM (ℓ)
1

based onM

and show thatM (ℓ)
1

is O(mLδ )-BIC w.r.t.

>n
i=1 ⌊Di ⌋ℓ,δ and IR. Moreover,

RevT

(
M (ℓ)

1
,

n?
i=1

⌊Di ⌋ℓ,δ

)
≥ Rev(M,D) −O(nmLδ ).

Here is the idea behind the construction: for any bidder i and typewi drawn from ⌊Di ⌋ℓ,δ ,

we resample a type from Di |
>m

j=1[wi j ,wi j + δ ), which is the distribution induced by Di
conditioned on being in the cube

>m
j=1[wi j ,wi j + δ ). We use the allocation rule ofM and a

slightly modified payment rule on the resampled type profile. This guarantees that the new

mechanism is O(mLδ )-BIC w.r.t.

>n
i=1 ⌊Di ⌋ℓ,δ and IR. The formal statement and analysis

are shown in Lemma 3.

• Step (3): We use ε (ℓ)i to denote





⌊Di ⌋ℓ,δ −

⌊
D̂i

⌋
ℓ,δ






TV

for our sample ℓ and every i ∈

[n], and ρ(ℓ) to denote

∑
i ∈[n] ε

(ℓ)
i . We transform M (ℓ)

1
into a new mechanism M (ℓ)

2
using

Theorem 1. In particular, M (ℓ)
2

is O
(
mLδ +mLH · ρ(ℓ)

)
-BIC w.r.t.

>n
i=1

⌊
D̂i

⌋
ℓ,δ

and IR.

Importantly, the construction ofM (ℓ)
2

is oblivious to

>n
i=1

⌊
D̂i

⌋
ℓ,δ

and

{
ε (ℓ)i

}
i ∈[n]

. Moreover,

RevT

(
M (ℓ)

2
,
>n

i=1

⌊
D̂i

⌋
ℓ,δ

)
≥ RevT

(
M (ℓ)

1
,
>n

i=1 ⌊Di ⌋ℓ,δ

)
−O

(
nmLH · ρ(ℓ)

)
.

• Step (4):We convertM (ℓ)
2

to M̂ (ℓ) so that it is O
(
mLδ +mLH · ρ(ℓ)

)
-BIC w.r.t. D̂, IR and

RevT (M̂
(ℓ), D̂) ≥ RevT

(
M (ℓ)

2
,

n?
i=1

⌊
D̂i

⌋
ℓ,δ

)
− nmLδ .

Here is the idea behind the construction of M̂ (ℓ): for every bidder i and her typewi drawn

from D̂i , round it to r (ℓ,δ )i (wi ) (see Definition 3). We use the allocation rule of M (ℓ)
2

and a

slightly modified payment rule on the rounded type profile. This guarantees that the new

mechanism is O
(
mLδ +mLH · ρ(ℓ)

)
-BIC w.r.t. D̂ and IR. Note that our construction only

requires knowledge of M (ℓ)
2
, ℓ, and δ , and is completely oblivious to D̂ and

>n
i=1

⌊
D̂i

⌋
ℓ,δ

.

The formal statement and analysis are shown in Lemma 4.

• Step (5): Since for every realization of ℓ, M̂ (ℓ) is O
(
mLδ +mLH · ρ(ℓ)

)
-BIC w.r.t. D̂ and IR,

M̂ must be O
(
mLδ +mLH · Eℓ∼U [0,δ ]m

[
ρ(ℓ)

] )
-BIC w.r.t. D̂ and IR. According to Lemma 2,
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Eℓ∼U [0,δ ]m
[
ρ(ℓ)

]
=

∑
i ∈[n] Eℓ∼U [0,δ ]m

[
ε (ℓ)i

]
= n ·

(
1 + 1

δ

)
ε . Therefore, M̂ is

O
(
mLδ + nmLH

(
1 + 1

δ

)
ϵ
)
-BIC w.r.t. D̂ and IR. Moreover, RevT

(
M̂, D̂

)
≥ Rev(M,D) −

O
(
nmLδ + n2mLH

(
1 + 1

δ

)
ε
)
.

Lemma 3. Given any δ > 0, ℓ ∈ [0,δ ]m , and a BIC and IR mechanismM w.r.t. D, we can construct

a ξ1 = O(mLδ )-BIC w.r.t. D =
>n

i=1 ⌊Di ⌋ℓ,δ and IR mechanismM (ℓ)
1
, such that

RevT

(
M (ℓ)

1
,D

)
≥ Rev(M,D) − nmLδ .

The proof of Lemma 3 can be found in Appendix E.3. In the next Lemma, we make Step (4)
formal.

Lemma 4. For any δ > 0, ℓ ∈ [0,δ ]m , and distribution D̂, if M (ℓ)
2

is a ξ2-BIC w.r.t. D̂ =>n
i=1

⌊
D̂i

⌋
ℓ,δ

and IR mechanism, we can transformM (ℓ)
2

into a mechanism M̂ (ℓ), so that M̂ is (ξ2 +

3mLδ )-BIC w.r.t. D̂, IR, and has revenue under truthful bidding RevT

(
M̂ (ℓ), D̂

)
≥ RevT

(
M (ℓ)

2
, D̂

)
−

nmLδ . Moreover, the transformation does not rely on any knowledge of D̂ or D̂.

The proof of Lemma 4 is postpone to Appendix E.3.

3.4 Applications of Multi-Item Robustness
Lipschitz Continuity of the Optimal Revenue in Multi-item Auctions. Equipped with Theorem 1

and 3, we can easily argue the Lipschitz continuity of the optimal revenue in multi-item auctions

(Theorem 6) as stated in the last column of the second half of Table 1. Due to Theorem 1 and 3, we

know that the optimal revenue of aO(poly(n,m,L,H , ε))-BIC and IR mechanism w.r.t. distribution

F =
>

i ∈[n] Fi is at least as large as the optimal revenue of a BIC and IRmechanismw.r.t. distribution

F̂ =
>

i ∈[n] F̂i , if




Fi − F̂i



TV
≤ ε,∀i or




Fi − F̂i



P
≤ ε,∀i . According to Lemma 1, the optimal

revenue of a O(poly(n,m,L,H , ε))-BIC and IR mechanism is at most O(poly(n,m,L,H , ε)) larger

than the optimal revenue of a BIC and IR mechanism. Hence, OPT(F ) ≈ OPT(F̂ ). Please see

Appendix E.4 for the formal statement and the proof of Theorem 6.

Approximation Preserving Transformation. One interesting implication of Theorem 6 is that the

transformations of Theorems 1 and 3 are also approximation preserving. Given a a c-approximation

mechanismM to the optimal revenue under distribution D, applying the transformation in Theo-

rem 3 (or Theorem 1) toM , we obtain a new mechanism M̂ that is O(poly(n,m,L,H , ε))-BIC w.r.t.

D̂ and IR if




Di − D̂i





P
≤ ε,∀i (or if




Di − D̂i





TV
≤ ε,∀i ). Moreover, its revenue under truthful

bidding is at least c fraction of the optimalO(poly(n,m,L,H , ε))-BIC revenue under D̂ less a small

additive term. The result is formally stated as Theorem 7 in Appendix E.5. Note that the third

column of the second half of Table 1 is simply Theorem 7 with c = 1. Furthermore, if there is only

a single bidder, the mechanism M̂ becomes exactly IC instead of approximately IC (Theorem 8).

Learning Multi-item Auctions under Item Independence. Since independent distributions are

straightforward to learn within Prokhorov distance ε with polynomially many samples, the result

of Gonczarowski and Weinberg [36] follows easily from our robustness result (see Theorem 9 in

Appendix F).

Learning Multi-item Auctions under Structured Item Dependence. Going beyond product measures,

we initiate the study of learning multi-item auctions when every bidder’s item-values are depen-

dent, but sampled from a joint distribution with structure. As we have already noted, arbitrary
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joint distributions are both unnatural from a modeling perspective, as they require exponentially

many bits to describe, and are also known to require exponentially many samples to even learn

approximately optimal auctions [31]. We thus propose studying the learnability of auctions under

the assumption that each bidder’s item values are sampled from a Markov Random Field (MRF) or

a Bayesian network (a.k.a. Bayeset). In fact, this is not really an assumption. These well-studied

probabilistic frameworks, defined formally in Definitions 10 and 11 of Appendix H due to lack of

space, are very flexible in that they can represent any distribution. The reason they are attractive

from a modeling perspective is that they have a natural complexity parameter that controls how

expressive they are, namely the maximum hyperedge size of an MRF and the maximum in-degree

of a Bayesnet. Under the assumption that each bidder’s item-values are drawn from an MRF or

a Bayesnet of complexity d , we establish the results summarized in the last two rows of Table 2,

whose main feature is that the sample complexity to learn an up-to-ϵ optimal auction is polynomial

in the number of bidders n, the number of itemsm, the inverse approximation parameter 1/ε , and
other relevant parameters, and is only exponential in the complexity parameter d of the bidders’

MRFs or Bayesian networks, as it should given the known lower bounds [31].

Our results for learning near-optimal auctions under MRF and Bayesnet assumptions are stated

in more detail as Theorems 10 and 11 of Appendix H, and can also accommodate unobservable

variables which makes their applicability very broad. In turn, these results are proven by combining

our robustness result (Theorem 7) with new learnability results for MRFs and Bayesnets that we also

establish, namely Theorems 12 and 13 of Appendix H respectively. These results are of independent

interest and provide broad generalizations of the recent upper bounds of [30] for Gaussian MRFs

and Ising models. While this recent work bounds the VC dimension of the Yatracos class of these

families of distributions, for our more general families of non-parametric distributions we construct

instead covers under either total variation distance or Prokhorov distance, and combine our cover-

size upper bounds with generic tournament-style algorithms; see e.g. [1, 26, 29]. The details are

provided in Appendix J. While there are many details, we illustrate one snippet of an idea used

in constructing a ε-cover, in total variation distance, of the set of all MRFs with hyper-edges E of

size at most d and a discrete alphabet Σ on every node. The proof argues that (i) the (appropriately

normalized) log-potential functions of the MRF can be discretized to take values in the negative

integers at a cost of ε in total variation distance; (ii) using properties of linear programming, it

argues that using negative integers of bit complexity polynomial in |E |, |Σ|d and log(1/ε) suffices

at another cost of ε in total variation distance. It thus argues that all MRFs can be covered by a

set of MRFs of size exponential in poly

(
|E |, |Σ|d , log( 1ε )

)
, which is sufficient to yield the required

sample bounds using the tournament algorithm.
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A FURTHER RELATEDWORK
As described earlier, most prior work on learning multi-item auctions follows a PAC-learning

approach, bounding the statistical complexity of classes of mechanisms that are (approximately)

optimal for the setting of interest. The statistical complexity measures that are used for this purpose

are the standard notions of pseudodimension, which generalizes VC dimension to real valued

functions, and Rademacher complexity. In particular, Morgenstern and Roughgarden [47] and

Syrgkanis [55] bound respectively the pseudodimension and Rademacher complexity of simple

classes of mechanisms that have been shown in the literature to contain approximately optimal

mechanisms in multi-item multi-bidder settings satisfying item-independence [6, 15, 17, 19, 56].

The classes of mechanisms studied by these works contain approximately optimal mechanisms in

multi-item settings with item-independence and either multiple unit-demand/additive bidders, or

a single subadditive bidder. More powerful classes of simple mechanisms are also known in the

literature. The state-of-the-art is the sequential two-part tariff mechanism considered by Cai and

Zhao [17], which is shown to approximate the optimal revenue in multi-item settings even with

multiple bidders whose valuations are fractionally subadditive, again under item-independence.

Unfortunately, both the pseudodimension and the empirical Rademacher complexity of sequential

two-part tariff mechanisms are already exponential even in two bidder settings, making these

measures unsuitable tools for showing the learnability of two-part tariff mechanisms.

An important feature of the afore-described works is that bounding the pseudo-dimension

or empirical Rademacher complexity of mechanism classes is oblivious to the structure in the

distribution. Hence, while the mechanisms considered in these works are only approximately

optimal under item-independence, the independence cannot be exploited. In contrast to empirical

Rademacher complexity, Rademacher complexity is sensitive to the underlying distribution, but

bounds exploiting the structure of the distribution are not easy to obtain. This observationmotivated

another line of work which heavily exploits the structure of the distributions of interest to choose

both the class of mechanisms and the statistical complexity measure to bound their learnability. So

far, this approach has only been applied to settings satisfying item-independence. Indeed, Cai and

Daskalakis [11] propose a statistical complexity measure that is tailored to product distributions, and

use their new measure to establish learnability of sequential two-part tariff mechanisms under item-

independence. Gonczarowski andWeinberg [36] choose a finite class of mechanisms so that an up-to-

ε optimal mechanism is guaranteed to exist in the class. For item-independent distributions, the size

of this class is only singly exponential implying polynomial sample learnability. Unfortunately, the

size becomes doubly exponential for correlated items turning the sample complexity exponential.

Finally, Goldner and Karlin [34] do not use a PAC-learning based approach. They show how to

learn approximately optimal auctions in the multi-item multi-bidder setting with additive bidders

using only one sample from each bidder’s distribution, assuming that it is regular and independent

across items. Their approach is tailored for a mechanism designed by Yao [56] and does not apply

to broader settings.

B ADDITIONAL PRELIMINARIES
Definition 4 (Total Variation Distance). The total variation distance between two probability

measures P andQ on a σ -algebra F of subsets of some sample space Ω, denoted | |P −Q | |TV , is defined
as

sup

E∈F
|P(E) −Q(E)| .
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Definition 5 (Kolmogorov Distance). The Kolmogorov distance between two distributions P
and Q over R, denoted ∥P −Q ∥K , is defined as

sup

x ∈R

���� PrX∼P
[X ≤ x] − Pr

X∼Q
[X ≤ x]

���� .
Definition 6 (Lévy Distance). Let D1 and D2 be two probability distributions on R with cumu-

lative distribution functions F and G respectively. Then we denote their Lévy distance by

∥D1 − D2∥L = inf {ε > 0 : F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε, ∀x ∈ R}
Multi-item Auctions: We focus on revenue maximization in the combinatorial auction with n

bidders andm heterogenous items.
The outcomes of the auction lie inX ⊆ {0, 1}n ·m such that for any allocationx ∈ X ,xi, j is the prob-

ability that bidder i receives item j. Formally, X =
{
(xi, j )i ∈[n], j ∈[m] ∈ {0, 1}

nm | ∀j : ∑n
i=1 xi, j ≤ 1

}
.

Each bidder i ∈ [n] has a valuation function vi (·) : X → R that maps an allocations of items to a

real number. In this paper, we assume the function vi (·) is parametrized by (vi,1, . . . ,vi,m), where
vi, j is bidder i’s value for item j. We will refer to the vector (vi,1, . . . ,vi,m) as bidder i’s type, and
we assume that each bidder’s type is drawn independently from some distribution.

9
Throughout

this paper, we assume all bidders types lie in [0,H ]m .

Mechanisms, Payments, and Utility: We use p = (p1, . . . ,pn) to specify the payments for the

bidders. Given some prices p = (p1, . . . ,pn), allocation x and type vi , denote the quasilinear utility
of bidder i ∈ [n] by ui (vi , (x ,p)) = vi (x) − pi . LetM = (x(·),p(·)) be a mechanism with allocation

rule x(·) and payment rule p(·). For any input bid vector b = (b1, . . . ,bn), the allocation rule

outputs a distribution over allocations x(b) ∈ ∆(X ) and payments p(b) = (p1(b), . . . ,pn(b)). Then
ui (vi ,M(b)) = vi (x(b)) − pi (b). If bidder i’s type is vi , then her utility under input bid vector b is

ui (vi ,M(b)) = E [vi (x(b)) − pi (b)], where the expectation is over the randomness of the allocation

and payment rule.

ε-Incentive Compatible and Individually Rational:

• Ex-post Individually Rational (IR): M is IR if for all types v ∈ [0,H ]n ·m and all bidders i ∈ [n],

ui (vi ,M(vi ,v−i )) ≥ 0.

• ε-Dominant Strategy Incentive Compatible (ε-DSIC): if for all i ∈ [n], v ∈ [0,H ]n ·m and

potential misreports v ′i ∈ [0,H ]
m
of bidder i , ui (vi ,M(vi ,v−i )) ≥ ui (vi ,M((v

′
i ,v−i ))) − ε . A

mechanism is DSIC if it is 0-DSIC.

• ε-Bayesian Incentive Compatible (ε-BIC): if bidders draw their values from some distribution

F = (F1, . . . ,Fn), then defineM to be ε-BIC with respect to F if

Ev−i∼F−i [ui (vi ,M(vi ,v−i ))] ≥ Ev−i∼F−i [ui (vi ,M(v
′
i ,v−i ))] − ε,

for all potential misreports v ′i , in expectation over all other bidders bid v−i . A mechanism is

BIC if it is 0-BIC.

If there is only one bidder, the definition of DSIC coincides with the definition of BIC, and we

simply use ε-IC to describe the incentive compatibility of single bidder mechanisms.

In single-bidder case, there is a well known transformation, Lemma 5, that maps any ε-IC
mechanism to an IC mechanism with negligible revenue loss. To the best of our knowledge, the

result is attributed Nisan in [18, 36, 39] and many other papers.

9
We will not explicitly write bidder i ’s valuation as vi,vi (·) where vi = (vi,1, . . . , vi,m ).
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Lemma 5 (Nisan, circa 2005). LetM be an IR and ε-IC mechanism for a single bidder, and D be

the bidder’s type distribution. Modifying each possible allocation and payment pair by multiplying

the payment by 1 −
√
ε and letting the bidder choose the (modified) allocation and payment pair

that maximizes her utility yields an IR and IC mechanism M ′ with expected revenue at least (1 −
√
ε)(RevT (M,D) −

√
ε). Importantly, the modification does not require any knowledge of D.

Interested readers can find a proof of Lemma 5 in [36].

Up-to-ε Optimal Mechanisms: We say a mechanismM is up-to-ε optimal under distribution D, if

RevT (M,D) ≥ OPT(D) − ε .

C LÉVY-ROBUSTNESS FOR SINGLE-ITEM AUCTIONS
In this section, we show the robustness result under the Lévy distance in the single-item setting. If

we are given a model distribution Di that is ε-close to the true distribution D̂i , in Lévy distance,

for every bidder i ∈ [n], we show how to design a mechanismM∗ only based on D =
>n

i=1Di and

extracts revenue that is at most O(nH · ε) less than the optimal revenue under any possible true

distribution D̂ =
>n

i=1 D̂i .

Theorem 4 (Lévy-Robustness for Single-item Auctions). Given D =
>n

i=1Di , where Di is

an arbitrary distributions supported on [0,H ] for all i ∈ [n]. We can design a DSIC and IR mechanism

M∗ based on D such that for any product distribution D̂ =
>n

i=1 D̂i satisfying




Di − D̂i





L
≤ ε for

all i ∈ [n], we have:

Rev(M∗, D̂) ≥ OPT(D̂) −O(nH · ε).

Let us sketch the proof of Theorem 4. We prove our statement in three steps.

• Step (i): We first identify the “best” and “worst” distributions (Definition 7), in terms of the

first-order stochastic dominance (Definition 8), among all distributions in the ε-Lévy-ball
around the model distribution D. We construct the optimal mechanismM∗ w.r.t. the “worst”
distribution, and show that its revenue under any possible true distribution is at leastM∗’s
revenue under the “worst” distribution (Lemma 8). The statement provides a lower bound

of M∗’s revenue under the unknown true distribution. Its proof follows from the revenue

monotonicity lemma (Lemma 7) shown in [28].

• Step (ii): We use the revenue monotonicity lemma again to show the optimal revenue

under the true distribution D̂ is upper bounded by the optimal revenue under the “best”

distribution(Lemma 9).

• Step (iii):We complete the proof by argueing thatM∗’s revenue under the “worst” distribution
can be at most O(nH · ε) worst than the optimal revenue under the “best” distribution

(Lemma 10). The statement follows from a robustness theorem for single-item auctions under

the Kolmogorov distance (Theorem 5).

We show Step (i) and (ii) in Section C.1 and Step (iii) in Section C.2.

C.1 Best and Worst Distributions in the ε-Lévy-Ball
We formally define the “best” and “worst” distributions in the ε-Lévy-ball around the model

distribution.

Definition 7. For every i ∈ [n], we define Di and Di based on Di . Di is supported on [0,H + ε],

and its CDF is defined as F
Di
(x) = max

{
FDi (x − ε) − ε, 0

}
. Di is supported on [−ε,H ], and its CDF

is defined as FDi
(x) = min

{
FDi (x + ε) + ε, 1

}
.
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We provide a more intuitive interpretation of Di and Di here. To obtain Di , we first shift all

values in Di to the right by ε , then we move the bottom ε probability mass to H + ε . To obtain

Di , we first shift all values in Di to the left by ε , then we move the top ε probability mass to

−ε . It is not hard to see that both Di and Di are still in the ε-ball around Di in Lévy distance.

More importantly, Di and Di are the “best” and “worst” distributions in the ε-Lévy-ball under
first-order-stochastic-dominance.

Definition 8 (First-Order Stochastic Dominance). We say distribution B first-order stochas-

tically dominates A iff FB (x) ≤ FA(x) for all x ∈ R. We use A ≼ B to denote that distribution B
first-order stochastically dominates distribution A. If A = ×ni=1Ai and B = ×ni=1Bi are two product
distributions, and Ai ≼ Bi for all i ∈ [n], we slightly abuse the notation ≼ to write A ≼ B.

Lemma 6. For any D̂i , such that




D̂i − Di





L
≤ ε , we have Di ≼ D̂i ≼ Di .

Proof. It follows from the definition of Lévy distance and Definition 7. For any x ,

F
D̂i
(x) ∈ [FDi (x − ε) − ε, FDi (x + ε) + ε].

Clearly, 0 ≤ F
D̂i
(x) ≤ 1, so we have F

Di
(x) ≤ F

D̂i
(x) ≤ FDi

(x) for all x . □

The plan is to construct the optimal mechanism forD =
>n

i=1Di and show that this mechanism

achieves up-to-O(nH · ε) optimal revenue under any possible true distribution D.

Next, we state a revenue monotonicity lemma that will be useful. We first need the following

definition.

Definition 9 (Extension of a Mechanism to All Values). Suppose a mechanismM = (x ,p) is
defined for all value profiles in T = ×ni=1Ti . Define its extension M ′ = (x ′,p ′) to all values. We only

specify x ′, as p ′ can be determined by the payment identity given x ′. x ′ first rounds the bid of each
bidder i down to the closest value in Ti , and then apply allocation rule x on the rounded bids. If some

bidder i’s bid is smaller than the lowest value in Ti , x
′
does not allocate the item to any bidder.

Observe that the extension provides a DSIC and IR mechanism for all values if the original

mechanism is DSIC and IR.

Lemma 7 (Strong Revenue Monotonicity [28]). Let F =
>n

i=1 Fi be a product distributions.

There exists an optimal DSIC and IR mechanism M for F such that, for any product distribution

F ′ =
>n

i=1 F
′
i ≽ F ,

Rev(M ′,F ′) ≥ Rev(M,F ) = OPT(F ).

M ′ is the extension ofM . In particular, this implies OPT(F ′) ≥ OPT(F ).

Combining Lemma 6 and 7, we show that ifM∗ is the extension of the optimal mechanism for

D, it achieves at least OPT(D) under any distribution D̂ with




D̂i − Di





L
≤ ε .

Lemma 8. LetM∗ be the extension of the optimal DSIC and IR mechanism for D. For any product

distribution D̂ =
>n

i=1 D̂i with




D̂i − Di





L
≤ ε for all i ∈ [n], we have the following:

Rev(M∗, D̂) ≥ OPT(D).

Proof. Since D̂ ≽ D (Lemma 6), the claim follows from Lemma 7. □

Lemma 8 shows that with only knowledge of the model distribution D, we can design a mecha-

nism whose revenue under any possible true distribution D̂ is at least OPT(D). Next, we upper

bound the optimal revenue under D̂ with the optimal revenue under D.

EC’20 Session 7c: Optimal Auctions

736



Lemma 9. For any product distribution D̂ with




D̂i − Di





L
≤ ε for all i ∈ [n], we have the

following:

OPT(D) ≥ OPT(D̂).

Proof. Since D ≽ D̂ (Lemma 6), the claim follows from Lemma 7. □

C.2 Comparing the Revenue of the Best and Worst Distributions

In this section, we show that our lower bound ofM∗’s revenue under the true distribution D̂ and

our upper bound of the optimal revenue under D̂ are at most O(nH · ε) away.

Lemma 10.

OPT(D) ≥ OPT(D) −O(nH · ε).

It is a priori not clear why Lemma 10 should be true, as D is the “best” distribution and D is the

“worst” distribution in the ε-Lévy-ball around D. We prove Lemma 10 by introducing another two

auxiliary distributions ˜D and D̃. In particular, we construct D̃i by shifting all values in Di to the

right by ε , and construct ˜Di by shifting all values in Di to the left by ε . There are two important

properties of these two new distributions: (i) one can couple ˜Di with D̃i so that the two random

variables are always exactly 2ε away from each other; (ii) ˜Di and Di are within Kolmogorov

distance ε , and D̃i and Di are also within Kolmogorov distance ε . Property (i) allows us to prove

that

���OPT(˜D) − OPT(D̃)��� ≤ 2ε (see Claim 2). To make use of property (ii), we prove the following

robustness theorem w.r.t. the Kolmogorov distance.

Theorem 5. For any buyer i ∈ [n], let Di and D̂i be two arbitrary distributions supported on

(−∞,H ] such that




Di − D̂i





K
≤ ε . We have the following:

OPT

(
D̂

)
≥ OPT(D) − 3nH · ε .

where D =
>n

i=1Di and D̂ =
>n

i=1 D̂i .

The proof of Theorem 5 is postponed to Appendix D. Equipped with Theorem 5, we can immedi-

ately show that

��
OPT(˜D) − OPT(D)�� ≤ O(nH · ε) and

���OPT(D̃) − OPT(D)��� ≤ O(nH · ε). Lemma 10

follows quite easily from Claim 2 and the two inequalities above. The complete proof of Lemma 10

can be found in Appendix D.

We are now ready to prove Theorem 4.

Proof of Theorem 4:We first construct D based on D and let M∗ be the extension of the optimal

mechanism forD. By Lemma 8, we know Rev(M∗, D̂) is at least OPT(D) for any D̂. We also know

that the optimal revenue under D̂ is at most OPT(D) by Lemma 9, and OPT(D) ≤ OPT(D) +

O(nH · ε) by Lemma 10. Therefore,

Rev(M∗, D̂) ≥ OPT(D) −O(nH · ε) ≥ OPT(D̂) −O(nH · ε).

□

A simple corollary of Theorem 4 is the continuity of the optimal revenue under Lévy distance in

single-item settings.

Corollary 1. If Di and D̂i are supported on [0,H ], and



Di − D̂i





L
≤ ε for all i ∈ [n], then���OPT(D) − OPT(D̂)��� ≤ O (nH · ε) ,
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where D =
>n

i=1Di and D̂ =
>n

i=1 D̂i .

D MISSING PROOFS FROM SECTION C
Proof of Theorem 5: We prove the claim using a hybrid argument. We construct a collection of

distributions, where D(0) = D, D(i) = D̂1 × · · · × D̂i × Di+1 × · · · × Dn for all 1 ≤ i < n, and
D(n) = D̂. We first show the following claim

Claim 1.

OPT

(
D(i)

)
≥ OPT

(
D(i−1)

)
− 3H · ε,

for all i ∈ [n].

Proof. W.l.o.g, we can assume the optimal mechanism for D(i−1) is a deterministic. We use

M = (x ,p) to denote it. In particular, there exists a collection of monotone non-decreasing func-

tions {µ j (·)}{j ∈[n]} such that µ j : supp
(
D
(i−1)
j

)
7→ R. We extend the function µ j (·) to the whole

interval (−∞,H ]. We slightly abuse notation and still call the extended function µ j (·). For any

z ∈ supp
(
D
(i−1)
j

)
, µ j (x) remains the same. For any z > inf supp

(
D
(i−1)
j

)
, let

µ j (z) = sup

{
µ j (w) | w ≤ z andw ∈ supp

(
D
(i−1)
j

)}
.

If z ≤ inf supp

(
D
(i−1)
j

)
and < supp

(
D
(i−1)
j

)
, let µ j (z) = −∞.

Now we define a mechanism M ′ = (x ′,p ′) for D(i) based on the extended {µ j (·)}{j ∈[n]} . For
every profile v , let the bidder j∗ with the highest positive µ j (vj ) be the winner. If no bidder j has
positive µ j (vj ), the item is unallocated. When there are ties, break the tie in alphabetical order.

Clearly, the allocation rule is monotone. According to Myerson’s payment identity, if a bidder wins

the item, she should pay inf{z | z is a winning bid}.
To prove the claim, we demonstrate the following two statements: for every fixed v−i (A1:)

bidder i’s expected payments under D(i) and D(i−1) are within O(H · ε); (A2:) the total expected
payments of all bidders except i under D(i) and D(i−1) are within O(H · ε). We first prove A1.

Proof of A1: For every fixed v−i , let ℓ
∗ = argmaxℓ,i µℓ(vℓ). For bidder i to win the item, µi (vi )

needs to be greater than µℓ∗ (vℓ∗ ). Therefore, there exists a threshold θ (v−i ) for every fixedv−i , such
that bidder i wins the item iff vi ≥ θ (v−i ). Clearly,

Evi∼D̂i
[p ′i (vi ,v−i )] = θ (v−i ) · Pr

vi∼D̂i

[vi ≥ θ (v−i )] ,

and

Evi∼Di [pi (vi ,v−i )] = θ (v−i ) · Pr

vi∼Di
[vi ≥ θ (v−i )] .

Since




Di − D̂i





K
≤ ε ,

���Prvi∼D̂i
[vi ≥ θ (v−i )] − Prvi∼Di [vi ≥ θ (v−i )]

��� ≤ ε , which implies that��Ev∼D(i ) [p ′i (v)] − Ev∼D(i−1) [pi (v)]��
≤ Ev−i∼D(i )−i

[���Evi∼D̂i
[p ′i (vi ,v−i )] − Evi∼Di [pi (vi ,v−i )]

���]
≤ Ev−i∼D(i )−i

[θ (v−i ) · ε]

≤ H · ε

This completes the argument for statement A1. Next, we prove statement A2.
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Proof of A2: Since there is only one item, only thewinner ℓ∗ has non-zero payment and

∑
ℓ,i pℓ(v) =

pℓ∗ (v) for anyvi . Our goal now is to bound the difference betweenEvi∼Di [pℓ∗ (v)] andEvi∼D̂i

[
p ′
ℓ∗
(v)

]
.

Note that

Evi∼Di [pℓ∗ (v)] =

∫ H

0

Pr

vi∼Di
[pℓ∗ (v) > t]dt .

When µℓ∗ (t) ≥ µℓ∗ (vℓ∗ ), Prvi∼Di [pℓ∗ (v) > t] = 0, so we only consider the case where µℓ∗ (t) <
µℓ∗ (vℓ∗ ). Let α = maxℓ,i or ℓ∗ µℓ(vℓ). pℓ∗ (v) > t is equivalent to having max{α , µi (vi )} > µℓ∗ (t) and
µi (vi ) < µℓ∗ (vℓ∗ ) if ℓ

∗ > i (or µi (vi ) ≤ µℓ∗ (vℓ∗ ) if ℓ
∗ < i). Since µi (·) is monotone, it is not hard to

observe that this is equivalent to having vi lying in some interval that only depends on v−i . Let the
lower bound of the interval be a(v−i ) and the upper bound be b(v−i ). Similarly, we know

Evi∼D̂i
[pℓ∗ (v)] =

∫ H

0

Pr

vi∼D̂i

[p ′ℓ∗ (v) > t]dt ,

and Prvi∼D̂i
[p ′

ℓ∗
(v) > t] is also the probability that vi lies between a(v−i ) and b(v−i ). Since


Di − D̂i





K
≤ ε ,

���Prvi∼Di [pℓ∗ (v) > t] − Prvi∼D̂i
[p ′

ℓ∗
(v) > t]

��� ≤ 2ε for all t ∈ [0,H ], and���Evi∼Di [pℓ∗ (v)] − Evi∼D̂i

[
p ′ℓ∗ (v)

] ��� ≤ H · 2ε .

Combining statement (i) and (ii), we complete the proof. □

By Claim 1, it is clear that

OPT

(
D̂

)
= OPT

(
D(n)

)
≥ OPT

(
D(0)

)
− 3nH · ε = OPT (D) − 3nH · ε

□

Proof of Lemma 10: For every i ∈ [n], we construct two extra distributions D̃i and ˜Di as follows.

D̃i is supported on [ε,H + ε], and its CDF is defined as F
D̃i
(x) = FDi (x − ε). ˜Di is supported on

[−ε,H − ε], and its CDF is defined as FDi
(x) = FDi (x + ε). In other words, D̃i is the distribution by

shifting all values in Di to the right by ε , and ˜Di is the distribution by shifting all values in Di to

the left by ε .

Claim 2. Let M be any DSIC and IR mechanism for D̃ =
>n

i=1 D̃i , there exists a DSIC and IR

mechanismM ′ for ˜D =>n
i=1 ˜Di such that

Rev(M ′, ˜D) ≥ Rev(M, D̃) − 2ε .

Proof. Based on the construction of D̃ and ˜D, we can couple the two distributions so that

whenever we draw a value profile v = (v1, . . . ,vn) from D̃, we also draw a value profile v − 2ε =
(v1− 2ε, . . . ,vn − 2ε) from ˜D. Given mechanismM = (x ,p), we construct mechanismM ′ as follows.
For every bid profile v , we offer bidder i the item with probability xi (v + 2ε) and asks her to pay

pi (v + 2ε) − 2ε · xi (v + 2ε). Why isM ′ a DSIC and IR mechanism? For any value profile v and any

bidder i , her utility for reporting the true value is

(vi + 2ε) · xi (v + 2ε) − pi (v + 2ε),

and her utility for misreporting to v ′i is

(vi + 2ε) · xi
(
(v ′i ,v−i ) + 2ε

)
− pi ((v

′
i ,v−i ) + 2ε).

Now consider a different scenario, where we run mechanismM and all the other bidders report

v−i + 2ε . The former is bidder i’s utility in M when her true value is vi + 2ε and she reports

truthfully. The latter is bidder i’s utility in M when she lies and reports v ′i + 2ε . As M is a DSIC
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and IR mechanism, (vi + 2ε) · xi (v + 2ε) − pi (v + 2ε) is nonnegative and greater than (vi + 2ε) ·
xi

(
(v ′i ,v−i ) + 2ε

)
− pi ((v

′
i ,v−i ) + 2ε). Thus, M ′ is also a DSIC and IR mechanism. Since there is

only one item for sale,

∑
i xi (v + 2ε) ≤ 1. For every value profile v , the total payment in M ′ for

this profile is at most 2ε smaller than the total payment in M for value profile v + 2ε . Therefore,

Rev(M ′, ˜D) ≥ Rev(M, D̃) − 2ε . □

An easy corollary of Claim 2 is that

OPT(˜D) ≥ OPT(D̃) − 2ε . (1)

Next we will use this corollary and Theorem 5 to prove our claim. Note that



˜Di − Di




K ≤ ε and


D̃i − Di





K
≤ ε for all i ∈ [n]. Theorem 5 implies that

OPT(D) ≥ OPT(˜D) − 3nH · ε (2)

and

OPT(D̃) ≥ OPT(D) − 3n(H + ε) · ε . (3)

Chaining inequalities (2), (1), and (3), we have

OPT(D) ≥ OPT(D) − (6nH + 3nε + 2) · ε .

□

E MISSING DETAILS FROM SECTION 3
E.1 Proof of Theorem 1
Proof of Theorem 1:

We first construct a mechanismM2, and we show thatM2 is (2mLHρ + η)-BIC w.r.t. F̂ and IR.

We first define a mapping τi for every bidder i:

τi (vi ) =

{
vi , if vi ∈ supp(Fi )

argmaxz∈supp(Fi )∪⊥ Eb−i∼F−i [ui (vi ,M1(z,b−i ))] , otherwise.

(4)

Note that Eb−i∼F−i [ui (vi ,M1(⊥,b−i ))] = 0. For any bid profilev , we use τ (v) to denote the vector
(τ1(v1), . . . ,τn(vn)). Let x(·) and p(·) be the allocation and payment rule for M1. We now define

M2’s allocation rule x ′(·) and payment rule p ′(·). For any bid profilev , x ′(v) = x(τ (v)). If τi (vi ) , vi
and τℓ(vℓ) ,⊥ for all bidders ℓ ∈ [n], then

p ′i (vi ,v−i ) = vi (x(τ (v))) ·
Eb−i∼F−i [pi (τi (vi ),b−i )]

Eb−i∼F−i [vi (x (τi (vi ),b−i ))]
.

Otherwise, p ′i (v) = pi (τ (v)).

An important property of p ′(·) is that Eb−i∼F−i
[
p ′i (vi ,b−i )

]
= Eb−i∼F−i [pi (τi (vi ),b−i )] for any vi .

We first argue thatM2 is IR.

M2 is IR:. For any bidder i and any bid profile v , if any of τℓ(vℓ) =⊥ bidder i’s utility is clearly 0.

So we only need to consider the case where τℓ(vℓ) ,⊥ for all ℓ ∈ [n].

• Ifvi = τi (vi ), bidder i’s utility isvi (x(vi ,τ−i (v−i )))−pi (vi ,τ−i (v−i )) = ui (vi ,M1(vi ,τ−i (v−i ))),
which is non-negative as vi ∈ supp(Fi ) andM1 is IR.

• If vi , τi (vi ), since τi (vi ) ,⊥ by our assumption,

Eb−i∼F−i [vi (x (τi (vi ),b−i ))] − Eb−i∼F−i [pi (τi (vi ),b−i )] = Eb−i∼F−i [ui (vi ,M1(τi (vi ),b−i ))] ,
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which is non-negative due to the definition of τi (·). Equivalently, this means that

Eb−i∼F−i [pi (τi (vi ),b−i )]

Eb−i∼F−i [vi (x (τi (vi ),b−i ))]
≤ 1

and p ′i (vi ,v−i ) ≤ vi (x(τ (v))) = vi (x
′(v)).

Next, we argue thatM2 is (2mLHρ + η)-BIC.

M2 is (2mLHρ + η)-BIC:. Consider any bidder i and any type vi and t , we first bound the

difference between Eb−i∼F−i [ui (vi ,M1(τi (t),b−i ))] and E ˆb−i∼F̂−i

[
ui (vi ,M2(t , ˆb−i ))

]
. Note that

Eb−i∼F−i [ui (vi ,M1(τi (t),b−i ))] = Eb−i∼F−i [ui (vi ,M2(t ,b−i ))] . (5)

This is because

x ′(t ,b−i ) = x(τi (t),b−i ) ∀b−i ∈ supp(F−i )
and

Eb−i∼F−i
[
p ′i (t ,b−i )

]
= Eb−i∼F−i [pi (τi (t),b−i )] .

Since




F̂j − Fj



TV
= εj , we can couple b−i and ˆb−i so that

Pr[b−i , ˆb−i ] ≤ ρ .

Clearly, when b−i = ˆb−i , ui (vi ,M2(t ,b−i )) = ui (vi ,M2(t , ˆb−i )). When b−i , ˆb−i ,���ui (vi ,M2(t ,b−i )) − ui (vi ,M2(t , ˆb−i ))
��� ≤ mLH ,

as ui (vi ,M2(t ,b
′
−i )) ∈ [0,mLH ] for any b

′
−i . Hence, for any vi and t���Eb−i∼F−i [ui (vi ,M2(t ,b−i ))] − E ˆb−i∼F̂−i

[
ui (vi ,M2(t , ˆb−i ))

] ��� ≤ mLHρ. (6)

Combining Inequality (5) and (6), we have the following inequality���Eb−i∼F−i [ui (vi ,M1(τi (t),b−i ))] − E ˆb−i∼F̂−i

[
ui (vi ,M2(t , ˆb−i ))

] ��� ≤ mLHρ. (7)

Suppose bidder i has type vi , how much more utility can she get by misreporting? Since M2 is

IR, she clearly cannot gain by reporting a type t , whose corresponding τi (t) =⊥. Next, we argue
that she cannot gain much by reporting any other possible types either. If all other bidders report

truthfully, bidder i’s interim utility for reporting her true type

E
ˆb−i∼F̂−i

[
ui (vi ,M2(vi , ˆb−i ))

]
≥ Eb−i∼F−i [ui (vi ,M1(τi (vi ),b−i ))] −mLHρ

≥ max

x ∈supp(Fi )
Eb−i∼F−i [ui (vi ,M1(x ,b−i ))] −mLHρ − η

≥ max

t :τi (t ),⊥
Eb−i∼F−i [ui (vi ,M1(τi (t),b−i ))] −mLHρ − η

≥ max

t :τi (t ),⊥
E

ˆb−i∼F̂−i

[
ui (vi ,M2(t , ˆb−i ))

]
− 2mLHρ − η

The first inequality is due to Inequality (7). The second inequality is true because (a) ifvi = τi (vi ),
then

Eb−i∼F−i [ui (vi ,M1(τi (vi ),b−i ))] ≥ max

x ∈supp(Fi )
Eb−i∼F−i [ui (vi ,M1(x ,b−i ))] − η

asM1 is η-BIC; (b) if vi < supp(Fi ), then by the definition of τi (vi ),

Eb−i∼F−i [ui (vi ,M1(τi (vi ),b−i ))] ≥ max

x ∈supp(Fi )
Eb−i∼F−i [ui (vi ,M1(x ,b−i ))] .
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The third inequality is because when τi (t) ,⊥ it must lie in supp(Fi ). The last inequality is again

due to Inequality (7).

Finally, we show that RevT (M2, F̂ ) is not much less than RevT (M1,F ). Let b ∼ F and
ˆb ∼ F̂ .

There exists a coupling of b and
ˆb so that they are different w.p. less than ρ. When b = ˆb,M1(b) =

M2( ˆb). When b , ˆb, the revenue in M1(b) is at most nmLH more than the revenue in M2( ˆb), as
both mechanisms are IR. Therefore,

RevT (M2, F̂ ) ≥ RevT (M1,F ) − nmLHρ .

□

E.2 Proof of Lemma 2
Proof of Lemma 2: According to Theorem 2, there exists a coupling γ of F and F̂ so that

Pr

(x,y)∼γ
[d(x ,y) > ε] ≤ ε .

Now we bound the probability that r (ℓ,δ )(x) , r (ℓ,δ )(y), when (x ,y) is drawn from γ , and ℓ is drawn
fromU [0,δ ]k .

Prℓ∼U [0,δ ]k ,(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y)

]
= Prℓ∼U [0,δ ]k ,(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y) ∧ d(x ,y) > ε

]
+ Prℓ∼U [0,δ ]k ,(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y) ∧ d(x ,y) ≤ ε

]
≤ Pr(x,y)∼γ [d(x ,y) > ε] + Prℓ∼U [0,δ ]k

[
r (ℓ,δ )(x) , r (ℓ,δ )(y) | d(x ,y) ≤ ε

]
· Pr

(x,y)∼γ
[d(x ,y) ≤ ε]

≤ε + Prℓ∼U [0,δ ]k
[
r (ℓ,δ )(x) , r (ℓ,δ )(y) | d(x ,y) ≤ ε

]
Now, we bound the probability that r (ℓ,δ )(·) rounds two points x and y to two different points

when x and y are within distance ε . For any fixed x and y, we have the following.

Prℓ∼U [0,δ ]k

[
r (ℓ,δ )(x) , r (ℓ,δ )(y)

]
≤

∑
i ∈[k ]

Prℓi∼U [0,δ ]

[
r (ℓ,δ )i (x) , r (ℓ,δ )i (y)

]
≤

∑
i ∈[k ]

|xi − yi |

δ

=
d(x ,y)

δ

The first inequality follows from the union bound. Why is the second inequality true? If |xi −yi | ≥ δ ,
the inequality clearly holds, so we only need to consider the case where |xi − yi | < δ . W.l.o.g. we

assume yi ≥ xi and we consider the following two cases: (i)

⌊yi
δ

⌋
=

⌊ xi
δ

⌋
and (ii)

⌊yi
δ

⌋
=

⌊ xi
δ

⌋
+ 1.

In case (i), r (ℓ,δ )i (x) , r (ℓ,δ )i (y) if and only if ℓ ∈
[
xi −

⌊ xi
δ

⌋
· δ ,yi −

⌊yi
δ

⌋
· δ

]
. Since ℓ is drawn

from the uniform distribution over [0,δ ], this happens with probability exactly
yi−xi
δ . In case (ii),

r (ℓ,δ )i (x) , r (ℓ,δ )i (y) if and only if ℓ ∈
[
xi −

⌊ xi
δ

⌋
· δ ,δ

]
∪ [0,yi −

⌊yi
δ

⌋
· δ ]. This again happens with

probability
yi−xi
δ . Therefore,

Prℓ∼U [0,δ ]k

[
r (ℓ,δ )(x) , r (ℓ,δ )(y) | d(x ,y) ≤ ε

]
≤
ε

δ
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and

Prℓ∼U [0,δ ]k ,(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y)

]
≤

(
1 +

1

δ

)
ε . (8)

Clearly, for any choice of ℓ,





⌊F ⌋ℓ,δ − ⌊
F̂

⌋
ℓ,δ






TV
≤ Pr(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y)

]
. Combining

this inequality with Inequality (8), we have

Eℓ∼U [0,δ ]k

[



⌊F ⌋ℓ,δ − ⌊
F̂

⌋
ℓ,δ






TV

]
≤Eℓ∼U [0,δ ]k

[
Pr

(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y)

] ]
= Prℓ∼U [0,δ ]k ,(x,y)∼γ

[
r (ℓ,δ )(x) , r (ℓ,δ )(y)

]
≤

(
1 +

1

δ

)
ε

□

E.3 Missing Proofs from Section 3.3

Proof of Lemma 3: We first define M (ℓ)
1
. If the bid profile w < supp(D), the mechanism allocates

nothing and charges no one. If the bid profile w ∈ supp(D), for each bidder i sample w ′i inde-
pendently from the distribution Di |

>m
j=1 β(wi j ), where β(wi j ) is defined to be [0, ℓj ) if wi j = 0

and [wi j ,wi j + δ ) otherwise. Bidder i receives allocation xM,i (w
′) and pays (pM,i (w

′) −mLδ )+ =
max{0,pM,i (w

′) −mLδ }. Note that, for any i ∈ [n], ifwi is drawn from ⌊Di ⌋ℓ,δ thenw ′i is drawn

from Di . If all bidders bid truthfully inM (ℓ)
1
, the revenue is at least Rev(M,D) − nmLδ . Next, we

argue thatM (ℓ)
1

is IR and ξ1-BIC with ξ1 = O(mLδ ).

Note that for every bidder i andwi ∈ supp(⌊Di ⌋ℓ,δ ) her interim utility inM (ℓ)
1

when all other

bidders bid truthfully is at least Ew ′i∼Di |
>m

j=1 β (wi j ),w ′−i∼D−i

[
ui (wi ,M(w

′
i ,w

′
−i ))

]
due to the definition

ofM (ℓ)
1
. Now consider every realization ofw ′i , it must hold that

Ew ′
−i∼D−i

[
ui (wi ,M(w

′
i ,w

′
−i ))

]
≥Ew ′

−i∼D−i

[
ui (w

′
i ,M(w

′
i ,w

′
−i ))

]
−mLδ

≥ max

x ∈supp(Di )
Ew ′

−i∼D−i

[
ui (w

′
i ,M(x ,w

′
−i ))

]
−mLδ

≥ max

x ∈supp(Di )
Ew ′

−i∼D−i

[
ui (wi ,M(x ,w

′
−i ))

]
− 2mLδ

The first and the last inequalities are both due to the fact that the valuation is L-Lipschitz and

wi −w
′
i




1
≤ mδ . The second inequality is because M is BIC w.r.t. D. Hence, bidder i’s interim

utility inM (ℓ)
1

is at least maxx ∈supp(Di ) Ew ′−i∼D−i
[
ui (wi ,M(x ,w

′
−i ))

]
− 2mLδ .

If bidder i misreports, her utility is no more than

max

x ∈supp(Di )
Ew ′

−i∼D−i

[
ui (wi ,M(x ,w

′
−i ))

]
+mLδ ,

due to the definition of M (ℓ)
1
. Therefore, misreporting can increase bidder i’s utility by at most

3mLδ , andM (ℓ)
1

is 3mLδ -BIC.
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Next, we argue thatM (ℓ)
1

is IR. If thew−i < supp(D−i ), bidder i’s utility is 0. So we focus on the

case wherew−i ∈ supp(D−i ). We will show that for any realization ofw ′i andw
′
−i , bidder i’s utility

is non-negative. If the payment is 0, the claim is trivially true. If the payment is nonzero, bidder i
pays pM,i (w

′)−mLδ and has utilityui (wi ,M(w
′
i ,w

′
−i )))+mLδ which is at leastui (w

′
i ,M(w

′
i ,w

′
−i ))),

since the valuation is L-Lipschitz and


wi −w

′
i




1
≤ mδ . AsM is IR, ui (w

′
i ,M(w

′
i ,w

′
−i ))) ≥ 0. Thus,

bidder i’s utility is non-negative andM (ℓ)
1

is IR.□

Proof of Lemma 4:

We first construct M̂ (ℓ). For any bid profilew , constructw ′ = (r (ℓ,δ )(w1), . . . , r
(ℓ,δ )(wn)), and run

M (ℓ)
2

onw ′. Bidder i receives allocation xM (ℓ)
2

,i (w
′) and pays max{0,pM (ℓ)

2
,i (w

′) −mLδ }. Note that

ifwi ∼ D̂i , thenw
′
i ∼

⌊
D̂i

⌋
ℓ,δ

. Assuming all other bidders bid truthfully and bidder i’s type iswi ,

bidder i’s interim utility for bidding truthfully is

Eb−i∼D̂−i

[
ui (wi , M̂

(ℓ)(wi ,b−i ))
]
≥ Eb′

−i∼D̂−i

[
ui (wi ,M

(ℓ)
2
(w ′i ,b

′
−i ))

]
≥ Eb−i∼D̂−i

[
ui (w

′
i ,M

(ℓ)
2
(w ′i ,b

′
−i ))

]
−mLδ

≥ max

x ∈supp(
⌊
D̂i

⌋
ℓ,δ
)

Eb′
−i∼D̂−i

[
ui (w

′
i ,M

(ℓ)
2
(x ,b ′−i ))

]
− ξ2 −mLδ

≥ max

x ∈supp(
⌊
D̂i

⌋
ℓ,δ
)

Eb′
−i∼D̂−i

[
ui (wi ,M

(ℓ)
2
(x ,b ′−i ))

]
− ξ2 − 2mLδ

≥ max

y∈supp(D̂i )

Eb−i∼D̂−i

[
ui (wi , M̂

(ℓ)(y,b−i ))
]
− ξ2 − 3mLδ

The first inequality and the last equality are due to the definition of M̂ (ℓ). The second and the

fourth inequalities are due to the L-Lipschitzness of the valuation function and



wi −w
′
i




1
≤ mδ .

The third inequality is becauseM (ℓ)
2

is a ξ2-BIC mechanism w.r.t. D̂. By this chain of inequalities,

we know that M̂ (ℓ) is a (ξ2 + 3mLδ )-BIC mechanism w.r.t. D̂.

Next, we argue that M̂ (ℓ) is also IR. Consider any bidder i and type profile w , M̂ (ℓ)(w) has the

same allocation as M (ℓ)
2
(w ′). When bidder i’s payment is 0, her utility is clearly non-negative.

When bidder i’s payment is pM (ℓ)
2

,i (w
′) −mLδ , her utility is at least ui (w

′
i ,M

(ℓ)
2
(w ′)) due to the

L-Lipschitzness of the valuation function and



wi −w
′
i




1
≤ mδ . SinceM (ℓ)

2
is IR, bidder i’s utility

in M̂ (ℓ) is also non-negative.

Finally, if all bidders bid truthfully in M̂ (ℓ) when their types are drawn from D̂, its revenue under

truthful bidding is

RevT

(
M̂ (ℓ), D̂

)
≥ RevT

(
M (ℓ)

2
, D̂

)
− nmLδ .

□

Proof of Theorem 3: First, sample ℓ uniformly from [0,δ ]m , and construct ⌊Di ⌋ℓ,δ for all i ∈ [n].

According to Lemma 3, we can construct a mechanismM (ℓ)
1

based onM that is ξ1 = O(mLδ )-BIC

w.r.t.

>n
i=1 ⌊Di ⌋ℓ,δ , IR, and has revenue RevT

(
M (ℓ)

1
,
>n

i=1 ⌊Di ⌋ℓ,δ

)
≥ Rev(M,D) − nmLδ .

Next, we transformM (ℓ)
1

toM (ℓ)
2

using Lemma 1. We use ε (ℓ)i to denote





⌊Di ⌋ℓ,δ −

⌊
D̂i

⌋
ℓ,δ






TV

for our sample ℓ and every i ∈ [n], and ρ(ℓ) to denote

∑
i ∈[n] ε

(ℓ)
i . For every realization of ℓ,M (ℓ)

2
is
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ξ2 =
(
2mLHρ(ℓ) + ξ1

)
-BIC w.r.t.

>n
i=1

⌊
D̂i

⌋
ℓ,δ

and IR. Its revenue under truthful bidding satisfies

RevT

(
M (ℓ)

2
,

n?
i=1

⌊
D̂i

⌋
ℓ,δ

)
≥ RevT

(
M (ℓ)

1
,

n?
i=1

⌊Di ⌋ℓ,δ

)
− nmLHρ(ℓ).

Lemma 4 shows that we can construct M̂ (ℓ) usingM (ℓ)
2
, such that M̂ (ℓ) is a (ξ2 + 3mLδ )-BIC w.r.t.

D̂ and IR mechanism with revenue

RevT

(
M̂ (ℓ), D̂

)
≥ RevT

(
M (ℓ)

2
,

n?
i=1

⌊
D̂i

⌋
ℓ,δ

)
− nmLδ .

Since M̂ (ℓ) isO(mLδ +mLHρ(ℓ))-BIC w.r.t. D̂ and IR for every realization of ℓ, our mechanism M̂

is clearly O
(
mLδ +mLH · Eℓ∼U [0,δ ]m

[
ρ(ℓ)

] )
-BIC w.r.t. D̂ and IR. Moreover, its expected revenue

under truthful bidding satisfies

RevT

(
M̂, D̂

)
≥ Rev (M,D) −O

(
nmLδ + nmLH · Eℓ∼U [0,δ ]m

[
ρ(ℓ)

] )
.

According to Lemma 2,

Eℓ∼U [0,δ ]m
[
ρ(ℓ)

]
≤ n

(
1 +

1

δ

)
ε .

We choose δ to be

√
nHε , and M̂ becomes κ-BIC w.r.t. D̂, where κ = O

(
nmLHε +mL

√
nHε

)
,

and IR. Furthermore,

RevT

(
M̂, D̂

)
≥ Rev (M,D) −O (nκ) .

□

E.4 Lipschitz Continuity of the Optimal Revenue in Multi-item Auctions
Using Theorem 3, we can easily prove that the optimal BIC revenue w.r.t. D and the optimal BIC

revenue w.r.t. D̂ are close as long as Di and D̂i are close in either the total variation distance or

the Prokhorov distance for all i ∈ [n].

Theorem 6 (Lipschitz Continuity of the Optimal Revenue). Consider the general mechanism

design setting of Section 2. Recall thatL is the Lipschitz constant of the valuations. For any distributions

D =
>n

i=1Di and D̂ =
>n

i=1 D̂i , where Di and D̂i are supported on [0,H ]
m
for every i ∈ [n]

• If




Di − D̂i





TV
≤ ε for all i ∈ [n], then���OPT(D) − OPT(D̂)��� ≤ O

(
nmLH

(
nε +
√
nε

) )
;

• if




Di − D̂i





P
≤ ε for all i ∈ [n], then���OPT(D) − OPT(D̂)��� ≤ O

(
nκ + n

√
mLHκ

)
,

where κ = O
(
nmLHε +mL

√
nHε

)
.

Proof of Theorem 6: Let M∗ be the optimal BIC mechanism for D. We first prove the Prokorov

case. According to Theorem 3, there exists a mechanism M̂∗ such that it is κ-BIC w.r.t. D̂ and IR.

Moreover,

RevT (M̂
∗, D̂) ≥ Rev(M∗,D) −O(nκ).
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By Lemma 1, RevT

(
M̂∗, D̂

)
≤ OPT

(
D̂

)
+ 2n
√
mLHκ. Combining the two inequalities, we have

OPT

(
D̂

)
≥ OPT(D) −O

(
nκ + n

√
mLHκ

)
.

By symmetry, we can also argue that

OPT(D) ≥ OPT

(
D̂

)
−O

(
nκ + n

√
mLHκ

)
.

In the TV case, RevT

(
M̂∗, D̂

)
≥ Rev(M∗,D) − O(n2mLHε). Since M̂∗ is O(mnLHε)-BIC,

OPT

(
D̂

)
≥ RevT

(
M̂∗, D̂

)
−O(nmLH

√
nε) due to Lemma 1. By symmetry and the inequalities

above, we have

���OPT(D) − OPT (
D̂

)��� ≤ O
(
nmLH (nε +

√
nε)

)
. □

E.5 Approximation Preserving Transformation
Theorem 7 (Approximation Preserving Transformation). Consider the general mechanism

design setting of Section 2. Recall thatL is the Lipschitz constant of the valuations. GivenD =
>n

i=1Di ,

where Di is am-dimensional distribution supported on [0,H ]m for all i ∈ [n], and a BIC w.r.t. D and

IR mechanismM . We use D̂ =
>n

i=1 D̂i to denote the true but unknown type distribution, and D̂i is

supported on [0,H ]m for all i ∈ [n].

If




Di − D̂i





TV
≤ ε for all i ∈ [n], we can construct a mechanism M̂ , in a way that is completely

oblivious to the true distribution D̂, such that

(1) M̂ is η-BIC w.r.t. D̂ and IR, where η = O(nmLHε);
(2) ifM is a c-approximation to the optimal BIC revenue for D, then

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
−O

(
nmLH

(
nε +
√
nε

) )
.

If




Di − D̂i





P
≤ ε for all i ∈ [n], we can again construct a mechanism M̂ , in a way that is completely

oblivious to the true distribution D̂, such that

(1) M̂ is κ-BIC w.r.t. D̂ and IR, where κ = O
(
nmLHε +mL

√
nHε

)
;

(2) ifM is a c-approximation to the optimal BIC revenue forD, then M̂ is almost a c-approximation

to the optimal κ-BIC revenue for D̂, that is,

RevT

(
M̂, D̂

)
≥ c · OPTκ

(
D̂

)
−O

(
nκ + n

√
mLHκ

)
.

Proof of Theorem 7: For the TV case, by Theorem 1, we can construct a η-BIC w.r.t. D̂ and IR

mechanism M̂ such that RevT

(
M̂, D̂

)
≥ Rev(M,D) −O

(
n2mLHε

)
≥ c ·OPT(D) −O

(
n2mLHε

)
.

By Theorem 6, OPT(D) is at least OPT(D̂)−O
(
nmLH (nε +

√
nε)

)
. Finally, OPT(D̂) ≥ OPTη(D̂)−

2n
√
mLHη due to Lemma 1, so

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
−O

(
nmLH (nε +

√
nε)

)
.

For the Prokhorov case, according to Theorem 3, we can construct a κ-BIC w.r.t. D̂ and IR

mechanism M̂ such that RevT

(
M̂, D̂

)
≥ Rev(M,D)−O (nκ) ≥ c ·OPT(D)−O (nκ). By Theorem 6

and Lemma 1, OPT(D) ≥ OPT

(
D̂

)
− O

(
nκ + n

√
mLHκ

)
≥ OPTκ (D̂) − O

(
nκ + n

√
mLHκ

)
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Chaining all the inequalities above, we have

RevT

(
M̂, D̂

)
≥ c · OPTκ (D̂) −O

(
nκ + n

√
mLHκ

)
.

□

If there is a single bidder, we can strengthen Theorem 7 and make constructed mechanism M̂
exactly IC with essentially the same guarantees.

Theorem 8 (Single-Bidder Approximation Preserving Transformation). Consider the gen-

eral mechanism design setting of Section 2. Recall that L is the Lipschitz constant of the valuations.

Given am-dimensional distribution D supported on [0,H ]m , and a IC and IR mechanismM . We use

D̂ to denote the true but unknown type distribution, and D̂ is also supported on [0,H ]m .

• If




D − D̂



TV
≤ ε , we can construct an IC and IR mechanism M̂ , in a way that is completely

oblivious to the true distribution D̂, such that if M is a c-approximation to the optimal BIC

revenue for D, then

Rev

(
M̂, D̂

)
≥ c ·

(
1 −O

(√
mLHε

))
· OPT

(
D̂

)
−O

((
mLH +

√
mLH

)
·
√
ε
)
.

• If




D − D̂



P
≤ ε , we can again construct an IC and IR mechanism M̂ , in a way that is completely

oblivious to the true distribution D̂, such that if M is a c-approximation to the optimal BIC

revenue for D,

Rev

(
M̂, D̂

)
≥ c ·

(
1 −
√
κ
)
· OPT

(
D̂

)
−O

(
κ +

(√
mLH + 1

)
·
√
κ
)
,

where κ = O
(
mLHε +mL

√
Hε

)
.

Proof of Theorem 8: We only sketch the proof here. Let M ′ be the mechanism constructed using

Theorem 7, and we construct another mechanism M̂ by modifyingM ′ using Lemma 5. Clearly, M̂

is IC and IR. It is not hard to verify that Rev

(
M̂, D̂

)
satisfies the guarantees in the statement by

combining the revenue guarantees for RevT

(
M ′, D̂

)
as provided by Theorem 7 and the relation

between Rev

(
M̂, D̂

)
and RevT

(
M ′, D̂

)
as stated in Lemma 5. □

F LEARNING MULTI-ITEM AUCTIONS UNDER ITEM INDEPENDENCE
In this section, we show how to derive one of the state-of-the-art learnability results for learning

multi-item auctions via our robustness results. We consider the case where every bidder’s type

distribution is am-dimensional product distribution. We will show that a generalization of the

main result by Gonczarowski and Weinberg [36] follows easily from our robustness result. The

main idea is that it suffices to learn the distribution Fi within small Prokhorov distance for every

bidder i , and it only requires polynomial many samples when each Fi is a product distribution.

Theorem 9. Consider the general mechanism design setting of Section 2. Recall that L is the

Lipschitz constant of the valuations. For every ε,δ > 0, and for every η ≤ poly(n,m,L,H , ε), we
can learn a distributionD =

>
i ∈[n], j ∈[m]Di j with poly (n,m,L,H , 1/ε, 1/η, log(1/δ )) samples from

D̂ =
>

i ∈[n], j ∈[m] D̂i j , such that, with probability 1 − δ , we can transform any BIC w.r.t. D, IR, and

c-approximation mechanism M to an η-BIC w.r.t. D̂ and IR mechanism M̂ , whose revenue under

truthful bidding satisfies

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
− ε .
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If n = 1, the mechanism M̂ will be IR and IC, and

Rev

(
M̂, D̂

)
≥ c · (1 −

√
η) · OPT

(
D̂

)
− ε −

√
η.

In particular, Gonczarowski and Weinberg [36] proved the c = 1 case, and our result applies to

any c ∈ (0, 1]. The proof is given in Appendix I. We provide a proof sketch here. We first prove

Lemma 12, which shows that polynomially many samples suffice to learn a distribution D that is

close to D̂ in Prokhorov distance. Now the statement simply follows from Theorem 7.

G MISSING PROOFS FROM SECTION F
We first show that for any product distribution F , we can learn the rounded distribution of F

within small TV distance with polynomially many samples.

Lemma 11. Let F =
>m

j=1 Fj , where Fj is an arbitrary distribution supported on [0,H ] for every

j ∈ [m]. Given N = O
(
m3H
η3 · (log 1/δ + logm)

)
samples, we can learn a product distribution F̂ =>m

j=1 F̂j such that 


F − F̂ 



P
≤ η

with probability at least 1 − δ .

Proof. We denote the samples as s1, . . . , sN . Round each sample to multiples of η′ = η/m. More

specifically, let ŝi =
( ⌊
si
1
/η′

⌋
· η′, . . . ,

⌊
sim/η

′
⌋
· η′

)
for every sample i ∈ [N ]. Let F̂j be the uniform

distribution over ŝ1j , . . . , ŝ
N
j . Let F j =

⌊
Fj

⌋
0,η′ . Note that F̂j is the empirical distribution of N

samples from F j . As

���supp(F j )

��� = ⌊
H
η′

⌋
= mH

η , with N = O

(
|supp(F j ) |

η′2 · (log 1/δ + logm)

)
samples,

the empirical distribution F̂j should satisfy




F̂j − F j





TV
≤ η′ with probability at least 1 − δ/m. By

the union bound




F̂j − F j





TV
≤ η′ for all j ∈ [m] with probability at least 1 − δ , which implies


F̂ − F 




TV
≤ η with probability at least 1 − δ . Observe that F and F can be coupled so that the

two samples are always within η in ℓ1 distance. When




F̂ − F 



TV
≤ η, consider the coupling

between F̂ and F by composing the optimal coupling between F̂ and F and the coupling between

F and F . Clearly, the two samples from F̂ and F are within ℓ1 distance η with probability at least

1 − η. Due to Theorem 2, the existence of this coupling implies that




F̂ − F 



P
≤ η. □

Proof of Theorem 9: We only consider the case, where η ≤ α · min

{
ε
n ,

ε2
n2mLH

}
. α is an absolute

constant and we will specify its choice in the end of the proof.

In light of Lemma 12, we take N = O
(
m3H
σ 3
· (log n

δ + logm)
)
from D̂ and learn a distribution D

so that, with probability at least 1 − δ ,



Di − D̂i





P
≤ σ for all i ∈ [n]. According to Theorem 7, we

can transformM into mechanism M̂ that is O
(
nmLHσ +mL

√
nHσ

)
-BIC w.r.t. D̂ and IR. Choose

σ in a way so that M̂ is η-BIC w.r.t. D̂. Moreover, M̂’s revenue under truthful bidding satisfies

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
−O

(
nη + n

√
mLHη

)
.

EC’20 Session 7c: Optimal Auctions

748



If we choose α to be sufficiently small, then

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
− ε .

When there is only a single-bidder, we can apply Lemma 5 to transform M̂ to an IC and IR

mechanism, whose revenue satisfies the guarantee in the statement.□

H OPTIMAL MECHANISM DESIGN UNDER STRUCTURAL ITEM DEPENDENCE
In this section, we go beyond the standard assumption of item-independence, which has been

employed in most of prior literature, to consider settings where, as is commonly the case in practice,

item values are correlated. Of course, once we embark onto a study of correlated distributions, we

should not go all the way to full generality, since exponential sample-size lower bounds are known,

even for learning approximately optimal mechanisms in single-bidder unit-demand settings [31].

Besides those sample complexity lower bounds, however, fully general distributions are also not

very natural. In practice, high-dimensional distributions are not arbitrary, but have structure, which

allows us to perform inference on them and learn them more efficiently. We thus propose the study

of optimal mechanism design under the assumption that item values are jointly sampled from a

high-dimensional distribution with structure.

There are many probabilistic frameworks that allow modeling structure in a high-dimensional

distribution. In this work we consider one of the most prominent ones: graphical models, and in

particular consider the two most common types of graphical models: Markov Random Fields and

Bayesian Networks.

Definition 10. A Markov Random Field (MRF) is a distribution defined by a hypergraph G =
(V ,E). Associated with every vertex v ∈ V is a random variable Xv taking values in some alphabet Σ,
as well as a potential functionψv : Σ→ [0, 1]. Associated with every hyperedge e ⊆ V is a potential

functionψe : Σe → [0, 1]. In terms of these potentials, we define a probability distribution p associating

to each vector x ∈ ΣV probability p(x) satisfying:

p(x) =
1

Z

∏
v ∈V

ψv (xv )
∏
e ∈E

ψe (xe ), (9)

where for a set of nodes e and a vector x we denote by xe the restriction of x to the nodes in e , and Z
is a normalization constant making sure that p, as defined above, is a distribution. In the degenerate

case where the products on the RHS of (9) always evaluate to 0, we assume that p is the uniform

distribution over ΣV . In that case, we get the same distribution by assuming that all potential functions

are identically 1. Hence, we can in fact assume that the products on the RHS of (9) cannot always

evaluate to 0.

Definition 11. A Bayesian network, or Bayesnet, specifies a probability distribution in terms of

a directed acyclic graph G whose nodes V are random variables taking values in some alphabet Σ.
To describe the probability distribution, one specifies conditional probabilities pXv |XΠv

(xv |xΠv ), for

all vertices v inG, and configurations xv ∈ Σ and xΠv ∈ Σ
Πv

, where Πv represents the set of parents

of v in G, taken to be ∅ if v has no parents. In terms of these conditional probabilities, a probability

distribution over ΣV is defined as follows:

p(x) =
∏
v

pXv |XΠv
(xv |xΠv ), for all x ∈ Σ

V .

It is important to note that both MRFs and Bayesnets allow the study of distributions in their

full generality, as long as the graphs on which they are defined are sufficiently dense. In particular,
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the graph (hypergraph and DAG respectively) underlying these models captures conditional inde-

pendence relations, and is sufficiently flexible to capture the structure of intricate dependencies in

the data. As such these models have found myriad applications; see e.g. [43, 44, 50, 51] and their

references. A common way to control the expressiveness of MRFs and Bayesnets is to vary the

maximum size of hyperedges in an MRF and indegree in a Bayesnet. Our sample complexity results

presented below will be parametrized according to this measure of complexity in the distributions.

In our results, presented below, we exploit our modular framework to disentangle the iden-

tification of good mechanisms for these settings from the intricacies of learning a good model

of the underlying distribution from samples. In particular, we are able to pair our mechanism

design framework presented in earlier sections with learning results for MRFs and Bayesnets to

characterize the sample complexity of learning good mechanisms when the item distributions are

MRFs and Bayesnets. Below, we first present our results on the sample complexity of learning good

mechanisms in these settings, followed by the learning results for MRFs and Bayesnets that these

are modularly dependent on.

H.1 Learning Multi-item Auctions under Structural Item Dependence
In this section, we state our results for learning multi-item auctions when each bidder’s values

correlated. In particular, we consider two cases: (i) every bidder’s type is sampled from an MRF, or

(ii) every bidder’s type is sampled from a Bayesnet. Our results can accommodate latent variables,

that is, some of the variables/nodes of the MRF or Bayesnet are not observable in the samples. We

show that the sample complexity for learning an η-BIC and IR mechanism, whose revenue is at most

ε less than the optimal revenue achievable by any η-BIC and IR mechanisms, is polynomial in the

size of the problem and scales gracefully with the parameters of the graphical models that generate

the type distributions. If there is only a single bidder, the mechanism we learn will be exactly IC

rather than approximately IC. We derive the sample complexity by combining our robustness result

(Theorem 7) with learnability results for MRFs and Bayesnets (Theorem 12 and 13).

Theorem 10 (Optimal Mechanism Design under MRF Item Distributions). Consider the

general mechanism design setting of Section 2. Recall that L is the Lipschitz constant of the valuations.

Let D̂ =
>

i ∈[n] D̂i , where each D̂i is am-dimensional distribution generated by an MRF pi , as in

Definition 10, defined on a graph with Ni ≥ m nodes, hyper-edges of size at most d , and supp(D̂i ) ⊆

Σm ⊆ [0,H ]m . When Ni > m, we say D̂i is generated by an MRF with Ni −m latent variables. We

use N to denote maxi ∈[n]{Ni }.

For every ε , δ > 0, and η ≤ poly(n,m,L,H , ε), we can learn, with probability at least 1 − δ , an

η-BIC w.r.t. D̂ and IR mechanism M̂ , whose revenue under truthful bidding is at most ε smaller than

the optimal revenue achievable by any η-BIC w.r.t. D̂ and IR mechanism, given

•
poly(n,N d , |Σ |d ,L,H,1/η, log(1/δ ))

ε4 samples if the alphabet Σ is finite; when the graph on which pi

is defined is known for each bidder i , then
poly(n,N ,κ, |Σ |d ,L,H,1/η, log(1/δ ))

ε4 -many samples suffice,

where κ is an upper bound on the number of edges in all the graphs;

• poly

(
n,N d2

,
(H
ε

)d
,Cd ,L, 1/η, log(1/δ )

)
samples if the alphabet Σ = [0,H ], and the log

potentials ϕ
pi
v (·) ≡ log

(
ψ
pi
v (·)

)
and ϕ

pi
e (·) ≡ log

(
ψ
pi
e (·)

)
for every node v and every edge e are

C-Lipschitz w.r.t. the ℓ1-norm, for every bidder i ; when the graph on which pi is defined is known

for each bidder i , then poly
(
n,N ,κd ,

(H
ε

)d
,Cd ,L, 1/η, log(1/δ )

)
-many samples suffice, where

κ is an upper bound on the number of edges in all the graphs.
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If n = 1, the mechanism M̂ will be IR and IC, and

Rev

(
M̂, D̂

)
≥

(
1 −
√
η
)
· OPT

(
D̂

)
− ε −

√
η.

Theorem 11 (Optimal Mechanism Design under Bayesnet Item Distributions). Consider

the general mechanism design setting of Section 2. Recall that L is the Lipschitz constant of the

valuations. Let D̂ =
>

i ∈[n] D̂i , where each D̂i is a m-dimensional distribution generated by a

Bayesnet pi , as in Definition 11, defined on a DAG with Ni ≥ m nodes, in-degree at most d , and

supp(D̂i ) ⊆ Σm ⊆ [0,H ]m . When Ni > m, we say D̂i is generated by an MRF with Ni −m latent

variables. We use N to denote maxi ∈[n]{Ni }.

For every ε , δ > 0, and η ≤ poly(n,m,L,H , ε), we can learn, with probability at least 1 − δ , an

η-BIC w.r.t. D̂ and IR mechanism M̂ , whose revenue under truthful bidding is at most ε smaller than

the optimal revenue achievable by any η-BIC w.r.t. D̂ and IR mechanism, with

• poly

(
n,d,N , |Σ|d+1,L,H , 1/η, 1/ε, log(1/δ )

)
samples if the alphabet Σ is finite;

• poly

(
n,dd+1,N d+1, (H Cε )

d+1,L, 1/η, log(1/δ )
)
samples if the alphabet Σ = [0,H ], and for

everypi , the conditional probability of every nodev is C-Lipschitz in the ℓ1-norm (see Theorem 13

for the definition).

If n = 1, the mechanism M̂ will be IR and IC, and

Rev

(
M̂, D̂

)
≥

(
1 −
√
η
)
· OPT

(
D̂

)
− ε −

√
η.

H.2 Sample Complexity for Learning MRFs and Bayesnets
In this section, we present the sample complexity of learning an MRF or a Bayesnet. Our sample

complexity scales gracefully with the maximum size of hyperedges in an MRF and indegree in a

Bayesnet. Furthermore, our results hold even in the presence of latent variables, where we can only

observe the values of k variables, out of the total |V | variables, in a sample.

Theorem 12 (Learnability of MRFs in Total Variation and Prokhorov Distance). Suppose

we are given sample access to an MRF p, as in Definition 10, defined on an unknown graph with

hyper-edges of size at most d .

• Finite alphabet Σ: Given poly( |V |d , |Σ |d , log( 1ε ))
ε2 samples from p we can learn some MRF q whose

hyper-edges also have size at most d such that ∥p − q∥TV ≤ ε . If the graph on which p is

defined is known, then

poly( |V |, |E |, |Σ |d , log( 1ε ))
ε2 -many samples suffice. Moreover, the polynomial

dependence of the sample complexity on |Σ|d cannot be improved, and the dependence on ε is
tight up to poly(log 1

ε ) factors.

• Alphabet Σ = [0,H ]: If the log potentials ϕv (·) ≡ log (ψv (·)) and ϕe (·) ≡ log (ψe (·)) for every

node v and every edge e are C-Lipschitz w.r.t. the ℓ1-norm, then given poly

(
|V |d

2

,
(H
ε

)d
,Cd

)
samples from p we can learn some MRF q whose hyper-edges also have size at most d such that

∥p − q∥P ≤ ε . If the graph on whichp is defined is known, then poly
(
|V |, |E |d ,

(H
ε

)d
,Cd

)
-many

samples suffice.

Our sample complexity bounds can be easily extended to MRFs with latent variables, i.e. to the case

where some subset V ′ ⊆ V of the variables are observable in each sample we draw from p. Suppose
k = |V ′ | ≤ |V | is the number of observable variables. In this case, for all settings discussed above, our

sample complexity bound only increases by a k · log |V | multiplicative factor.
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Theorem 13 (Learnability of Bayesnets in Total Variation and Prokhorov Distance).

Suppose we are given sample access to a Bayesnet p, as in Definition 11, defined on an unknown DAG

with in-degree at most d .

• Finite alphabet Σ: GivenO

(
d |V | log |V |+ |V | · |Σ |d+1 log

(
|V | |Σ|
ε

)
ε2

)
-many samples from p we can learn

some Bayesnetq defined on a DAGwhose in-degree is also bounded byd such that ∥p − q∥TV ≤ ε .

If the graph on which p is defined is known, then O

(
|V | · |Σ |d+1 log

(
|V | |Σ|
ε

)
ε2

)
-many samples suffice.

Moreover, the dependence of the sample complexity on |Σ|d+1 and 1

ε is tight up to logarithmic

factors.

• Alphabet Σ = [0,H ]: Suppose that the conditional probability distribution of every node v
is C-Lipschitz in the ℓ1-norm, that is,



pXv |XΠv =σ − pXv |XΠv =σ ′



TV ≤ C · ∥σ − σ

′∥
1
, ∀v and

σ ,σ ′ ∈ ΣΠv
. Then, given O

(
d |V | log |V |+ |V | ·

(
H |V |dC

ε

)d+1
log

(
|V |HdC

ε

)
ε2

)
-many samples from p, we

can learn some Bayesnet q defined on a DAG whose in-degree is also bounded by d such that

∥p − q∥P ≤ ε . If the graph on which p is defined is known, then O

(
|V | ·

(
H |V |dC

ε

)d+1
log

(
|V |HdC

ε

)
ε2

)
-many samples suffice.

Our sample complexity bounds can be easily extended to Bayesnets with latent variables, i.e. to the

case where some subsetV ′ ⊆ V of the variables are observable in each sample we draw from p. Suppose
k = |V ′ | ≤ |V | is the number of observable variables. In this case, for all settings discussed above, our

sample complexity bound only increases by a k · log |V | multiplicative factor.

In our proof of Theorem 12, we first carefully construct an ε-net over all MRFs with hyperedges

of size at most d in either total variation distance or Prokhorov distance, then apply a tournament-

style density estimation algorithm [1, 26, 29] to learn a distribution from the ε-net that is at most

O(ε) away from the true distribution using polynomially many samples. Our proof of Theorem 13

follows a similar recipe. The main difference is how we construct the ε-net over all Bayesnets with
in-degree at most d . Both proofs are presented in Appendix J.

I MISSING PROOFS FROM SECTION F
We first show that for any product distribution F , we can learn the rounded distribution of F

within small TV distance with polynomially many samples.

Lemma 12. Let F =
>m

j=1 Fj , where Fj is an arbitrary distribution supported on [0,H ] for every

j ∈ [m]. Given N = O
(
m3H
η3 · (log 1/δ + logm)

)
samples, we can learn a product distribution F̂ =>m

j=1 F̂j such that 


F − F̂ 



P
≤ η

with probability at least 1 − δ .

Proof. We denote the samples as s1, . . . , sN . Round each sample to multiples of η′ = η/m. More

specifically, let ŝi =
( ⌊
si
1
/η′

⌋
· η′, . . . ,

⌊
sim/η

′
⌋
· η′

)
for every sample i ∈ [N ]. Let F̂j be the uniform

distribution over ŝ1j , . . . , ŝ
N
j . Let F j =

⌊
Fj

⌋
0,η′ . Note that F̂j is the empirical distribution of N

samples from F j . As

���supp(F j )

��� = ⌊
H
η′

⌋
= mH

η , with N = O

(
|supp(F j ) |

η′2 · (log 1/δ + logm)

)
samples,
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the empirical distribution F̂j should satisfy




F̂j − F j





TV
≤ η′ with probability at least 1 − δ/m. By

the union bound




F̂j − F j





TV
≤ η′ for all j ∈ [m] with probability at least 1 − δ , which implies


F̂ − F 




TV
≤ η with probability at least 1 − δ . Observe that F and F can be coupled so that the

two samples are always within η in ℓ1 distance. When




F̂ − F 



TV
≤ η, consider the coupling

between F̂ and F by composing the optimal coupling between F̂ and F and the coupling between

F and F . Clearly, the two samples from F̂ and F are within ℓ1 distance η with probability at least

1 − η. Due to Theorem 2, the existence of this coupling implies that




F̂ − F 



P
≤ η. □

Proof of Theorem 9: We only consider the case, where η ≤ α · min

{
ε
n ,

ε2
n2mLH

}
. α is an absolute

constant and we will specify its choice in the end of the proof.

In light of Lemma 12, we take N = O
(
m3H
σ 3
· (log n

δ + logm)
)
from D̂ and learn a distribution D

so that, with probability at least 1 − δ ,



Di − D̂i





P
≤ σ for all i ∈ [n]. According to Theorem 7, we

can transformM into mechanism M̂ that is O
(
nmLHσ +mL

√
nHσ

)
-BIC w.r.t. D̂ and IR. Choose

σ in a way so that M̂ is η-BIC w.r.t. D̂. Moreover, M̂’s revenue under truthful bidding satisfies

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
−O

(
nη + n

√
mLHη

)
.

If we choose α to be sufficiently small, then

RevT

(
M̂, D̂

)
≥ c · OPTη

(
D̂

)
− ε .

When there is only a single-bidder, we can apply Lemma 5 to transform M̂ to an IC and IR

mechanism, whose revenue satisfies the guarantee in the statement.

□

J MISSING PROOFS FROM SECTION H
J.1 Proof of Theorem 12
Proof of Theorem 12: For the purposes of this proof we take n = |V |. We first prove the finite

alphabet case, we then extend the result to the infinite alphabet case, and finally we discuss how to

accommodate latent variables.

Finite alphabet Σ: We will prove our first sample complexity bound by constructing an ε-cover, in
total variation distance, of the set P of all MRFs with hyperedges of size at most d . We can assume

that all p ∈ P satisfy the following:

(A1) : p is defined on the hypergraphG = (V ,E), whose edge set is E =
(V
d

)
, and all its node potential

functions are constant and equal 1.

The reason we can assume (A1) for all p ∈ P is that potentials of nodes and smaller-size hyperedges

can always be incorporated into the potentials of some size-d hyperedge that contains them, and the

potentials of size-d hyperedges that are not present can always be taken to be constant 1 functions.

Moreover, we can assume the following property for all MRFs p ∈ P:

(A2): maxσ ∈Σe ψe (σ ) = 1,∀e ∈ E.
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The reason we can assume (A2) for allp ∈ P is that the density of an MRF is invariant to multiplying

any single potential function by some scalar.

Now, given some MRF p ∈ P, satisfying (A1) and (A2), which we can assume without loss of

generality, we will make a sequence of transformations to arrive at some MRF p ′′ ∈ P such that

∥p − p ′′∥TV ≤ ε and p
′′
can be described using B = poly

(
|E |, |Σ|d , log( 1ε )

)
bits. This, in turn, will

imply that there exists an ε-cover P ′ ⊂ P that has size 2
B
, and the existence of an ε-cover of this

size implies that O(B/ε2)-many samples from any p ∈ P suffice to learn some q ∈ P such that

∥p − q∥TV ≤ O(ε), using a tournament-style density estimation algorithm; see e.g. [1, 26, 29] and

their references.

Here are the steps to transform an arbitrary p ∈ P into some p ′′ ∈ P of low bit complexity:

• (Notation:) From now on we will use p̂ to denote unnormalized densities. I.e. if p is defined

in terms of potential functions (ψ
p
e (·))e ∈E , then p̂(x) =

∏
e ∈E ψ

p
e (xe ),∀x ∈ ΣV .

• (Step 1:) Given some arbitrary p ∈ P, we construct some p ′ ∈ P such that ∥p − p ′∥TV ≤ ε ,
p ′ satisfies (A1) and (A2) and, moreover, the unnormalized density of p ′ satisfies that, for all

x ∈ ΣV , p̂ ′(x) =
(
1 + ε

2nd

) ix
, for some integer ix . The existence of such p

′
follows from the

invariance of MRFs with respect to multiplying their potential functions by scalars, and the

following.

Claim 3. Suppose p,p ′ ∈ P satisfy (A1) and are defined in terms of potential functions (ψ
p
e )e

and (ψ
p′
e )e respectively. Moreover, suppose that ∀e,σ ∈ Σe :

ψ
p′
e (σ ) ≤ ψ

p
e (σ ) ≤

(
1 +

ε

2nd

)
ψ
p′
e (σ ).

Then ∥p − p ′∥TV ≤ ε .

Proof of Claim 3: It follows from the condition in the statement of the claim that, for all

x ∈ ΣV :

p̂ ′(x) ≤ p̂(x) ≤

(
1 +

ε

2nd

)(nd)
p̂ ′(x) ≤ eε/2p̂ ′(x) ≤ (1 + ε)p̂ ′(x).

Using the above, let us compare the normalized densities. For all x ∈ ΣV :

p(x) =
p̂(x)∑
y p̂(y)

≤
p̂ ′(x)(1 + ε)∑

y p̂
′(y)

≤ p ′(x)(1 + ε).

Moreover,

p(x) =
p̂(x)∑
y p̂(y)

≥
p̂ ′(x)∑

y p̂
′(y)(1 + ε)

≥ p ′(x)/(1 + ε).

Using the above, let us bound the total variation distance between p and p ′:

∥p − p ′∥TV =
1

2

∑
x

|p(x) − p ′(x)|

=
1

2

∑
x :p(x )≥p′(x )

(p(x) − p ′(x)) +
1

2

∑
x :p(x )<p′(x )

(p ′(x) − p(x))

≤
1

2

∑
x :p(x )≥p′(x )

εp ′(x) +
1

2

∑
x :p(x )<p′(x )

εp(x) ≤ ε .

□
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• (New Notation:) We introduce some further notation. Let

(
ψ
p′
e

)
e
be the potential functions

defining distribution p ′ ∈ P from Step 1. We reparametrize these potential functions as

follows:

∀e,x ∈ Σe : ξp′e (x) ≡ log

(
ψ
p′
e (x)

)
/log

(
1 +

ε

2nd

)
.

Given the definition of p ′ in Step 1, our new potential functions satisfy the following linear

equations:

∀x ∈ ΣV :

∑
e ∈E

ξ
p′
e (xe ) = ix , (10)

where, because of Assumption (A2), satisfied by p ′, the integers ix ≤ 0, for all x .

• (Step 2:) We define p ′′ by setting up a linear program with variables ξ
p′′
e (xe ),∀e,xe ∈ ΣE . In

particular, the number of variables of the linear program we are about to write is L = |E | · |Σ|d .
To define our linear program, we first define x∗ = argmaxx ix , and partition ΣV into two

sets ΣV = G ⊔ B, by taking G = {x | ix ≥ ix ∗ − T }, and B the complement of G, for

T = 4nd
ε (n log |Σ| + log( 1ε )). In particular, all configurations in B have probability p ′(x) ≤

ε/|Σ|n . Our goal is to exhibit that there exists p ′′ ∈ P that (i) satisfies properties (A1) and
(A2); (ii) can be described with poly

(
|E |, |Σ|d , log( 1ε )

)
bits; and (iii) satisfies

∑
x ∈B p

′′(x) ≤ ε

and p ′′(x) = p ′(x) · (1 + δ ) ∀x ∈ G, where δ ∈ [
−ε, ε

1−ε

]
. We note that (iii) implies that

∥p ′ − p ′′∥TV ≤ ε , as either p
′′(x) ≥ p ′(x) for all x ∈ G simultaneously or p ′′(x) < p ′(x) for all

x ∈ G simultaneously, and the total mass in B under both p ′ and p ′′ are at most ε . Combining

(iii) and Claim 3, we have (iv) ∥p − p ′′∥TV ≤ 2ε . To exhibit the existence of p ′′ we write the
following linear program:

∀x ∈ G \ {x∗} :
∑
e ∈E

ξ
p′′
e (xe ) −

∑
e ∈E

ξ
p′′
e (x

∗
e ) = ix − ix ∗ (11)

∀x ∈ B :

∑
e ∈E

ξ
p′′
e (xe ) −

∑
e ∈E

ξ
p′′
e (x

∗
e ) ≤ −T

Note that, because LP (10) is feasible, it follows that LP (11) is feasible as well. Moreover,

the coefficients and constants of LP (11) have absolute value less than T and bit complexity

polynomial in d , logn, log( 1ε ) and log log |Σ|, and the number of variables of this LP is

L = |E | · |Σ|d . From the theory of linear programming it follows that there exists a solution

to LP (11) of bit complexity polynomial in |E |, |Σ|d , logn, and log( 1ε ). Why is (iii) true? It is

not hard to see that for any x ∈ B, p ′′(x) ≤ ε/|Σ|n due to the second type of constraints in

LP (11). For any x ∈ G \ {x∗},
p′′(x )
p′′(x ∗) =

p′(x )
p′(x ∗) due to the first type of constraints in LP (11), so

p ′′(x) = p ′(x) · (1 + δ ) ∀x ∈ G for some constant δ . Since both
∑

x ∈G p
′(x) and

∑
x ∈G p

′′(x)

lie in [1 − ε, 1], δ lies in

[
−ε, ε

1−ε

]
.

To summarize the above (setting ε ← ε/2 in the above derivation), given an arbitrary p ∈ P
we can construct p ′′ ∈ P such that: p ′′ can be described using B = poly

(
|E |, |Σ|d , log( 1ε )

)
bits—by

specifying the low complexity solution

(
ξ
p′′
e

)
e
to LP (11), and p ′′ satisfies ∥p − p ′′∥TV ≤ ε . As we

have noted above, the existence of such p ′′ for every p ∈ P implies the existence of an ε-cover, in
total variation distance, of P that has size 2

B
, and tournament-style arguments imply then that any

p ∈ P can be learned to within O(ε) in total variation distance from O( Bε2 )-many samples, i.e. from

poly( |E |, |Σ |d , log( 1ε ))
ε2 -many samples.
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We now prove the second part of the statement. If the hypergraph (V ,Ep ) with respect to which

p is defined is known, we redo the above argument, except we take P to be all MRFs defined on the

graph G = (V ,E), where E is the union of Ep and all singleton sets corresponding to the nodes V .

For the third part of the statement, we note that an arbitrary distribution p on d variables, each

taking values in Σ, can be expressed as a MRF with maximum hyperedge-size d . As such, it is
folklore (see e.g. [29]) that Ω(|Σ|d/ε2) samples are necessary to learn p to within ε in total variation

distance. This completes the proof for the finite alphabet case.

Next, we show how to extend our sample complexity to the case where the alphabet Σ = [0,H ].

Alphabet Σ = [0,H ]: Let δ = ε
8dC(n+1)d , and Σδ be the set of all multiples of δ between 0 and H .

10

We first define distribution p̃ to be the rounded version of p using the following coupling. For any

sample x drawn from p, create a sample x̃ drawn from p̃ such that x̃v =
⌊ xv
δ

⌋
· δ for every v ∈ V .

Note that (i) this coupling makes sure that the two samples from p and p̃ are always within ε of
each other in ℓ1-distance. Our plan is to show that we can (ii) learn an MRF q with polynomially

many samples from distribution p̃ such that ∥q − p̃∥TV = O(ε). Why does this imply our statement?

First, we can generate a sample from p̃ using a sample from p due to the coupling between the two

distributions. Second, ∥q − p̃∥TV = O(ε) means that we can couple q and p̃ in a way that the two

samples are the same with probability at least 1 −O(ε). Composing this coupling with the coupling

between p̃ and p, we have a coupling between p and q so that the two samples are within ε of each
other in ℓ1-distance with probability at least 1 −O(ε). According to Theorem 2, ∥p − q∥P = O(ε).
Now, we focus on proving (ii).

We separate the proof into two steps. In the first step, we show that for any p̃, there is a discretized
MRF q′ supported on ΣVδ with hyperedges of size at most d such that ∥p̃ − q′∥TV ≤ ε and q

′
can be

described with B = poly

(
|E |, |Σδ |

d , log( 1ε )
)
bits. In other words, there is a 2

B
-sized ε-cover over

all possible distributions p̃. In the second step, we show how to learn an MRF q with O(B/ε2)
samples from p̃ using a tournament-style density estimation algorithm; see e.g. [1, 26, 29] and their

references. Before we present the two steps of our proof, and in order to simplify our notation and

avoid carrying around node potentials, let us introduce into the edge set E of our hypergraph a

singleton edge for every node v , and take the potential of every such edge e = {v} to equal the

node potential of node v .

• (Step 1:)We first define a discrete MRF p ′ on the same graphG = (V ,E) as p with alphabet Σδ .

Distribution p ′ is defined by choosing its log-potential ϕ
p′
e (xe ) to be exactly ϕ

p
e (xe ) for every

hyperedge e ∈ E and every possible value xe ∈ Σ
e
δ . Next, we show that (iii) ∥p ′ − p̃∥TV ≤ ε/2.

We use Ax to denote the n-dimensional cube

>
v ∈V [xv ,xv + δ ) for any x ∈ Σ

V
δ . Note that

p̃(x) =

∫
Ax

exp

(∑
e ϕ

p
e (ye )

)
dy∫

[0,H ]n exp

(∑
e ϕ

p
e (ye )

)
dy
≤

δn exp
(∑

e ϕ
p
e (xe )

)
· exp(d |E |Cδ )

δn
∑
y∈ΣVδ

exp

(∑
e ϕ

p
e (ye )

)
· exp(−d |E |Cδ )

≤ p ′(x)(1 + ε/2).

The first inequality is due the C-Lipschitzness of the log potential functions and the second

inequality is due to the definition of δ . Similarly,

p̃(x) =

∫
Ax

exp

(∑
e ϕ

p
e (ye )

)
dy∫

[0,H ]n exp

(∑
e ϕ

p
e (ye )

)
dy
≥

δn exp
(∑

e ϕ
p
e (xe )

)
· exp(−d |E |Cδ )

δn
∑
y∈ΣVδ

exp

(∑
e ϕ

p
e (ye )

)
· exp(d |E |Cδ )

≥
p ′(x)

1 + ε/2
.

10
We further assume that H is a multiple of δ . If not, let k be the integer such that δ ∈

[
H
2
k ,

H
2
k−1

]
, and change δ to be

H
2
k .
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We complete the proof of (iii) by combining the two inequalities.

∥p̃ − p ′∥TV =
1

2

∑
x ∈ΣVδ

|p̃(x) − p ′(x)|

=
1

2

∑
x :p̃(x )≥p′(x )

(p̃(x) − p ′(x)) +
1

2

∑
x :p̃(x )<p′(x )

(p ′(x) − p̃(x))

≤
1

2

∑
x :p̃(x )≥p′(x )

ε

2

p ′(x) +
1

2

∑
x :p̃(x )<p′(x )

ε

2

p̃(x) ≤ ε/2.

Let P be the set of all MRFs with hyperedges of size at most d and alphabet Σδ . By redoing

Step 1 and 2 of the proof for the finite alphabet case, we can show that (iv) for any p̂ ∈ P,
there exists another p̂ ′ ∈ P describable with B = poly

(
|E |, |Σδ |

d , log( 1ε )
)
bits such that

∥p̂ − p̂ ′∥TV ≤ ε/2. Since p ′ ∈ P, there exists a q′ ∈ P describable with B bits such that

∥p ′ − q′∥TV ≤ ε/2. Combining this inequality with (iii), we have ∥p̃ − q′∥TV ≤ ε .
• (Step 2:) Let P ′ ⊂ P be the set of all MRFs in P with bit complexity at most B from Step 1.

Since minq̃∈P′ ∥q̃ − p̃∥TV ≤ ε , we can learn an MRF q ∈ P ′ such that ∥q − p̃∥TV ≤ O(ε) with
O(B/ε2) samples from p̃ using a tournament-style density estimation algorithm [1, 26, 29].

To sum up, we can learn an MRF q such that ∥q − p∥P ≤ ε with poly

(
|V |d

2

,
(H
ε

)d
,Cd

)
many

samples from p. If the graph G on which p is defined is known, we can choose δ to be O
(

ε
8dC |E |

)
and improve the sample complexity to poly

(
|V |, |E |d ,

(H
ε

)d
,Cd

)
.

Latent Variable Models: Finally, we consider the case where only k out of the n variables of the

MRF are observable. Let S be the set of observable variables, and use pS to denote the marginal

of p on these variables. We will first consider the finite alphabet case. Consider the ε-cover we
constructed earlier. We argued that for any MRF p there exists an MRF q in the cover such that

∥p − q∥TV ≤ ε . For that q we clearly also have ∥pS − qS ∥TV ≤ ε . The issue is that we do not know

for a given q in the cover which subset of its variables set S might correspond to. But this is not a big

deal. We can use our cover to generate an ε-cover of all possible marginals pS of all possible MRFs

p as follows. Indeed, for any q′ in the original ε-cover, we include in the new cover the marginal

distribution q′S ′ of every possible subset S ′ of its variables of size k . This increases the size of our

original cover by a multiplicative factor of at most nk . As a result, the number of samples required

for the tournament-style density estimation algorithm to learn a good distribution increases by a

multiplicative factor of k logn. For the infinite alphabet case, our statement follows from applying

the same modification to the ε-cover of p̃. □

J.2 Proof of Theorem 13
Proof of Theorem 13: We first prove the theorem statement for the finite alphabet case, we then

extend it to the infinite alphabet case, and finally show how we can accommodate latent variables

as well.

Finite alphabet Σ: We prove the claims in the theorem statement in reverse order.

For the third part of the statement, we note that an arbitrary distribution p on d + 1 variables,
each taking values in Σ, can be expressed as a Bayesnet with maximum indegree d . As such, it
is folklore (see e.g. [29]) that Ω(|Σ|d+1/ε2) samples are necessary to learn p to within ε in total

variation distance.
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To prove the second part of the statement, we show that there is an ε-cover, in total variation

distance, of all BayesnetsP on a given DAGG of indegree at mostd , which has size B =
(
n |Σ |
ε

)n |Σ |d+1
,

where n = |V |. The existence of an ε-cover of this size implies that O(log(B)/ε2)-many samples

from any p ∈ P suffice to learn some q ∈ P such that ∥p − q∥TV ≤ O(ε), using a tournament-style

density estimation algorithm; see e.g. [1, 26, 29] and their references. Thus, to prove the second

part of the theorem statement it suffices to argue that an ε-cover of size B exists. We prove the

existence of this cover by exploiting the following lemma.

Lemma 13. Suppose p and q are Bayesenets on the same DAGG = (V ,E). Suppose that, for allv ∈ V ,

for all σ ∈ ΣΠ(v)
, where Π(v) are the parents of v inG (using the same notation as in Definition 11), it

holds that



pXv |XΠv =σ − qXv |XΠv =σ



TV ≤

ε

|V |
.

Then ∥p − q∥TV ≤ ε .

Proof of Lemma 13:We employ a hybrid argument. First, let us denote n = |V | and label the nodes in
V with labels 1, . . . ,n according to some topological sorting of G. In particular, the parents (if any)

of any node i have indices < i . Now, for our hybrid argument we construct the following auxiliary

distributions, for i = 0, . . . ,n:

hi (x) =
i∏

v=1

pXv |XΠv
(xv |xΠv )

n∏
v=i+1

qXv |XΠv
(xv |xΠv ), for all x ∈ Σ

V .

In particular, h0 ≡ q and hn ≡ p, and the rest are fictional distributions. By triangle inequality, we

have that:

∥p − q∥TV ≤
n∑
i=1



hi − hi−1

TV .
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We will bound each term on the RHS by ε/n to conclude the proof of the lemma. Indeed,

hi − hi−1

TV
=

∑
x

i∏
v=1

pXv |XΠv
(xv |xΠv ) ·

n∏
v=i+1

qXv |XΠv
(xv |xΠv ) −

i−1∏
v=1

pXv |XΠv
(xv |xΠv ) ·

n∏
v=i

qXv |XΠv
(xv |xΠv )

=
∑
x

i−1∏
v=1

pXv |XΠv
(xv |xΠv ) ·

(
pXi |XΠi

(xi |xΠi ) − qXi |XΠi
(xi |xΠi )

)
·

n∏
v=i+1

qXv |XΠv
(xv |xΠv )

=
∑
x

i−1∏
v=1

pXv |XΠv
(xv |xΠv ) · pXi |XΠi

(xi |xΠi ) − qXi |XΠi
(xi |xΠi ) ·

n∏
v=i+1

qXv |XΠv
(xv |xΠv )

=
∑

x1. . .i−1

i−1∏
v=1

pXv |XΠv
(xv |xΠv )·

∑
xi

(
pXi |XΠi

(xi |xΠi ) − qXi |XΠi
(xi |xΠi ) ·

∑
xi+1. . .n

(
n∏

v=i+1

qXv |XΠv
(xv |xΠv )

))
=

∑
x1. . .i−1

(
i−1∏
v=1

pXv |XΠv
(xv |xΠv ) ·

∑
xi

(
pXi |XΠi

(xi |xΠi ) − qXi |XΠi
(xi |xΠi )

))
≤

∑
x1. . .i−1

(
i−1∏
v=1

pXv |XΠv
(xv |xΠv ) · ε/n

)
=ε/n,

where for the inequality we used the hypothesis in the statement of the lemma.□

Now suppose p ∈ P is an arbitrary Bayesnet defined on G. It follows from Lemma 13 that p
lies ε-close in total variation distance to a Bayesnet q such that, for all v ∈ V , and all σ ∈ ΣΠv

,

the conditional distribution qXv |XΠv =σ is a discretized version of pXv |XΠv =σ that is
ε
n -close in total

variation distance. Note that pXv |XΠv =σ is an element of the simplex over |Σ| elements, and it is easy

to see that this simplex can be
ε
n -covered, in total variation distance, using a discrete set of at most(

n |Σ |
ε

) |Σ |
-many distributions. As there are at most n · |Σ|d conditional distributions to discretize, a

total number of

B =

(
n |Σ|

ε

)n |Σ |d+1
discretized distributions suffice to cover all P.

To prove the first part of the theorem statement, we proceed in the same way, except that now

that we do not know the DAG our cover will be larger. Since there are at most ndn DAGs of indegree

at most d on n labeled vertices, and for each DAG there is a cover of all Bayesnets defined on that

DAG of size at most B, as above, it follows that there is an ε-cover, in total variation distance, of all

Bayesnets of indegree at most d of size:

ndn · B.

Given the bound on the cover size, the proof concludes by appealing to tournament-style density

estimation algorithms, as we did earlier. This completes our proof for the finite alphabet case.
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Alphabet Σ = [0,H ]: Let δ = ε
dCn , and Σδ be the set of all multiples of δ between 0 and H .

11

For any set of nodes S and x = (xv )v ∈S , we use ⌊x⌋δ to denote the corresponding rounded vector(
⌊
xv
δ ⌋ · δ

)
v ∈S . We first define distribution p̃ to be the rounded version of p using the following

coupling. For any sample x drawn from p, create a sample x̃ = ⌊x⌋δ drawn from p̃. Note that (i)
this coupling makes sure that the two samples from p and p̃ are always within ε of each other

in ℓ1-distance. Our plan is to show that we can (ii) learn a Bayesnet q with in-degree at most d
using polynomially many samples from distribution p̃ such that ∥q − p̃∥TV = O(ε). Why does this

imply our claim? First, we can generate a sample from p̃ using a sample from p due to the coupling

between the two distributions. Second, ∥q − p̃∥TV = O(ε) means that we can couple q and p̃ in a

way that the two samples are the same with probability at least 1 −O(ε). Composing this coupling

with the coupling between p̃ and p, we have a coupling between p and q such that the two samples

are at most ε away from each other in ℓ1-distance with probability at least 1 −O(ε). This implies,

according to Theorem 2, that ∥p − q∥P = O(ε). Now, we focus on proving (ii) and separate the proof

into three steps.

• (Step 1:)We first prove that there is a Bayesnet p ′′ with in-degree at most d and alphabet Σδ
such that ∥p̃ − p ′′∥TV ≤ ε . We first construct a Bayesnet p ′ on the same DAG as p, where the
conditional probability distribution for every node v , and σ ∈ ΣΠv

is defined as

p ′Xv |XΠ(v )=σ
≡ pXv |XΠ(v )=⌊σ ⌋δ

.

Clearly, for any node v , and σ ∈ ΣΠv
,


pXv |XΠ(v )=σ − p

′
Xv |XΠ(v )=σ





TV
=




pXv |XΠ(v )=σ − pXv |XΠ(v )=⌊σ ⌋δ





TV
≤ C · ∥σ − ⌊σ ⌋δ ∥1 ≤ Cdδ ≤

ε

|V |
.

Hence, Lemma 13 implies that: (iii) ∥p − p ′∥TV ≤ ε .
12

Next, we construct the rounded distribution p ′′ of p ′ via the following coupling. For any

sample x ′ drawn from p ′, create a sample x ′′ = ⌊x ′⌋δ from p ′′. It is not hard to verify that p ′′

can also be captured by a Bayesnet defined on the same DAG as p and p ′. In particular, for

every node v , every xv ∈ Σδ , and xΠv ∈ Σ
Πv
δ , the conditional probability is

p ′′Xv |XΠv

(
xv |xΠv

)
=

∫ xv+δ

xv
p ′Xv |XΠv

(
z |xΠv

)
dz.

As p ′′ is the rounded distribution of p ′, p̃ is the rounded distribution of p, and ∥p − p ′∥TV ≤ ε ,
it must be the case that ∥p ′′ − p̃∥TV ≤ ε .
• (Step 2:) Let P be the set of all Bayesnets defined on a DAG with n nodes and in-degree at

most d , and which have alphabet Σδ . We argue that there is a size A = ndn ·
(
n |Σδ |
ε

)n |Σδ |d+1
ε-cover P ′, in total variation distance, of P, and P ′ ⊂ P. This follows from the same

argument we did in the proof for the finite alphabet case. First, there are ndn different DAGs

with n nodes and in-degree at most d . Second, for each DAG there are at most n · |Σδ |
d

conditional distributions. Finally, it suffices to
ε
n -cover each conditional distribution, in total

variation distance, which can be accomplished by a discrete set of at most

(
n |Σδ |
ε

) |Σδ |
-many

distributions. Since p ′′ ∈ P and ∥p ′′ − p̃∥TV ≤ ε , there exists a Bayesnet q̃ from the ε-cover
P ′ such that ∥q̃ − p̃∥TV ≤ 2ε .

11
We further assume that H is a multiple of δ . If not, let k be the integer such that δ ∈

[
H
2
k ,

H
2
k−1

]
, and change δ to be

H
2
k .

12
Even though Lemma 13 was only proved earlier for a finite alphabet, the same proof extends to when the alphabet is

infinite.
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• (Step 3:) Since minq′∈P′ ∥q
′ − p̃∥TV ≤ 2ε , we can use a tournament-style density estimation

algorithm (see e.g. [1, 26, 29] and their references) to learn a Bayesnet q ∈ P ′ such that

∥q − p̃∥TV = O(ε) given O
(
logA
ε2

)
samples from p̃ .

To sum up, we can learn a Bayesnet q defined on a DAG with in-degree at most d using

O
©­­«
d |V | log |V | + |V | ·

(
H |V |dC

ε

)d+1
log

(
|V |HdC

ε

)
ε2

ª®®¬
samples from p such that ∥q − p∥P ≤ ε . If the DAG that p is defined on is known, the sample

complexity improves to O

(
|V | ·

(
H |V |dC

ε

)d+1
log

(
|V |HdC

ε

)
ε2

)
.

Latent Variable Model: Finally, we consider the case where only k out of the n variables of the

Bayesnet p are observable. Let S be the set of observable variables, and use pS to denote the marginal

of p on these variables. We will first consider the finite alphabet case. Consider the ε-cover we
constructed earlier. We argued that for any Bayesnet p there exists an Bayesnet q in the cover

such that ∥p − q∥TV ≤ ε . For that q we clearly also have ∥pS − qS ∥TV ≤ ε . The issue is that we
do not know for a given q in the cover which subset of its variables set S might correspond to.

But this is not a big deal. We can use our cover to generate an ε-cover of all possible marginals

pS of all possible Bayesnets p as follows. Indeed, for any q′ in the original ε-cover, we include in
the new cover the marginal distribution q′S ′ of every possible subset S ′ of its variables of size k .

This increases the size of our original cover by a multiplicative factor of at most nk . As a result,
the number of samples required for the tournament-style density estimation algorithm to learn a

good distribution increases by a multiplicative factor of k logn. For the infinite alphabet case, our
statement follows from applying the same modification to the ε-cover of p̃. □
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