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Abstract—Routine operational use of sensitive data is often
governed by law and regulation. For instance, in the medical
domain, there are various statues at the state and federal level
that dictate who is permitted to work with patients’ records and
under what conditions. To screen for potential privacy breaches,
logging systems are usually deployed to trigger alerts whenever
a suspicious access is detected. However, such mechanisms are
often inefficient because 1) the vast majority of triggered alerts
are false positives, 2) small budgets make it unlikely that a real
attack will be detected, and 3) attackers can behave strategically,
such that traditional auditing mechanisms cannot easily catch
them. To improve efficiency, information systems may invoke
signaling, so that whenever a suspicious access request occurs,
the system can, in real time, warn the user that the access may
be audited. Then, at the close of a finite period, a selected subset
of suspicious accesses are audited. This gives rise to an online
problem in which one needs to determine 1) whether a warning
should be triggered and 2) the likelihood that the data request
event will be audited. In this paper, we formalize this auditing
problem as a Signaling Audit Game (SAG), in which we model the
interactions between an auditor and an attacker in the context
of signaling and the usability cost is represented as a factor of
the auditor’s payoff. We study the properties of its Stackelberg
equilibria and develop a scalable approach to compute its solution.
We show that a strategic presentation of warnings adds value in
that SAGs realize significantly higher utility for the auditor than
systems without signaling. We perform a series of experiments
with 10 million real access events, containing over 26K alerts,
from a large academic medical center to illustrate the value of
the proposed auditing model and the consistency of its advantages
over existing baseline methods.

Index Terms—database auditing, privacy, signaling, Stackel-
burg game

I. INTRODUCTION

Our society now collects, stores, and processes personal and

intimate data with ever-finer detail, documenting our activities
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and innovations in a wide range of domains, ranging from

health to finance [1], [2]. Due to the potential value of such

data, their management systems face non-trivial challenges

to personal privacy and organizational secrecy. The sensitive

nature of the data stored in such systems attracts malicious

attackers who can gain value by disrupting them in various

ways (e.g., stealing sensitive information, commandeering

computational resources, committing financial fraud, and simply

shutting the system down) [3], [4]. Reports in the popular

media indicate that the severity and frequency of attack events

continues to grow. Notably, the recent breach at Equifax led to

the exposure of data on 143 million Americans, including credit

card numbers, Social Security numbers, and other information

that could be used for identity theft or other illicit purposes

[5]. Even more of a concern is that the exploit of the system

continued for at least two months before it was discovered.

To defend against attack, modern database systems are often

armed with an alerting capability to detect and notify about

potential risks incurred during daily use [6]–[8]. This entails the

logging of access events, which can be thought of as a collection

of rules, each of which defines a semantic type of a potentially

malicious situation [9], [10]. In mission-critical systems, the

access requests of authenticated users are often granted to

ensure continuity of workflow and operations, such that

notification about potential misuse is provided to administrators

who perform retrospective audit investigations [11]–[14]. For

instance, many healthcare organizations (HCOs) rely on alert,

as well auditing, mechanisms to monitor anomalous accesses

to electronic medical records (EMRs) by employees who may

violate policy and breach the privacy of certain patients [15].

Similarly, the providers of online services, such as financial

institutions and social media platforms, often use alerts and

audits to defend against attacks, such as financial fraud and

compromises to computational resources [16]. Though audits

do not directly prevent attacks in their own right, they allow

for the discovery of breaches that can be followed up on before
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they escalate to full blown exploits by attackers.

However, there are challenges to instituting robust auditing

schemes in practice. First, the volume of triggered alerts is

typically far greater than the auditing capacity of an organiza-

tion [17]. Second, in practice, the majority of triggered alerts

correspond to false positives, which stem from an organization’s

inability to define and recognize complex dynamic workflows.

Third, to mitigate the risk of being caught, attackers prefer to

act strategically, such as carefully choosing the way (or target)

to attack. And last, but not least, in the retrospective audit

setting, attacks are not discovered until they are investigated.

In essence, this is a resource allocation problem in an

adversarial environment for which the Stackelberg security

game (SSG) is a natural choice to apply for modeling purposes

[18]–[20]. In this model, the defender first commits to a budget

allocation policy and, subsequently, the attacker responds

with the optimal attack based on the defender’s strategy. This

model has enabled the design and deployment of solutions to

various security problems in practice, such as ARMOR (which

was adopted by the LAPD to randomize checkpoints on the

roadways at Los Angeles International Airport) [21] and IRIS
(which was adopted by the US Federal Air Marshal Service

to schedule air marshals on international flights) [22]. The

audit game is a variation of the SSG designed to discover

an efficient audit strategy [23]–[26]. With respect to strategic

auditing, most research has focused on deriving a defense

strategy by solving, or approximating, the Strong Stackelberg

Equilibrium (SSE). Unfortunately, it was recently shown that

merely applying the SSE strategy may have limited efficacy

in some security settings [27]. This can be addressed by

strategically revealing information to the attacker [27], [28], a

mechanism referred to as signaling (or persuasion [29], [30]).

In this setting, the goal is to set up a signaling scheme to reveal

noisy information to the attacker and, by doing so, influence

the attacker’s decision with respect to outcomes that favors

the defender. However, all approaches derived to date rely on

allocating resources before signaling, such that it serves as a

source of informational advantages for deceiving the attacker.

Yet, in the audit setting, the decision sequence is reversed,

such that the signal is revealed (e.g., via a warning screen) at

the time of an access request, whereas the audit occurs after

a certain period of time. This poses new challenges for the

design of signaling schemes.

Many organizations have recognized and adopted signaling

mechanisms to protect sensitive data. For example, in 2018,

Vanderbilt University Medical Center (VUMC) announced a

new break-the-glass policy to protect the privacy of patients

with a person of interest (or VIP) designation, such as

celebrities or public figures.1 Under this policy, access to the

EMRs of these individuals triggers a pop-up warning that

requires the user to provide a justification for the access. Once

the warning has been served, the user can decide whether or

not to proceed to access, knowing that each access is logged

for potential auditing. However, such a policy is implemented

1https://www.mc.vanderbilt.edu/myvumc/index.html?article=21557

in a post hoc manner that does not optimize when to signal

nor when to audit.

In this paper, we introduce the notion of a Signaling Audit

Game (SAG), which applies signaling to alert and auditing.

We leverage the time gap between the access request made by

the (potential) attacker and the actual execution of the attack

to insert the signaling mechanism. When an alert is triggered

by a suspicious access request, the system can, in real time,

send a warning to the requestor. At this point, the attacker

has an opportunity to re-evaluate his/her utility and make a

decision about whether or not to continue with an attack. In

contrast to previous models, which are all computed offline,

the SAG optimizes both the warning strategy and the audit

decision in real time for each incoming alert. Importantly, we

consider the usability cost into the SAG where the normal data

requestors may be scared away by the warning messages in

practice. This may lead to descent in operational efficiency of

organizations which deploy SAGs. To illustrate the performance

of the SAG, in this paper we evaluate the expected utility of

the auditor with a dataset of over 10 million real VUMC

EMR accesses and predefined alert types. The results of a

comprehensive comparison, which is performed over a range

of conditions, indicate that the SAG consistently outperforms

state-of-the-art game theoretic alternatives that lack signaling

by achieving higher overall utility while inducing nominal

increases in computational burden.

The remainder of this paper is organized as follows. We

first propose the SAG and introduce how it is played in the

audit setting. Next, we analyze the theoretical properties of

the SAG equilibria. The dataset, experiments, and results are

then described in the evaluation section. Finally, we review

representative related research in the database auditing domain,

with a focus on methodology in the adversarial setting.

II. ONLINE SIGNALING IN AUDIT GAMES

In this section, we describe the SAG model in the general

context of information services. For illustrative purposes, we

use healthcare auditing as a running example.

A. Motivating Domain

To provide efficient healthcare service, HCOs typically store

and process each patient’s clinical, demographic, and financial

information in an EMR system. EMR users, such as physicians

and other clinical staff, need to access patients’ EMRs when

providing healthcare services. The routine workflow can be

summarized as three steps: 1) a user initiates a search for a

patient’s EMR by name and date of birth, then the system

returns a list of patients (often based on a fuzzy matching)

along with their demographic information, 2) from the list, this

user requests access to a patient’s record, and 3) the system

returns the requested record. Due to the complex, dynamic

and time-sensitive nature of healthcare, HCOs typically grant

employees broad access privileges, which unfortunately creates

an opportunity for malicious insiders to exploit patients’ EMRs

[31].
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To deter malicious access, breach detection tools are

commonly deployed to trigger alerts in real time for the

administrator whenever suspicious events occur. Alerts are often

marked with predefined types of potential violations which help

streamline inspection. Notable alert types include accessing the

EMR of co-workers, neighbors, family members, and VIPs [15].

Subsequently, a subset of the alerts are retrospectively audited

at the end of each audit cycle, and the auditor determines

which constitute an actual policy violation.

B. Signaling Audit Games

Here, we formalize the Signaling Auditing Game (SAG)

model. An SAG is played between an auditor and an attacker
within a predefined audit cycle (e.g., one day). This game

is sequential such that alerts arrive one at a time. For each

alert, the auditor needs to make two decisions in real time: first,

which signal to send (e.g., to warn the user/attacker or not), and

second, whether to audit the alert. Formally, let Xτ
c denote the

event that alert τ will be audited, and Xτ
u denote that it is not

audited. Following the convention of notations, the subscripts

c and u stand for covered and uncovered, respectively. We

further let ξτ1 denote the event that a warning signal is sent

for alert τ, while ξτ0 denotes the event that no warning is sent

(i.e. a “silent signal”). The warning ξτ1 is delivered privately

through a dialog box on the requestor’s screen, which might

communicate “Your access may be investigated. Would you
like to proceed?”. Xτ

c , Xτ
u,ξτ1,ξτ1 are random variables whose

probabilities are to be designated.

We assume that there is a finite set of alert types T and, for

each t ∈ T, all alerts are considered equivalent for our purposes

(i.e., attacks triggering alerts of type t all result in the same

damages to the system). The auditor has an auditing budget

B that limits the number of alerts that can be audited at the

end of the cycle. For each alert type t, let V t denote the cost

(or time needed) to audit an alert of type t. Thus, if θt is the

probability of auditing alerts of type t and dt is the number of

such alerts, the budget constraint implies that
∑

t θ
t ·V tdt ≤ B.

Since the setting is online, an optimal policy for the auditor

must consider all possible histories of alerts, including the

correlation between alerts. Given that this is impractical,

we simplify the scheme so that 1) each alert is viewed

independently of alerts that precede it and 2) future alerts

are considered with respect to their average relative frequency.

Specifically, we assume that each attack effectively selects an

alert type t, but do not need to consider the timing of attacks.

Rather, we treat each alert as potentially adversarial. This

implicitly assumes that an attack (e.g., a physician’s access to

the EMR of a patient they do not treat) triggers a single alert.

However, this is without loss of generality, since we can define

alert types that capture all realistic multi-alert combinations.

Now, we define the payoffs to the auditor and attacker. For

convenience, we refer to the alert corresponding to an attack

as the victim alert. If the auditor fails to audit a victim alert of

type t, the auditor and the attacker will receive utility Ut
d,u and

Ut
a,u, respectively. On the other hand, if the auditor audits a

victim alert of type t, the auditor and the attacker will receive

utility Ut
d,c and Ut

a,c, respectively. Here, the subscripts d and

a stand for defender and attacker, respectively. Naturally, we

assume Ut
a,c < 0<Ut

a,u and Ut
d,c ≥ 0>Ut

d,u.

Figure 1 demonstrates the key interactions of both players

along the timeline. Each yellow block within the audit cycle

represents a triggered alert and the corresponding interactions

with it. The auditor continues to update the real time probability

of auditing any alert (may or may not be triggered) with respect

to the alert type and the time point τ. In other words, the auditor

commits in real time to the auditing and signaling strategy.

In this case, the auditor always moves first, as shown at the

beginning of the lower timeline.

Access request
over a target

Audit cycle begins

Commit to a
mixed strategy

Proceed to
attack or quit

Audit cycle ends

Randomly choose
alerts to audit

Update available
budget

Trigger an alert

Time

Sending a
signal

Fig. 1. The auditor and attacker actions are shown in blue and red, respectively.

A warning signaling scheme, captured by the joint probability

distribution of signaling and auditing, can be fully specified

through four variables for each τ:

P(ξτ1, Xτ
c )= pτ

1, P(ξτ1, Xτ
u)= qτ

1,

P(ξτ0, Xτ
c )= pτ

0, P(ξτ0, Xτ
u)= qτ

0.
(1)

Upon receiving the signal, the attacker reacts as follows:

• After ξτ1: the system presents two choices to the attacker:

“Proceed” to access the requested record or quit.

• After ξτ0: the attacker automatically proceeds to access the

requested record (since the attacker receives no warning).

For convenience, when possible we omit the superscript τ

when the alert we are dealing with, is readily apparent from

the context.

Figure 2 illustrates the temporal sequence of decisions in the

SAG. Each edge in the figure is marked with its corresponding

joint probability of a sequence of decisions up to and including

that edge. Note that the two gray nodes are not extended

because they do not lead to any subsequent event.2 Further,

Access request
Triggers an alert

Yes

No

Yes

No

Yes

No

Yes

Warning? Attack? Audit?

Yes

No

No

Warning? Attack? Audit?

Fig. 2. The decision tree of the auditor and an arbitrary user, the actions for
which are shown in blue and red, respectively.

observe that, p1 + q1 + p0 + q0 = 1, and the overall probability

of auditing this alert is P(Xc)=P(Xc,ξ1)+P(Xc,ξ0)= p1+p0.

2The upper gray node corresponds to the case when an access request is
abandoned. The lower one represents an impossible case because the user
automatically gets the requested record.
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Conditional on the warning signal ξ1, the probability of auditing

this alert is thus P(Xc|ξ1)= p1/(p1 + q1).
Since the auditor has a fixed auditing budget, she will need

to update the remaining budget after determining the signal-

conditional audit probability for the current alert. We use Bτ

to denote the remaining budget before receiving alert τ. Let

t denote the type of alert τ and τ+1 denote the next alert.

After the signaling scheme for τ is executed, the auditor then

updates Bτ for the use of the next alert τ+1 as follows:

• If ξτ1 is sampled: Bτ+1 = Bτ− pτ
1/(pτ

1 + qτ
1) ·V t.

• If ξτ0 is sampled: Bτ+1 = Bτ− pτ
0/(pτ

0 + qτ
0) ·V t.

Additionally, we always ensure that Bτ ≥ 0. The key challenge

in our model is to compute the optimal pτ
1, qτ

1, pτ
0, qτ

0 for each

alert τ online by accounting for the remaining budget and the

estimate number of future alerts. This needs to be performed

to ensure that the auditor does not spend the budget at a rate

that is excessively fast or slow.

Without signaling, our audit game can be solved offline, at

the end of the audit cycle. This situation can be captured by

a Stackelberg security game by viewing alerts as targets. The

optimal auditing probabilities can then be determined offline by

computing the SSE of this game. However, as our experiments

show, this simplified strategy (which we refer to as offline SSE)

performs substantially worse than our online approach.

The SAG can be viewed as a variation on the Stackelberg

game, where it includes signaling and makes decisions about

auditing online upon the arrival of each alert. The premise be-

hind our solution is therefore a Strong Stackelberg equilibrium

of the SAG, in which the auditor commits to a randomized joint

signaling and auditing decision, and the associated probability

distribution is observed by the attacker, who then decides

first upon the alert type to use, and subsequently whether to

proceed after a warning. We will seek the optimal randomized

commitment strategy for the auditor in this game.

The SAG model contains two crucial differences from prior

investigations into signaling for security games. The first is

that the signaling scheme for each alert in an SAG must be

optimized sequentially in real time. By contrast, previous

models, such as [27], decide the signaling schemes for all

targets simultaneously in an offline fashion. The second is in

how private information is leveraged. In previous models, the

defender utilizes the informational advantage that the defender

currently has (e.g., knowledge about the realized protection

status of the target) to deceive the attacker. However, in our

scenario, the auditor first decides the signaling scheme, by

when he/she has an equal amount of information as the attacker

(which includes the status of the current environment), and

then exercises her informational advantage after the audit cycle

ends (by deciding which to audit).

III. OPTIMIZING SAGS

In this section, we design an algorithm for solving SAGs.

For presentation purpose, we fix the alert τ to a particular

type t and, thus, the superscript will, at times, be omitted for

notational convenience. We begin by considering the problem

of computing the real time SSE of the game without signaling

that transpires for a given observed alert τ. This game, as well

as its solution, serve as a baseline of the optimized SAGs.

A. Online SSG

Consider the arrival of an alert τ. Let dt
τ be the number

of future alerts of type t ∈ T after alert τ is triggered.3 We

assume that dt
τ follows a Poisson distribution D t

τ, which is

widely adopted to characterize the number of arrivals. We can

compute the SSE strategy using a multiple linear programming

(LP) approach for budget Bτ. In this approach, for each alert

type t, we assume that t is the attacker’s best response, and

then compute the optimal auditing strategy. Finally, we choose

the best solution (in terms of the auditor’s utility) among all

of the LPs as the SSE strategy.

Now, let θt′ (t) be the probability of auditing an alert of type

t′ when the attacker’s best response is t. In addition to this

optimal auditing policy, we design how we plan to split the

remaining budget Bτ among all alert types. We assume that the

audit distribution will remain constant for future alerts, which

allows us to consider the long-term impact of our decision

about auditing. We represent the budget that we allocate for

inspecting alerts of each type as a vector Bτ = {B1
τ,B2

τ, ...,B|T|
τ }

that the long-term budget allocation decision is constrained

by the remaining audit budget:
∑|T|

t=1 Bt
τ ≤ Bτ. Now, assuming

type t is the best response, the following LP returns optimal

auditing strategy:

maxBτ
θt(t) ·Ut

d,c + (1−θt(t)) ·Ut
d,u

s.t.
∀t′, θt(t) ·Ut

a,c + (1−θt(t)) ·Ut
a,u

≥ θt′ (t) ·Ut′
a,c + (1−θt′ (t)) ·Ut′

a,u,

∀t′, θt′ (t)= Edt′
τ ∼D t′

τ

(
Bt′
τ

V t′ dt′
τ

)
,∑|T|

t′=1 Bt′
τ ≤ Bτ,

∀t′, Bt′
τ ∈ [0,Bτ],

(2)

where the first constraint ensures that t is the attacker’s best

response. After solving |T| instances of LP (2), the best solution

for the auditor will henceforth be referred to as the online SSE
strategy (or simply, the SSE), θSSE .

B. Optimal Signaling

We now describe how to build a signaling mechanism into

the audit game and then compute the optimal signaling scheme,

as well as the budget allocation strategy.

From the perspective of the attacker, whether to proceed or

quit after receiving a warning signal depends on his conditional

expected utility:

Et
a(util|ξ1)= pt

1

pt
1 + qt

1
·Ut

a,c +
qt

1

pt
1 + qt

1
·Ut

a,u.

We impose the constraint Et
a(util|ξ1) ≤ 0 such that the at-

tacker’s best response to ξ1 is to quit, in which case both

3The vast majority of alerts are false positives. Consequently, we can
estimate dt

τ from alert logs in previous audit cycles.
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players will receive 0 utility. We do not enforce constraints for

ξ0 because the potential attacker does not have any option but

to proceed. In this case, the expected utility of the auditor is

Et
d(util|ξ0)= pt

0

pt
0 + qt

0
·Ut

d,c +
qt

0

pt
0 + qt

0
·Ut

d,u.

Overall, the expected utility for the attacker can be computed

as

Et
a(util)= (pt

0 + qt
0) ·Et

a(util|ξ0)= pt
0 ·Ut

a,c + qt
0 ·Ut

a,u.

Accordingly, the auditor’s expected utility is

Et
d(util)= (pt

0 + qt
0) ·Et

d(util|ξ0)= pt
0 ·Ut

d,c + qt
0 ·Ut

d,u.

However, a side effect is that, the warnings sent by the

auditor (e.g., the pop-up warning screen off of break-the-glass
strategy deployed by VUMC) may pose an additional utility

loss to the auditor in practice, which we call usability cost.
This is because when normal users request access to sensitive

data and receive a warning message, they may walk away

by choosing quit instead of “Proceed”, which induces a loss

in operational efficiency for the organization. For each type

t′, we set this loss to be proportional to the product of the

probability of sending warnings pt′
1 + qt′

1 , the probability of

being deterred Pt′ and the expectation of the number of future

false positive alerts to the end of the current audit cycle Et′
τ . The

loss incurred for each quit by a normal user is set to be Ct′ (< 0).
Then, the expected utility of the auditor can be updated as

Et
d(util)= pt

0 ·Ut
d,c + qt

0 ·Ut
d,u +

∑|T|
t′=1(pt′

1 + qt′
1 ) ·Pt′ ·Et′

τ ·Ct′ .
The optimal signaling scheme (or, more concretely, joint

signaling and audit probabilities) can be computed through the

following set of LPs:

max
p0,p1,q0,q1,Bτ

pt
0 ·Ut

d,c + qt
0 ·Ut

d,u +
|T|∑

t′=1
(pt′

1 + qt′
1 ) ·Pt′ ·Et′

τ ·Ct′

s.t.
∀t′, pt

0 ·Ut
a,c + qt

0 ·Ut
a,u ≥ pt′

0 ·Ut′
a,c + qt′

0 ·Ut′
a,u,

∀t′, pt′
1 ·Ut′

a,c + qt′
1 ·Ut′

a,u ≤ 0,

∀t′, pt′
1 + pt′

0 = Edt′
τ ∼D t′

τ

(
Bt′

τ

V t′dt′
τ

)
,

∀t′, pt′
1 + pt′

0 + qt′
1 + qt′

0 = 1,∑
t′∈{1,...,|T|}

Bt′
τ ≤ Bτ,

∀t′, Bt′
τ ∈ [0,Bτ],

∀t′, pt′
0 , qt′

0 , pt′
1 , qt′

1 ∈ [0,1],
(3)

where we assume type t is the best one for the attacker to

potentially exploit. Note that, in the objective function, the

incurred additional loss is an accumulated value that considers

the amount of time remaining in the period for the current

audit cycle. The likelihood of sending warning signal in the

current time point is a real time estimation of future warnings.

Due to the fact that attacks are extremely rare in practice

in comparison to the magnitude of alerts, in solving LP (3)

we use the expected number of future alerts Edt′
τ ∼D t′

τ
(dt′

τ ) to

approximate Et′
τ . As a result, Edt′

τ ∼D t′
τ

(dt′
τ ) can then be estimated

from historical data collected in previous audit cycles. Our

goal is thus to find the optimal signaling scheme for all types,

and simultaneously, the best budget allocation strategy. We use

p0, p1, q0 and q1 to denote the warning signaling scheme

for all types, namely, the set {pt′
0 |∀t′}, {pt′

1 |∀t′}, {qt′
0 |∀t′} and

{qt′
1 |∀t′}, respectively.

The first constraint in LP (3) ensures that attacking type t is

the best response strategy for the attacker. The second constraint

indicates that the attacker, when receiving a warning signal,

will quit attacking any type. We refer to the optimal solution

among the |T| instances of LP (3) as the Online Stackelberg
Signaling Policy (OSSP). In particular, we use θossp to denote

the vector of coverage probability at OSSP.

After building the theoretical model of the SAG, we need

to pay attention to one important situation in practice, where

an attacker can leverage to perform attacks with lower level

risks of being captured.

C. The Ending Period of Audit Cycles

Recall that in SAGs, the estimation of the number of alerts

in the rest of the current audit cycle, which is Edt
τ∼D t

τ
(dt

τ), is

calculated based on the alert logs of historical audit cycles.

At the ending period of audit cycles, such estimation keeps

decreasing for each type. As a consequence, it would be ill-

advised to apply any approach that performs an estimation on

the arrivals without an additional process to handle the ending

period of an audit cycle. Imagine, for instance, an attacker

who only attacks at the very end of an audit cycle. Then, the

knowledge from historical data is likely to indicate that no

alerts will be realized in the future. And it follows that such

attacks will not be covered because the available budget will

have been exhausted according to the historical information.

To practically mitigate this problem, when the mean of

arrivals in the historical data drops under a certain thresh-

old, we apply the estimate of the number of future alerts

Edt
τ−1∼D t

τ−1
(dt

τ−1) in the time point when the last alert was

triggered as a proxy of the real one at the current time point.

This technique is called knowledge rollback. By doing so,

the consumption of the available budget in real time will be

slowed down because of the application of a smaller coverage

probability. As a consequence, the attacker attempting to attack

late is not afforded an obvious extra benefit.

IV. THEORETICAL PROPERTIES OF SAGS

In this section, we theoretically analyze the properties of the

OSSP solution (equivalently, of the SAG equilibrium). Our first

result highlights a notable property of the optimal signaling

scheme. Specifically, the optimal signaling scheme will only

trigger warning signals for the best attacking type, i.e., the type

at which attacker utility is maximized. As such, the rational

attacker will choose to attack this alert type.
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Theorem 1. If alert τ∗ of type t∗ is the best response strategy
for the attacker, then pt

1 = qt
1 = 0 in the OSSP for ∀t 	= t∗.4

Proof. Let Sol = {pt
0, pt

1, qt
0, qt

1}t∈T be any optimal solution

and t∗ is the best type. We show that the following newly

defined variables will not decrease the objective value of Sol
and thus, by assumption, is still optimal. Let p̄t∗

0 = pt∗
0 , p̄t∗

1 =
pt∗

1 , q̄t∗
0 = qt∗

0 , q̄t∗
0 = qt∗

0 be the same as in Sol, however for

any t 	= t∗, define p̄t
0 = pt

0+pt
1, q̄t

0 = qt
0+qt

1 and p̄t
1 = 0, q̄t

1 = 0.

First, we argue that these newly defined variables are still

feasible. All of the constraints can easily be verified in LP (3)

except the first two sets. The second set of constraints is still

satisfied for any t 	= t∗ (where our variables changed) since

p̄t
1 = q̄t

1 = 0. The first set of constraints are satisfied for any

t 	= t∗ because

p̄t
0 ·Ut

a,c + q̄t
0 ·Ut

a,u = (pt
0 + pt

1) ·Ut
a,c + (qt

0 + qt
1) ·Ut

a,u

≤ pt∗
0 ·Ut

a,c + qt∗
0 ·Ut

a,u

= p̄t∗
0 Ut

a,c + q̄t∗
0 Ut∗

a,u

where the (only) inequality is due to pt
1 ·Ut

a,c+qt
1 ·Ut

a,u ≤ 0 as a

constraint of LP (3) and the two equations are by our definition

of the new variables. This proves that the first constraint is

also feasible.

It remains to show that the newly defined variables do not

decrease the objective function. This follows simply because

the term with respect to type t∗ in the objective function does

not change and all the other terms become zero in the newly

defined variables, which is no less than the original cost. This

proves the theorem.

Theorem 1 leads to the following corollary: when the attacker

avoids attacking certain type(s) at any time point (this is always

the case in OSSP), then the best strategy for the auditor is to

turn off the signaling procedure for those types for less loss

incurred by sending warnings. Now we show that, at any given

game status, the marginal coverage probability for OSSP is

the same as the one for the online SSE.

Theorem 2. Let θt
ossp be the marginal coverage probability

in the OSSP at any given game status and θt
SSE be the

corresponding marginal coverage probability in the online
SSE. Then, in a SAG, for each type t ∈ T, θt

ossp = θt
SSE .

Proof. Given any game state, the auditor has an estimate about

the sets of future alerts. We prove that for any fixed set of

alerts, θt
ossp = θt

SSE holds for each type t ∈ T. As a result, in

expectation over the probabilistic estimate, this still holds.

Fixing a set of alerts, the auditor’s decision is a standard

Stackelberg game. We first claim that by fixing the auditing

strategy in the OSSP, the attacker can receive E
ossp
a by

triggering any alert τ, thus type t. In other words, ∀t 	=
t∗,Ea(θt

ossp) = E
ossp
a . Assume, for the sake of contradiction,

that an alert τ′ of type t′ with positive coverage probability

is not the best response of the attacker in an SAG. Then, the

4We will use ∗ to denote strategies or quantities in the OSSP in the rest of
the paper.

auditor can redistribute a certain amount of the protection

resources from τ′ to the alerts of the attacker’s best-response

type and guarantee that it is still the best-response type. This

increases the coverage probability of these alerts and, thus,

increases the auditor’s utility, which contradicts the optimality

of OSSP. This implies that the first constraint in LP (3) is

tight in the OSSP. Similarly, this holds true for the online SSE.

Notice that Ea(θt) is a strictly decreasing function of θt for

both OSSP and online SSE.

Next, we prove that Esse
a = E

ossp
a implies θt

ossp = θt
SSE for

all τ, thus t, as desired. This is because θt
ossp > θt

SSE(≥ 0)
implies E

ossp
a = Ea(θt

ossp) < Ea(θt
SSE) = Esse

a (a contradiction)

and θt
ossp < θt

SSE implies E
ossp
a ≥ Ea(θt

ossp) > Ea(θt
SSE) = Esse

a
(again, a contradiction). As a result, it must be the case that

θt
SSE = θt

ossp for all τ, and thus t, as desired.

We now show that Esse
a = E

ossp
a must hold true. Assume,

for the sake of contradiction, that Esse
a > E

ossp
a . Then for any

θt
SSE > 0, it must be that θt

ossp > θt
SSE . This is because θt

ossp ≤
θt

SSE implies that E
ossp
a ≥ Ea(θt

ossp)≥ Ea(θt
SSE)= Esse

a , which is

a contradiction. On the other hand, for any θt
ossp > 0, θt

SAG >
θt

SSE must be true, because 0 < θt
ossp ≤ θt

SSE implies that

Esse
a = Ea(θt

SSE) ≤ Ea(θt
ossp) = E

ossp
a , which is a contradiction.

As a result, it must be the case that either θt
SSE = θt

ossp = 0
or θt

ossp > θt
SSE for any τ, thus t. Yet this contradicts the fact

that
∑

τ θ
t
SSE =∑

τ θ
t
ossp = Bτ. Similarly, Esse

a < E
ossp
a can not

hold true. As a result, Esse
a = E

ossp
a is true.

In the proof above, we can conclude that the attacker’s utility

is the same in the OSSP and the online SSE. We now prove

that the SAG is lower-bounded by the online SSG with respect

to the auditor’s expected utility.

Theorem 3. Given any game state, the expected utility of the
auditor by applying the OSSP is never worse than when the
online SSE is applied.

Proof. If the attacker completes the attack, his expected utility

by attacking type t in SAG is Ea(θt)= (pt
1 + pt

0) ·Ut
a,c + (qt

1 +
qt

0) ·Ut
a,u, where θt is the coverage probability of type t.

• If Ea(θt)< 0, then the attacker will choose to not approach

any target at the beginning, regardless of if there exists a

signaling procedure. Thus, in both cases the auditor will

achieve the same expected utility, which is 0.

• If Ea(θt)≥ 0, then let pt
1 = 0 and qt

1 = 0. And it follows

that pt
0 = θt and qt

0 = 1−θt. This solution satisfies all

of the constraints in LP (3), which, in this case, share

exactly the same form with LP (2). In combination with

Theorem 1, we can conclude that in this special setting,

the expected utilities of the auditor, by applying SAG

(not necessary the OSSP) and online SSE, are the same:

Ed(θt)= θt ·Ut
d,c+(1−θt) ·Ut

d,u. Thus, the expected utility

of the auditor in the OSSP is never worse than the one in

the online SSE.

This begs the following question: can applying the OSSP

bring more benefit to the expected utility of the auditor? Our

experiments lend support to an affirmative answer.
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Our next result reveals an interesting property about the

optimal signaling scheme. Interestingly, it turns out that by

applying OSSP in specific situations, if there is no warning

sent, then the auditor will not audit the triggered alerts in their

optimal strategy (i.e., pt∗
0 = 0).

Theorem 4. In SAG, if the payoff structure satisfies 0≥ (Ut∗
d,c−

Pt∗ ·Et∗
τ ·Ct∗ )/(Ut∗

d,u −Pt∗ ·Et∗
τ ·Ct∗ ) ≥ Ut∗

a,c/Ut∗
a,u on the best

attacking type t∗ in the OSSP, then we have pt∗
0 = 0 on the

τ–th alert.

Proof. This will be proved in the instance of LP (3) that derives

the best pair of the signaling strategy and the attacking strategy

t∗. For inference convenience, for all t we substitute pt
1 and qt

1
with θt

ossp−pt
0 and 1−θt

ossp−qt
0, respectively. Combining with

Theorem 1, the objective function of LP (3) can be simplified as

pt∗
0 ·Ut∗

d,c+qt∗
0 ·Ut∗

d,u+pt∗
1 ·Pt∗ ·Et∗

τ ·Ct∗+qt∗
1 ·Pt∗ ·Et∗

τ ·Ct∗ = pt∗
0 ·

(Ut∗
d,c−Pt∗ ·Et∗

τ ·Ct∗ )+qt∗
0 ·(Ut∗

d,u−Pt∗ ·Et∗
τ ·Ct∗ )+Pt∗ ·Et∗

τ ·Ct∗ .
Now, we simplify constraints. The first constraint is always

tight in the OSSP (as shown in Theorem 2). By applying

the substitution rules, the second constraint becomes ∀t′, pt′
0 ·

Ut′
a,c + qt′

0 ·Ut′
a,u ≥ θt′

ossp ·Ut′
a,c + (1−θt′

ossp) ·Ut′
a,u. For all t′ 	= t∗,

it can be future transformed into (θt′
ossp−pt′

0 )·Ut′
a,c+(1−θt′

ossp−
qt′

0 )·Ut′
a,u ≤ 0. Due to the fact that pt′

1 = qt′
1 = 0 in the OSSP for

∀t′ 	= t∗, pt′
0 is equal to θt′

ossp, and qt′
0 equal to 1−θt′

ossp. As

such, for all t′ 	= t∗, this constraint naturally holds true. By far,

the best strategy pair of SAG in our setting needs to maximize

pt∗
0 ·(Ut∗

d,c−Pt∗ ·Et∗
τ ·Ct∗ )+qt∗

0 ·(Ut∗
d,u−Pt∗ ·Et∗

τ ·Ct∗ )+Pt∗ ·Et∗
τ ·

Ct∗ , such that pt∗
0 ·Ut∗

a,c+qt∗
0 ·Ut∗

a,u ≥ θ
t∗
ossp·Ut∗

a,c+(1−θt∗
ossp)·Ut∗

a,u
(we refer to this inequality as constraint α) and that these

probability variables are in [0,1] and sum up to 1.5

We set up a Cartesian coordinate system and let qt∗
0 be

the vertical axis and pt∗
0 the horizontal one. Geometrically,

the slopes of the item to be maximized, which is −(Ut∗
d,c −

Pt∗ ·Et∗
τ ·Ct∗ )/(Ut∗

d,u −Pt∗ ·Et∗
τ ·Ct∗ ) and constraint α, which

is −Ut∗
a,c/Ut∗

a,u are both positive. Note that, though we do not

constrain the left side of constraint α, which is E
t∗
a (util|ξu)=

pt∗
0 ·Ut∗

a,c + qt∗
0 ·Ut∗

a,u > 0, this inequality is always true. If not

the case, the attacker will not initially attack. We discuss the

righthand side β= θ
t∗
ossp ·Ut∗

a,c + (1−θ
t∗
ossp) ·Ut∗

a,u as follows.

• β ≤ 0. In this setting, constraint α is dominated. The

boundary of the dominant constraint passes the origin

and the feasible region is a triangle with its base on the

vertical axis, as shown in Figure 3(a). Thus, in both cases,

if (Ut∗
d,c−Pt∗ ·Et∗

τ ·Ct∗ )/(Ut∗
d,u−Pt∗ ·Et∗

τ ·Ct∗ )≥Ut∗
a,c/Ut∗

a,u
holds true (which implies that the slope of the objective

function is less than the boundary’s slope of the dominant

constraint), then pt∗
0 = qt∗

0 = 0 leads to the maximum of the

objective function. The OSSP, thus is pt∗
1 = θt∗

ossp, qt∗
1 =

1−θ
t∗
ossp, pt∗

0 = qt∗
0 = 0.

• β> 0. Thus, constraint α dominates pt∗
0 ·Ut∗

a,c+qt∗
0 ·Ut∗

a,u >
0. The boundary’s intercept of the dominant constraint

5Constraints involving Bt′
τ are neglected because θt′

ossp is the coverage

probability that can be derived from Bt′
τ in our setting.

is δ= (θt∗
ossp ·Ut∗

a,c + (1−θ
t∗
ossp) ·Ut∗

a,u)/Ut∗
a,u ∈ (0,1]. Using

an analysis similar to the previous case of β, only

when pt∗
0 = 0, qt∗

0 = δ does lead to the maximum of

the objective function. This is indicated in Figure 3(b).

The OSSP is pt∗
1 = θ

t∗
ossp, pt∗

0 = 0, qt∗
1 = 1−θ

t∗
ossp − (θt∗

ossp ·
Ut∗

a,c+(1−θ
t∗
ossp)·Ut∗

a,u)/Ut∗
a,u, qt∗

0 = (θt∗
ossp ·Ut∗

a,c+(1−θ
t∗
ossp)·

Ut∗
a,u)/Ut∗

a,u.

1

1

0

q0
t*

p0
t*

p0
t* ⋅Ua,c

t* + q0
t* ⋅Ud ,c

t* = 0
p0
t* + q0

t* = x

objective fn

(a) β≤ 0

1

1

0

q0
t*

p0
t*

p0
t* ⋅Ua,c

t* + q0
t* ⋅Ud ,c

t* = β

p0
t* + q0

t* = x

objective fn

(b) β> 0

Fig. 3. Feasible regions (blue areas) and an objective function gaining the

largest value for β≤ 0 and β> 0. Note that the boundary pt∗
0 +qt∗

0 = x is only
for illustration, and its intercept can slide in [0,1] by taking into account the

value of pt∗
1 and pt∗

1 . However, this never impact the optimal solution.

Remark. In application domains, the absolute value of the

penalty for the attacker is often greater than the benefit from

committing attacks. As for the auditor, his/her benefit from

catching an attack is often less than the absolute value of the

loss due to missing an attack. If the warning cost Pt∗ ·Et∗
τ ·Ct∗

were ignored, then 0≥Ut∗
d,c/Ut∗

d,u ≥Ut∗
a,c/Ut∗

a,u is often satisfied

in practice. Considering that the warning cost is proportional to

the estimation of the number of future warning events, which

decreases with time, the condition in Theorem 4 only happens

in a certain period of time.

One might wonder that, given that the condition in Theorem 4

is valid, whether the attacker can keep attacking until receiving

no warning, in which case the attacker can attack safely under

the optimal signaling scheme? Actually, this strategy cannot

lead to success because once the attacker chooses to quit,

his/her identity is essentially revealed. The auditor cannot

punish the attacker (yet) because the attacker quits the attack,

leaving no evidence. Therefore, a successful attack later on only

hurts him/her, while help the auditor find forensic evidence

of an attack. In practice, it is common that the auditor uses

reserved budget to deal with special cases. In the setting above,

the author can use a small portion of the auditing budget to

investigate repeated attempts of data access, but in practice

this is not an issue, as these cases are likely to be rare in real

world. As a result, once an attacker chooses to quit, the best

response should be to not attack during the rest of the auditing

cycle. In the experimental comparison with online/offline SSG,

which requires no additional budget for such attack category,

we will apply a reduced available budget as the input of the

corresponding SAG to ensure fairness in our comparisons.

A natural follow-up question is can the attacker manipulate

the model by running this strategy across audit cycles? The

answer is no as well. Such a behavior can be easily detected

by a rule that applies when the attacker performs his/her attack

repeatedly. When the auditor does not send a warning, the
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attacker successfully attacks. Yet, since there was a warning

sent previously, the auditor will use the probability p1 to audit,

rather than p0. Thus, the attacker should take this into account

before adopting such a strategy.

Theorem 5. The auditor benefits equally in terms of the
expected utility from SAG and online SSG at the τ-th alert, if
it satisfies Ut∗

d,u > Pt∗ ·Et∗
τ ·Ct∗ , where t∗ is the best type to

attack in the OSSP.

Proof. We prove this by applying the same simplification and

the split strategy (i.e., analyze two distinct situations based on

the value of β) as applied in the proof for Theorem 4. Note

that the slope of the objective function is −(Ut∗
d,c −Pt∗ ·Et∗

τ ·
Ct∗ )/(Ut∗

d,u−Pt∗ ·Et∗
τ ·Ct∗ ). Since Ct∗ < 0, the numerator is less

than 0. If Ut∗
d,u > Pt∗ ·Et∗

τ ·Ct∗ , then the denominator is greater

than 0. Thus, the slope is less than 0. In particular, the slope

is less than −1 (which is the slope of boundary pt∗
0 + qt∗

0 = x)

because of Ut∗
d,c ≥ 0>Ut∗

d,u. We now analyze properties in this

situation geometrically.

As demonstrated in Figures 4(a) and 4(b), the boundary

pt∗
0 +qt∗

0 = x(∈ [0,1]) should pass through the (0,1) point. This

is because, if this failed to occur, then the value of the objective

function can be further improved by lifting the boundary. The

optimal solution for both cases is at the intersection point of

the two boundaries of the feasible region. Thus, it follows that

pt∗
0 + qt∗

0 = 1 for the OSSP, which implies pt∗
1 = qt∗

1 = 0. In

other words, the signaling procedure is turned off for the best

attacking type t∗ in the OSSP. Combining with what Theorem

1 indicates, when Ut∗
d,u > Pt∗ ·Et∗

τ ·Ct∗ , the signaling procedure

is off for all types. In LP (3), by substituting variables pt′
1 and

qt′
1 (for all t′) with 0, the SAG instance becomes an online

SSG (as shown in LP (2)). Thus, the two LPs share the same

solution, and the auditor will receive the same expected utility

in both auditing mechanism.

1

1
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q0
t*

p0
t*

p0
t* ⋅Ua,c

t* + q0
t* ⋅Ud ,c

t* = 0
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t* = 1

objective fn

(a) β≤ 0

1

1

0

q0
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p0
t*

p0
t* + q0

t* = 1

p0
t* ⋅Ua,c

t* + q0
t* ⋅Ud ,c

t* = β

objective fn

(b) β> 0

Fig. 4. Feasible regions (blue shaded triangle areas) and an objective function
gaining the largest value for β≤ 0 and β> 0.

This result indicates that if the incurred loss due to a warning

is too large, then an SAG will degrade into an online SSG,

where the signaling procedure is turned off. It suggests that in

the application domain, to ensure that the signaling is deployed

in a useful manner, organizations need to 1) refine the alert

system so that false positive alerts can be classified as normal

events, and 2) decrease the number of the events in which

normal users are scared away.

TABLE I
A SUMMARY OF THE DAILY STATISTICS PER ALERT TYPES.

ID Alert Type Description Mean Std
1 Same Last Name 196.57 17.30
2 Department Co-worker 29.02 5.56
3 Neighbor (≤ 0.5 miles) 140.46 23.23
4 Same Address 10.84 3.73
5 Last Name; Neighbor (≤ 0.5 miles) 25.43 4.51
6 Last Name; Same Address 15.14 4.10
7 Last Name; Same Address; Neighbor (≤ 0.5 miles) 43.27 6.45

V. MODEL EVALUATION

In this section, we evaluate the performance of the SAG

on the real EMR access logs from VUMC, which deployed

an unoptimized warning strategy. To illustrate the value of

signaling, we compare with multiple game theoretic alternative

methods in terms of the expected utility of the auditor.

Specifically, we investigate the robustness of the advantage

of SAGs under a range of different conditions. Now we first

describe the real dataset which is used for evaluation.

TABLE II
THE PAYOFF STRUCTURES FOR THE PRE-DEFINED ALERT TYPES.

Payoff Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

Ud,c 100 150 150 300 400 600 700
Ud,u −400 −500 −600 −800 −1000 −1500 −2000
Ua,c −2000 −2250 −2500 −2500 −3000 −5000 −6000
Ua,u 400 400 450 600 650 700 800

A. Dataset

The dataset consists of EMR access logs for 56 continuous

normal working days in 2017. We excluded all holidays (include

weekends) because they exhibit a different access pattern from

working days. The total number of unique accesses 〈Date,

Employee, Patient〉 is on the order of 10.75M. The mean and

standard deviation of daily unique accesses are approximately

192K and 8.97K , respectively. We focus on the following alerts

types: employee and patient: 1) share the same last name, 2)

work in the same department, 3) share the same residential

address, and 4) are neighbors within a distance less than 0.5
miles. When an access triggers multiple distinct types of alerts,

their combination is regarded as a new type. Table I lists the

set of predefined alert types, along with the mean and standard

deviation of their occurrence on a daily basis. We provide the

payoff structure for both the attacker and the auditor in Table II.

These values are estimates based on discussions with experts

working in the area.

B. Experimental Setup

The audit cycle is defined as one day from 0:00:00 to

23:59:59. From the dataset, we construct 15 groups, each of

which contains the alert logs of 41 continuous normal working

days as the historical data (for estimating the distributions of

future alerts in all types), and the alert logs of the 1 subsequent

day as the day for testing purpose. We set up a real time

environment for evaluating the performance in terms of the

auditor’s expected utility. We set the audit cost per alert to
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V t = 1,∀t ∈ {1, ..., |T|}. From the alert logs of three months, we

obtain the frequency at which users quit when they receive the

warning messages in our dataset. According to this observation,

in our experiments we set the probability of quitting as Pt =
0.186 in the SAG model for all types.

We compare the real time auditor’s expected utility for each

triggered alert between the OSSP (the optimal objective value

of LP (3)) and both the offline and online SSE (the optimal

objective value of LP (2)). The offline SSE corresponds to

the traditional method, which determines the auditing strategy

at the end of the auditing cycle. By contrast, the online SSG

determines the auditing strategy for each alert in real time,

which is equivalent to an SAG without signaling.

One significant challenge in comparing the OSSP with the

online SSE is that the real time budget consumption in the SAG

is determined by the sampling result of warning/no warning

and, thus is not deterministic. This leads to a situation where,

for the time series of alerts in each audit cycle, if there is

no intervention, then the online SSG and the SAG will move

independently with respect to the game status. As such, their

performance cannot be directly compared. To set up a well-

controlled environment for comparison, for each incoming alert

we focus on the online SSG with its game status be the same

as the current SAG instance. Recall that for the SAG, the

auditor needs to reserve a portion of the total auditing budget

for inspecting the repeated data requests at the end of each

audit cycle. Due to the fact that it is unnecessary for the online

SSG, we set the available budget at each incoming alert in the

online SSG to be equal to the sum of the available budget of

the SAG instance at the current time point, and the reserved

budget of the SAG for the additional inspection of the repeated

data requests. By doing so, it makes our comparison fair.

To investigate the robustness of the results over different

game conditions, we evaluate the performance by varying three

factors. First, we vary the loss value for the auditor with respect

to each quit of a normal user when receiving a warning message.

We set Ct = {−1,−5,−10}.6 Second, to deter the attacker who

quits until they receive no warning in the safe period for an

SAG (where pt∗
0 = 0 as shown in Theorem 4), we assess a

series of constant budgets, which we set to α= {1%,5%} of the

total available budget B. We do not consider this situation in

the baseline strategies because such loss does not apply. Third,

we vary the total auditing budget. Specifically, we consider

B = {30,50,70}. By setting B = 50, the available budgets for

the SAG at the very beginning time point of an audit cycle

are 49.5 for α= 1% and 47.5 for α= 5%, respectively.

Considering the fact that the estimated payoff structure may

not be perfect, we also test the robustness of the results

by varying the values in the given payoff structure. To

do so, we use Ua,c and Ud,c from the first type because

these variables are more challenging for domain experts to

articulate. We evaluate the performance by setting U1
a,c =

{−500,−1000,−1500,−2000,−2500,−3000,−3500} and fix-

6To the best of our knowledge, there is no perfect measure for this loss in
the EMR application domain.

ing the other variables to their values in Table II. We

set U1
d,c = {25,50,75,100,125,150,175} and run the same

evaluation as described above.

C. Results

We considered all 7 alert types described in Table I. Due to

space limitations, we only show the sequential results of 15

sequential testing days along the timeline in Figures 5(a)-5(o)

by applying B = 50,Ct =−1 for all types and α= 1%.

It is noteworthy that the type for each alert may not be

aligned with the optimal attacking type in the OSSP strategy.

Thus, to compare the approaches, we only apply the SAG on

alerts whose type is equal to the best attacking type in the

OSSP. For alerts whose types differ, we simply apply the online

SSE strategy and use its optimal coverage probability to update

the real time available budget. When applying SAGs, we first

optimize the signaling scheme, then randomly sample whether

to send a warning according to P(ξτ1). Next, we update (in real

time) the available budget based on the signal.

Figures 5(a)-5(o) illustrate the real time expected utility of

the auditor. It can be seen that the majority of alerts were

triggered between 8 : 00AM and 5 : 00PM, which generally

corresponds to the normal working hours of VUMC. After this

period, the rate of alerts slows down considerably. Note that

the trend for offline SSE is flat because, in this method, the

auditor’s expected utility is the same for each alert regardless

of when it is triggered.

There are several notable findings and implications. First, in

terms of the expected utility of the auditor, OSSP significantly

outperforms the offline SSE and the online SSE. This suggests

that the SAG increases auditing effectiveness. We believe that

this advantage is due to the optimized signaling mechanism,

which ensures the loss of the auditor is zero when sending

warning messages. Second, at the end of each testing day,

the auditor’s expected utility for each approach does not drop

below the online SSE. We believe that this is an artifact of the

knowledge rollback, which slows down the budget consumption

in this period. In particular, at the end of multiple testing days,

such as illustrated in Figures 5(a), 5(f), 5(g), 5(h), 5(j), 5(k)

and 5(o), the expected auditor loss approaches 0. Third, the

sequences of online SSE are close to the corresponding offline

SSE sequences. This indicates that the auditing procedure does

not benefit from determining only the coverage probability

for each of the alert types in real time. In other words, the

signaling mechanism in the SAG can assist the auditing tasks

in various environments. Moreover, the advantage of OSSP

over online SSE grows with the overall budget.

We expanded the investigation to consider various conditions

of the auditing tasks. We computed the mean (and standard

deviation7 of) differences between the OSSP and the corre-

sponding online SSE for each triggered alert across 15 testing

days by varying the total auditing budget, the loss of the

auditor on each quit of normal users, and the percentage of

7Note that the distributions are not necessarily Gaussian. The standard
deviations are largely dominated by the ending periods of testing days, where
the expected utility of the auditor in the OSSP is usually close to 0.
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(a) Day 1 (b) Day 2 (c) Day 3 (d) Day 4 (e) Day 5

(f) Day 6 (g) Day 7 (h) Day 8 (i) Day 9 (j) Day 10

(k) Day 11 (l) Day 12 (m) Day 13 (n) Day 14 (o) Day 15

Fig. 5. The auditor’s expected utility in the OSSP and alternative equilibria for the 7 alert types with a total budget of B = 50. We applied α= 1% and Ct =−1
for the OSSP.

TABLE III
THE ADVANTAGES OF OSSP OVER ONLINE SSE IN TERMS OF THE MEAN (AND THE STANDARD DEVIATION) OF THE DIFFERENCES IN THE AUDITOR’S

EXPECTED UTILITY (15 TESTING DAYS).

B Ct =−1 Ct =−5 Ct =−10

α= 1% α= 5% α= 1% α= 5% α= 1% α= 5%

30 60.87±28.31 15.99% 47.01±32.17 12.45% 40.43±23.95 10.59% 29.89±28.77 7.92% 26.91±25.77 7.06% 10.94±24.93 2.90%
50 165.83±24.49 47.26% 147.51±27.74 42.65% 143.19±33.98 40.87% 117.52±34.56 34.20% 127.31±37.55 36.23% 106.21±38.85 31.21%
70 252.57±20.44 77.31% 235.14±23.57 72.87% 227.59±33.10 69.31% 204.33±36.77 63.63% 225.35±37.58 68.73% 198.69±40.93 61.89%

TABLE IV
THE ADVANTAGES OF OSSP OVER ONLINE SSE IN TERMS OF THE MEAN

(AND THE STANDARD DEVIATION) OF THE DIFFERENCES IN THE AUDITOR’S

EXPECTED UTILITY. ASTERISKS INDICATE THE ORIGINAL VALUES WE USED

IN THE EVALUATIONS ABOVE.

U1
a,c −500 −1000 −1500 −2000∗ −2500 −3000 −3500

MEAN 67.89 120.28 148.29 167.64 180.67 184.99 194.54
STD 27.89 31.98 27.51 26.20 25.68 36.34 39.93

U1
d,c 25 50 75 100∗ 125 150 175

MEAN 173.71 169.30 166.93 165.20 163.65 160.19 158.13
STD 26.33 25.32 25.58 24.92 23.93 24.61 23.36

the budget for inspecting anomalous repeated requests. The

results are shown in Table III, where we also indicate the

percentage of the averaged improvement in each setting. Here,

this value is defined as the absolute improvement on the

expected utility of the auditor divided by the optimal auditor’s

expected utility in the online SSE. From the results, we have the

following significant observations. First, it is notable that OSSP

consistently outperforms the online SSE with respect to the

auditor’s expected utility in a variety of auditing settings. For

example, in the setting that Ct =−1 for all t and α= 1%, as B
grows from 30 to 70, the auditor’s expected utility improvement

grows from 16% to 77%. This is a trend that holds true for

other settings as well. Second, by fixing B and Ct for all

t, the auditor’s expected utility decreases when we reserve

more budget to investigate the repeated requests by single user.

Yet, this is not unexpected because this approach reduces the

amount of consumable auditing resources. Third, by increasing

the cost of deterring a single normal data request, we also

weaken the advantages of OSSP over the online SSE (when B
and α are held constant).

We then investigated the robustness of the advantage of

OSSP over online SSE by varying U1
a,c and U1

d,c. We computed

the mean (and standard deviation of) differences between the

OSSP and the corresponding online SSE across all testing days.

Here, we applied B = 50,Ct = −1 for all types and α = 1%.

As can be seen in Table IV, OSSP maintains its advantage

for a wide range of U1
a,c and U1

d,c. The advantage of OSSP is

inversely proportional with U1
a,c and directly proportional with

U1
d,c. Thus, even if the estimates of the payoff structure are

imperfect, the SAG still outperforms baseline methods.

Next, we considered how the probability of being scared

away for normal users (i.e., Pt) influences the auditor’s ex-

pected utility. Recall that, in the experiments reported on so far,

we adopted Pt = 0.186, an estimate based on an environment

that relied upon an unoptimized signaling procedure. However,
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TABLE V
THE MEAN AND STANDARD DEVIATION OF AUDITOR’S EXPECTED UTILITY

AT OSSP AS A FUNCTION OF Pt (15 TESTING DAYS).

Ct
Pt for all t

×1.0 ×0.5 ×0.1

−1 −185.54±29.85 −179.92±32.71 −175.47±32.97
−5 −208.60±41.91 −201.34±33.92 −180.85±32.75

this value can change in practice for several reasons. First,

an optimized signaling scheme will likely influence users’

access patterns, such as the frequency of triggering alerts, as

well as how users respond to a signaling mechanism. Second,

the probability Pt can decrease, if an organization effectively

performs policy training with its employees, such that normal

users may be less likely to be scared away if they receive a

warning message when requesting access to a patient’s record.

Table V shows the expected utility of the auditor at OSSP

by varying the input of Pt in the setting of B = 50. We

apply three values of Pt by reducing the original value to its

100%,50% and 10%. It can be seen that the auditor’s expected

utility under OSSP improves as Pt reduces. When holding

Ct constant, a t-test reveals that each pair of performances is

statistically significantly different with p < 10−6. This indicates

that reducing the frequency of quitting for normal users reduces

the usability costs and, thus, improves the auditing efficiency.

In addition, we tested the average running time for optimizing

the SAG on a single alert across all the testing days. Using

a laptop running Mac OS, an Intel i7 @ 3.1GHz, and 16GB

of memory, we observed that the SAG could be solved in

0.06 seconds on average. As a consequence, it is unlikely that

system users would unlikely perceive the extra processing time

associated with optimizing the SAG in practice.

VI. RELATED WORK

There have been a number of investigations into effective

alert management strategies and efficient auditing mechanisms

for database systems. In this section, we review the game-

theoretic developments that are related to our investigation.

Blocki et al. first modeled the audit problem between an

auditor and an auditee as a classic security game. In this setting,

players act strategically and the goal is to learn an optimal

resource allocation strategy that optimizes the expected payoff

of the auditor [23]. To simulate the real audit environment,

Blocki et al. generalized the framework by accounting for the

situations with multiple defender resources [24]. However, their

methods treat alerts as a set of existing targets that could be

attacked, a modeling decision that cannot be readily generalized

into the database audit setting. To solve this challenge, Yan et
al. introduced a game theoretic audit approach to 1) prioritize

the order in which types of alerts are investigated and 2)

provide an upper bound on how much resource to allocate for

auditing each type [25], [26], [32]. Schlenker et al. introduced

an approach dealing with how to assign alerts to security

analysts was proposed, where each analyst has different areas

of expertise [33]. However, all of these investigations adopted

a classic security game framework, which, as our experiments

show, hinder the efficacy of the system.

It has been shown that the integration of a signaling

mechanism into adversarial settings can improve protection. In

particular, Xu et al. proposed a two-stage security game model

to protect targets with a better performance. In the first stage,

the defender allocates inspection resources and the attacker

selects a target. In the second stage, the defender reveals

information, potentially deterring the attacker’s attack plan

of attack [27]. The advantages of signaling were subsequently

extended to Bayesian Stackelberg games, where players have

payoff-relevant private information [30]. It has been shown

that signaling also boosts defensive performance in security

games, specifically for the task of assigning randomized

human patrollers and sensors to protect important targets [34].

However, these investigations aimed to protect existing physical

targets as well. The methodology does not easily fit into the

auditing environment, where the timing of budget assignment

and signaling are reversed.

VII. DISCUSSION

In this paper, we integrated signaling into auditing frame-

works. We strategically warn the attacker in real time and

then realize the audit strategy at the end of the audit cycle

with an offline mode. In particular, we formalized the usability

cost in our approach to model the real-world audit scenario.

We further illustrated that such a defensive strategy improves

the performance of defenders over existing game theoretic

alternatives using real EMR auditing data. Our framework is

generalizable to more powerful attackers because as long as

the adversarial behavior can be represented by pattern(s), it

will fit into our model. As such, our audit model is applicable

to any capability of the attacker.

There are several limitations we wish to highlight as

opportunities for future investigations. First, in this paper we

assumed that the attacker has a fixed payoff structure in each

audit cycle; however, in practice, there may exist many types

of attackers who can receive different utility on the same target.

As a next step, we believe that the SAG can be extended for

a Bayesian setting where the payoff structure of the attacker

varies according to types. Second, in this paper we focused

on a single-attacker scenario. However, our model can handle

the multi-attacker scenario in which the attackers share the

same payoff structure and act independently. In this case, the

optimal strategy of the auditor for each alert is the same as in

the single-attacker scenario. Moreover, it has been shown that

solving problems that involve multiple types of attackers or

collusion among them is NP-hard even if we do not consider

signaling [35]. Third, in this paper, we assumed that the attacker

is perfectly rational. This is a strong assumption and may lead

to an unexpected loss in practice. Thus, a more robust version

of the SAG will be needed for wide deployment. Fourth, in

this study we simplify modeling the dependence between alerts

and assume that they are triggered independently. However,

this may not be the case all the time in practice and attacks

may evolve. Fifth, the scalability of solving the SAG, with
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respect to the number of alert types, needs more investigation

in future.

VIII. CONCLUSION

Alert-based auditing is often deployed in database systems to

address a variety of attacks to the data resources being stored

and processed. However, the volume of alerts is often beyond

the capability of administrators, thus limits the effectiveness of

auditing. Our research illustrates that strategically incorporating

signaling mechanisms into the data request workflow can

significantly improve the auditing work. We investigated the

features, as well as, the value of a game theoretic Signaling

Audit Game, along with an Online Stackelberg Signaling Policy

to solve the game. While we demonstrated the feasibility of this

approach with the audit logs of an electronic medical record

system at a large academic medical center, the approach is

sufficiently generalized to support auditing in a wide range of

environments. Though our investigation illustrates the merits

of this approach, there are certain limitations that provide

opportunities for extension and hardening of the framework

for real world deployment.
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