

1 Three-Dimensional Seismic Velocity Models for Alaska
2 from Joint Tomographic Inversion of Body-Wave and
3 Surface-Wave Data

4 by Avinash Nayak^{1*}, Donna Eberhart-Phillips², Natalia A.
5 Ruppert³, Hongjian Fang⁴, Melissa M. Moore⁵, Carl Tape³,
6 Douglas H. Christensen³, Geoffrey A. Abers⁶, Clifford H. Thurber¹

7 June 9, 2020

8 For submission to SRL

9 *Department of Geoscience, University of Wisconsin-Madison, 1215 W. Dayton St., Madison, WI,
10 USA 53706 (avinash07guddu@gmail.com)

11 ¹Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA

12 ²Department of Earth and Planetary Sciences University of California, Davis; and GNS Science,
13 Dunedin, New Zealand

14 ³Geophysical Institute, University of Alaska Fairbanks

15 ⁴Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technol-
16 ogy

17 ⁵Department of Physics and Earth Science, University of North Alabama

18 ⁶Department of Earth and Atmospheric Sciences, Cornell University

19

Abstract We present new state-wide seismic velocity models for Alaska from joint inversions of body-wave and surface-wave data using two different methods. Our work takes advantage of data from many recent temporary seismic arrays, including the IRIS Alaska Transportable Array. Our model results for three-dimensional compressional- and shear-wave velocity and their ratio are generally consistent with previous studies, but provide higher-resolution images in many areas than were available previously, especially in sedimentary basins. We also find that the depth to the subducting Pacific Plate beneath southern Alaska appears to be deeper than previous models.

Introduction

29 There is a long history of large-scale seismic tomography studies of the three-dimensional
30 (3-D) structure of Alaska, especially regarding its subduction zone. Among the body-wave to-
31 mography studies that pre-date the availability of data from the EarthScope Alaska Transportable
32 Array (ATA) are regional earthquake tomography studies of P-wave velocity (Vp) (Kissling and
33 Lahr, 1991; Zhao *et al.*, 1995; Qi *et al.*, 2007), Vp and the ratio of Vp to shear wave velocity Vs
34 (Vp/Vs) (Eberhart-Phillips *et al.*, 2006; van Stiphout *et al.*, 2009), Vp, Vs, and P-wave anisotropy
35 (Tian and Zhao, 2012), and teleseismic Vp (Searcy *et al.*, 1996; Qi *et al.*, 2007). Pre-ATA large-
36 scale surface-wave studies were carried out by Wang and Tape (2014) and Ward (2015). Since
37 the ATA deployment, a sizable number of studies using surface waves for tomography have been
38 published, using ambient noise cross-correlation (ANCC) and earthquakes (Feng and Ritzwoller,
39 2019), ANCC data and teleseismic S waves (Jiang *et al.*, 2018), ANCC data and receiver functions
40 (Ward and Lin, 2018) or ANCC and earthquake surface waves and receiver functions (Martin-
41 Short *et al.*, 2018; Berg *et al.*, 2020). Receiver functions (Miller *et al.*, 2018; Miller and Moresi,
42 2018) and body-wave arrival times from local and teleseismic earthquakes (Martin-Short *et al.*,
43 2016; Allam *et al.*, 2017; Gou *et al.*, 2019; Gou *et al.*, 2020) have also been used for imaging.

44 In this study, we take advantage of a combination of regional body-wave data and surface-wave
45 data from ambient noise in a joint inversion for V_p and V_s or V_p and V_p/V_s , using two different
46 joint inversion methods. Our goal is the development of 3D velocity models that would be useful
47 for obtaining more accurate earthquake locations as well as for computing wavefield simulations
48 for hypothetical future large earthquakes in Alaska. First we describe the data set and the two
49 inversion methods, then we present the results from the two methods and some comparisons of
50 the two models and an earlier model. The main model features are generally quite similar among
51 all three models, but due to the inclusion of surface-wave data, resolution of the upper crust is
52 substantially improved in the two new models.

53 **Model Domain and Dataset**

54 The starting point for our tomography work is the study of Eberhart-Phillips *et al.* (2006) on
55 development and interpretation of a 3-D model of the V_p and V_p/V_s structure of south-central
56 Alaska. That study covered a region 1,000 km NNE-SSW by 700 km WNW-ESE centered on
57 Anchorage, and included data from 1,752 earthquakes with about 64,000 first-P arrivals and nearly
58 20,000 S-P times, plus close to 15,000 first-P arrivals from explosions and marine air gun shots.
59 It was the first tomographic study in Alaska to include data from both active sources and from the
60 first broadband experiment (BEAAR: Ferris *et al.* 2003).

61 We have developed our new models in two steps. First, we expanded the model domain to cover
62 more of south-central Alaska, assembling body-wave and surface-wave data to cover the enlarged
63 model region. In the second step, we further extended the model domain to encompass almost
64 the entire state and a small part of northwestern Canada, the part covered by the ATA. The two
65 joint inversion codes represent the model domain differently, one with a Cartesian system (and an
66 earth-flattening transformation), the other in spherical geographic coordinates. The former covers
67 a region 1,900 km NNE-SSA by 1,600 km ENE-WSW, again centered on Anchorage (Model
68 AKEP2020), and the latter covers a region extending 46.4° in longitude and 21.2° in latitude

69 centered on 61.5° North, 150° West (Model AKAN2020). A map of the station distribution is
70 shown in Figure 1a.

71 The body-wave data were obtained from multiple sources. The vast majority of the new P-wave
72 arrival times are from the AEC earthquake catalog. Arrival times were also generously provided
73 to us from the BEAAR and MOOS datasets (Ferris *et al.*, 2003; Li *et al.*, 2013). Many additional
74 P-wave arrivals and the majority of the S-wave arrivals from these and other temporary station
75 datasets were obtained using a modified version of the iterative autopicking software package
76 called REST (Lanza *et al.*, 2019). The additional datasets we tapped for more body-wave data
77 included SALMON (Tape *et al.*, 2017), FLATS (Tape *et al.*, 2018), and the on-shore part of the
78 Alaska Amphibious Community Seismic Experiment, AACSE (Abers *et al.*, 2019). A map of the
79 earthquake and shot distribution is shown in Figure 1b. A complete list of networks used in this
80 study is provided in the Data and Resources section.

81 The surface-wave data we use come entirely from ambient noise. We carried out multi-
82 component ANCC. An improvement over other rigorous ambient noise derived surface-wave to-
83 mography studies (Feng and Ritzwoller, 2019; Berg *et al.*, 2020) is the inclusion of short-period
84 stations and recently deployed temporary and permanent broadband stations (see Data and Re-
85 sources). In particular, using stations from the AV, XO and CN networks significantly improved
86 coverage in the Aleutian arc, the area between Katmai peninsula and Kodiak island, and the south-
87 eastern end of Alaska, respectively. We used standard methods (see references in Nayak and
88 Thurber (2020)) and preserve the relative amplitudes among the three components of motion (Lin
89 *et al.*, 2014) that allows us to rotate the cross-correlation tensors from the East-North-Vertical
90 (E-N-Z) to the Transverse-Radial-Vertical (T-R-Z) reference frame. The four components in the
91 radial-vertical plane (RR, RZ, ZR, and ZZ) were stacked with appropriate phase shifts to extract
92 improved Rayleigh-wave dispersion measurements (Nayak and Thurber, 2020). The TT com-
93 ponent was used to measure Love-wave dispersion. We applied automatic frequency-time analysis
94 (AFTAN) methodology (Bensen *et al.*, 2007; Lin *et al.*, 2008) to the noise cross-correlations to

95 extract the dispersion measurements. We also verified the approximate orientation and polarity
96 information of all three-component stations in our study (Nayak and Thurber, 2020). We found
97 errors in metadata for a few stations archived at IRIS that might have led to incorrect phase ve-
98 locity measurements in previous studies. We started with group velocity dispersion measurements
99 using a 1-D model as a reference. The reference 1-D model is a weighted average of the three 1-D
100 velocity models used by the AEC for moment tensor inversion of earthquakes in different regions
101 of Alaska.

102 We inverted Rayleigh-wave (periods \sim 5.2 s to \sim 35 s) and Love-wave (periods \sim 7.1 s to \sim 35
103 s) group velocity dispersion measurements to determine state-wide group velocity maps at each
104 period with a grid spacing of 0.4° in latitude and 0.8° in longitude (\sim 40 km), using the 2-D fast
105 marching surface-wave tomography method (Rawlinson and Sambridge, 2004). Dispersion mea-
106 surements in this period range are primarily sensitive to depths down to \sim 70 km. For each latitude-
107 longitude point in the maps, we jointly inverted the Rayleigh-wave and Love-wave group velocity
108 dispersion for a vertical Vs profile using the surf96 algorithm (Herrmann, 2013). In this study, we
109 neglect possible anisotropy (Feng and Ritzwoller, 2019) and invert for isotropic velocities only.
110 We found the greatest inconsistency between short period Rayleigh and Love wave measurements
111 in the Colville Basin, consistent with the observations of Feng and Ritzwoller (2019). Further
112 details on parameterization of the model and the inversion are provided in the electronic supple-
113 ment. Group velocity at each period at each node was weighted by the Derivative Weight Sum
114 (DWS) (Thurber and Eberhart-Phillips, 1999) at that node in the group velocity map at that partic-
115 ular period. Vp was scaled to Vs using Brocher (2005) relations in the inversion, as surface-wave
116 dispersion has negligible sensitivity to Vp at these periods. Thereafter, we assembled a 3-D Vs
117 model from the resulting set of 1-D models.

118 In the next step, the 3-D velocity model was used as a reference model to measure Rayleigh-
119 wave and Love-wave phase velocity dispersion using AFTAN. Phase velocities are more precisely
120 measured and more consistent with the eikonal-equation-based fast marching tomography method

121 compared to group velocities. The Rayleigh-wave and Love-wave phase velocity measurements
122 were inverted for 2-D phase velocity maps. Direct inversion of phase travel times using the fast
123 marching method is possibly an improvement over eikonal tomography methods (Berg *et al.*, 2020)
124 that allow ray bending but involve fitting of phase arrival times to smoothed maps. This procedure
125 of re-picking dispersion measurements, inverting for phase velocity maps, and inverting for a 3-D
126 Vs model was repeated one more time for full consistency. For Rayleigh waves at each period, the
127 number of dispersion measurements ranged from \sim 26,000 to \sim 90,000, and the number of stations
128 was \sim 790. For Love waves, the corresponding numbers were \sim 23,000 to \sim 64,000 and \sim 680.
129 Phase velocity maps and the ray coverage for two of the better constrained periods are shown in
130 Figure 2. Inclusion of shorter-period Rayleigh-wave phase velocity measurements (\sim 5-8 s) than
131 in previous studies helps to constrain shallower velocity structure in the absence of Rayleigh-wave
132 ellipticity measurements in the inversion (Berg *et al.*, 2020). Example phase velocity maps masked
133 by DWS and DWS maps for a number of periods are shown in the electronic supplement Figure S1.
134 The surface-wave results were used in two different ways, as described in the next section.

135 Tomographic Inversion Methods

136 Joint inversion with the Eberhart-Phillips and Fry (2017) algorithm

137 Tomographic inversion for hypocenters and 3-D Vp and Vp/Vs structure was done with a gra-
138 dational approach, using arrival-time observations from the AK2006 study (Eberhart-Phillips *et al.*,
139 2006), adding recent body-wave data, and incorporating group velocity maps, as described above.
140 For typical earthquake arrival-time datasets, if the inversion is done to obtain Vp and Vs, it is gen-
141 erally the case that the Vs model is poorly constrained relative to the Vp model, less representative
142 of crustal structure, and difficult to use for interpreting Vp/Vs (Eberhart-Phillips, 1990). Thus,
143 as described by Eberhart-Phillips and Reyners (1997), it is preferable to solve for Vp and Vp/Vs
144 when using local earthquake arrival-time data. This parameterization is retained for the group ve-
145 locity data, with the Herrmann (2013) Vp kernels related to Vp model inversion parameters and

146 Vs kernels related to partial derivatives of Vp and Vp/Vs model parameters (Eberhart-Phillips and
147 Fry, 2017). Model Cartesian coordinates and distances are computed with Transverse Mercator
148 conversion, and an earth-flattening transformation is used. The 0 km model depth is at sea level,
149 travel-time ray-tracing includes station elevations, and elevation for group velocity observations is
150 from the 30 km median topography.

151 Eberhart-Phillips and Fry (2017) explicitly consider the frequency-dependent spatial sensitivity
152 of surface waves both in depth and laterally. As illustrated in Figure 3a, in the volume surrounding
153 each group velocity observation, numerous points are used for relating the group velocity obser-
154 vation to the gridded 3-D tomography model, analogous to points along a ray path. The partial
155 derivatives at the points are computed using the group velocity sensitivity kernels for Vp and Vs.

156 A gradational approach is used for velocity inversions. This provides reasonable velocities
157 throughout the region, and more detail where there is denser data coverage. The initial model used
158 a coarse version of the Eberhart-Phillips *et al.* (2006) model, with some extrapolation down the
159 Alaska Peninsula, and very coarse models with recent data for distant areas. An inversion of the
160 whole model area was done with \sim 50 km grid spacing. Then fine inversions were done with \sim 25
161 km grid spacing and auto-linking in low resolution areas (Eberhart-Phillips *et al.*, 2014) for the
162 final body-wave model. This model was used as the initial model for the joint inversions.

163 A progressive series of joint inversions was done to promote improvement of the shallowest
164 depths, with the deepest portions of the model fixed. The relative weight of the group velocity
165 observations (wtU) is varied. This series comprised (a) 1 iteration for depth $z = -1$ km free and
166 wtU=35; (b) 2 iterations for $z = -1, 2$ km free and wtU=22; (c) 1 iteration for $z = -1, 2, 6$ km free
167 and wtU=10; and (d) 2 iterations for $z = -1$ through 33 km free and wtU=5.5. The final model
168 achieves good improvement in fitting the expanded data set. Compared to the initial model, the
169 final model AKEP2020 provides 36.4% decrease in P data variance, 24.6% decrease in S-P data
170 variance, and 96.7% decrease in group velocity data variance.

171 Joint inversion with the Fang et al. (2016) algorithm

172 As discussed in the Model Domain and Dataset section, we carried out a multi-step process

173 with the ambient noise surface-wave data, resulting in Rayleigh- and Love-wave group and phase

174 velocity measurements and the corresponding group and phase velocity maps at a range of fre-

175 quencies. As noted above, a 3-D Vs model was derived from the Rayleigh- and Love-wave phase

176 velocity measurements by stitching together the results of 1-D inversions at each model grid point.

177 We also carried out a separate body-wave tomography analysis in order to get an initial model for

178 the joint inversion. We used a larger body-wave dataset containing \sim 890,000 P-wave picks and

179 \sim 270,000 S-wave picks from \sim 5,800 earthquakes and the explosion dataset of Eberhart-Phillips

180 *et al.* (2006). For all earthquakes, P-wave and S-wave picks were limited to epicentral distances of

181 \sim 900 km and \sim 600 km, respectively. Additionally, in order to prevent errors in S-wave picks from

182 misidentifying Sg as first arriving Sn at post-critical distances, we limited S-wave picks to \sim 250

183 km epicentral distance for crustal earthquakes (depth \leq 45 km). As earthquakes occur primarily

184 in the crust and only TA stations are present at spacing \sim 70-80 km in northern half of Alaska, our

185 constraints on Vs from body-wave data in northern half of Alaska are weaker and our Vs sensi-

186 tivity is limited to the crust. We used a spherical earth version of tomoDD (Zhang *et al.*, 2004)

187 with ray tracing in spherical coordinates to invert for a state-wide body-wave velocity model of

188 Alaska with the same grid spacing of 0.8° in longitude and 0.4° in latitude (approximately \sim 40

189 km) as for the surface-wave modeling. However, the region for our body-wave tomography was

190 slightly smaller than that for surface-wave tomography. More earthquake data from the western

191 Aleutian volcanic arc were added later during the joint inversion to invert for the slightly larger

192 model. We tested 375 different combinations of damping and smoothing parameters to check the

193 trade-off between final misfit and model complexity. For the optimum combination of smoothing

194 and damping parameters, the weighed misfit decreased from \sim 1.5 s for an initial 1-D model to

195 \sim 0.43 s for the final 3-D model. The body-wave travel-times provide sensitivity down to a depth

196 of \sim 150 km around the subduction zone. The body-wave tomography results and resolution indi-

197 cated by scaled DWS values are shown in electronic supplement Figure S2. The DWS values of
198 Vp and Vs from the body-wave tomography model were scaled from ~ 100 to 10,000 to weights
199 ~ 0 to 1. These weights were used to merge the final body-wave model with the final surface-wave
200 model to assemble an initial model for the joint inversion.

201 The Fang *et al.* (2016) joint inversion method utilizes a direct inversion approach (Fang *et al.*,
202 2015) for relating surface-wave dispersion data to the 3-D Vs and Vp models, in contrast to the
203 more common two-step approach used by many researchers. The method represents the 3-D Vs
204 model by means of 1-D profiles beneath grid points (Figure 3b), and those 1-D profiles are de-
205 termined from all dispersion data simultaneously. An equality constraint on Vp/Vs (~ 1.75) is
206 used to facilitate combined improvement of both Vp and Vs, with a damping parameter to reg-
207 ulate the strength of this constraint (Fang *et al.*, 2016). We made considerable improvements to
208 the original Fang et al. (2016) inversion software: (1) introducing latitude-dependent smooth-
209 ing in longitude that accounts for the large change in length of a degree of longitude across the
210 north-south extent of our model, (2) introducing signal-to-noise-ratio (SNR) dependent weights
211 for surface-wave phase travel times on the scale of ~ 0.5 to 1, (3) automatic recalculation of rela-
212 tive weights between body-wave data and surface-wave data based on the misfits at each iteration
213 and (4) general improvements in the efficiency of the software that made it possible to use it for a
214 large dataset (~ 1 million earthquake body-wave travel times and ~ 1.7 million surface-wave phase
215 travel times). The SNR values of surface-wave dispersion measurements ($\sim 2\text{-}8$ scaled to $\sim 0.5\text{-}$
216 1.0) generally decrease with interstation distance and are highest for the primary and secondary
217 microseism passbands.

218 To start the joint inversion of body-wave and surface-wave datasets using the Fang *et al.* (2016)
219 algorithm, we used the same earthquake data from the body-wave tomography. Rayleigh- and
220 Love-wave phase velocity dispersion measurements were selected at 17 and 15 periods, respec-
221 tively, and we used the same grid spacing of 0.4° in latitude and 0.8° in longitude (~ 40 km) as
222 for the surface-wave phase velocity map inversions. It is possible that smaller scale features are

resolvable in south-central Alaska where the stations are relatively dense, but a lower grid spacing was not attempted for computational reasons. Station elevations were used for body-wave data but an elevation of -1 km was assumed as reference depth = 0 km for surface-wave data with no corrections applied for topography. We tested two initial models, the final model from surface-wave tomography and a weighted average of final models from body-wave and surface-wave tomography. To construct the weighted average model, V_p and V_s from the body-wave model were used along with the corresponding weights calculated from the scaled DWS values, with the weights further doubled for V_p , which is significantly better constrained by body-wave data than by surface-wave data. The model from surface-wave tomography was assigned laterally uniform weight at 1.0 and progressively smaller weights below a depth of \sim 100 km. V_p was scaled to V_s using Brocher (2005) relations. V_p/V_s ratio for the initial model was restricted to the range of \sim 1.55 to \sim 2.6; the high V_p/V_s ratio \geq 2.0 primarily results from the Brocher (2005) relations applied to low V_s values in the sedimentary basins. In the course of the inversion, the V_p/V_s ratio was progressively perturbed towards a value of \sim 1.75 in regions where high or low values are not supported by the data. The final model, AKAN2020, was obtained using the averaged body-wave and surface-wave model as the initial model. The final weighted misfit for the body-wave and surface-wave datasets were \sim 0.4 s and \sim 1.5 s, respectively, very close to the final misfit for the separate inversions of the two datasets.

Comparisons of tomographic models

Direct comparison of the AKEP2020 model to the AKAN2020 model, and the comparison of both to the AKEP2006 model, is limited because for AKEP2020 and AKEP2006, the inversion solves for V_p and V_p/V_s , whereas for AKAN2020, the inversion solves for V_p and V_s . It is widely recognized that a V_p/V_s model obtained by dividing V_p by V_s is prone to substantial artifacts (Eberhart-Phillips, 1990; Thurber and Ritsema, 2015; Watkins *et al.*, 2018). This is due mainly to the normally inferior resolution for V_s , leading to apparent V_p/V_s variations in the model where

248 Vp is well resolved and has perturbations but Vs is poorly resolved and therefore has at most minor
249 perturbations. On the other hand, it has been our experience that obtaining Vs by dividing Vp by
250 Vp/Vs appears to be more stable (Watkins *et al.*, 2018), so here we compare the directly inverted
251 Vp models and both the directly inverted and division-derived Vs models. Comparisons of Vp/Vs
252 results for the two directly-determined models, AKEP2006 and AKEP2020, are also presented.

253 Large-scale deep structure

254 To first order, the large-scale and deeper parts of the three Vp models are quite similar. This is
255 because the earthquakes in the previous and new body-wave datasets have similar spatial distribu-
256 tions, although the station distribution is notably improved for the new model thanks to a number
257 of temporary array deployments, including the ATA.

258 In Figure 4, we compare map-view slices through the three models, AKEP2006, AKEP2020,
259 and AKAN2020, at a depth of 57 km as representative of the deeper structure. Despite the differ-
260 ences in datasets and geographic coverage, the main features in the area of overlap are reasonably
261 consistent. The subducting Pacific Plate is evident offshore and beneath Kodiak Island and Kenai
262 Peninsula. Lower velocities in the mantle wedge are prevalent, extending all the way north to the
263 Denali fault.

264 Figures 5 and 6 show representative Vp, Vs, and Vp/Vs cross-sections through the three models
265 on a profile normal to the Denali fault. The AKEP2020 and AKEP2006 models are the most
266 similar, with AKAN2020 showing lower velocities in the lower part of the slab for both Vp and
267 Vs. We attribute this to a greater contribution of the surface-wave data relative to the body-wave
268 data in the AKAN2020 inversion, since both Love and Rayleigh wave phase velocity data are
269 included. We also note that the Hayes *et al.* (2018) slab surface appears to be too shallow along
270 this cross-section, a trend we observe in many cross-sections through the subducting slab.

271 Shallow basin structures

272 Figure 7 shows cross-sections through Cook Inlet for the three models. The apparent basin
273 thickness is quite different in all three models. We suspect that the deep low velocities in the
274 AKEP2020 model are an overestimate of the actual depth extent. In contrast, the AKAN2020
275 model appears to overestimate the width of the basin structure, presumably due to smearing caused
276 by the surface-wave data and coarser grid spacing (40 km versus 25 km for AKEP2006 and
277 AKEP2020 in this region). A view zooming in on the shallow Vs is shown in Figure S3. The
278 pattern is similar for cross-sections through the Copper River Basin, as shown in Figure 8. The
279 basin depth appears substantially greater in model AKEP2020, and the width is again much greater
280 for model AKAN2020.

281 Statewide Velocity Model

282 Model AKAN2020 provides new constraints on the seismic velocity structure in Alaska com-
283 pared to previously published studies; some features are briefly described here. Figures 9, S4,
284 and S5 show depth slices from AKAN2020 for a range of depths.

285 Inclusion of ambient noise derived surface-wave phase velocities from a large number of sta-
286 tions not used in previous studies allows us to loosely constrain Vs in offshore areas. These include
287 AV short-period stations in the Aleutian volcanic arc, AK/TA stations on St. George, St. Paul and
288 St. Lawrence Islands and CN stations on Haida Gwaii Archipelago. However, the resolution is
289 low because most of the interstation paths have similar azimuths and there are no constraints on
290 Vp in offshore areas because no body-wave data are available. Paths between the Aleutian Arc
291 and southeastern Alaska traversing the Gulf of Alaska provide constraints on the offshore section
292 of the subducting Pacific plate (Figure S1c,d). These longer period measurements (≥ 14 s) reveal
293 higher velocities in the subducting oceanic mantle of the Pacific plate in the offshore region of the
294 subduction zone at depths ≥ 15 km (Figure S5c-f). Similarly, we are able to image the approxi-
295 mate outline of the North Aleutian/Bristol Bay Basin in the Bering Sea, north of the Aleutian arc

296 (Kirschner, 1988) (Figure S1b,c and Figure 9a). We observe general NW-SE widening of the basin
297 delineated by low values of Vs consistent with Kirschner (1988). We are also weakly sensitive to
298 the Norton Basin to the southwest of Seward Peninsula (Figure S1b,c and Figure 9a).

299 We are able to recover low seismic velocities consistent with most inland sedimentary basins
300 observed in previous studies (Feng and Ritzwoller, 2019; Berg *et al.*, 2020), with noticeable im-
301 provement in the outline of the basins in the top \sim 1 km (Figure 9a). Despite coarse grid spacing,
302 we are even sensitive to smaller basins such as the Susitna Basin north of Cook Inlet. Similar to
303 Berg *et al.* (2020), we assume the depth to Vs \sim 3.1 km/s to be the basement depth and estimate the
304 maximum depths of the major basins. Our estimates of Vs at the reference depth and basin depths
305 are: Cook Inlet, \sim 1.0-1.2 km/s, \sim 7-10 km; Nenana, \sim 1.2-1.3 km/s, \sim 4-6 km; Copper River and
306 Bethel, \sim 1.7-1.8 km/s, \sim 5-6 km; North Aleutian/Bristol Bay, \sim 1.3-1.4 km/s, \sim 7-10 km; Norton,
307 \sim 1.0-1.2 km/s, \sim 3-5 km; Yukon Flats, \sim 1.3-1.4 km/s, \sim 4-5 km; Gulf of Alaska, \sim 1.7-1.8 km/s,
308 \sim 11-15 km; and Colville Basin, \sim 1.3-1.4 km/s, \sim 10-11 km. The very shallow velocities (depth
309 \leq 1 km) in offshore areas and the northern region of Alaska (such as in Colville Basin) are likely
310 to be an upper bound because shorter-period measurements are not available due to the coarser
311 station spacing. Two inconsistent features are a region of low velocities north of Yukon Flats Basin
312 that is not present in previous models and no recovery of low velocities corresponding to Selawik
313 Trough (Berg *et al.*, 2020). Among the basins, constraint on Vp from body-wave data is strongest
314 in the northern section of the Cook Inlet Basin (Figure S2a).

315 The Denali fault is one of the most prominent tectonic features in Alaska. We see a sharp
316 contrast in Vp across the Denali fault between the Yukon composite terrane (faster) and Wrangellia
317 composite terrane (slower) in the upper mantle wedge between the depths of \sim 25 km to \sim 50 km
318 (Figure 9b) for a significant distance along the fault, similar to that observed in previous studies,
319 but not as clearly (Eberhart-Phillips *et al.*, 2006; Allam *et al.*, 2017; Martin-Short *et al.*, 2018; Feng
320 and Ritzwoller, 2019; Berg *et al.*, 2020). The mantle wedge appears to extend to the Aleutian arc,
321 west of the Kodiak island. We also see a strong velocity contrast across the Eastern Denali fault at

322 the southeastern end of Alaska at shallow depths (≤ 3 km) that has not been observed in previous
323 studies. We are also able to detect low velocity sediments in the Hecate Strait off the coast of British
324 Columbia. Berg *et al.* (2020) observed low Vs in the lower crust under Brooks Range related to
325 fold-and-thrust crustal thickening. Using constraints provided by body-wave arrivals times from
326 crustal earthquakes, we see similar low values of Vp under the Brooks Range (Figures S2 and 9b),
327 a feature not clearly present in the body-wave tomography results of Gou *et al.* (2019).

328

Discussion and Conclusions

329 We can use independent information to assess the accuracy of some aspects of these models.
330 For example, Shellenbaum *et al.* (2010) present a map of the depth to basement beneath the
331 Cook Inlet basin, based on a combination of marine seismic reflection data and oil and gas wells
332 that penetrated the basement. The maximum basement depth from their map is about 7.5 km.
333 If we adopt Vp ~ 4.7 km/s as representing basement (Lutter *et al.*, 2004), then the AKEP2020
334 and AKEP2006 models substantially overestimate basin depth, by about 50%. In contrast, model
335 AKAN2020 shows very good agreement with Shellenbaum *et al.* (2010). According to Fuis *et al.*
336 (1991), maximum basement depth in the Copper River Basin is approximately 5 km, based on
337 seismic refraction data. In this case, all three models are generally consistent with this basement
338 depth value, again assuming that Vp ~ 4.7 km/s represents basement.

339 Validating the deeper structure of these models is not straightforward. We find that the depth
340 to the top of the slab, based on the seismicity distribution, is greater than that of Hayes *et al.*
341 (2018) virtually everywhere in our models. This presumably reflects the fact that our earthquake
342 locations are determined in a 3-D model rather than a 1-D model. Validating the earthquake depths
343 and/or validating the deeper structure will require wavefield simulations. Since the AKEP2020 and
344 AKAN2020 models incorporate surface-wave data, we can expect that those models will perform
345 better in a comparison between simulated waveforms and observations from actual earthquakes.

346

Data and Resources

347 All seismic data data at Global Seismic Network stations are freely available at the IRIS
348 DMC. The majority of the data are from the following seismic networks: AK (Alaska Earth-
349 quake Center, Univ. of Alaska Fairbanks, 1987), AV (Alaska Volcano Observatory/USGS, 1988),
350 CN (Geological Survey of Canada, 1989), AT (NOAA, 1967), TA (IRIS, 2003), XE (Chris-
351 tensen *et al.*, 1999), ZE (Tape *et al.*, 2015) and XO, the onshore component of the AACSE
352 network. Data from additional networks are indicated in the electronic supplement. Models
353 AKEP2020 and AKAN2020 are available from the IRIS Earth Model Collaboration (<http://ds.iris.edu/ds/products/emc/>). The facilities of IRIS Data Services, and specifi-
354 cally the IRIS Data Management Center, were used for access to waveforms, related metadata,
355 and/or derived products used in this study. IRIS Data Services are funded through the Seismolog-
356 ical Facilities for the Advancement of Geoscience (SAGE) Award of the National Science Foun-
357 dation under Cooperative Support Agreement EAR-1851048. The supplemental material includes
358 example surface-wave phase velocity maps at a range of periods, coverage, depth slices from the
359 body-wave tomography model and coverage, a cross-section through the Cook Inlet basin and
360 example depth slices for the AKAN2020 model.
361

362

Acknowledgments

363 This material is based upon work supported by the U.S. Geological Survey under Grant Nos.
364 G18AP00017 and G19AP00019. M.M.M, C.T., and D.H.C. were supported by National Science
365 Foundation Grant EAR 1251971. A.N. thanks Robert Herrmann (St. Louis Univ.) for helpful
366 discussions about surface waves.

367

References

368 Abers, G. A., A. N. Adams, P. J. Haeussler, E. Roland, P. J. Shore, D. A. Wiens, S. Y. Schwartz,
 369 A. F. Sheehan, D. J. Shillington, S. Webb, and L. L. Worthington (2019). Examining Alaska's
 370 Earthquakes on Land and Sea. *EOS* 100, doi: 10.1029/2019EO117621.

371 Alaska Earthquake Center, Univ. of Alaska Fairbanks (1987). Alaska Regional Network. Inter-
 372 national Federation of Digital Seismograph Networks. Other/Seismic Network. doi:10.
 373 7914/SN/AK.

374 Alaska Volcano Observatory/USGS (1988). Alaska Volcano Observatory. International Federation
 375 of Digital Seismograph Networks. Other/Seismic Network. doi:10.7914/SN/AV.

376 Allam, A. A., V. Schulte-Pelkum, Y. Ben-Zion, C. Tape, N. Ruppert, and Z. E. Ross (2017).
 377 Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone
 378 from double-difference tomography, receiver functions, and fault zone head waves. *Tectono-*
 379 *physics* 721, 56–69, doi: 10.1016/j.tecto.2017.09.003.

380 Bensen, G. D., M. H. Ritzwoller, and N. M. Shapiro (2007). Broadband ambient noise surface wave
 381 tomography across the United States. *J. Geophys. Res.* 113, 1–21, doi: 10.1029/2007JB005248.

382 Berg, E. M., F.-C. Lin, A. Allam, V. Schulte-Pelkum, K. M. Ward, and W. Shen (2020). Shear
 383 velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and
 384 receiver functions across the Alaska transportable Array. *J. Geophys. Res. Solid Earth* 125, doi:
 385 10.1029/2019JB018582.

386 Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth's
 387 crust. *Bull. Seismol. Soc. Am.* 95(6), 2081–2092.

388 Christensen, D., G. Abers, and R. Hansen (1999). Broadband Experiment Across the Alaska
 389 Range. International Federation of Digital Seismograph Networks. Other/Seismic Network.
 390 10.7914/SN/XE_1999.

391 Eberhart-Phillips, D. (1990). Three-dimensional *P* and *S* velocity structure in the Coalinga region,

392 California. *J. Geophys. Res.* 95(B10), 15,343–15,363.

393 Eberhart-Phillips, D., S. Bannister, and S. Ellis (2014). Imaging *P* and *S* attenuation in the termi-
394 nation region of the Hikurangi subduction zone, New Zealand. *Geophys. J. Int.* 198, 516–536,
395 doi: 10.1093/gji/ggu151.

396 Eberhart-Phillips, D., D. H. Christensen, T. M. Brocher, R. Hansen, N. A. Ruppert, P. J. Haeussler,
397 and G. A. Abers (2006). Imaging the transition from Aleutian subduction to Yakutat collision
398 in central Alaska, with local earthquakes and active source data. *J. Geophys. Res.* 111, doi:
399 10.1029/2005JB004240.

400 Eberhart-Phillips, D. and B. Fry (2017). A new scheme for joint surface wave and earthquake
401 travel-time inversion and resulting 3-D velocity model for the western North Island, New
402 Zealand. *Phys. Earth Planet. Inter.* 269, 98–111, doi: 10.1016/j.pepi.2017.05.014.

403 Eberhart-Phillips, D. and M. Reyners (1997). Continental subduction and three-dimensional crustal
404 structure: The northern South Island, New Zealand. *J. Geophys. Res.* 102(B6), 11,843–11,861.

405 Fang, H., H. Yao, H. Zhang, Y.-C. Huang, and R. D. van der Hilst (2015). Direct inversion of
406 surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing:
407 methodology and application. *Geophys. J. Int.* 201, 1251–1263, doi: 10.1093/gji/ggv080.

408 Fang, H., H. Zhang, H. Yao, A. Allam, D. Zigone, Y. Ben-Zion, C. Thurber, and R. D. van der
409 Hilst (2016). A new algorithm for three-dimensional joint inversion of body wave and surface
410 wave data and its application to the Southern California plate boundary region. *J. Geophys. Res.*
411 *Solid Earth* 121, 3557–3569, doi: 10.1002/2015JB012702.

412 Feng, L. and M. H. Ritzwoller (2019). A 3-D shear velocity model of the crust and uppermost
413 mantle beneath Alaska including apparent radial anisotropy. *J. Geophys. Res. Solid Earth* 124,
414 10,468–10,497, doi: 10.1029/2019JB018122.

415 Ferris, A., G. A. Abers, D. H. Christensen, and E. Veenstra (2003). High resolution image of
416 the subducted Pacific (?) plate beneath central Alaska, 50–150 km depth. *Earth Planet.*
417 *Sci. Lett.* 214, 575–588.

418 Fuis, G. S., E. L. Ambos, W. D. Mooney, N. I. Christensen, and E. Geist (1991). Crustal structure
419 of accreted terranes in southern Alaska, Chugach Mountains and Copper River basin, from
420 seismic refraction results. *J. Geophys. Res.* 96(B3), 4187–4227.

421 Geological Survey of Canada (1989). Canadian National Seismograph Network. International Fed-
422 eration of Digital Seismograph Networks. Other/Seismic Network. doi:10.7914/SN/CN.

423 Gou, T., D. Zhao, Z. Huang, and L. Wang (2019). Aseismic deep slab and mantle flow beneath
424 Alaska: Insight from anisotropic tomography. *J. Geophys. Res. Solid Earth* 124, 1700–1724,
425 doi: 10.1029/2018JB016639.

426 Gou, T., D. Zhao, Z. Huang, and L. Wang (2020). Structural heterogeneity in source zones
427 of the 2018 Anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake.
428 *Geochem. Geophys. Geosyst.* 21, doi: 10.1029/2019GC008812.

429 Hayes, G. P., G. L. Moore, D. E. Portner, M. Hearne, H. Flamme, M. Furtney, and G. M. Smoczyk
430 (2018). Slab2, a comprehensive subduction zone geometry model. *Science* 362, 58–61, doi:
431 10.1126/science.aat4723.

432 Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and
433 research. *Seismol. Res. Lett.* 84(6), 1081–1088, doi: 10.1785/0220110096.

434 IRIS (2003). USArray Transportable Array. International Federation of Digital Seismograph Net-
435 works. Other/Seismic Network. doi:10.7914/SN/TA.

436 Jiang, C., B. Schmandt, K. M. Ward, F.-C. Lin, and L. L. Worthington (2018). Upper mantle
437 seismic structure of Alaska from Rayleigh and *S* wave tomography. *Geophys. Res. Lett.* 45,
438 10,350–10,359, doi: 10.1029/2018GL079406.

439 Kirschner, C. E. (1988). Map Showing Sedimentary Basins of Onshore and Continental Shelf
440 Areas, Alaska. U.S. Geol. Survey Miscellaneous Investigation Series I-1873.

441 Kissling, E. and J. C. Lahr (1991). Tomographic image of the Pacific Slab under southern Alaska.
442 *Eclogae geol. Helv.* 84(2), 297–315.

443 Lanza, F., C. J. Chamberlain, K. Jacobs, E. Warren-Smith, H. J. Godfrey, M. Kortink, C. H.
444 Thurber, M. K. Savage, J. Townend, S. Roecker, and D. Eberhat-Phillips (2019). Crustal fault
445 connectivity of the M_w 7.8 2016 Kaikōura earthquake constrained by aftershock relocations.
446 *Geophys. Res. Lett.* **46**, 6487–6496, doi: 10.1029/2019GL082780.

447 Li, J., G. A. Abers, Y. Kim, and D. Christensen (2013). Alaska megathrust 1: Seismicity 43 years
448 after the great 1964 Alaska megathrust earthquake. *J. Geophys. Res.* **118**, 4861–4871, doi:
449 10.1002/jgrb.50358.

450 Lin, F.-C., M. P. Moschetti, and M. H. Ritzwoller (2008). Surface wave tomography of the west-
451 ern United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps.
452 *Geophys. J. Int.* **173**, 281–298.

453 Lin, F.-C., V. C. Tsai, and B. Schmandt (2014). 3-D crustal structure of the western United
454 States: application of Rayleigh-wave ellipticity extracted from noise cross-correlations. *Geo-
455 phys. J. Int.* **198**, 656–670.

456 Lutter, W. J., G. S. Fuis, T. Ryberg, D. A. Okaya, R. W. Clayton, P. M. Davis, C. Prodehl, J. M.
457 Murphy, V. E. Langenheim, M. L. Benthien, N. J. Godfrey, N. I. Christensen, K. Thygesen,
458 C. H. Thurber, G. Simila, and G. R. Keller (2004). Upper crustal structure from the Santa
459 Monica Mountains to the Sierra Nevada, southern California: Tomographic results from the
460 Los Angeles Regional Seismic Experiment, Phase II (LARSE II). *Bull. Seismol. Soc. Am.* **64**(2),
461 619–632.

462 Martin-Short, R., R. Allen, I. D. Marstow, R. W. Porritt, and M. S. Miller (2018). Seismic imaging
463 of the Alaska subduction zone: Implications for Slab Geometry and Volcanism. *Geochem. Geo-
464 phy. Geosyst.* **19**, 4541–4560, doi: 10.1029/2018GC007962.

465 Martin-Short, R., R. M. Allen, and I. D. Barstow (2016). Subduction geometry beneath south
466 central Alaska and its relationship to volcanism. *Geophys. Res. Lett.* **43**, 9509–9517, doi:
467 10.1002/2016GL070580.

468 Miller, M. S. and L. Moresi (2018). Mapping the Alaska Moho. *Seismol. Res. Lett.* **89**(6), 2430–

469 2436, doi: 10.1785/0220180222.

470 Miller, M. S., L. J. O'Driscoll, R. W. Porritt, and S. M. Roeske (2018). Multiscale crustal ar-
471 chitecture of Alaska inferred from P receiver functions. *Lithosphere* 10(2), 267–278, doi:
472 10.1130/L701.1.

473 Nayak, A. and C. H. Thurber (2020). Using multi-component ambient seismic noise cross-
474 correlations to identify higher mode Rayleigh waves and improve dispersion measurements.
475 *Geophys. J. Int.*, doi: 10.1093/gji/ggaa270.

476 NOAA (1967). National Tsunami Warning Center Alaska Seismic Network. International Federa-
477 tion of Digital Seismograph Networks. Other/Seismic Network. doi: 10.7914/SN/AT.

478 Qi, C., D. Zhao, and Y. Chen (2007). Search for deep slab segments under Alaska. *Phys. Earth*
479 *Planet. Inter.* 165, 68–82.

480 Qi, C., D. Zhao, Y. Chen, and N. A. Ruppert (2007). New insight into the crust and upper mantle
481 structure under Alaska. *Polar Science* 1, 85–100.

482 Rawlinson, N. and M. Sambridge (2004). Wave front evolution in strongly heterogeneous layered
483 media using the fast marching method. *Geophys. J. Int.* 156, 631–647, doi: 10.1111/j.1365-
484 246X.2004.02153.x.

485 Searcy, C. K., D. H. Christensen, and G. Zandt (1996). Velocity structure beneath College station
486 Alaska from receiver functions. *Bull. Seismol. Soc. Am.* 86(1A), 232–241.

487 Shellenbaum, D. P., L. S. Gregersen, and P. R. Delaney (2010). Top Mesozoic unconformity depth
488 map of the Cook Inlet Basin, Alaska. doi: 10.14509/21961. Alaska Div. Geol. Geophys. Surv.
489 Report of Investigation 2010-2, 1 sheet, scale 1:500,000, available at <http://www.dggs.alaska.gov/pubs/id/21961> (last accessed 2016-10-30).

490 Tape, C., D. Christensen, M. M. Moore-Driskell, J. Sweet, and K. Smith (2017). Southern Alaska
491 Lithosphere and Mantle Observation Network (SALMON): a seismic experiment covering the
492 active arc by road, boat, plane, and helicopter. *Seismol. Res. Lett.* 88(4), 1185–1202, doi:
493

494 10.1785/0220160229.

495 Tape, C., D. H. Christensen, and M. M. Driskell (2015). Southern Alaska Lithosphere and
496 Mantle Observation Network. International Federation of Digital Seismograph Networks.
497 Other/Seismic Network. doi:10.7914/SN/ZE_2015.

498 Tape, C., S. Holtkamp, V. Silwal, J. Hawthorne, Y. Kaneko, J. P. Ampuero, C. Ji, N. Ruppert,
499 K. Smith, and M. E. West (2018). Earthquake nucleation and fault slip complexity in the lower
500 crust of central Alaska. *Nature Geoscience* 11, 536–541, doi: 10.1038/s41561-018-0144-2.

501 Thurber, C. and D. Eberhart-Phillips (1999). Local earthquake tomography with flexible gridding.
502 *Computers & Geosciences* 25, 809–818.

503 Thurber, C. and J. Ritsema (2015). Seismic tomography and inverse methods. In G. Schubert (Ed.),
504 *Seismology and Structure of the Earth* (2 ed.), Volume 1 of *Treatise on Geophysics*, pp. 307–
505 337. Elsevier.

506 Tian, Y. and D. Zhao (2012). Seismic anisotropy and heterogeneity in the Alaska subduction zone.
507 *Geophys. J. Int.* 190, 629–649, doi: 10.1111/j.1365-246X.2012.05512.x.

508 van Stiphout, T., E. Kissling, S. Wiemer, and N. Ruppert (2009). Magmatic processes in the Alaska
509 subduction zone by combined 3-D b value imaging and targeted seismic tomography. *J. Geophys. Res.* 114, 1–16, doi: 10.1029/2008JB005958.

510

511 Wang, Y. and C. Tape (2014). Seismic velocity structure and anisotropy of the Alaska subduction
512 zone derived from surface wave tomography. *J. Geophys. Res. Solid Earth* 119, 8845–8865,
513 doi: 10.1002/2014JB011438.

514 Ward, K. M. (2015). Ambient noise tomography across the southern Alaskan Cordillera. *Geo-
515 phys. Res. Lett.* 42, 3218–3227, doi: 10.1002/2015GL063613.

516 Ward, K. M. and F.-C. Lin (2018). Lithospheric structure across the Alaskan cordillera from the
517 joint inversion of surface waves and receiver functions. *J. Geophys. Res. Solid Earth* 123, 8780–
518 8797, doi: 10.1029/2018JB015967.

519 Watkins, W. D., C. H. Thurber, E. R. Abbott, and M. R. Brudzinski (2018). Local earth-
520 quake tomography of the Jalisco, Mexico region. *Tectonophysics* 724-725, 51–64, doi:
521 10.1016/j.tecto.2018.01.002.

522 Zhang, H., C. H. Thurber, D. Shelly, S. Ide, G. C. Beroza, and A. Hasegawa (2004). High-
523 resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-
524 difference tomography. *Geology* 32(4), 361–364, doi: 10.1130/G20261.1;.

525 Zhao, D., D. Christensen, and H. Pulpan (1995). Tomographic imaging of the Alaska subduction
526 zone. *J. Geophys. Res.* 100(B4), 6487–6504.

527 Department of Geoscience
528 University of Wisconsin-Madison
529 1215 W. Dayton St.
530 Madison, USA WI 53706
531 (A.N., C.H.T.)
532 Department of Earth and Planetary Sciences,
533 University of California, Davis
534 One Shields ave, Davis, CA 95616,
535 and GNS Science
536 Dunedin, New Zealand
537 (D.E.P)
538 University of Alaska Fairbanks, Geophysical Institute
539 2156 Koyukuk Drive
540 Fairbanks, Alaska, U.S.A. 99775
541 (N.R., C.T., D.H.C.)
542 Department of Earth, Atmospheric and Planetary Sciences

543 Massachusetts Institute of Technology

544 Cambridge, MA, U.S.A. 02139

545 (H.F.)

546 University of North Alabama

547 Department of Physics and Earth Science

548 UNA Box 5172

549 Florence, Alabama 35632

550 (M.D.)

551 Department of Earth and Atmospheric Sciences

552 Cornell University

553 Ithaca, NY 14853

554 (G.A.A.)

555

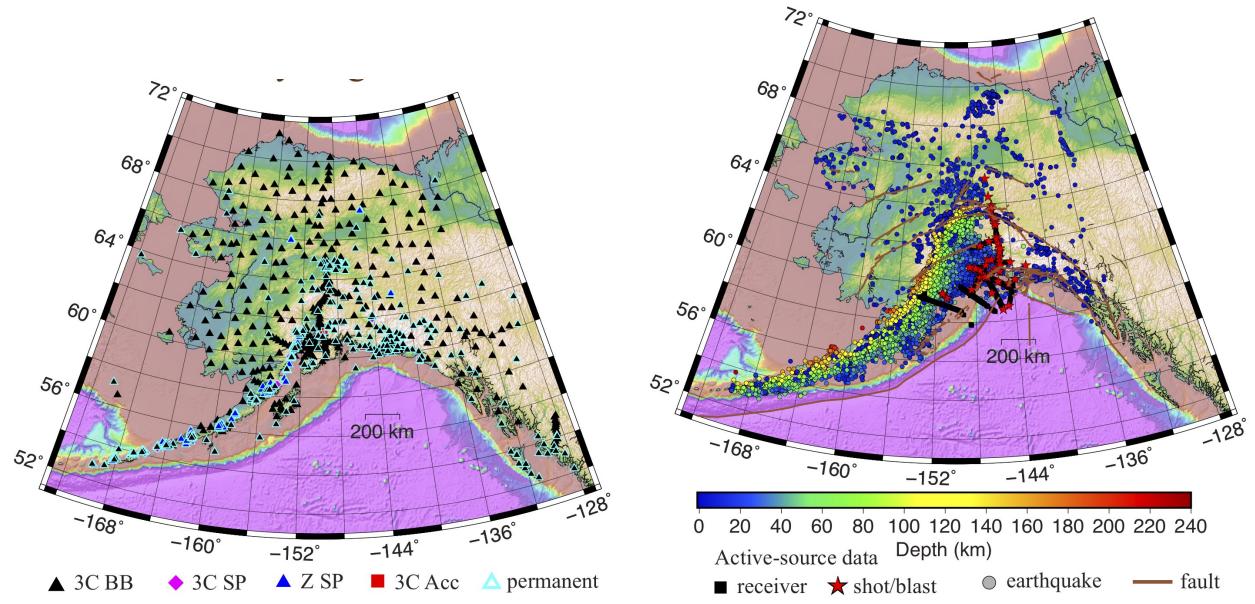


Figure 1. (a) Map of stations used for the assembly of our body-wave and surface-wave datasets. (b) Map of earthquakes (circles, color-coded by depth) and explosions (red stars) included in our body-wave dataset.

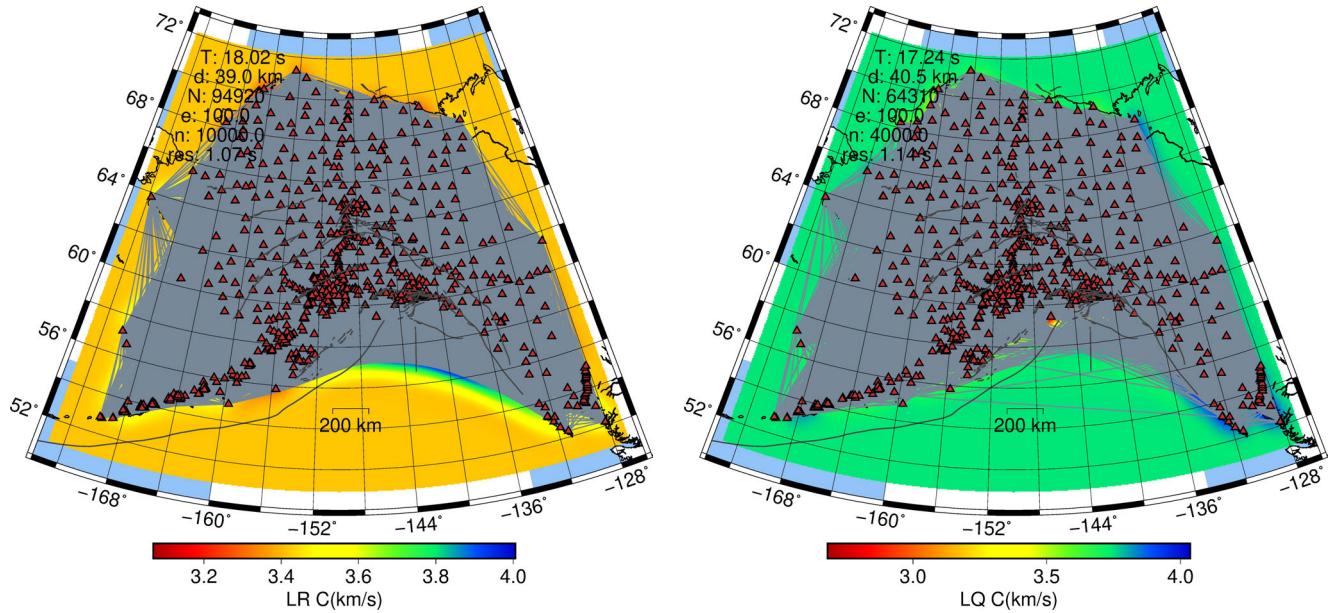


Figure 2. Example ray coverage maps for (a) Rayleigh waves at 18 s and (b) Love waves at 17 s.

556

557

558

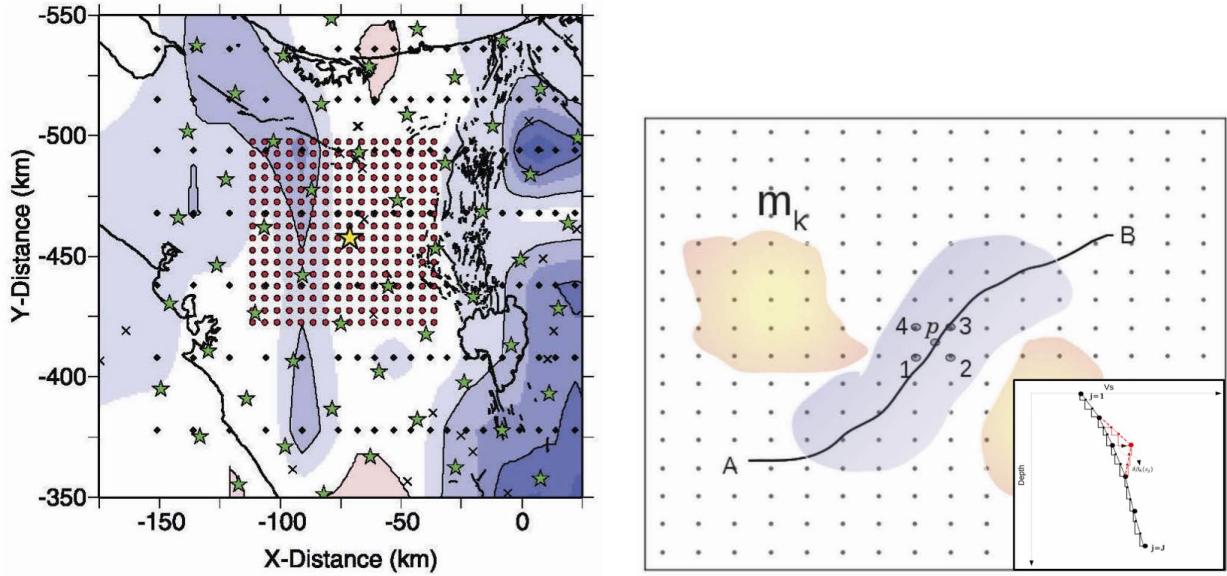


Figure 3. (a) Map view of part of the NZ-wide velocity grid, showing example of a box for computing group velocity partial derivatives at points (red dots) in a volume surrounding a group velocity observation (yellow star), analogous to points along a ray path from an earthquake travel-time. Small dots are 3-D velocity grid nodes, stars are other group velocity observation locations. From Eberhart-Phillips and Fry (2017). (b) Illustration of the Fang *et al.* (2015) sensitivity kernel calculation. The black solid line represents the propagation path between two stations A and B for the surface wave at some period. The phase slowness at any point p along the path is determined from the values at four surrounding horizontal grid points using a bilinear interpolation method for all available frequencies. Vs sensitivity kernels are then computed for discretized points and interpolated onto the surrounding nodes at discretized depths - see inset at lower right. From Fang *et al.* (2015).

559
560
561
562
563
564

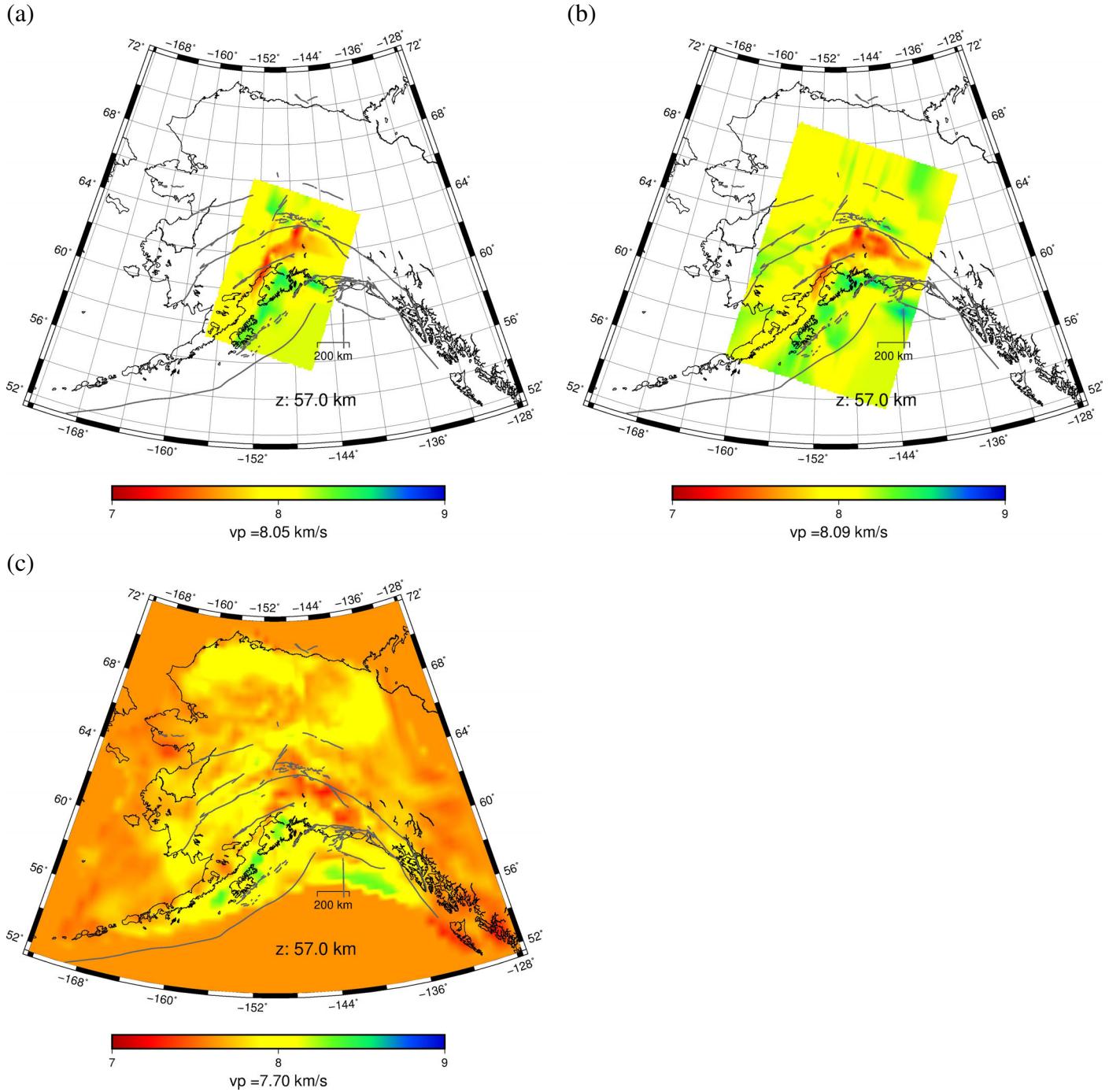


Figure 4. Map-view slices at 57 km depth through the Vp models (a) AKEP2006, (b) AKEP2020, and (c) AKAN2020. In the regions covered in common, the main features are generally consistent, although the absolute velocities are slightly lower on average in AKAN2020, as indicated by the average Vp at this depth indicated below the color bar. Vp values in km/s.

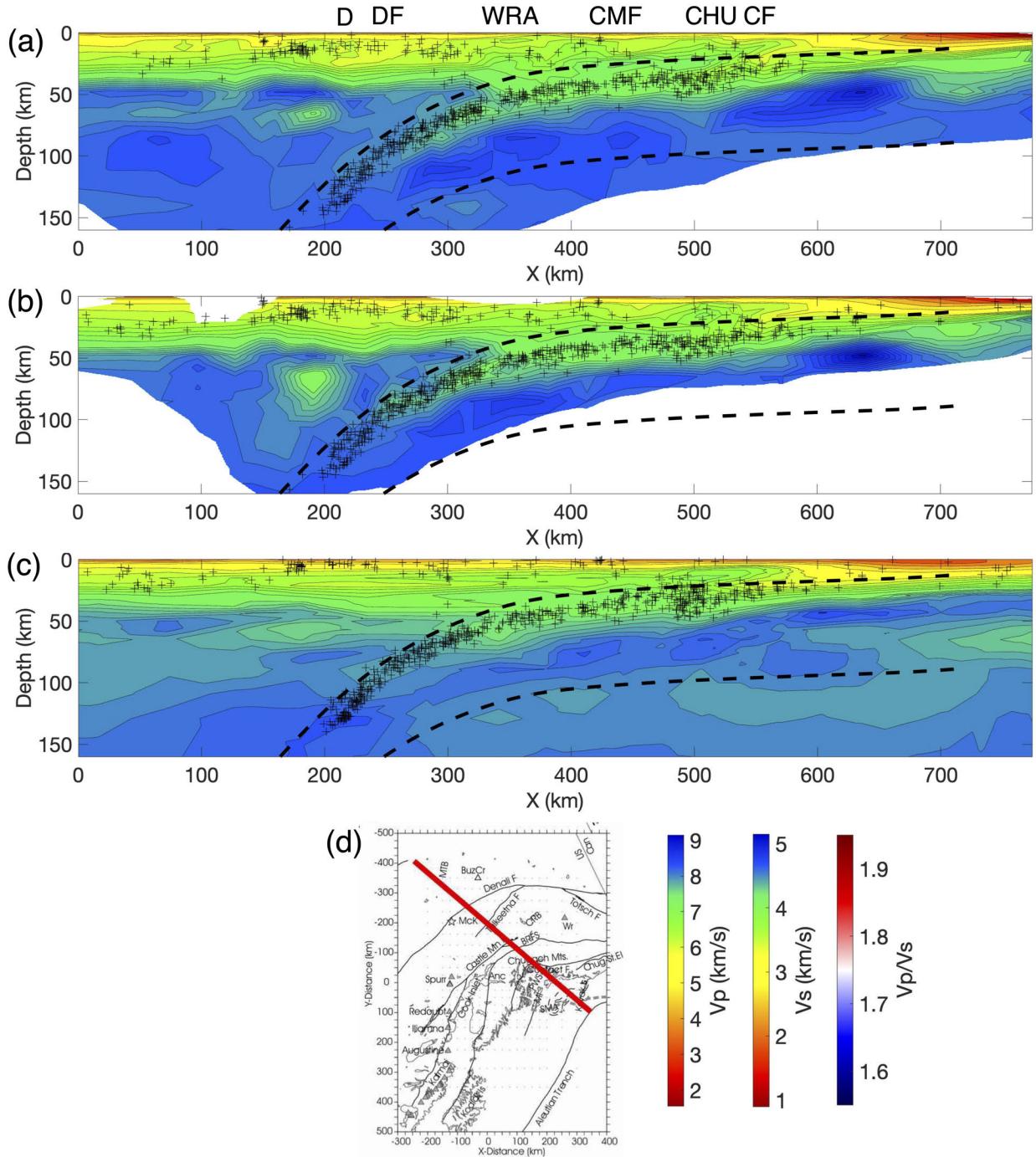


Figure 5. Cross-sections through Vp models (a) AKEP2020, (b) AKEP2006, and (c) AKAN2020 along the profile show in (d). D, Denali; DF, Denali fault; WRA, Wrangellia terrane; CMF, Castle Mountain fault; CHU, Chugach Mountains; CF, Contact fault. Slab top and bottom from Hayes *et al.* (2018) are shown by the black dashed lines. Color legends for Vp (here), Vs (Figure 6), and Vp/Vs (Figure 6) are shown in (d).

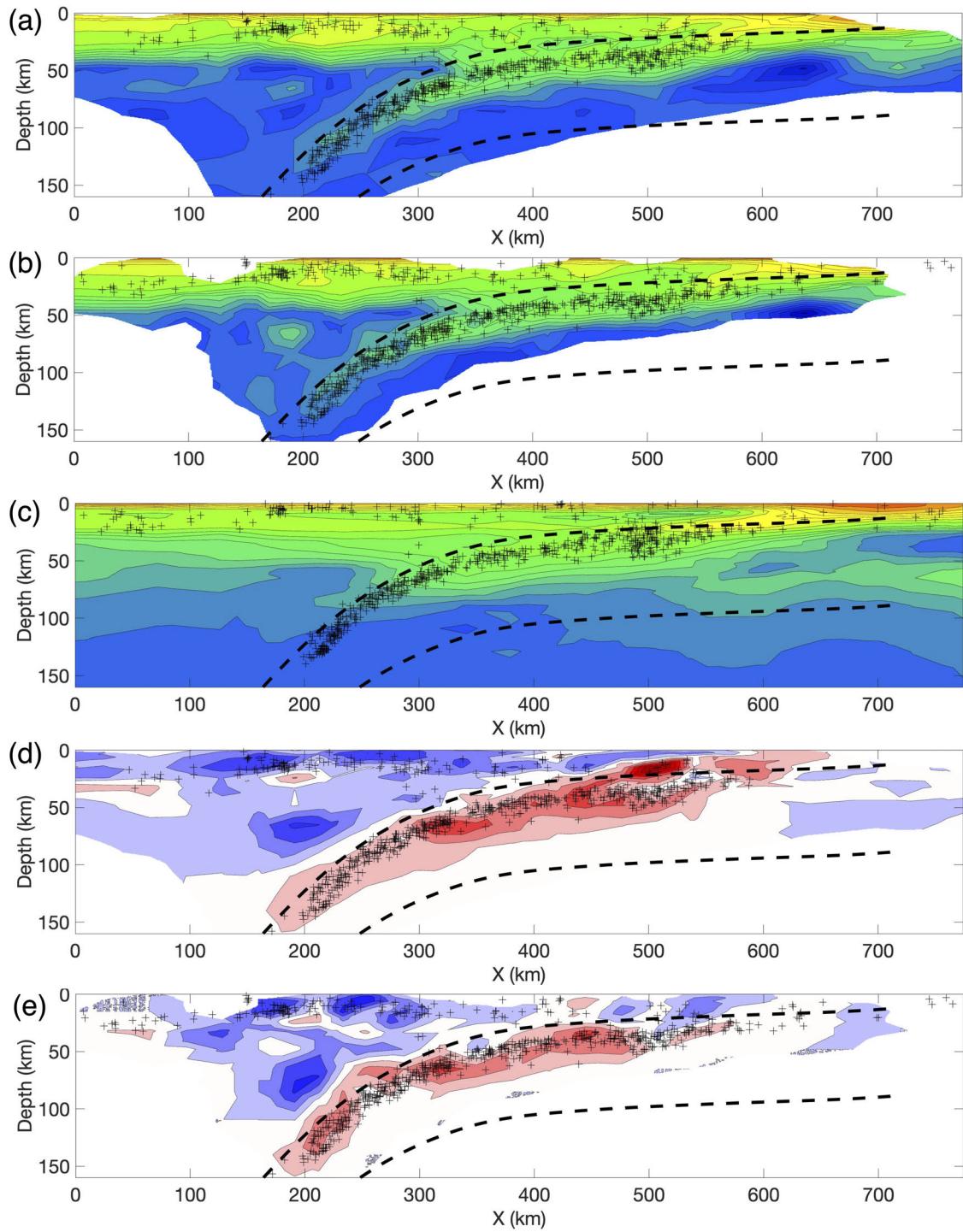


Figure 6. Cross-sections through Vs models (a) AKEP2020, (b) AKEP2006, and (c) AKAN2020, and Vp/Vs models (d) AKEP2020 and (e) AKEP2006 along the profile show in (f). D, Denali; DF, Denali fault; WRA, Wrangellia terrane; CMF, Castle Mountain fault; CHU, Chugach Mountains; CF, Contact fault. Slab top and bottom from Hayes *et al.* (2018) are shown by the black dashed lines. The cross section profile and color legends are shown in Figure 5d.

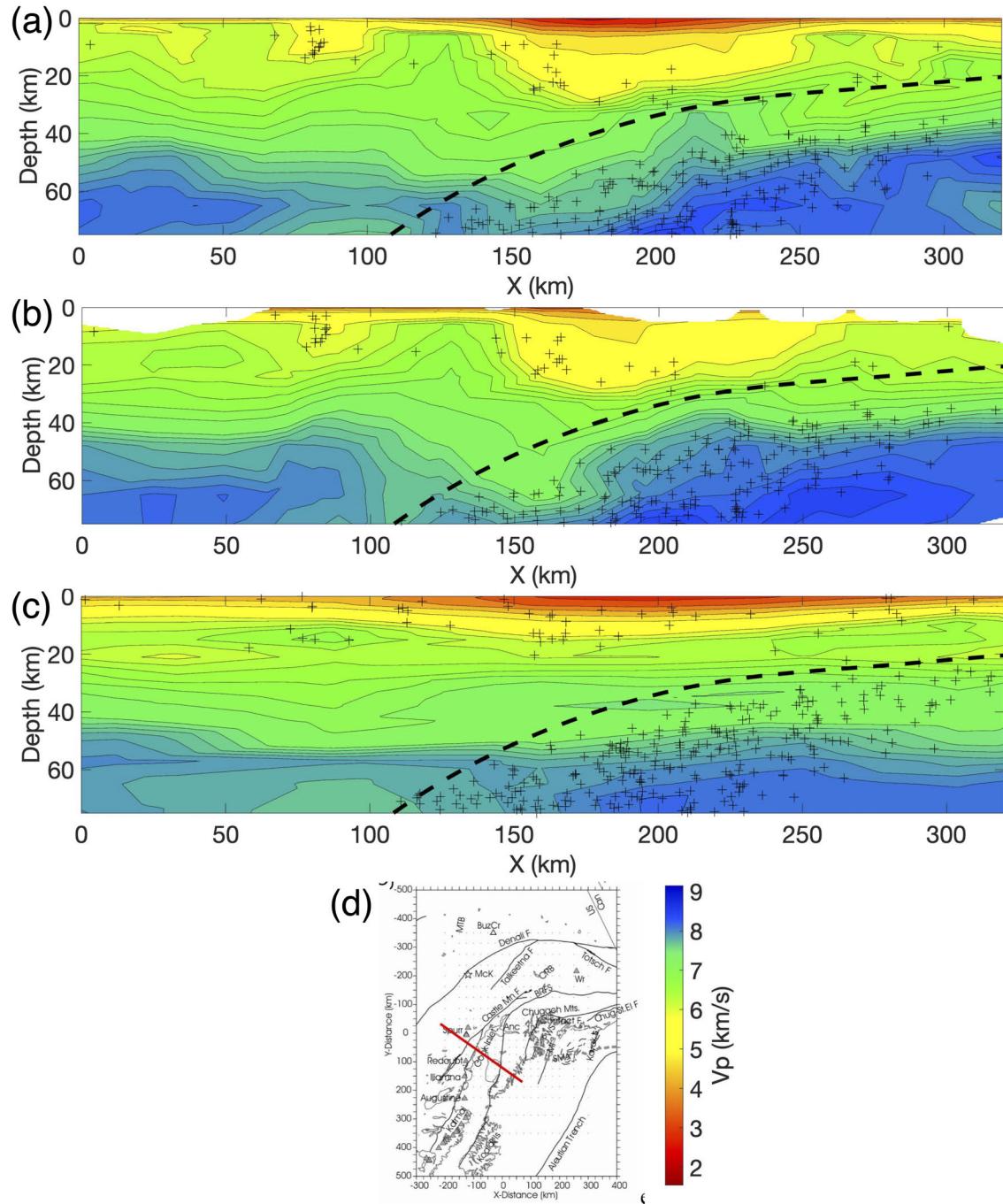


Figure 7. Cross-sections through Vp models (a) AKEP2020, (b) AKEP2006, and (c) AKAN2020 through Cook Inlet, along the profile show in (d). The color legend is also shown in (d).

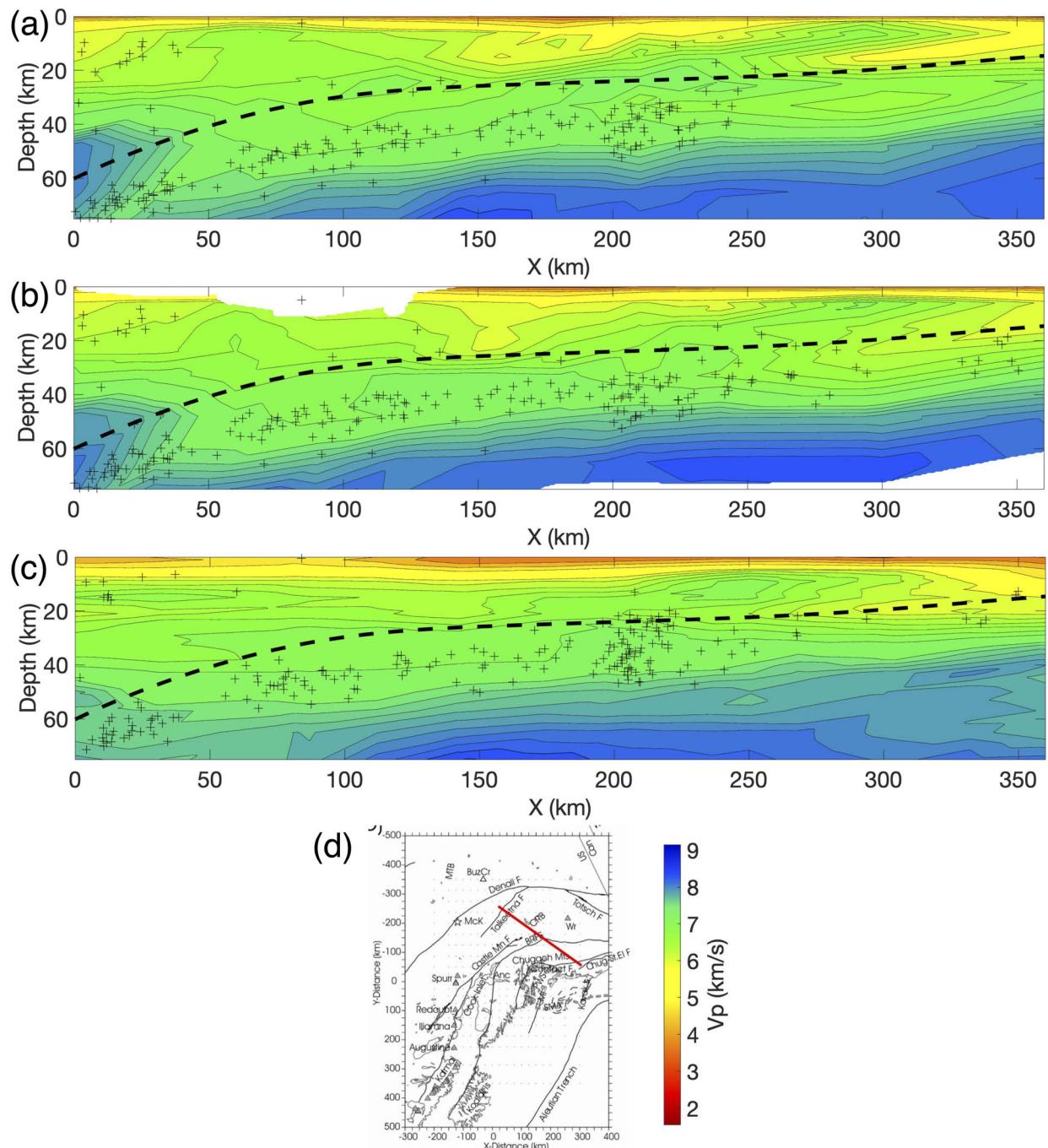


Figure 8. Cross-sections through Vp models (a) AKEP2020, (b) AKEP2006, and (c) AKAN2020 through the Copper River Basin, along the profile show in (d). The color legend is also shown in (d).

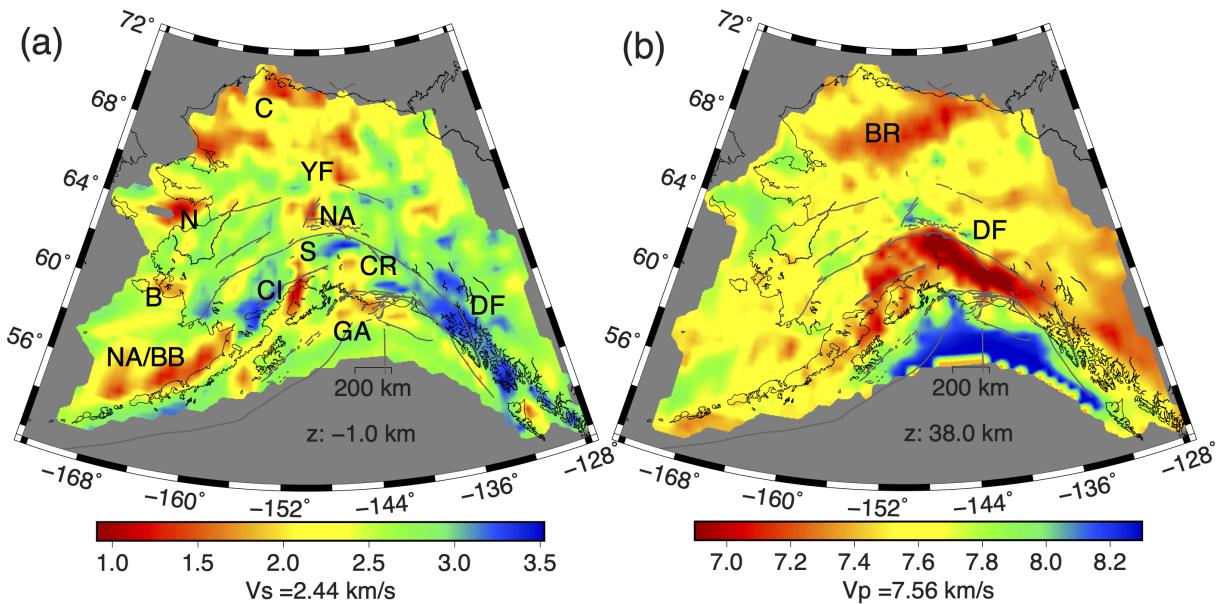


Figure 9. Depth slices for AKAN2020 (a) Vs at the reference depth and (b) Vp at depth 38 km. Features shown in the figures are: North Aleutian/Bristol Bay Basin (NA/BB), Bethel Basin (B), Cook Inlet Basin (CI), Susitna Basin (S), Gulf of Alaska (GA), Copper River Basin (CR), Denali Fault (DF), Nenana Basin (NA), Norton Basin (N), Yukon Flats Basin (YF), Colville Basin (C) and Brooks Range (BR).

1 **Supplemental Information for: Three-Dimensional Seismic Velocity Models for Alaska**
2 **from Joint Tomographic Inversion of Body-Wave and Surface-Wave Data**
3 Avinash Nayak, Donna Eberhart-Phillips, Natalia Ruppert, Hongjian Fang, Melissa M. Moore, Carl Tape,
4 Douglas H. Christensen, Geoffrey A. Abers, Clifford Thurber
5 June 9, 2020

6 **S1 Additional technical details on the inversions**

7 We tested a range of smoothing and damping parameters for the inversion of group velocity and phase
8 velocity maps. In the inversion of surface-wave dispersion curves for 1D Vs models, we impose model
9 smoothing and greater damping for deeper layers. In body-wave tomography, relative weights for P-wave
10 and S-wave arrival times are 1.0 and 0.7, respectively. Additionally, weights decrease with epicentral
11 distance from 1.0 at 100 km to \sim 0.1 at the maximum distance (\sim 900 km for P-wave and \sim 600 km for
12 S-wave picks). In the joint inversion for AKAN2020 model, the nodes are at depths (km): [-1:1 3:2:9
13 12:3:21 25:4:33 38:5:43 50:7:57 65 76 89 109 129 179 229 300].

14 **S2 Seismic networks**

15 Other networks used in this study are GM (USGS Network), II/IU (Global Seismograph Network), IM
16 (International Miscellaneous Stations Network), NP (US National Strong-Motion Network), NY (Yukon-
17 Northwest Seismic Network), US (US National Seismic Network), XF (Collaborative Research: Relating
18 glacier-generated seismicity to ice motion, basal processes and iceberg calving), XF (Collaborative Re-
19 search: Dynamic controls on tidewater glacier retreat), XM (Broadband recording at the site of great
20 earthquake rupture in the Alaska Megathrust), XN (Collaborative Research: Canadian Northwest Seismic
21 Experiment), XR (CSEDI: Observational and Theoretical Constraints on the Structure and Rotation of the
22 Inner Core), XV (FLATS Fault Locations and Alaska Tectonics from Seismicity), XY (Magma Accre-
23 tion and the Formation of Batholiths), XZ (STEEP Collaborative Research: St. Elias Erosion/Tectonics
24 Project), YM (Columbia Glacier Passive Seismic Experiment), YV (Bering Glacier Surge Seismic Ex-
25 periment), YV (MOOS Multidisciplinary Observations Of Subduction), ZQ (Taku Glacier), ZR (Bering
26 Glacier Field Camp 2008), 5C (Dynamics of Lake-Calving Glaciers: Yakutat Glacier, Alaska) and station
27 MM04 from 7C (The Mackenzie Mountains Transect: Active Deformation from Margin to Craton).

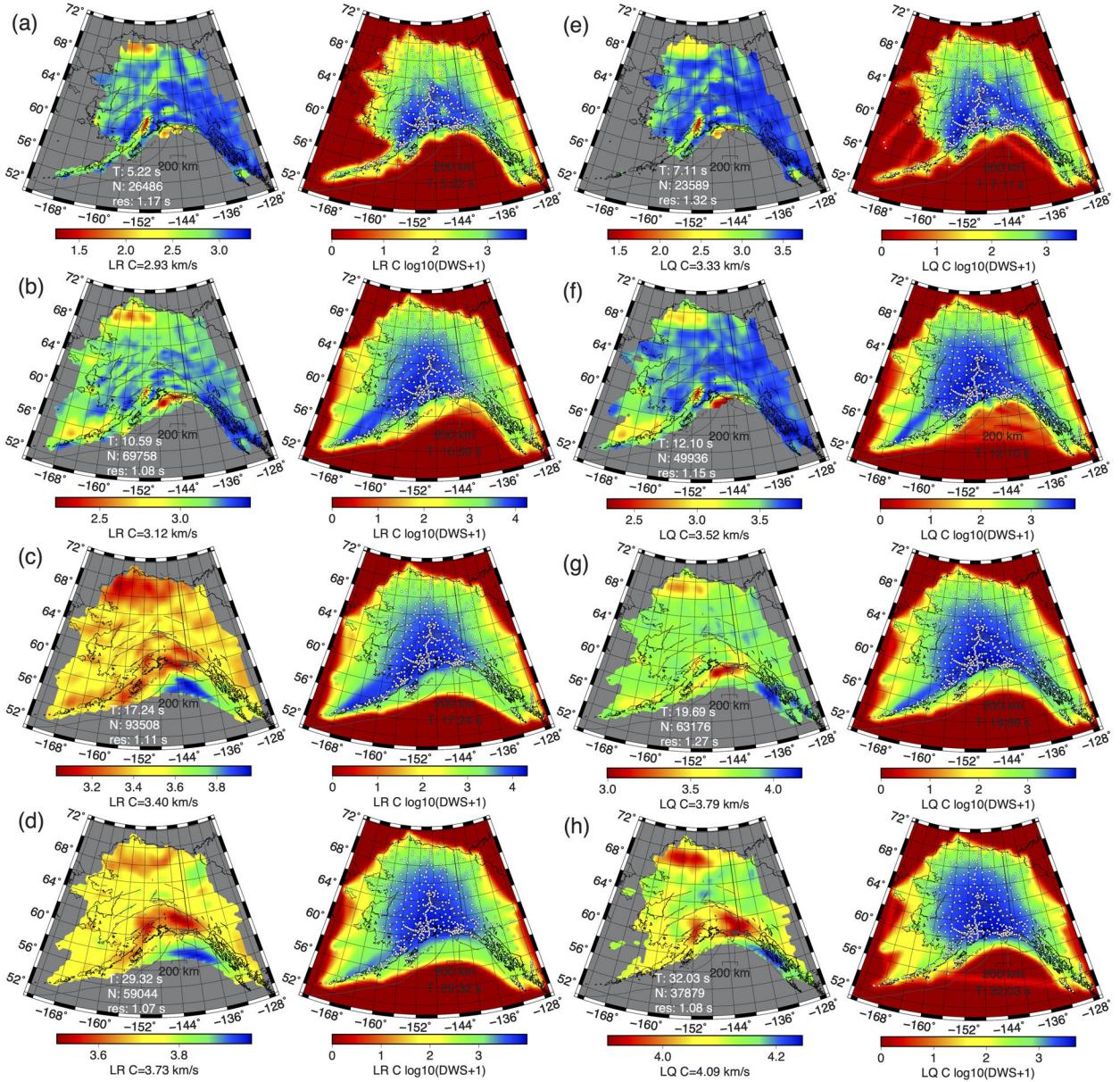


Figure S1: Surface-phase velocity maps and Derivative Weighted Sum (DWS) on a log10 scale for the statewide velocity model of Alaska. Columns from left to right are Rayleigh-wave phase velocity (LR C) maps, DWS for Rayleigh-wave phase velocity, Love-wave phase velocity maps (LQ C) and DWS for Love-wave phase velocity. Different rows are different periods (~5.2 s, ~10.6 s, ~17.2 s, ~29.3 s for Rayleigh waves and ~7.1 s, ~12.1 s, ~19.7 s, ~32.0 s for Love waves from top to bottom). The period (T), number of measurements (N) and final weighted RMS phase arrival time misfit in seconds (res) are indicated on each phase velocity map. Areas with DWS ≤ 100 or $\log_{10}(DWS+1) \leq 2$ are masked. White circles in DWS maps are stations used for that period.

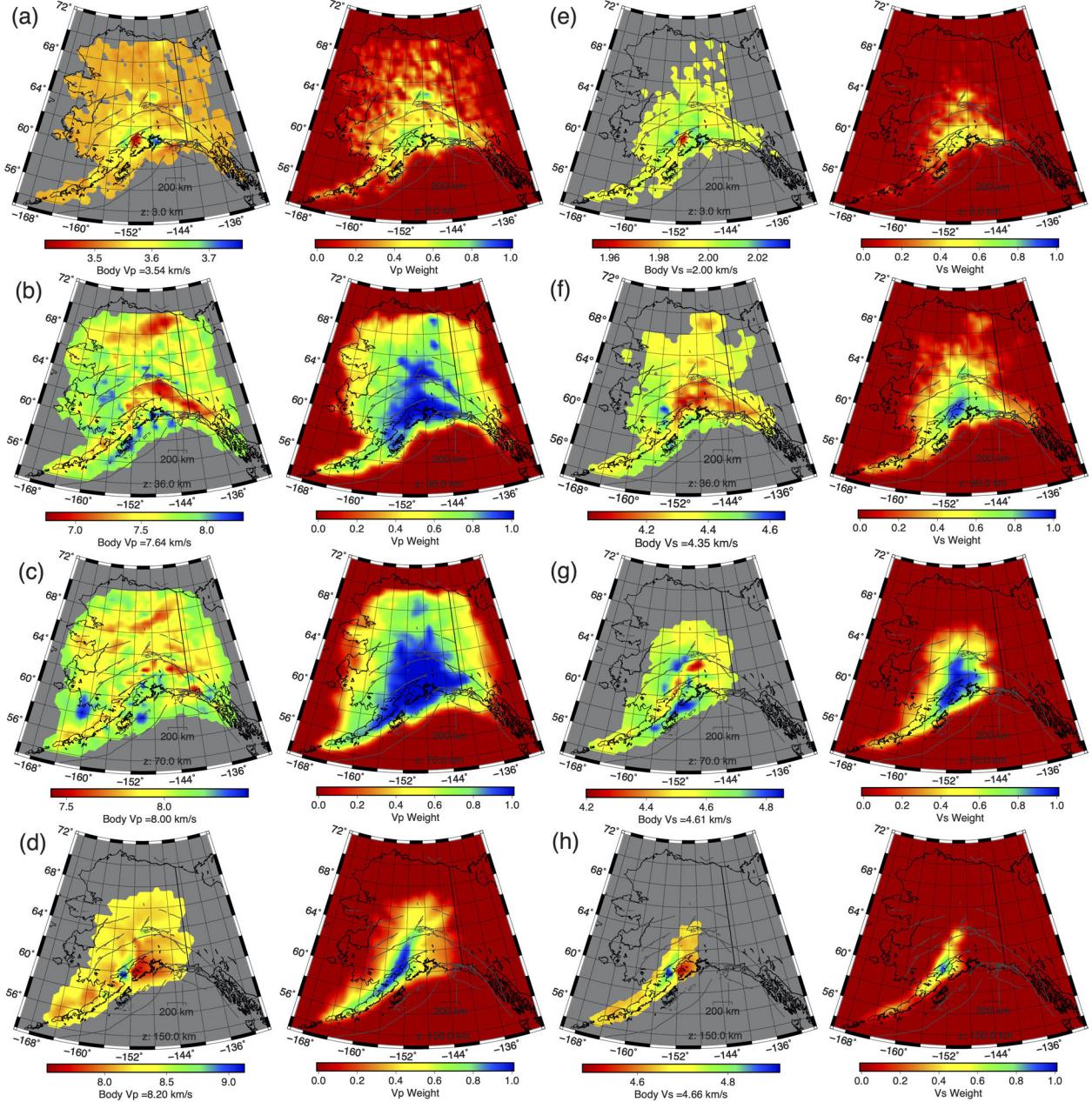


Figure S2: Body-wave tomography results for the statewide model of Alaska. The columns from left to right are Vp, rescaled DWS for Vp, Vs, and rescaled DWS for Vs. Different rows are different depths (~ 3 km, ~ 36 km, ~ 70 km and ~ 150 km). DWS values are scaled from a range of 100–10000 to 0–1. Regions with DWS values ≤ 100 or rescaled weight ≤ 0.0 are masked.

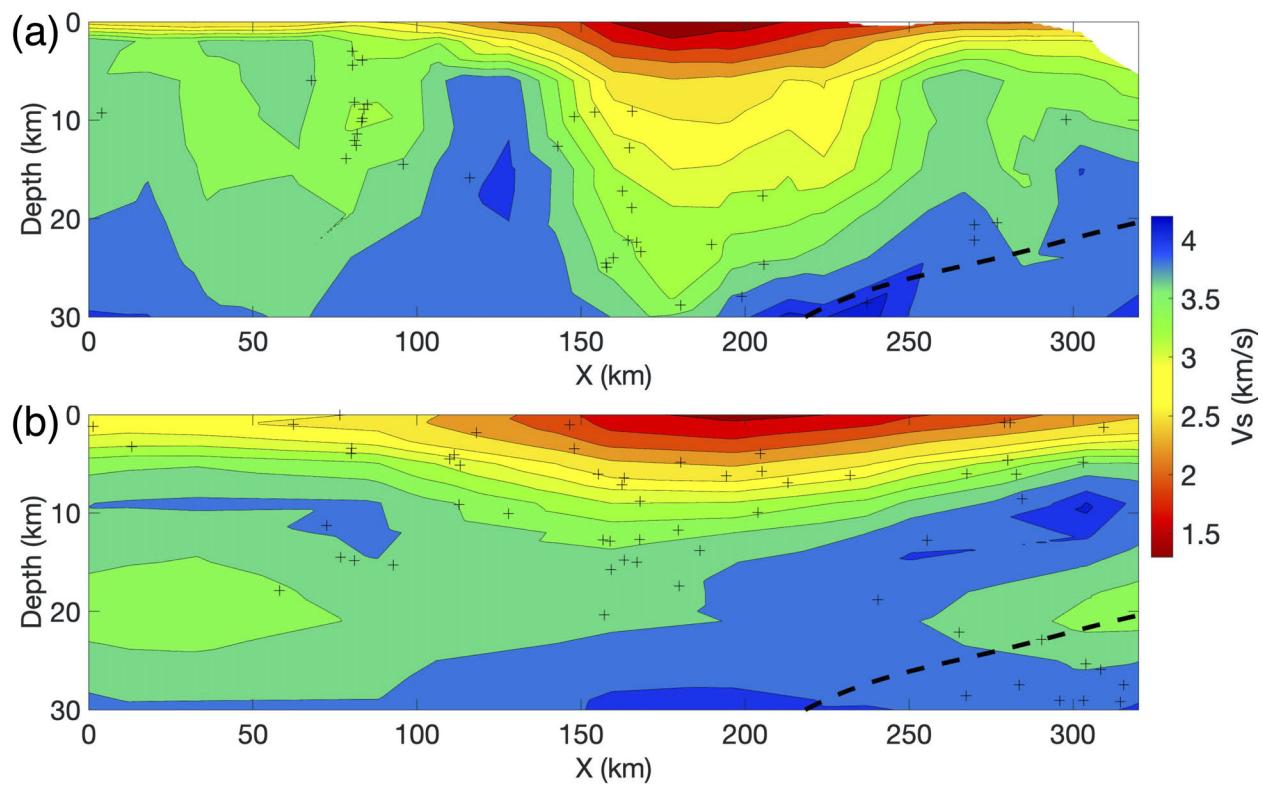


Figure S3: Cross-sections through Vs models (a) AKEP2020, (b) AKAN2020 through Cook Inlet, along the profile show in Figure 7d. Vertical exaggeration = 3.

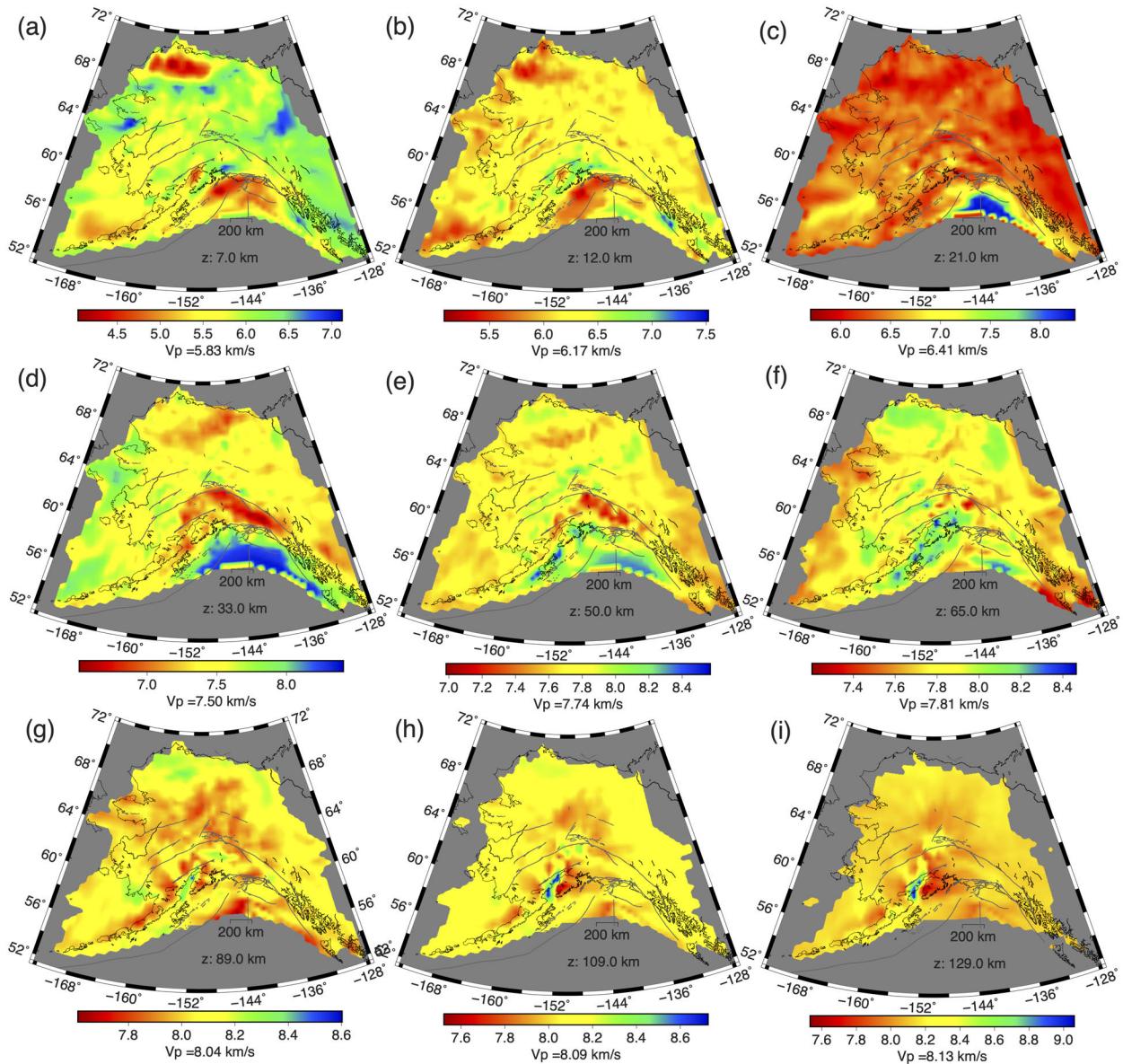


Figure S4: Vp depth slices for AKAN2020. Depths are indicated on each plot.

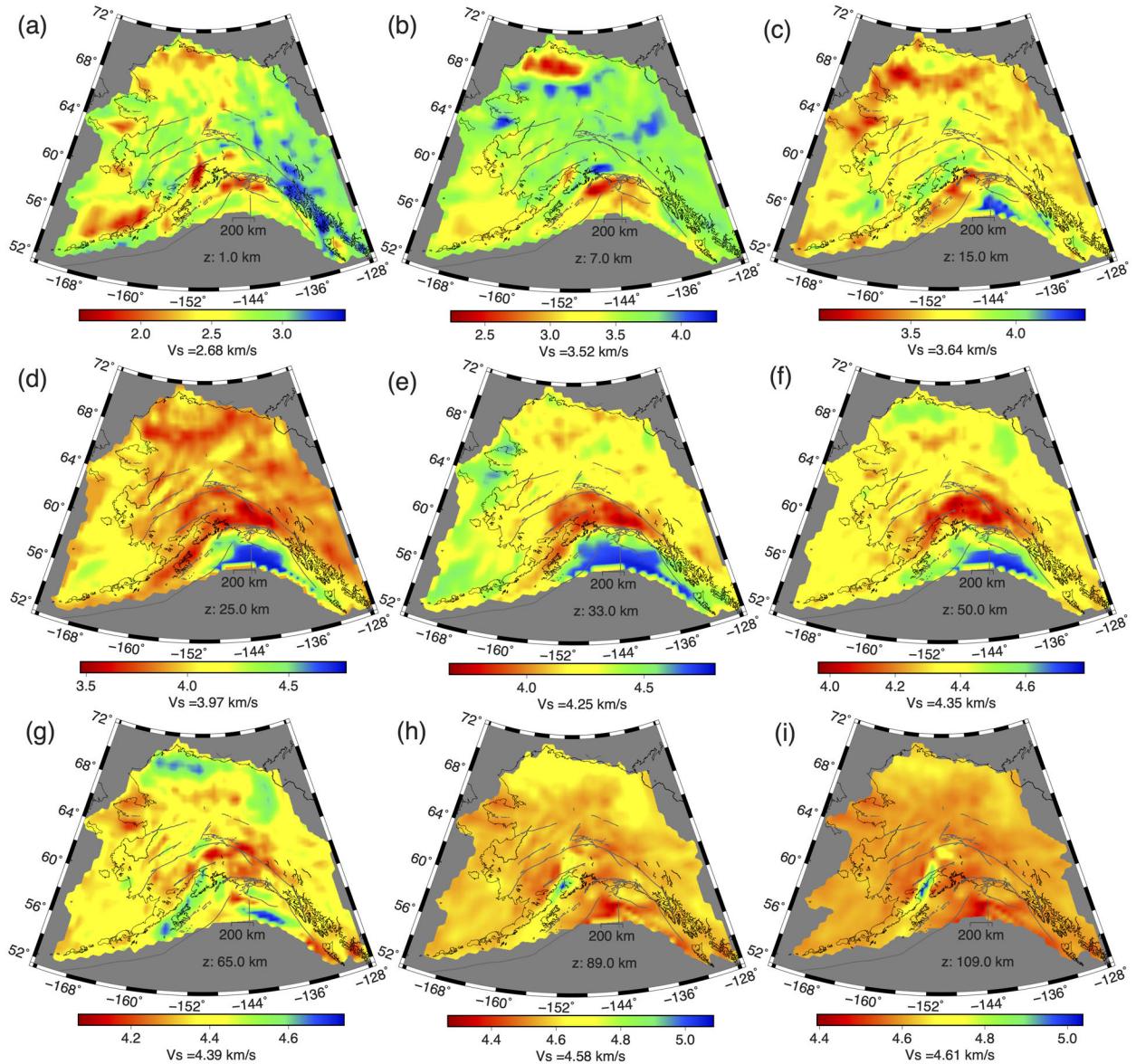


Figure S5: Vs depth slices for AKAN2020. Depths are indicated on each plot.