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Abstract—Routine operational use of sensitive data is often
governed by law and regulation. For instance, in the medical
domain, there are various statues at the state and federal level
that dictate who is permitted to work with patients’ records and
under what conditions. To screen for potential privacy breaches,
logging systems are usually deployed to trigger alerts whenever
a suspicious access is detected. However, such mechanisms are
often inefficient because 1) the vast majority of triggered alerts
are false positives, 2) small budgets make it unlikely that a real
attack will be detected, and 3) attackers can behave strategically,
such that traditional auditing mechanisms cannot easily catch
them. To improve efficiency, information systems may invoke
signaling, so that whenever a suspicious access request occurs,
the system can, in real time, warn the user that the access may
be audited. Then, at the close of a finite period, a selected subset
of suspicious accesses are audited. This gives rise to an online
problem in which one needs to determine 1) whether a warning
should be triggered and 2) the likelihood that the data request
event will be audited. In this paper, we formalize this auditing
problem as a Signaling Audit Game (SAG), in which we model the
interactions between an auditor and an attacker in the context
of signaling and the usability cost is represented as a factor of
the auditor’s payoff. We study the properties of its Stackelberg
equilibria and develop a scalable approach to compute its solution.
We show that a strategic presentation of warnings adds value in
that SAGs realize significantly higher utility for the auditor than
systems without signaling. We perform a series of experiments
with 10 million real access events, containing over 26K alerts,
from a large academic medical center to illustrate the value of
the proposed auditing model and the consistency of its advantages
over existing baseline methods.

Index Terms—database auditing, privacy, signaling, Stackel-
burg game

I. INTRODUCTION

Our society now collects, stores, and processes personal and
intimate data with ever-finer detail, documenting our activities
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and innovations in a wide range of domains, ranging from
health to finance [1], [2]. Due to the potential value of such
data, their management systems face non-trivial challenges
to personal privacy and organizational secrecy. The sensitive
nature of the data stored in such systems attracts malicious
attackers who can gain value by disrupting them in various
ways (e.g., stealing sensitive information, commandeering
computational resources, committing financial fraud, and simply
shutting the system down) [3], [4]. Reports in the popular
media indicate that the severity and frequency of attack events
continues to grow. Notably, the recent breach at Equifax led to
the exposure of data on 143 million Americans, including credit
card numbers, Social Security numbers, and other information
that could be used for identity theft or other illicit purposes
[5]. Even more of a concern is that the exploit of the system
continued for at least two months before it was discovered.
To defend against attack, modern database systems are often
armed with an alerting capability to detect and notify about
potential risks incurred during daily use [6]—[8]. This entails the
logging of access events, which can be thought of as a collection
of rules, each of which defines a semantic type of a potentially
malicious situation [9], [10]. In mission-critical systems, the
access requests of authenticated users are often granted to
ensure continuity of workflow and operations, such that
notification about potential misuse is provided to administrators
who perform retrospective audit investigations [11]-[14]. For
instance, many healthcare organizations (HCOs) rely on alert,
as well auditing, mechanisms to monitor anomalous accesses
to electronic medical records (EMRs) by employees who may
violate policy and breach the privacy of certain patients [15].
Similarly, the providers of online services, such as financial
institutions and social media platforms, often use alerts and
audits to defend against attacks, such as financial fraud and
compromises to computational resources [16]. Though audits
do not directly prevent attacks in their own right, they allow
for the discovery of breaches that can be followed up on before
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they escalate to full blown exploits by attackers.

However, there are challenges to instituting robust auditing
schemes in practice. First, the volume of triggered alerts is
typically far greater than the auditing capacity of an organiza-
tion [17]. Second, in practice, the majority of triggered alerts
correspond to false positives, which stem from an organization’s
inability to define and recognize complex dynamic workflows.
Third, to mitigate the risk of being caught, attackers prefer to
act strategically, such as carefully choosing the way (or target)
to attack. And last, but not least, in the retrospective audit
setting, attacks are not discovered until they are investigated.

In essence, this is a resource allocation problem in an
adversarial environment for which the Stackelberg security
game (SSG) is a natural choice to apply for modeling purposes
[18]-[20]. In this model, the defender first commits to a budget
allocation policy and, subsequently, the atfacker responds
with the optimal attack based on the defender’s strategy. This
model has enabled the design and deployment of solutions to
various security problems in practice, such as ARMOR (which
was adopted by the LAPD to randomize checkpoints on the
roadways at Los Angeles International Airport) [21] and IRIS
(which was adopted by the US Federal Air Marshal Service
to schedule air marshals on international flights) [22]. The
audit game is a variation of the SSG designed to discover
an efficient audit strategy [23]-[26]. With respect to strategic
auditing, most research has focused on deriving a defense
strategy by solving, or approximating, the Strong Stackelberg
Equilibrium (SSE). Unfortunately, it was recently shown that
merely applying the SSE strategy may have limited efficacy
in some security settings [27]. This can be addressed by
strategically revealing information to the attacker [27], [28], a
mechanism referred to as signaling (or persuasion [29], [30]).
In this setting, the goal is to set up a signaling scheme to reveal
noisy information to the attacker and, by doing so, influence
the attacker’s decision with respect to outcomes that favors
the defender. However, all approaches derived to date rely on
allocating resources before signaling, such that it serves as a
source of informational advantages for deceiving the attacker.
Yet, in the audit setting, the decision sequence is reversed,
such that the signal is revealed (e.g., via a warning screen) at
the time of an access request, whereas the audit occurs after
a certain period of time. This poses new challenges for the
design of signaling schemes.

Many organizations have recognized and adopted signaling
mechanisms to protect sensitive data. For example, in 2018,
Vanderbilt University Medical Center (VUMC) announced a
new break-the-glass policy to protect the privacy of patients
with a person of interest (or VIP) designation, such as
celebrities or public figures.! Under this policy, access to the
EMRs of these individuals triggers a pop-up warning that
requires the user to provide a justification for the access. Once
the warning has been served, the user can decide whether or
not to proceed to access, knowing that each access is logged
for potential auditing. However, such a policy is implemented
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in a post hoc manner that does not optimize when to signal
nor when to audit.

In this paper, we introduce the notion of a Signaling Audit
Game (SAG), which applies signaling to alert and auditing.
We leverage the time gap between the access request made by
the (potential) attacker and the actual execution of the attack
to insert the signaling mechanism. When an alert is triggered
by a suspicious access request, the system can, in real time,
send a warning to the requestor. At this point, the attacker
has an opportunity to re-evaluate his/her utility and make a
decision about whether or not to continue with an attack. In
contrast to previous models, which are all computed offline,
the SAG optimizes both the warning strategy and the audit
decision in real time for each incoming alert. Importantly, we
consider the usability cost into the SAG where the normal data
requestors may be scared away by the warning messages in
practice. This may lead to descent in operational efficiency of
organizations which deploy SAGs. To illustrate the performance
of the SAG, in this paper we evaluate the expected utility of
the auditor with a dataset of over 10 million real VUMC
EMR accesses and predefined alert types. The results of a
comprehensive comparison, which is performed over a range
of conditions, indicate that the SAG consistently outperforms
state-of-the-art game theoretic alternatives that lack signaling
by achieving higher overall utility while inducing nominal
increases in computational burden.

The remainder of this paper is organized as follows. We
first propose the SAG and introduce how it is played in the
audit setting. Next, we analyze the theoretical properties of
the SAG equilibria. The dataset, experiments, and results are
then described in the evaluation section. Finally, we review
representative related research in the database auditing domain,
with a focus on methodology in the adversarial setting.

II. ONLINE SIGNALING IN AUDIT GAMES

In this section, we describe the SAG model in the general
context of information services. For illustrative purposes, we
use healthcare auditing as a running example.

A. Motivating Domain

To provide efficient healthcare service, HCOs typically store
and process each patient’s clinical, demographic, and financial
information in an EMR system. EMR users, such as physicians
and other clinical staff, need to access patients’ EMRs when
providing healthcare services. The routine workflow can be
summarized as three steps: 1) a user initiates a search for a
patient’s EMR by name and date of birth, then the system
returns a list of patients (often based on a fuzzy matching)
along with their demographic information, 2) from the list, this
user requests access to a patient’s record, and 3) the system
returns the requested record. Due to the complex, dynamic
and time-sensitive nature of healthcare, HCOs typically grant
employees broad access privileges, which unfortunately creates
an opportunity for malicious insiders to exploit patients’ EMRs
[31].
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To deter malicious access, breach detection tools are
commonly deployed to trigger alerts in real time for the
administrator whenever suspicious events occur. Alerts are often
marked with predefined types of potential violations which help
streamline inspection. Notable alert types include accessing the
EMR of co-workers, neighbors, family members, and VIPs [15].
Subsequently, a subset of the alerts are retrospectively audited
at the end of each audit cycle, and the auditor determines
which constitute an actual policy violation.

B. Signaling Audit Games

Here, we formalize the Signaling Auditing Game (SAG)
model. An SAG is played between an auditor and an attacker
within a predefined audit cycle (e.g., one day). This game
is sequential such that alerts arrive one at a time. For each
alert, the auditor needs to make two decisions in real time: first,
which signal to send (e.g., to warn the user/attacker or not), and
second, whether to audit the alert. Formally, let X7 denote the
event that alert 7 will be audited, and X denote that it is not
audited. Following the convention of notations, the subscripts
¢ and u stand for covered and uncovered, respectively. We
further let {7 denote the event that a warning signal is sent
for alert 7, while 56 denotes the event that no warning is sent
(i.e. a “silent signal”). The warning ¢7 is delivered privately
through a dialog box on the requestor’s screen, which might
communicate “Your access may be investigated. Would you
like to proceed?”. X{,X,¢7,¢] are random variables whose
probabilities are to be designated.

We assume that there is a finite set of alert types 7" and, for
each t € T, all alerts are considered equivalent for our purposes
(i.e., attacks triggering alerts of type ¢ all result in the same
damages to the system). The auditor has an auditing budget
B that limits the number of alerts that can be audited at the
end of the cycle. For each alert type ¢, let V! denote the cost
(or time needed) to audit an alert of type t. Thus, if 8¢ is the
probability of auditing alerts of type ¢ and d? is the number of
such alerts, the budget constraint implies that ¥ ,0°-V!d! < B.

Since the setting is online, an optimal policy for the auditor
must consider all possible histories of alerts, including the
correlation between alerts. Given that this is impractical,
we simplify the scheme so that 1) each alert is viewed
independently of alerts that precede it and 2) future alerts
are considered with respect to their average relative frequency.
Specifically, we assume that each attack effectively selects an
alert type t, but do not need to consider the timing of attacks.
Rather, we treat each alert as potentially adversarial. This
implicitly assumes that an attack (e.g., a physician’s access to
the EMR of a patient they do not treat) triggers a single alert.
However, this is without loss of generality, since we can define
alert types that capture all realistic multi-alert combinations.

Now, we define the payoffs to the auditor and attacker. For
convenience, we refer to the alert corresponding to an attack
as the victim alert. If the auditor fails to audit a victim alert of
type t, the auditor and the attacker will receive utility Ué , and
Ut’u, respectively. On the other hand, if the auditor audits a

a
victim alert of type ¢, the auditor and the attacker will receive
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utility Uctz,c and U], respectively. Here, the subscripts d and
a stand for defender and attacker, respectively. Naturally, we
assume Uy , <0<Ug, and Uj  20>Uj

Figure 1 demonstrates the key interactions of both players
along the timeline. Each yellow block within the audit cycle
represents a triggered alert and the corresponding interactions
with it. The auditor continues to update the real time probability
of auditing any alert (may or may not be triggered) with respect
to the alert type and the time point 7. In other words, the auditor
commits in real time to the auditing and signaling strategy.
In this case, the auditor always moves first, as shown at the
beginning of the lower timeline.

Audit cycle begins
k2

— 5 =&

Audit cycle ends
- " Time

S—

Randomly choose
T alerts to audit
Proceed {0~

Trigger an alert .
28 ¢ attack or quit
AJ

AJ
i
Access request
over a target

i
Commit to a
mixed strategy

Sending a
signal

Update available
budget

Fig. 1. The auditor and attacker actions are shown in blue and red, respectively.

A warning signaling scheme, captured by the joint probability
distribution of signaling and auditing, can be fully specified
through four variables for each 7:

P¢LX)=p], PELX)=4q],
P, XD =py, PELXL) =qq.

Upon receiving the signal, the attacker reacts as follows:

e))

- After £]: the system presents two choices to the attacker:
“Proceed” to access the requested record or quit.

« After {j: the attacker automatically proceeds to access the
requested record (since the attacker receives no warning).

For convenience, when possible we omit the superscript t
when the alert we are dealing with, is readily apparent from
the context.

Figure 2 illustrates the temporal sequence of decisions in the
SAG. Each edge in the figure is marked with its corresponding
joint probability of a sequence of decisions up to and including
that edge. Note that the two gray nodes are not extended
because they do not lead to any subsequent event.> Further,

Access request

Triggers an alert

Attack?

Warning? Audit?

Fig. 2. The decision tree of the auditor and an arbitrary user, the actions for
which are shown in blue and red, respectively.

observe that, p1+q1+po+qo =1, and the overall probability
of auditing this alert is P(X.) = P(X,&1)+P(X,&0) = p1+po.

2The upper gray node corresponds to the case when an access request is
abandoned. The lower one represents an impossible case because the user
automatically gets the requested record.
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Conditional on the warning signal {7, the probability of auditing
this alert is thus P(X.|¢1) = p1/(p1+q1).

Since the auditor has a fixed auditing budget, she will need
to update the remaining budget after determining the signal-
conditional audit probability for the current alert. We use B;
to denote the remaining budget before receiving alert 7. Let
¢t denote the type of alert T and 7+ 1 denote the next alert.
After the signaling scheme for 7 is executed, the auditor then
updates B, for the use of the next alert 7+ 1 as follows:

o If &7 is sampled: B;1 =B, - pi/(p]+4q7)- V"

o If £ is sampled: B;+1=B; —py/(pg+ q(T))-Vt.
Additionally, we always ensure that B; = 0. The key challenge
in our model is to compute the optimal p7,q7,pg,q for each
alert T online by accounting for the remaining budget and the
estimate number of future alerts. This needs to be performed
to ensure that the auditor does not spend the budget at a rate
that is excessively fast or slow.

Without signaling, our audit game can be solved offline, at
the end of the audit cycle. This situation can be captured by
a Stackelberg security game by viewing alerts as targets. The
optimal auditing probabilities can then be determined offline by
computing the SSE of this game. However, as our experiments
show, this simplified strategy (which we refer to as offfine SSE)
performs substantially worse than our online approach.

The SAG can be viewed as a variation on the Stackelberg
game, where it includes signaling and makes decisions about
auditing online upon the arrival of each alert. The premise be-
hind our solution is therefore a Strong Stackelberg equilibrium
of the SAG, in which the auditor commits to a randomized joint
signaling and auditing decision, and the associated probability
distribution is observed by the attacker, who then decides
first upon the alert type to use, and subsequently whether to
proceed after a warning. We will seek the optimal randomized
commitment strategy for the auditor in this game.

The SAG model contains two crucial differences from prior
investigations into signaling for security games. The first is
that the signaling scheme for each alert in an SAG must be
optimized sequentially in real time. By contrast, previous
models, such as [27], decide the signaling schemes for all
targets simultaneously in an offline fashion. The second is in
how private information is leveraged. In previous models, the
defender utilizes the informational advantage that the defender
currently has (e.g., knowledge about the realized protection
status of the target) to deceive the attacker. However, in our
scenario, the auditor first decides the signaling scheme, by
when he/she has an equal amount of information as the attacker
(which includes the status of the current environment), and
then exercises her informational advantage affer the audit cycle
ends (by deciding which to audit).

III. OPTIMIZING SAGS

In this section, we design an algorithm for solving SAGs.
For presentation purpose, we fix the alert 7 to a particular
type t and, thus, the superscript will, at times, be omitted for
notational convenience. We begin by considering the problem
of computing the real time SSE of the game without signaling
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that transpires for a given observed alert 7. This game, as well
as its solution, serve as a baseline of the optimized SAGs.

A. Online SSG

Consider the arrival of an alert 7. Let d’ be the number
of future alerts of type ¢ € T after alert 7 is triggered.> We
assume that d% follows a Poisson distribution D%, which is
widely adopted to characterize the number of arrivals. We can
compute the SSE strategy using a multiple linear programming
(LP) approach for budget B;. In this approach, for each alert
type ¢, we assume that ¢ is the attacker’s best response, and
then compute the optimal auditing strategy. Finally, we choose
the best solution (in terms of the auditor’s utility) among all
of the LPs as the SSE strategy.

Now, let 67 () be the probability of auditing an alert of type
¢’ when the attacker’s best response is ¢. In addition to this
optimal auditing policy, we design how we plan to split the
remaining budget B; among all alert types. We assume that the
audit distribution will remain constant for future alerts, which
allows us to consider the long-term impact of our decision
about auditing. We represent the budget that we allocate for
inspecting alerts of each type as a vector B; = {B},B2, ...,B',Tl}
that the long-term budget allocation decision is constrained
by the remaining audit budget: ZE'IBi < B;. Now, assuming
type ¢t is the best response, the following LP returns optimal
auditing strategy:

maxg, 0°(t)-U, +(1-0'®)-US,
s.t.
vt', 04U, +(1-6')-UL,
20%(t)- UL, +1-0"#)-UL,,
’ Bé’
v, 9””=[Ed;'~na’(w—d¢)’

ITI pt
¥/ B! <B,,

ve/, B! €[0,B,],

where the first constraint ensures that ¢ is the attacker’s best
response. After solving |T'| instances of LP (2), the best solution
for the auditor will henceforth be referred to as the online SSE
strategy (or simply, the SSE), Ossg-

B. Optimal Signaling

We now describe how to build a signaling mechanism into
the audit game and then compute the optimal signaling scheme,
as well as the budget allocation strategy.

From the perspective of the attacker, whether to proceed or
quit after receiving a warning signal depends on his conditional
expected utility:

pi

ps

a4

pi+q

t
a,c

t
a,u’

! (utilléy) = =
1

-
1
We impose the constraint [Efl(utillfl) < 0 such that the at-
tacker’s best response to ¢; is to quit, in which case both

3The vast majority of alerts are false positives. Consequently, we can
estimate d% from alert logs in previous audit cycles.
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players will receive O utility. We do not enforce constraints for
¢o because the potential attacker does not have any option but
to proceed. In this case, the expected utility of the auditor is

¢ ¢
Po gt w90 ot
t d,c t t du’
99

Efy(util|éo) =
0 Pyt

0

Overall, the expected utility for the attacker can be computed
as

EL (util) = (ph + qb) - Ey(utill&o) = pb - UL . + gl - UL .
Accordingly, the auditor’s expected utility is
Ey(util) = (pg+qq)-Ey(utilléo) = po-Uy ,+ 44Uy -

However, a side effect is that, the warnings sent by the
auditor (e.g., the pop-up warning screen off of break-the-glass
strategy deployed by VUMC) may pose an additional utility

loss to the auditor in practice, which we call usability cost.

This is because when normal users request access to sensitive
data and receive a warning message, they may walk away
by choosing quit instead of ‘“Proceed”, which induces a loss
in operational efficiency for the organization. For each type
t', we set this loss to be proportional to the product of the
probability of sending warnings ptI’ + qtll, the probability of
being deterred P? and the expectation of the number of future
false positive alerts to the end of the current audit cycle Ei/. The

loss incurred for each quit by a normal user is set to be Cy(< 0).

Then, the expected utility of the auditor can be updated as
E,(util) = ply-UY +qb-UY  +X) (0% +4%)-PY-EY-Cy.

The optimal 51gnahng scheme (or more concretely, joint
signaling and audit probabilities) can be computed through the
following set of LPs:

T
pmpft}%ﬁn,&po Udc+q0 Uélu+ El(p1 +q1) .pt' Et -Cy
s.t.

Ve, phUL.+qh-UL,zph Ul +q5-UL,,
v, pi UL +q! UL, <0,
;
vt ptll+pg:[Edir~D§/ (%),
v, plepleql+al=1
B! <B;,
tell,...,| T
ve, B! €[0,B,],
Vt', pg,qg,ptll,qtl/(—:[o,l],

(©)
where we assume type ¢ is the best one for the attacker to
potentially exploit. Note that, in the objective function, the
incurred additional loss is an accumulated value that considers
the amount of time remaining in the period for the current
audit cycle. The likelihood of sending warning signal in the
current time point is a real time estimation of future warnings.
Due to the fact that attacks are extremely rare in practice
in comparison to the magnitude of alerts, in solving LP (3)
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we use the expected number of future alerts [E Dt’(d ) to

approximate E- . ! Asa result, E at' Dtr(dt ) can then be estimated
from historical data collected in previous audit cycles. Our
goal is thus to find the optimal signaling scheme for all types,
and simultaneously, the best budget allocation strategy. We use
Po, P1, 9o and g to denote the warning signaling scheme
for all types, namely, the set {ngVt’}, {ptI’IVt/}, {qf)lIVt’} and
{qtl/ |V#'}, respectively.

The first constraint in LP (3) ensures that attacking type ¢ is
the best response strategy for the attacker. The second constraint
indicates that the attacker, when receiving a warning signal,
will quit attacking any type. We refer to the optimal solution
among the |T'| instances of LP (3) as the Online Stackelberg
Signaling Policy (OSSP). In particular, we use Bs5p to denote
the vector of coverage probability at OSSP.

After building the theoretical model of the SAG, we need
to pay attention to one important situation in practice, where
an attacker can leverage to perform attacks with lower level
risks of being captured.

C. The Ending Period of Audit Cycles

Recall that in SAGs, the estimation of the number of alerts
in the rest of the current audit cycle, which is [Edg ~D§(d$)’ is
calculated based on the alert logs of historical audit cycles.
At the ending period of audit cycles, such estimation keeps
decreasing for each type. As a consequence, it would be ill-
advised to apply any approach that performs an estimation on
the arrivals without an additional process to handle the ending
period of an audit cycle. Imagine, for instance, an attacker
who only attacks at the very end of an audit cycle. Then, the
knowledge from historical data is likely to indicate that no
alerts will be realized in the future. And it follows that such
attacks will not be covered because the available budget will
have been exhausted according to the historical information.

To practically mitigate this problem, when the mean of
arrivals in the historical data drops under a certain thresh-
old, we apply the estimate of the number of future alerts
Eqt ~D! (d _y) in the time point when the last alert was
trlggered as a proxy of the real one at the current time point.
This technique is called knowledge rollback. By doing so,
the consumption of the available budget in real time will be
slowed down because of the application of a smaller coverage
probability. As a consequence, the attacker attempting to attack
late is not afforded an obvious extra benefit.

IV. THEORETICAL PROPERTIES OF SAGS

In this section, we theoretically analyze the properties of the
OSSP solution (equivalently, of the SAG equilibrium). Our first
result highlights a notable property of the optimal signaling
scheme. Specifically, the optimal signaling scheme will only
trigger warning signals for the best attacking type, i.e., the type
at which attacker utility is maximized. As such, the rational
attacker will choose to attack this alert type.
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Theorem 1. If alert 7. of type t. is the best response strategy
for the attacker, then p'f1 =q% =0 in the OSSP for VYt #t,.*

Proof. Let Sol = {p},p%,q%,q'}ser be any optimal solution
and ¢, is the best type. We show that the following newly
defined variables will not decrease the objective value of Sol
and thus, by assumptron is still optimal. Let p pf)*, ﬁtl* =
pl*,cjg* qO*,qf)* = q0 be the same as in Sol, however for
any t # t,, define p0 p0+p1,q0 q0+q1 and p1
First, we argue that these newly defined variables are still
feasible. All of the constraints can easily be verified in LP (3)
except the first two sets. The second set of constraints is still
satisfied for any ¢ # ¢. (where our variables changed) since
P4 =g} =0. The first set of constraints are satisfied for any
t#ty because
ph-UL.+q5-UL, c+@o+95) U
Ut

a,u

(ph+p%)- UL
t* 'Ut +q0

—t* t Py i
Uget+dy U

where the (only) inequality is due to p%-Uf .+q}-U. ,<0asa
constraint of LP (3) and the two equations are by our definition
of the new variables. This proves that the first constraint is
also feasible.

It remains to show that the newly defined variables do not
decrease the objective function. This follows simply because
the term with respect to type ¢, in the objective function does
not change and all the other terms become zero in the newly
defined variables, which is no less than the original cost. This
proves the theorem. O

Theorem 1 leads to the following corollary: when the attacker
avoids attacking certain type(s) at any time point (this is always
the case in OSSP), then the best strategy for the auditor is to
turn off the signaling procedure for those types for less loss
incurred by sending warnings. Now we show that, at any given
game status, the marginal coverage probability for OSSP is
the same as the one for the online SSE.

Theorem 2. Let GOSSP be the marginal coverage probability
in the OSSP at any given game status and BgSE be the
corresponding marginal coverage probability in the online

SSE. Then, in a SAG, for each type teT, 6! GfS’SE

0ssp

Proof. Given any game state, the auditor has an estimate about
the sets of future alerts. We prove that for any fixed set of
alerts, Hf,ssp SSE holds for each type t € T. As a result, in
expectation over the probabilistic estimate, this still holds.
Fixing a set of alerts, the auditor’s decision is a standard
Stackelberg game. We first claim that by fixing the auditing
strategy in the OSSP, the attacker can receive ES°°P by
triggering any alert 7, thus type ¢. In other words, V¢ #
tu,Ea(Ohss,) = Eg™™P. Assume, for the sake of contradiction,
that an alert 7’ of type ¢ with positive coverage probability

is not the best response of the attacker in an SAG. Then, the

4We will use  to denote strategies or quantities in the OSSP in the rest of
the paper.

0,44 =0.
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auditor can redistribute a certain amount of the protection
resources from 7’ to the alerts of the attacker’s best-response
type and guarantee that it is still the best-response type. This
increases the coverage probability of these alerts and, thus,
increases the auditor’s utility, which contradicts the optimality
of OSSP. This implies that the first constraint in LP (3) is
tight in the OSSP. Similarly, this holds true for the online SSE.
Notice that E,(6?) is a strictly decreasing function of 6 for
both OSSP and online SSE.

Next, we prove that F$%¢ = Fg*°P implies Qossp O0%gp for
all 7, thus ¢, as desired. This is because Oossp > HfgSE(z 0)

implies Eq™ = Eq(0)s,) < Ea(0%¢5) = E5* (a contradiction)
and 0}, < 0%, implies Eg™" = E,(0},,) > Eo(05 ) = E5

(again, a contradlctron) As a result, it must be the case that
t
Ossr = ossp for all 7, and thuistS as desired.
We now show that E$%¢ = E;**” must hold true. Assume,
for the sake of contradiction, that E$*¢ > Eg *”. Then for any
t ¢ t
9§SE >0, it must bgstsl;at Opssp > 0ggp- This is becz:uese Oossp =
BSSE implies that E," = E, (Hossp) >F, (6 SE) =E3%¢, which is
a contradiction. On the other hand, for any 6¢ ., > 0 HS ke
¢
Gsse must be true, btecause (())sjpg"“p < HSSE 1mplres that
E5%¢ =, (HSSE) S Ea(Opgsp) = which is a contradlctlon.
As a result, it must be the case that cither Ogp = 0bssp =0
or Hf,ssp 0 g for any 7, thus ¢. Yet this contradicts the fact
that ¥, 0%, Z, bssp = Br. Similarly, E5* <Eg™” can not

hold true. As a result, E5%¢ =Fo*°F is true. O

ossp

In the proof above, we can conclude that the attacker’s utility
is the same in the OSSP and the online SSE. We now prove
that the SAG is lower-bounded by the online SSG with respect
to the auditor’s expected utility.

Theorem 3. Given any game state, the expected utility of the
auditor by applying the OSSP is never worse than when the
online SSE is applied.

Proof. 1f the attacker completes the attack, his expected utility
by attackrng type ¢ in SAG is E,(0°) = (p} + p§)- UL . +(q} +
0) a,u, where 6% is the coverage probability of type t.

« If E4(0?) < 0, then the attacker will choose to not approach
any target at the beginning, regardless of if there exists a
signaling procedure. Thus, in both cases the auditor will
achieve the same expected utility, which is 0.

If Eq(6%) =0, then let p} =0 and ¢} =0. And it follows
that p} = 6" and g} = 1-6". This solution satisfies all
of the constraints in LP (3), which, in this case, share
exactly the same form with LP (2). In combination with
Theorem 1, we can conclude that in this special setting,
the expected utilities of the auditor, by applying SAG
(not necessary the OSSP) and online SSE, are the same:
Eq(0%) =6"-U’, +(1-6")-U}, . Thus, the expected utility
of the audltor m the OSSP is never worse than the one in
the online SSE. O

This begs the following question: can applying the OSSP
bring more benefit to the expected utility of the auditor? Our
experiments lend support to an affirmative answer.
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Our next result reveals an interesting property about the
optimal signaling scheme. Interestingly, it turns out that by
applying OSSP in specific situations, if there is no warning
sent, then the auditor will not audit the triggered alerts in their
optimal strategy (i.e., pf)* =0).

Theorem 4. In SAG, if the payoff structure satisfies 0 = (U;fc -
P -Ey -Ce Uy, P -E7 -Cy) 2Ug/Usl on the best
attacking type t. in the OSSP, then we have pf)* =0 on the
1—th alert.

Proof. This will be proved in the instance of LP (3) that derives
the best pair of the signaling strategy and the attacking strategy
t.. For inference convenience, for all ¢ we substitute p% and ¢}
with Gossp pp and 1- Gossp g}, respectively. Combining with
Theorem 1, the objectlve function of LP (3) can be simplified as

t* Ut* +qu* Ut* +p1 Pt.EL.C,, +qt* Pt.El.C,, =pff'
(Ut* Pt* Bl Ct )+qly (Ut* -pPt.El*.C, )+P! -EL.Cy, .

Now we simplify constralnts The first constraint is always
tight in the OSSP (as shown in Theorem 2). By applylng
the substltutlon rules, the second constraint becomes V¢, p0
Ut Ué .- Hossp - Hossp) Ué « Forall ¢/ #¢,,
it can be future transformed into (Hossp —pO) Ué (1= Hf)ssp

¢4)-Ut, <0. Due to the fact that p = q1 =0 in the OSSP for
Vt’ £, 0, is equal to BOSSP, and q0 equal to 1— Hossp As
such, for all ¢ # ¢., this constraint naturally holds true. By far,
the best strategy pair of SAG in our setting needs to maximize

po Uy ~P"-E7-Cy, )+qf; Wy, ~P" By -Ci)+P" E7 -
C.., such that Py Usetay Usty 2 _eossp Ul e+(1-0555,) Ui
(we refer to thl% 1nequa11ty as constraint «) and that these
probability variables are in [0,1] and sum up to 1.

We set up a Cartesmn coordinate system and let qt* be
the vertical axis and pO the horizontal one. Geometrically,
the slopes of the item to be maximized, which is —(U;’:C -
P’ -EY-C, Uy, —P' -E7 -Cy,) and constraint @, which
is —Uéj‘c/Uéfu are both positive. Note that, though we do not
constrain the left side of constraint a, which is [EZ*(utillf w) =
pg* ~Uéj‘c + qf)* -Uéfu > 0, this inequality is always true. If not
the case, the attacker will not initially attack. We discuss the
righthand side =005, - Ul +(1—045,)-Ulry, as follows.

« B =<0. In this setting, constraint @ is dominated. The
boundary of the dominant constraint passes the origin
and the feasible region is a triangle with its base on the
vertical axis, as shown in Figure 3(a). Thus, in both cases,
if Uy, —P"-EY -Ce Uy, —P"-EY-Cy)2Uq /Uq),
holds true (which implies that the slope of the objective
function is less than the boundary’s slope of the dominant
constraint), then pf)* = qf)* =0 leads to the maximum of the
objective function The OSSP, thus is pt1 Gf)ssp,ql =
1- eossp’p() _qo =0.

B> 0. Thus, constraint @ dominates pf)* -Ufl’:c +qf)* Ué*u >
0. The boundary’s intercept of the dominant constraint

. . . ! ! .
5Constraints involving Bt are neglected because Bgssp is the coverage

probability that can be derived from BT in our setting.
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is 0= (00ssp Us'e + (1= 043p) - Ubr VUL, €(0,1]. Using
an analysis similar to the previous case of B, only
when p(t)* = O,qf)* =0 does lead to the maximum of
the objective function This is indicated in Figure 3(b).
The OSSP is p}* = 055p, 05 =0 q; =1-00isp — (ef;;sp-

Ui+ (1=-0555p) Ust U, qly = Obssp Ukt +(1=0555,)-
UL UL, O

3
9

PyUs +a;Up =B

objective fn

@ p=0

Fig. 3. Feasible regions (blue areas) and an objective function gaining the

(b) p>0

largest value for f <0 and > 0. Note that the boundary pf]* +qt* =x is only
for illustration, and its intercept can slide in [0,1] by taking into account the
value of ptl* and ptl*. However, this never impact the optimal solution.

Remark. In application domains, the absolute value of the
penalty for the attacker is often greater than the benefit from
committing attacks. As for the auditor, his/her benefit from
catching an attack is often less than the absolute value of the
loss due to missing an attack. If the warning cost P Et* -Cy,
were ignored, then 0= Ut* /Ut* > Ut* /Ut* is often satisfied
in practice. Considering that the warning cost is proportional to
the estimation of the number of future warning events, which
decreases with time, the condition in Theorem 4 only happens
in a certain period of time.

One might wonder that, given that the condition in Theorem 4
is valid, whether the attacker can keep attacking until receiving
no warning, in which case the attacker can attack safely under
the optimal signaling scheme? Actually, this strategy cannot
lead to success because once the attacker chooses to quit,
his/her identity is essentially revealed. The auditor cannot
punish the attacker (yet) because the attacker quits the attack,
leaving no evidence. Therefore, a successful attack later on only
hurts him/her, while help the auditor find forensic evidence
of an attack. In practice, it is common that the auditor uses
reserved budget to deal with special cases. In the setting above,
the author can use a small portion of the auditing budget to
investigate repeated attempts of data access, but in practice
this is not an issue, as these cases are likely to be rare in real
world. As a result, once an attacker chooses to quit, the best
response should be to not attack during the rest of the auditing
cycle. In the experimental comparison with online/offline SSG,
which requires no additional budget for such attack category,
we will apply a reduced available budget as the input of the
corresponding SAG to ensure fairness in our comparisons.

A natural follow-up question is can the attacker manipulate
the model by running this strategy across audit cycles? The
answer is no as well. Such a behavior can be easily detected
by a rule that applies when the attacker performs his/her attack
repeatedly. When the auditor does not send a warning, the
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attacker successfully attacks. Yet, since there was a warning
sent previously, the auditor will use the probability p; to audit,
rather than pg. Thus, the attacker should take this into account
before adopting such a strategy.

Theorem 5. The auditor benefits equally in terms of the
expected utility from SAG and online SSG at the t-th alert, if
it satisfies Ufi’:u > Pt Ei* -Cy,, where t. is the best type to
attack in the OSSP.

Proof. We prove this by applying the same simplification and
the split strategy (i.e., analyze two distinct situations based on
the value of ) as applied in the proof for Theorem 4. Note
that the slope of the objective function is —(U;’:C - Pt Ei* .
Ct*)/(Uctl’:u —Pt.E%.C,.). Since Cy, <0, the numerator is less
than 0. If Ufifu > Pt+.E!.C,,, then the denominator is greater
than 0. Thus, the slope is less than 0. In particular, the slope
is less than —1 (which is the slope of boundary pf)* + qf)* =x)
because of Ufi’jc =0> Ufi’:u. We now analyze properties in this
situation geometrically.

As demonstrated in Figures 4(a) and 4(b), the boundary
py +4qg =x(€[0,1]) should pass through the (0,1) point. This
is because, if this failed to occur, then the value of the objective
function can be further improved by lifting the boundary. The
optimal solution for both cases is at the intersection point of
the two boundaries of the feasible region. Thus, it follows that
py +4qg =1 for the OSSP, which implies p}* = g% =0. In
other words, the signaling procedure is turned off for the best
attacking type ¢, in the OSSP. Combining with what Theorem
1 indicates, when Uflfu > Pt+.E!.C,,, the signaling procedure
is off for all types. In LP (3), by substituting variables ptl/ and
th’ (for all ") with 0, the SAG instance becomes an online
SSG (as shown in LP (2)). Thus, the two LPs share the same
solution, and the auditor will receive the same expected utility
in both auditing mechanism. O

,

q" qU‘ LUt LUt =
0 pL-U" +qi U =0 Py Up +a; U =B
Pty =N\ ... /
X 1, I
R 2 Py
objective fn objective fn
(a) =0 (b) >0

Fig. 4. Feasible regions (blue shaded triangle areas) and an objective function
gaining the largest value for =<0 and §>0.

This result indicates that if the incurred loss due to a warning
is too large, then an SAG will degrade into an online SSG,
where the signaling procedure is turned off. It suggests that in
the application domain, to ensure that the signaling is deployed
in a useful manner, organizations need to 1) refine the alert
system so that false positive alerts can be classified as normal
events, and 2) decrease the number of the events in which
normal users are scared away.
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TABLE I
A SUMMARY OF THE DAILY STATISTICS PER ALERT TYPES.

ID  Alert Type Description Mean Std

1 Same Last Name 196.57 17.30
2 Department Co-worker 29.02 5.56
3 Neighbor (< 0.5 miles) 140.46  23.23
4 Same Address 10.84 3.73
5 Last Name; Neighbor (=< 0.5 miles) 25.43 4.51
6 Last Name; Same Address 15.14 4.10
7 Last Name; Same Address; Neighbor (< 0.5 miles) 43.27 6.45

V. MODEL EVALUATION

In this section, we evaluate the performance of the SAG
on the real EMR access logs from VUMC, which deployed
an unoptimized warning strategy. To illustrate the value of
signaling, we compare with multiple game theoretic alternative
methods in terms of the expected utility of the auditor.
Specifically, we investigate the robustness of the advantage
of SAGs under a range of different conditions. Now we first
describe the real dataset which is used for evaluation.

TABLE II
THE PAYOFF STRUCTURES FOR THE PRE-DEFINED ALERT TYPES.
Payoff Typel Type2 Type3 Type4 Type5 Type6  Type7
Uge 100 150 150 300 400 600 700
Ugu -400 -500 -600 -800 —-1000 —-1500 —2000
Ua,e —-2000 -2250 —2500 -2500 -3000 -5000 -6000
Uau 400 400 450 600 650 700 800
A. Dataset

The dataset consists of EMR access logs for 56 continuous
normal working days in 2017. We excluded all holidays (include
weekends) because they exhibit a different access pattern from
working days. The total number of unique accesses (Date,
Employee, Patient) is on the order of 10.75M. The mean and
standard deviation of daily unique accesses are approximately
192K and 8.97K, respectively. We focus on the following alerts
types: employee and patient: 1) share the same last name, 2)
work in the same department, 3) share the same residential
address, and 4) are neighbors within a distance less than 0.5
miles. When an access triggers multiple distinct types of alerts,
their combination is regarded as a new type. Table I lists the
set of predefined alert types, along with the mean and standard
deviation of their occurrence on a daily basis. We provide the
payoff structure for both the attacker and the auditor in Table II.
These values are estimates based on discussions with experts
working in the area.

B. Experimental Setup

The audit cycle is defined as one day from 0:00:00 to
23:59:59. From the dataset, we construct 15 groups, each of
which contains the alert logs of 41 continuous normal working
days as the historical data (for estimating the distributions of
future alerts in all types), and the alert logs of the 1 subsequent
day as the day for testing purpose. We set up a real time
environment for evaluating the performance in terms of the
auditor’s expected utility. We set the audit cost per alert to
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Vi=1,Vte(l,...,|T|}. From the alert logs of three months, we
obtain the frequency at which users quit when they receive the
warning messages in our dataset. According to this observation,
in our experiments we set the probability of quitting as P! =
0.186 in the SAG model for all types.

We compare the real time auditor’s expected utility for each
triggered alert between the OSSP (the optimal objective value
of LP (3)) and both the offline and online SSE (the optimal
objective value of LP (2)). The offline SSE corresponds to
the traditional method, which determines the auditing strategy
at the end of the auditing cycle. By contrast, the online SSG
determines the auditing strategy for each alert in real time,
which is equivalent to an SAG without signaling.

One significant challenge in comparing the OSSP with the
online SSE is that the real time budget consumption in the SAG
is determined by the sampling result of warning/no warning
and, thus is not deterministic. This leads to a situation where,
for the time series of alerts in each audit cycle, if there is
no intervention, then the online SSG and the SAG will move
independently with respect to the game status. As such, their
performance cannot be directly compared. To set up a well-
controlled environment for comparison, for each incoming alert
we focus on the online SSG with its game status be the same
as the current SAG instance. Recall that for the SAG, the
auditor needs to reserve a portion of the total auditing budget
for inspecting the repeated data requests at the end of each
audit cycle. Due to the fact that it is unnecessary for the online
SSG, we set the available budget at each incoming alert in the
online SSG to be equal to the sum of the available budget of
the SAG instance at the current time point, and the reserved
budget of the SAG for the additional inspection of the repeated
data requests. By doing so, it makes our comparison fair.

To investigate the robustness of the results over different
game conditions, we evaluate the performance by varying three
factors. First, we vary the loss value for the auditor with respect
to each quit of a normal user when receiving a warning message.
We set C; ={-1,-5,—-10}.% Second, to deter the attacker who
quits until they receive no warning in the safe period for an
SAG (where pf)* =0 as shown in Theorem 4), we assess a
series of constant budgets, which we set to a@ = {1%,5%} of the
total available budget B. We do not consider this situation in
the baseline strategies because such loss does not apply. Third,
we vary the total auditing budget. Specifically, we consider
B ={30,50,70}. By setting B =50, the available budgets for
the SAG at the very beginning time point of an audit cycle
are 49.5 for @ = 1% and 47.5 for a = 5%, respectively.

Considering the fact that the estimated payoff structure may
not be perfect, we also test the robustness of the results
by varying the values in the given payoff structure. To
do so, we use U, and Uy, from the first type because
these variables are more challenging for domain experts to
articulate. We evaluate the performance by setting Ual’c
{-500,-1000,-1500,—-2000,—-2500,—-3000,-3500} and fix-

To the best of our knowledge, there is no perfect measure for this loss in
the EMR application domain.
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ing the other variables to their values in Table II. We
set Uéc = {25,50,75,100,125,150,175} and run the same
evaluation as described above.

C. Results

We considered all 7 alert types described in Table I. Due to
space limitations, we only show the sequential results of 15
sequential testing days along the timeline in Figures 5(a)-5(o)
by applying B =50,C; = -1 for all types and a = 1%.

It is noteworthy that the type for each alert may not be
aligned with the optimal attacking type in the OSSP strategy.
Thus, to compare the approaches, we only apply the SAG on
alerts whose type is equal to the best attacking type in the
OSSP. For alerts whose types differ, we simply apply the online
SSE strategy and use its optimal coverage probability to update
the real time available budget. When applying SAGs, we first
optimize the signaling scheme, then randomly sample whether
to send a warning according to P(¢7). Next, we update (in real
time) the available budget based on the signal.

Figures 5(a)-5(o) illustrate the real time expected utility of
the auditor. It can be seen that the majority of alerts were
triggered between 8:00AM and 5:00PM, which generally
corresponds to the normal working hours of VUMC. After this
period, the rate of alerts slows down considerably. Note that
the trend for offline SSE is flat because, in this method, the
auditor’s expected utility is the same for each alert regardless
of when it is triggered.

There are several notable findings and implications. First, in
terms of the expected utility of the auditor, OSSP significantly
outperforms the offline SSE and the online SSE. This suggests
that the SAG increases auditing effectiveness. We believe that
this advantage is due to the optimized signaling mechanism,
which ensures the loss of the auditor is zero when sending
warning messages. Second, at the end of each testing day,
the auditor’s expected utility for each approach does not drop
below the online SSE. We believe that this is an artifact of the
knowledge rollback, which slows down the budget consumption
in this period. In particular, at the end of multiple testing days,
such as illustrated in Figures 5(a), 5(f), 5(g), 5(h), 5(), 5(k)
and 5(o), the expected auditor loss approaches 0. Third, the
sequences of online SSE are close to the corresponding offline
SSE sequences. This indicates that the auditing procedure does
not benefit from determining only the coverage probability
for each of the alert types in real time. In other words, the
signaling mechanism in the SAG can assist the auditing tasks
in various environments. Moreover, the advantage of OSSP
over online SSE grows with the overall budget.

We expanded the investigation to consider various conditions
of the auditing tasks. We computed the mean (and standard
deviation” of) differences between the OSSP and the corre-
sponding online SSE for each triggered alert across 15 testing
days by varying the total auditing budget, the loss of the
auditor on each quit of normal users, and the percentage of

"Note that the distributions are not necessarily Gaussian. The standard
deviations are largely dominated by the ending periods of testing days, where
the expected utility of the auditor in the OSSP is usually close to 0.
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Fig. 5. The auditor’s expected utility in the OSSP and alternative equilibria for the 7 alert types with a total budget of B =50. We applied @ =1% and C; = -1

for the OSSP.

TABLE III
THE ADVANTAGES OF OSSP OVER ONLINE SSE IN TERMS OF THE MEAN (AND THE STANDARD DEVIATION) OF THE DIFFERENCES IN THE AUDITOR’S
EXPECTED UTILITY (15 TESTING DAYS).

B C;=-1 Ci=-5 C;=-10

a=1% a=5% a=1% a=5% a=1% a=5%
30 60.87+28.31 15.99% 47.01+32.17 12.45% 40.43+23.95 10.59% 29.89+28.77 7.92% 26.91+25.77 7.06% 10.94 £24.93 2.90%
50 165.83+24.49 47.26%  147.51+27.74 42.65%  143.19+33.98 40.87%  117.52+34.56 34.20%  127.31+37.55 36.23%  106.21+38.85 31.21%
70  252.57+20.44 77.31%  235.14+23.57 72.87%  227.59+33.10 69.31%  204.33+36.77 63.63%  225.35+37.58 68.73%  198.69+40.93 61.89%

TABLE IV
THE ADVANTAGES OF OSSP OVER ONLINE SSE IN TERMS OF THE MEAN
(AND THE STANDARD DEVIATION) OF THE DIFFERENCES IN THE AUDITOR’S
EXPECTED UTILITY. ASTERISKS INDICATE THE ORIGINAL VALUES WE USED
IN THE EVALUATIONS ABOVE.

Utlw -500 —1000 -1500  —2000* —2500 -3000 —-3500
MEAN 67.89  120.28  148.29 167.64  180.67  184.99  194.54
STD 27.89 31.98 2751 26.20 25.68 36.34 39.93
Uéc 25 50 75 100" 125 150 175
MEAN  173.71 169.30  166.93 165.20 163.65 160.19  158.13
STD 26.33 25.32 25.58 24.92 23.93 24.61 23.36

the budget for inspecting anomalous repeated requests. The
results are shown in Table III, where we also indicate the
percentage of the averaged improvement in each setting. Here,
this value is defined as the absolute improvement on the
expected utility of the auditor divided by the optimal auditor’s
expected utility in the online SSE. From the results, we have the
following significant observations. First, it is notable that OSSP
consistently outperforms the online SSE with respect to the
auditor’s expected utility in a variety of auditing settings. For
example, in the setting that C; = -1 for all ¢ and @ = 1%, as B
grows from 30 to 70, the auditor’s expected utility improvement
grows from 16% to 77%. This is a trend that holds true for
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other settings as well. Second, by fixing B and C; for all
t, the auditor’s expected utility decreases when we reserve
more budget to investigate the repeated requests by single user.
Yet, this is not unexpected because this approach reduces the
amount of consumable auditing resources. Third, by increasing
the cost of deterring a single normal data request, we also
weaken the advantages of OSSP over the online SSE (when B
and « are held constant).

We then investigated the robustness of the advantage of
OSSP over online SSE by varying Uj,c and U;,C. We computed
the mean (and standard deviation of) differences between the
OSSP and the corresponding online SSE across all testing days.
Here, we applied B = 50,C; = —1 for all types and a = 1%.
As can be seen in Table IV, OSSP maintains its advantage
for a wide range of Uic and Ué,c. The advantage of OSSP is
inversely proportional with U;,c and directly proportional with
U é,c. Thus, even if the estimates of the payoff structure are
imperfect, the SAG still outperforms baseline methods.

Next, we considered how the probability of being scared
away for normal users (i.e., P?) influences the auditor’s ex-
pected utility. Recall that, in the experiments reported on so far,
we adopted P! =0.186, an estimate based on an environment
that relied upon an unoptimized signaling procedure. However,
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TABLE V
THE MEAN AND STANDARD DEVIATION OF AUDITOR’S EXPECTED UTILITY
AT OSSP AS A FUNCTION OF P* (15 TESTING DAYS).

b v
c P’ forall ¢

x1.0 x0.5 x0.1

-1
-5

—185.54+29.85
—208.60+41.91

-179.92+32.71
—201.34+33.92

-175.47+32.97
-180.85+32.75

this value can change in practice for several reasons. First,
an optimized signaling scheme will likely influence users’
access patterns, such as the frequency of triggering alerts, as
well as how users respond to a signaling mechanism. Second,
the probability P! can decrease, if an organization effectively
performs policy training with its employees, such that normal
users may be less likely to be scared away if they receive a
warning message when requesting access to a patient’s record.
Table V shows the expected utility of the auditor at OSSP
by varying the input of P! in the setting of B = 50. We
apply three values of P! by reducing the original value to its
100%,50% and 10%. It can be seen that the auditor’s expected
utility under OSSP improves as P! reduces. When holding
C; constant, a t-test reveals that each pair of performances is
statistically significantly different with p < 107®. This indicates
that reducing the frequency of quitting for normal users reduces
the usability costs and, thus, improves the auditing efficiency.

In addition, we tested the average running time for optimizing
the SAG on a single alert across all the testing days. Using
a laptop running Mac OS, an Intel i7 @ 3.1GHz, and 16GB
of memory, we observed that the SAG could be solved in
0.06 seconds on average. As a consequence, it is unlikely that
system users would unlikely perceive the extra processing time
associated with optimizing the SAG in practice.

VI. RELATED WORK

There have been a number of investigations into effective
alert management strategies and efficient auditing mechanisms
for database systems. In this section, we review the game-
theoretic developments that are related to our investigation.

Blocki et al. first modeled the audit problem between an
auditor and an auditee as a classic security game. In this setting,
players act strategically and the goal is to learn an optimal
resource allocation strategy that optimizes the expected payoff
of the auditor [23]. To simulate the real audit environment,
Blocki et al. generalized the framework by accounting for the
situations with multiple defender resources [24]. However, their
methods treat alerts as a set of existing targets that could be
attacked, a modeling decision that cannot be readily generalized
into the database audit setting. To solve this challenge, Yan et
al. introduced a game theoretic audit approach to 1) prioritize
the order in which types of alerts are investigated and 2)
provide an upper bound on how much resource to allocate for
auditing each type [25], [26], [32]. Schlenker et al. introduced
an approach dealing with how to assign alerts to security
analysts was proposed, where each analyst has different areas
of expertise [33]. However, all of these investigations adopted
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a classic security game framework, which, as our experiments
show, hinder the efficacy of the system.

It has been shown that the integration of a signaling
mechanism into adversarial settings can improve protection. In
particular, Xu et al. proposed a two-stage security game model
to protect targets with a better performance. In the first stage,
the defender allocates inspection resources and the attacker
selects a target. In the second stage, the defender reveals
information, potentially deterring the attacker’s attack plan
of attack [27]. The advantages of signaling were subsequently
extended to Bayesian Stackelberg games, where players have
payoff-relevant private information [30]. It has been shown
that signaling also boosts defensive performance in security
games, specifically for the task of assigning randomized
human patrollers and sensors to protect important targets [34].
However, these investigations aimed to protect existing physical
targets as well. The methodology does not easily fit into the
auditing environment, where the timing of budget assignment
and signaling are reversed.

VII. DISCUSSION

In this paper, we integrated signaling into auditing frame-
works. We strategically warn the attacker in real time and
then realize the audit strategy at the end of the audit cycle
with an offline mode. In particular, we formalized the usability
cost in our approach to model the real-world audit scenario.
We further illustrated that such a defensive strategy improves
the performance of defenders over existing game theoretic
alternatives using real EMR auditing data. Our framework is
generalizable to more powerful attackers because as long as
the adversarial behavior can be represented by pattern(s), it
will fit into our model. As such, our audit model is applicable
to any capability of the attacker.

There are several limitations we wish to highlight as
opportunities for future investigations. First, in this paper we
assumed that the attacker has a fixed payoff structure in each
audit cycle; however, in practice, there may exist many types
of attackers who can receive different utility on the same target.
As a next step, we believe that the SAG can be extended for
a Bayesian setting where the payoff structure of the attacker
varies according to types. Second, in this paper we focused
on a single-attacker scenario. However, our model can handle
the multi-attacker scenario in which the attackers share the
same payoff structure and act independently. In this case, the
optimal strategy of the auditor for each alert is the same as in
the single-attacker scenario. Moreover, it has been shown that
solving problems that involve multiple types of attackers or
collusion among them is NP-hard even if we do not consider
signaling [35]. Third, in this paper, we assumed that the attacker
is perfectly rational. This is a strong assumption and may lead
to an unexpected loss in practice. Thus, a more robust version
of the SAG will be needed for wide deployment. Fourth, in
this study we simplify modeling the dependence between alerts
and assume that they are triggered independently. However,
this may not be the case all the time in practice and attacks
may evolve. Fifth, the scalability of solving the SAG, with
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respect to the number of alert types, needs more investigation
in future.

VIII. CONCLUSION

Alert-based auditing is often deployed in database systems to
address a variety of attacks to the data resources being stored
and processed. However, the volume of alerts is often beyond
the capability of administrators, thus limits the effectiveness of
auditing. Our research illustrates that strategically incorporating
signaling mechanisms into the data request workflow can
significantly improve the auditing work. We investigated the
features, as well as, the value of a game theoretic Signaling
Audit Game, along with an Online Stackelberg Signaling Policy
to solve the game. While we demonstrated the feasibility of this
approach with the audit logs of an electronic medical record
system at a large academic medical center, the approach is
sufficiently generalized to support auditing in a wide range of
environments. Though our investigation illustrates the merits
of this approach, there are certain limitations that provide
opportunities for extension and hardening of the framework
for real world deployment.
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