

1 **Life stages differ in plasticity to temperature fluctuations and uniquely**
2 **contribute to adult phenotype**

4 Amanda W. Carter^{1*} and Kimberly S. Sheldon¹

5 1. Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA

6 acarte82@utk.edu; ksheldon@utk.edu

7

8 ***CORRESPONDENCE:** A. W. Carter; Department of Ecology and Evolutionary Biology; 569 Dabney Hall,
9 1416 Circle Dr., Knoxville, TN 37996; acarte82@utk.edu

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract:**

25 Adaptive thermal plasticity allows organisms to adjust their physiology to cope with fluctuating
26 environments. However, thermal plasticity is rarely studied in response to thermal variability and is
27 often measured in a single life stage. Plasticity in response to thermal variability likely differs from
28 responses to constant temperatures or acute stress. In addition, life stages likely differ in their plasticity
29 and responses in one stage may be affected by the experiences in a previous stage. Increasing the
30 resolution with which we understand thermal plasticity in response to thermal variation across
31 ontogeny is crucial to understanding how organisms cope with the thermal variation in their
32 environment and to estimating the capacity of plasticity to mitigate costs of rapid environmental
33 change. We wanted to know if life stages differ in their capacity for thermal plasticity under
34 temperature fluctuations. We reared *Onthophagus taurus* dung beetles in either low or high
35 temperature fluctuation treatments and quantified thermal plasticity of metabolism of pupae and
36 adults. We found that adults were thermally plastic and pupae were not. Next, we wanted to know if the
37 plasticity observed in the adult life stage was affected by the thermal conditions during development.
38 We again used low and high temperature fluctuation treatments and reared individuals in one condition
39 through all egg to pupal stages. At eclosion, we switched half of the individuals in each treatment to the
40 opposite fluctuation condition and, later, measured thermal plasticity of metabolism on adults. We
41 found that temperature conditions experienced during the adult stage, but not egg to pupal stages,
42 affects adult thermal plasticity. However, temperature fluctuations during development affect adult
43 body size, suggesting that some aspects of the adult phenotype are decoupled from previous life stages
44 and others are not. Our data demonstrate that life stages mount different responses to temperature
45 variability and uniquely contribute to the adult phenotype. These findings emphasize the need to
46 broadly integrate the life cycle into studies of phenotypic plasticity and physiology; doing so should

47 enhance our ability to predict organismal responses to rapid global change and inform conservation
48 efforts.

49

50 **Key words:** acclimation, body size, *Coleoptera*, development, dung beetle, metabolism, ontogeny,
51 temperature fluctuation

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71 **Introduction:**

72 When adaptive, thermal plasticity allows organisms to adjust their physiology to suit the current
73 conditions and is thought to be especially important in fluctuating environments (Kingsolver and Huey,
74 1998; Lande, 2014; Woods and Harrison, 2002). Paradoxically, thermal plasticity is rarely measured in
75 response to fluctuating temperatures, and instead, is often measured following exposure to constant
76 temperatures or acute thermal stress (Niehaus et al., 2012). This is problematic because temperature
77 fluctuations can dramatically alter performance (e.g. metabolic rate) (Jensen, 1906; Ruel and Ayres,
78 1999; Williams et al., 2012) and may trigger plasticity via different suites of mechanisms compared to
79 constant temperatures (Sørensen et al., 2016). Understanding plastic responses to temperature
80 variation is crucial to evaluating how most animals cope with thermal variation in their environment and
81 to deciphering the capacity of plasticity to mitigate costs associated with rapid environmental change.

82

83 Thermal plasticity is not likely uniform across an individual's life. Life stages can experience
84 unique selection pressures or exhibit distinct behaviors and physiologies that alter thermal plasticity
85 (Fischer et al., 2014). For example, life stages that live in environments with high temperature variation
86 may experience selection for high thermal plasticity (i.e. Climate Variability Hypothesis) (Colinet et al.,
87 2015; Sheldon et al., 2018; Woods, 2013). On the other hand, life stages with greater mobility may
88 evade selection pressures from fluctuating conditions and exhibit reduced thermal plasticity (i.e. Bogert
89 Effect) (Bogert, 1949; Marais and Chown, 2008; Mitchell et al., 2013). Despite this, the bulk of thermal
90 biology research considers a single life stage at a time, most often the adult stage (Chiu et al., 2015;
91 Kingsolver, 2009; Kingsolver et al., 2011; Radchuk et al., 2013). Knowing if and how life stages vary in
92 thermal plasticity may facilitate significant strides in the accuracy of climate change modeling; estimates
93 not based on the most critical life stages may over- or under- estimate persistence (Chiu et al., 2015;
94 Kingsolver et al., 2011; Levy et al., 2015; Pincebourde and Casas, 2015; Radchuk et al., 2013).

95
96 In addition to independent plastic responses in each life stage, temperatures in an earlier life
97 stage may alter the phenotype of a later life stage, including the ability to be plastic. Temperatures early
98 in ontogeny can cause organizational shifts in growth and development trajectories that may
99 permanently impact adult phenotype (i.e. developmental plasticity) (Beldade et al., 2011; Uller, 2008;
100 West-Eberhard, 2003). For example, over 80% of surveyed ectotherms exhibit larger body sizes
101 following cooler developmental temperatures (Atkinson, 1994), which can have outsized effects on
102 adult physiology and fitness (Kingsolver and Huey, 2008; Stillwell and Fox, 2005). In addition to affecting
103 mean trait value, developmental conditions may also modify the capacity for plasticity later in life, an
104 area of research that has received surprisingly little attention (Beaman et al., 2016). For example,
105 development at cooler or warmer temperatures enhances the capacity for thermal acclimation in adult
106 zebra fish (*Danio rerio*) compared to development at an intermediate temperature (Scott and Johnston,
107 2012). Further complicating life stage-temperature interactions is the diversity of life history patterns
108 among ectotherms. Unlike vertebrate ectotherms where growth and development are incremental,
109 ectotherms with modular life cycles, like insects, may decouple the thermal conditions and physiological
110 responses from one life stage to the next (“**life cycle modularity hypothesis**” (Potter et al., 2011);
111 “**adaptive decoupling hypothesis**” (Moran, 1994; Stoks and Cordoba-Aguilar, 2012)) (Gray, 2013;
112 Kingsolver et al., 2011).
113

114 Since increasing thermal variation in the environment can increase energetic costs (Ruel and
115 Ayres, 1999; Williams et al., 2012), quantifying shifts in metabolism under increased temperature
116 fluctuation is an especially well-suited measure of plasticity. Metabolism is a multifaceted and dynamic
117 process that can provide insight into overall energy budgets of organisms in fluctuating environments
118 with consequences for organismal fitness and population dynamics (Brown et al., 2004; Chown and

119 Gaston, 1999; Chown and Nicolson, 2004; Dillon et al., 2010; Lighton, 2018; Norin et al., 2016; Sibly et
120 al., 2012). Whole-organism metabolism can be measured via respirometry, which directly measures CO₂
121 and/or O₂ consumption. When respirometry is measured across a range of temperatures, this enables
122 simultaneous estimation of metabolic rate and thermal sensitivity of metabolism (Lighton, 2018).
123 Depending on the experimental design, thermal plasticity can also be quantified by comparing shifts in
124 metabolic parameters among genetically similar groups (e.g. clones or full-siblings) exposed to different
125 environments (Seebacher et al., 2015).

126 Thermal plasticity can be measured as shifts in thermal sensitivity of metabolism or overall
127 metabolic rate when individuals or cohorts are exposed to different environments. Thermal sensitivity of
128 metabolism is the relationship between temperature and metabolic rate (e.g. slope of the function, Q₁₀)
129 and dictates energy expenditure in fluctuating environments (Lake et al., 2013; Ruel and Ayres, 1999;
130 Williams et al., 2012). Seemingly minimal adjustments in the thermal sensitivity of metabolic rate can
131 rapidly compound to alter whole-organism performance (Burton et al., 2011; Metcalfe et al., 1995;
132 Williams et al., 2012). In the larvae of *Erynnis propertius*, for example, individuals exposed to increased
133 thermal variation decreased their thermal sensitivity of metabolism (i.e. reduced the slope of the
134 temperature-metabolism function) to reduce energetic costs (Williams et al., 2012). Metabolic rate, on
135 the other hand, is simply the magnitude of the metabolic response (e.g. intercept) and can be measured
136 with total CO₂ production (Lighton, 2018). Since increases in temperature fluctuations can increase
137 energetic costs, organisms should decrease thermal sensitivity of metabolism and/or decrease overall
138 metabolic rate to conserve energy (Ruel and Ayres, 1999).

139

140 We compared thermal plasticity in response to increased temperature fluctuation in adults and
141 pupae of *Onthophagus taurus* dung beetles. *Onthophagus taurus* is an excellent system for such
142 questions as they are holometabolous insects with a life history that may select for differential thermal

143 physiology across life stages. Eggs, larvae, and pupae develop underground within a parentally
144 provisioned brood ball (Halffter and Edmonds, 1982). Developing young are relatively buffered from
145 daily temperature extremes compared to adults that fly in open fields in search of dung for foraging and
146 reproduction. First, we wanted to know if life stages vary in their capacity for thermal plasticity,
147 specifically, pupae and adults. We predicted that adults would exhibit greater plasticity than pupae,
148 since they likely encounter greater temperature variation across microhabitats.

149

150 We next wanted to know if the conditions experienced during early life stages carry-over to
151 affect adult plasticity. We predicted that adults would exhibit plasticity in response to their current
152 environment, but that the magnitude of the plastic response would be attenuated by developmental
153 conditions. Because developmental temperatures may impact adult phenotype through a myriad of
154 mechanisms, we were also interested in determining if increased thermal variation affected body size, a
155 trait important to fitness in *O. taurus* (Moczek and Emlen, 1999). Since fluctuating environments can be
156 energetically costly, we predicted that beetles reared in the high temperature fluctuation treatment
157 during development would be smaller than those reared in the low fluctuation treatment, regardless of
158 the temperatures experienced as an adult.

159

160 **Methods:**

161 *Do life stages differ in thermal plasticity to increased temperature fluctuation?*

162

163 We trapped *Onthophagus taurus* beetles in June 2018 in Kings Mountain, North Carolina (n =
164 115). We brought adults to the lab, housed them in breeding triads (one male with two females) with ad
165 libitum access to autoclaved cow dung, and collected and individually reared offspring from resulting F₁
166 brood balls. At approximately four weeks post adult emergence, we paired a virgin F₁ female with an

167 unrelated virgin F₁ male creating 31 families. We collected F₂ brood balls every three days. We
168 individually reared F₂ brood balls at either a low fluctuation (24 ± 4 °C) or high fluctuation (24 ± 8 °C)
169 treatment using a split-family design (Fig. 1). Temperature treatments fluctuated in a near-sinusoidal
170 fashion to simulate daily temperature fluctuations in the field. We chose these temperatures because
171 the mean and variance are within the range of temperatures normally experienced by adults and pupae
172 during breeding as verified with temperature logger data (*unpublished data*). Brood balls and adults
173 were housed within individual 2-ounce containers filled with moist soil in incubators. We verified that
174 the soil within the containers did not significantly insulate individuals (Fig. S1), and that the ambient
175 temperatures within incubators reflect realized temperatures of experimental individuals. In total, we
176 used 21 families for analyses since some of the original 31 families did not produce enough brood balls.
177 We conducted metabolic trials on F₂ pupae (3 weeks post-egg laying) and adults (3 weeks post-eclosion)
178 using stop-flow and flow-through respirometry, respectively (see respirometry methods below).

179

180 *Do temperatures during early life stages carry-over to affect adult responses to thermal fluctuations?*

181 We reared F₂ individuals in a low fluctuation (24 ± 4 °C) or high fluctuation (24 ± 8 °C) treatment
182 through all egg to pupal stages. At eclosion, half of the individuals in each treatment were placed back in
183 their temperature fluctuation treatment, while the other half were switched to the opposite
184 temperature fluctuation treatment. This created four unique fluctuation treatment combinations: low-
185 low, low-high, high-high, and high-low. Approximately four weeks after adult emergence (which mirrors
186 the duration spent in the developmental treatment), we conducted open-flow respirometry trials on the
187 adults (see respirometry methods below). This approach allowed us to examine whether thermal
188 fluctuations during development leave a signal on adult phenotype.

189

190 *Respirometry methods*

191 We measured CO₂ of each pupa or adult at four **sequential** trial temperatures:15, 20, 25, and 30
192 °C. To do this, we used a pump (SS4, Sable Systems International, Las Vegas, NV) to push air free of CO₂
193 and water vapor (“Zero air”; Airgas, Knoxville, TN) through a metabolic set-up at a rate of 120 mL/min.
194 **The zero air was chemically scrubbed of CO₂ and water vapor with Ascarite (Sigma-Aldrich, St. Louis,**
195 **MO) and Drierite (Xenia, OH) respectively, as an additional precaution. As such, we know any CO₂**
196 **measured downstream of the beetle was produced exclusively by the beetle.** We measured CO₂ with a
197 combination CO₂ and H₂O analyzer (LI-7000; Li-Cor, Lincoln, NE). For pupal trials, we first weighed each
198 pupa and placed them individually in a 20 mL syringe. We perfused the syringe with zero air, sealed, and
199 placed in an incubator at the lowest of the four trial temperatures (i.e. 15 °C) for 30 mins. After exactly
200 30 mins, we removed the syringes from the incubator and injected 10 mL of air from the syringe into
201 tubing preceding the combination CO₂ and H₂O analyzer at a rate of 0.5 mL/**sec** to measure respiration
202 rates. We then repeated the procedure at the next warmest trial temperature **until the individual had**
203 **been trialed at all four temperatures. All individuals received the same increasing temperature series**
204 **across metabolic trials, as would occur naturally with diurnally increasing temperatures. Though this**
205 **presents an opportunity for acclimation from previous trial temperatures, any acclimation should be**
206 **similar across all groups.** At the end of the trial, we again recorded mass of pupa.

207
208 For measuring respiration in adults, we first weighed an adult and then placed it in a glass
209 chamber connected to tubing in between the flow rate pumps and the combination CO₂ and H₂O
210 analyzer. **The chamber was held in the dark to minimize adult activity, as demonstrated in pilot assays.**
211 We held the adult in the glass chamber at the lowest trial temperature (15 °C) and passed air
212 continuously over the beetle for 15 min. Data from the last 5 min of this period were used for analyses.
213 We then increased the incubator temperature to the next warmest trial temperature and repeated the
214 respiration measurements. We took baseline CO₂ readings before and after each trial temperature

215 During baseline readings, CO₂ and H₂O values returned to zero, so any CO₂ measured during a trial
216 reading was from the beetle currently being measured. Baseline readings also allowed us to correct for
217 any drift in the zero air being pushed through the setup and to monitor for contamination or
218 inconsistencies. We also weighed the adult after the metabolic trials.

219
220 We used our response variable, CO₂ production (μL/ min), to examine three parameters:
221 metabolic rate, thermal sensitivity of metabolism, and thermal plasticity. Metabolic rate is quantified as
222 overall CO₂ production and gauges total energetic cost. Thermal sensitivity of metabolism is the
223 steepness of the temperature-metabolic rate function and dictates energy expenditure under
224 temperature fluctuations. A steeper function results in greater energetic costs when temperatures
225 fluctuate provided that the area under the curve increases (due to Jensen's inequality). Finally, thermal
226 plasticity is the shift in thermal sensitivity between treatments. For example, a significant difference in
227 thermal sensitivity of metabolism between adults reared in the high and low fluctuation treatments
228 would indicate thermal plasticity. Though all three metrics are inferred from the same dataset, these are
229 individual traits that can respond independently and may often be under unique selective pressures
230 (Brown et al., 2004).

231
232

233 **Data analyses:**

234 *Do life stages differ in thermal plasticity to increased temperature fluctuation?*

235
236 To process metabolic data, we first corrected raw CO₂ data for any drift in baseline readings
237 using a Catmull-Rom spline correction (Catmull and Rom, 1974) and smoothed the data using a Savitsky-
238 Golay filter (Savitzky and Golay, 1964) with an 11-step window. We log +1 transformed all data before

239 analyses and verified model suitability via visual examination of residual plots. We used a general linear
240 mixed model (Proc Mixed, SAS v 9.4) that included temperature fluctuation treatment, life stage, and
241 metabolic trial temperature and all interactions. We also included beetle mass at the time of the trial as
242 a covariate. We used a repeated statement specifying individual beetle as the subject to account for
243 non-independence among an individual's four CO₂ measurements and specified an unstructured
244 covariance matrix. The model also included the random effects of family and sex. An outlier datum from
245 one adult's 30 °C metabolic temperature trial was removed from final analyses based on a studentized
246 residual greater than an absolute value of 3. Removing the outlier did not change our overall conclusions
247 (i.e. the best fit model remained the same with and without the outlier). The final model included life
248 stage, thermal fluctuation treatment, metabolic trial temperature, and all three-way and all two-way
249 interactions.

250

251 To better disentangle the three-way interaction, we also tested for differences in plasticity due
252 to the temperature fluctuation treatments within a single life stage. These two follow-up models utilized
253 a similar approach as above and corrected for multiple comparisons.

254

255 We ran a general linear model to calculate effect sizes. The model included temperature
256 fluctuation treatment, life stage, and their interaction. We ran these models at each metabolic trial
257 temperature separately to avoid inflating calculations, since each beetle was trialed multiple times. We
258 determined effect sizes using Type III sums of squares and report partial ω^2 as this measure is less
259 biased than η^2 for two-way models (Yigit and Mendes, 2018). The overall ω^2 of each model (i.e. at each
260 metabolic trial temperature) minimally ranged from 0.68 to 0.79 at the 15 and 30 °C trial temperatures
261 respectively, so we only report partial ω^2 of the fixed and interactive effects at the 30 °C trial
262 temperature.

263

264 Finally, to verify that our measures of CO₂ correspond to energy expenditure, we used energy
265 equivalents for CO₂ production to calculate energy expenditure in the situation where adults were
266 catabolizing carbohydrates (21.1 kJ/l) and pupae were catabolizing lipids (27.8 kJ/l) (Fig. S2) (Walsberg
267 and Hoffman, 2005). Our main conclusions did not change, and, thus, we assume CO₂ is a good proxy for
268 energy expenditure.

269

270 *Do temperatures during early life stages carry-over to affect adult plasticity and phenotype?*

271

272 To answer this question, each individual was exposed to a developmental condition and an adult
273 condition. We analyzed the data using a two-way approach so that we could parse the relative
274 importance of developmental or adult temperature conditions to adult thermal responses. We used a
275 similar model and selection method as above. The final model included the developmental temperature
276 fluctuation treatment, the adult temperature fluctuation treatment, metabolic trial temperature, all
277 possible two-way interactions, and the three-way interaction. Body mass was included as a covariate.

278 We ran a general linear model to calculate effect sizes as above. The model included treatment
279 as a main effect (with four levels).

280

281 We also tested whether the temperature fluctuation treatments affected adult body size. We
282 used a general linear model that tested for the effect of the developmental temperature treatment,
283 adult temperature treatment, and their interaction on adult body size (mass).

284

285 **Results:**

286 *Do life stages differ in thermal plasticity to increased temperature fluctuation?*

287

288 Our goal was to determine if thermal plasticity differs between pupae and adults. Thermal
289 plasticity is measured as a significant change in the CO_2 – temperature function (i.e. a shift in thermal
290 sensitivity) between the high and low fluctuation treatments, within a life stage. In the full model, the
291 significant three-way interaction demonstrates that life stages vary in thermal plasticity (Fig. 3) (Table 1;
292 Life stage x thermal fluctuation treatment x metabolic trial temperature interaction: $F_{3,77} = 5.52$, $p =$
293 0.002). Follow-up analyses based on two separate mixed effects models for each life stage revealed that
294 adult beetles significantly decreased thermal sensitivity of metabolism under the high fluctuation
295 treatment (Fig. 3 Top panel, $p = 0.02$), whereas pupae showed no change in thermal sensitivity of
296 metabolism between the two temperature fluctuation treatments (Fig. 3 Bottom panel, $p = 0.69$). Thus,
297 we observed plasticity in thermal sensitivity of metabolism in adult beetles, but not pupae.

298

299 In addition to examining stage-specific thermal plasticity *via shifts in thermal sensitivity* (above),
300 our data also allowed us to examine thermal sensitivity of metabolism itself (i.e. the steepness of the
301 temperature-metabolic rate function). Life stages differed in thermal sensitivity of metabolism; adults
302 exhibited a steeper slope in the CO_2 production – metabolic trial temperature function than pupae
303 (Table 1, Fig. 3; Life stage x metabolic trial temperature interaction: $F_{3,77} = 151.16$, $p < 0.0001$).
304 Additionally, thermal sensitivity of metabolism was lower in the high fluctuation treatment than in the
305 low fluctuation treatment (Table 1; $F_{3,77} = 5.05$, $p = 0.03$); however, this appears to be driven by
306 treatment differences in the metabolism of adults and not pupae.

307

308 Finally, our model also allowed us to examine differences in metabolic rate among groups. Adult
309 metabolic rate (CO_2 production) ranged from a low of 0.53 ± 0.03 to a high of $1.68 \pm 0.18 \mu\text{L}/\text{min}$ at trial
310 temperatures of 15°C and 30°C , respectively. Pupal metabolic rate was much lower, ranging from a low

311 of 0.12 ± 0.017 to a high of $0.23 \pm 0.009 \mu\text{L}/\text{min}$ at 15°C and 30°C , respectively (Fig. 3). Not surprisingly,
312 the covariate of body size affected CO_2 production (Table 1).

313 The general linear model used to calculate effect sizes revealed that life stage has the largest
314 impact on CO_2 production. Effect sizes are presented as partial ω^2 (lower bound, upper bound 90%
315 confidence limits): Life stage 0.79 (0.72, 0.83); Treatment 0.05 (0.004, 0.16); Life stage by treatment 0.05
316 (0.005, 0.16).

317

318 *Do temperatures during early life stages carry-over to affect adult plasticity and phenotype?*

319

320 We wanted to understand whether temperatures during development affect adult responses to
321 temperature fluctuations. We found that temperature fluctuations experienced during development did
322 not affect metabolic rate, thermal sensitivity of metabolism, or thermal plasticity during adulthood
323 (Table 2, Fig. 4 (Top panel)). Instead, the temperature fluctuations experienced during adulthood
324 triggered differential thermal sensitivity of metabolism (adult treatment x metabolic trial temperature:
325 $F_{3,65} = 3.45$, $p = 0.02$), where beetles that experienced the high fluctuation treatment during adulthood
326 (regardless of developmental treatment) exhibited lower thermal sensitivity of metabolism than beetles
327 that experienced the low fluctuation treatment as adults (Fig. 4 Top panel). Metabolic rate was also
328 marginally affected by the adult fluctuation treatment ($F_{1,65} = 4.08$, $p = 0.048$). Specifically, adults that
329 experienced the high temperature fluctuations during adulthood (regardless of developmental
330 conditions), had lower overall metabolic rates than beetles that experienced the low fluctuation
331 treatment during adulthood (Fig. 4 Top panel). The partial ω^2 effect size for the main effect of
332 treatment (i.e. four development x adult temperature treatment combinations) was -0.016 (0.0, 0.08).

333

334 We examined whether temperature fluctuations affect adult mass. On average, beetles from
335 the low temperature fluctuation treatments weighed 0.095 ± 0.003 g, whereas, beetles from the high
336 temperature fluctuation treatment were 14% smaller, weighing 0.082 ± 0.003 g. Beetles that
337 experienced high temperature fluctuation conditions during development were significantly smaller
338 than those that developed in the low temperature fluctuation treatment (Fig. 4 Bottom panel;
339 Developmental treatment: $F_{1, 65} = 8.16$, $p = 0.006$). Though structural body size is fixed at eclosion, mass
340 can change slightly due to feeding post-eclosion. Thus, we also wanted to determine if the temperature
341 fluctuation treatment experienced during adulthood impacted adult mass. The adult treatment did not
342 affect mass ($F_{1, 65} = 0.98$, $p = 0.33$) nor did the interaction between adult and developmental treatments
343 ($F_{1, 65} = 0.04$ $p = 0.85$).

344

345 **Discussion**

346 Life stages may experience varying selective pressures from stage-specific environments, and
347 thus, thermal plasticity may differ across an individual's lifetime. As predicted, we found that adults
348 mount plastic responses to increased temperature fluctuation and pupae do not. However, pupae were
349 less thermally sensitive (on average) and, not surprisingly, exhibited lower metabolic rates. Coupled with
350 the broad thermal tolerance of pupae reported elsewhere (Klockmann et al., 2017; Moghadam et al.,
351 2019; Pincebourde and Casas, 2015), our data suggest that while adults may rely on thermal plasticity to
352 cope with thermal variation, pupae may alternatively rely on a broad thermal tolerance and low overall
353 metabolic rate to cope with daily temperature variation. It is unclear if these varying strategies will
354 provide equal protection under future, more variable climates. It is worth noting that, while the amount
355 of exposure to the temperature treatments was similar across developmental and adult stages (i.e. 3
356 weeks for each), the exposure strictly during the pupal stage was less (~5-7 days) than the exposure
357 during the adult stage since the development also includes egg and larval stages. It is possible that these

358 differences in stage-specific exposure contribute to differences in thermal plasticity between adults and
359 pupae; however, since we tested mature pupae, our data reflect the maximum acclimation of pupae at
360 these temperatures. Nonetheless, the stage-specific differences herein underscore that the physiology
361 of one life stage should not be used to more generally predict responses across life stages.

362

363 The thermal plasticity exhibited by adults is in response to the temperatures experienced during
364 adulthood (i.e. acclimation) rather than during development. Beetles that experienced high temperature
365 fluctuations during adulthood, regardless of developmental conditions, exhibited lower thermal
366 sensitivity of metabolism and lower metabolic rates. This suggests that adult thermal plasticity and
367 metabolism are decoupled from the environment and physiology of egg to pupal stages. This is
368 surprising given the wealth of data linking constant developmental temperatures to variation in adult
369 phenotype in insects (Angilletta, 2009; Atkinson, 1994; Chown and Terblanche, 2006; Gray, 2013).

370 However, it's possible more extreme fluctuations than those used in our study are required to leave a
371 lasting signal on adult phenotype in *O. taurus*.

372

373 We found that adult body size decreased with increasing temperature fluctuations during
374 development, demonstrating that adult phenotype is not wholly independent from the thermal
375 environment of previous stages. Increased temperature fluctuations can increase energetic demands
376 (Ruel and Ayres, 1999; Williams et al., 2012). Though we found no evidence of metabolic compensation
377 in early life stages to reduce these energetic demands, our body size data suggests individuals
378 developing in the high fluctuation treatments had fewer energetic resources available for growth and
379 thus, were smaller compared to individuals that developed in the low fluctuation treatment. Since mass
380 was measured three weeks after eclosion, it is possible that differences in the adult stage between
381 treatments, like feeding rates, may contribute to mass differences; however, we did not find any effect

382 of the adult environment on adult mass. Therefore, any systematic differences in feeding in the adult life
383 stage would most likely be triggered by differences in the developmental environment. Our data more
384 broadly suggest that some aspects of adult phenotype may be decoupled from previous life stages while
385 others may not.

386

387 We found that adults exhibited thermal plasticity in response to increased temperature
388 fluctuation by decreasing thermal sensitivity of metabolism. Reducing thermal sensitivity should reduce
389 energetic costs under variable temperatures (due to Jensen's inequality) (Jensen, 1906; Ruel and Ayres,
390 1999), helping beetles conserve energy for other energetically costly activities like searching for dung
391 and mates, reproducing, and mounting immune responses. Previous work in insects has shown
392 decreased thermal sensitivity following acclimation to increased thermal variation (Bozinovic et al.,
393 2013; Williams et al., 2012), suggesting this may be a common plastic response. Our findings
394 demonstrate that even though the capacity to reduce thermal sensitivity may be broadly present across
395 insects, it is not necessarily equivalent across each life stage. More research is needed to discern if the
396 magnitude of adult thermal plasticity can compensate for increased energetic demands under
397 fluctuating environments (Gunderson and Stillman, 2015; Williams et al., 2012).

398

399 Integrating life stage variation in thermal biology has important implications for predicting the
400 impacts of global change (Levy et al., 2015). For example, analyses that accommodate thermal variation
401 suggest that climate change may decrease the fitness of tropical insects and increase the fitness of
402 temperate insects (Deutsch et al., 2008). However, when age-dependent thermal tolerance is included
403 in these models, predictions suggest that temperate species should also experience decreased fitness
404 (Kingsolver et al., 2011). While these examples highlight the necessity of considering age-dependent
405 thermal tolerances, few analyses incorporate the potentially ameliorating effects of thermal plasticity

406 (Seebacher et al., 2015), and none in a life stage-dependent manner. Existing models that test if
407 plasticity will aid in species persistence come to conflicting conclusions (Gunderson and Stillman, 2015;
408 Seebacher et al., 2015). A demographic model that includes thermal tolerance and thermal plasticity in a
409 life stage-dependent manner (Sinclair et al., 2016), though complex, may help resolve climate change
410 predictions across latitude and taxa.

411

412 **Acknowledgments**

413 We thank J.M. Fleming and M.A. Mamantov for assistance with field work and laboratory rearing and S.
414 Proffitt and Cruz Dairy Farm for allowing access to property for collecting beetles and cow dung. This
415 research was supported by the US National Science Foundation [Postdoctoral Research Fellowship in
416 Biology grant number 811881 to A.W.C.; Integrative Organismal Systems grant number #1930829 to
417 K.S.S.] The authors have no conflicts of interest to declare.

418

419 **Data Availability**

420 Data will be made available upon reasonable request.

421

422

423

424

425

426

427

References:

Angilletta, M. J. (2009). *Thermal Adaptation: A Theoretical and Empirical Synthesis*. OUP Oxford.

Atkinson, D. (1994). Temperature and organism size: a biological law for ectotherms? *Adv Ecol Res* **25**, 1–58.

Beaman, J. E., White, C. R. and Seebacher, F. (2016). Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. *Trends in Ecology & Evolution* **31**, 237–249.

Beldade, P., Mateus, A. R. A. and Keller, R. A. (2011). Evolution and molecular mechanisms of adaptive developmental plasticity. *Molecular Ecology* **20**, 1347–1363.

Bogert, C. M. (1949). THERMOREGULATION IN REPTILES, A FACTOR IN EVOLUTION. *Evolution* **3**, 195–211.

Bozinovic, F., Catalan, T. P., Estay, S. A. and Sabat, P. (2013). Acclimation to daily thermal variability drives the metabolic performance curve. *Evolutionary Ecology Research* **15**, 579–587.

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. *Ecology* **85**, 1771–1789.

Burton, T., Killen, S. S., Armstrong, J. D. and Metcalfe, N. B. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? *Proceedings of the Royal Society B: Biological Sciences* **278**, 3465–3473.

Catmull, E. and Rom, R. (1974). A class of local interpolating splines. In *Computer aided geometric design*, pp. 317–326. Elsevier.

Chiu, M.-C., Kuo, J.-J. and Kuo, M.-H. (2015). Life stage-dependent effects of experimental heat waves on an insect herbivore: Demographic effects of heat waves. *Ecological Entomology* **40**, 175–181.

Chown, S. L. and Gaston, K. J. (1999). Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. *Biological Reviews* **74**, 87–120.

Chown, S. L. and Nicolson, S. (2004). *Insect physiological ecology: mechanisms and patterns*. Oxford University Press.

Chown, S. L. and Terblanche, J. S. (2006). Physiological diversity in insects: ecological and evolutionary contexts. *Advances in insect physiology* **33**, 50–152.

Colinet, H., Sinclair, B. J., Vernon, P. and Renault, D. (2015). Insects in fluctuating thermal environments. *Annual Review of Entomology* **60**, 123–140.

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghilambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. *PNAS* **105**, 6668–6672.

Dillon, M. E., Wang, G. and Huey, R. B. (2010). Global metabolic impacts of recent climate warming. *Nature* **467**, 704.

Fischer, B., van Doorn, G. S., Dieckmann, U. and Taborsky, B. (2014). The Evolution of Age-Dependent Plasticity. *The American Naturalist* **183**, 18.

Gray, E. M. (2013). Thermal acclimation in a complex life cycle: The effects of larval and adult thermal conditions on metabolic rate and heat resistance in *Culex pipiens* (Diptera: Culicidae). *Journal of Insect Physiology* **59**, 1001–1007.

Gunderson, A. R. and Stillman, J. H. (2015). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. *Proceedings of the Royal Society B: Biological Sciences* **282**, 20150401.

Halfpter, G. and Edmonds, W. D. (1982). The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. *The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach*.

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. *Acta mathematica* **30**, 175–193.

Kingsolver, J. G. (2009). The Well-Temperatured Biologist: (American Society of Naturalists Presidential Address). *The American Naturalist* **174**, 755–768.

Kingsolver, J. G. and Huey, R. B. (1998). Evolutionary Analyses of Morphological and Physiological Plasticity in Thermally Variable Environments. *Am Zool* **38**, 545–560.

Kingsolver, J. G. and Huey, R. B. (2008). Size, temperature, and fitness: three rules. *Evolutionary Ecology Research* **10**, 251–268.

Kingsolver, J. G., Arthur Woods, H., Buckley, L. B., Potter, K. A., MacLean, H. J. and Higgins, J. K. (2011). Complex Life Cycles and the Responses of Insects to Climate Change. *Integr Comp Biol* **51**, 719–732.

Klockmann, M., Günter, F. and Fischer, K. (2017). Heat resistance throughout ontogeny: body size constrains thermal tolerance. *Global Change Biology* **23**, 686–696.

Lake, S. L., MacMillan, H. A., Williams, C. M. and Sinclair, B. J. (2013). Static and dynamic approaches yield similar estimates of the thermal sensitivity of insect metabolism. *Journal of insect physiology* **59**, 761–766.

Lande, R. (2014). Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment. *Journal of Evolutionary Biology* **27**, 866–875.

Levy, O., Buckley, L. B., Keitt, T. H., Smith, C. D., Boateng, K. O., Kumar, D. S. and Angilletta Jr, M. J. (2015). Resolving the life cycle alters expected impacts of climate change. *Proceedings of the Royal Society B: Biological Sciences* **282**, 20150837.

Lighton, J. R. (2018). *Measuring metabolic rates: a manual for scientists*. Oxford University Press.

Marais, E. and Chown, S. L. (2008). Beneficial acclimation and the Bogert effect. *Ecology Letters* **11**, 1027–1036.

Metcalfe, N. B., Taylor, A. C. and Thorpe, J. E. (1995). Metabolic rate, social status and life-history strategies in Atlantic salmon. *Animal Behaviour* **49**, 431–436.

Mitchell, K. A., Sinclair, B. J. and Terblanche, J. S. (2013). Ontogenetic variation in cold tolerance plasticity in *Drosophila*: is the Bogert effect bogus? *Naturwissenschaften* **100**, 281–284.

Moczek and Emlen (1999). Proximate determination of male horn dimorphism in the beetle *Onthophagus taurus* (Coleoptera: Scarabaeidae). *Journal of Evolutionary Biology* **12**, 27–37.

Moghadam, N. N., Ketola, T., Pertoldi, C., Bahrndorff, S. and Kristensen, T. N. (2019). Heat hardening capacity in *Drosophila melanogaster* is life stage-specific and juveniles show the highest plasticity. *Biol. Lett.* **15**, 20180628.

Moran, N. A. (1994). Adaptation and constraint in the complex life cycles of animals. *Annual Review of Ecology and Systematics* **25**, 573–600.

Niehaus, A. C., Angilletta, M. J., Sears, M. W., Franklin, C. E. and Wilson, R. S. (2012). Predicting the physiological performance of ectotherms in fluctuating thermal environments. *Journal of Experimental Biology* **215**, 694–701.

Norin, T., Malte, H. and Clark, T. D. (2016). Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. *Funct Ecol* **30**, 369–378.

Pincebourde, S. and Casas, J. (2015). Warming tolerance across insect ontogeny: influence of joint shifts in microclimates and thermal limits. *Ecology* **96**, 986–997.

Potter, K. A., Davidowitz, G. and Woods, H. A. (2011). Cross-stage consequences of egg temperature in the insect *Manduca sexta*. *Functional Ecology* **25**, 548–556.

Radchuk, V., Turlure, C. and Schtickzelle, N. (2013). Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. *Journal of Animal Ecology* **82**, 275–285.

Ruel, J. J. and Ayres, M. P. (1999). Jensen's inequality predicts effects of environmental variation. *Trends in Ecology & Evolution* **14**, 361–366.

Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. *Analytical chemistry* **36**, 1627–1639.

Scott, G. R. and Johnston, I. A. (2012). Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. *Proceedings of the National Academy of Sciences* **109**, 14247–14252.

Seebacher, F., White, C. R. and Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. *Nature Climate Change* **5**, 61–66.

Sheldon, K. S., Huey, R. B., Kaspari, M. and Sanders, N. J. (2018). Fifty Years of Mountain Passes: A Perspective on Dan Janzen's Classic Article. *The American Naturalist* **191**, 553–565.

Sibly, R. M., Brown, J. H. and Kodric-Brown, A. (2012). *Metabolic ecology: a scaling approach*. John Wiley & Sons.

Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., Harley, C. D. G., Marshall, D. J., Helmuth, B. S., et al. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? *Ecol Lett* **19**, 1372–1385.

Sørensen, J. G., Schou, M. F., Kristensen, T. N. and Loeschcke, V. (2016). Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. *Scientific reports* **6**, 30975.

Stillwell, R. C. and Fox, C. W. (2005). Complex Patterns of Phenotypic Plasticity: Interactive Effects of Temperature During Rearing and Oviposition. *Ecology* **86**, 924–934.

Stoks, R. and Cordoba-Aguilar, A. (2012). Evolutionary ecology of Odonata: a complex life cycle perspective. *Annual review of entomology* **57**, 249–265.

Uller, T. (2008). Developmental plasticity and the evolution of parental effects. *Trends in ecology & evolution* **23**, 432–438.

Walsberg, G. E. and Hoffman, T. C. (2005). Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. *Journal of Experimental Biology* **208**, 1035–1043.

West-Eberhard, M. J. (2003). *Developmental plasticity and evolution*. Oxford University Press.

Williams, C. M., Marshall, K. E., MacMillan, H. A., Dzurisin, J. D. K., Hellmann, J. J. and Sinclair, B. J. (2012). Thermal Variability Increases the Impact of Autumnal Warming and Drives Metabolic Depression in an Overwintering Butterfly. *PLOS ONE* **7**, e34470.

Woods, H. A. (2013). Ontogenetic changes in the body temperature of an insect herbivore. *Funct Ecol* **27**, 1322–1331.

Woods, H. A. and Harrison, J. F. (2002). INTERPRETING REJECTIONS OF THE BENEFICIAL ACCLIMATION HYPOTHESIS: WHEN IS PHYSIOLOGICAL PLASTICITY ADAPTIVE? *Evolution* **56**, 1863–1866.

Yigit, S. and Mendes, M. (2018). Which effect size measure is appropriate for one-way and two-way ANOVA models? A Monte Carlo simulation study. *Revstat Statistical Journal* **16**, 295–313.

Table 1. Do life stages differ in thermal plasticity to increased temperature fluctuation?

<i>Effect</i>	<i>df</i> <i>num, den</i>	<i>F-value</i>	<i>p-value</i>
Life Stage X Temperature fluctuation treatment X Metabolic trial temperature	3, 77	5.52	0.002
Life Stage X Metabolic trial temperature	3, 77	151.68	<0.0001
Temperature fluctuation treatment X Metabolic trial temperature	3, 77	5.05	0.003
Life Stage X Temperature fluctuation treatment	1, 77	4.84	0.031
Life Stage	1, 77	368.92	<0.0001
Temperature fluctuation treatment	1, 77	5.16	0.026
Metabolic trial temperature	3, 77	235.95	<0.0001
Body size (g)	1, 77	20.74	<0.0001

1 Note: Response variable is CO₂ production.

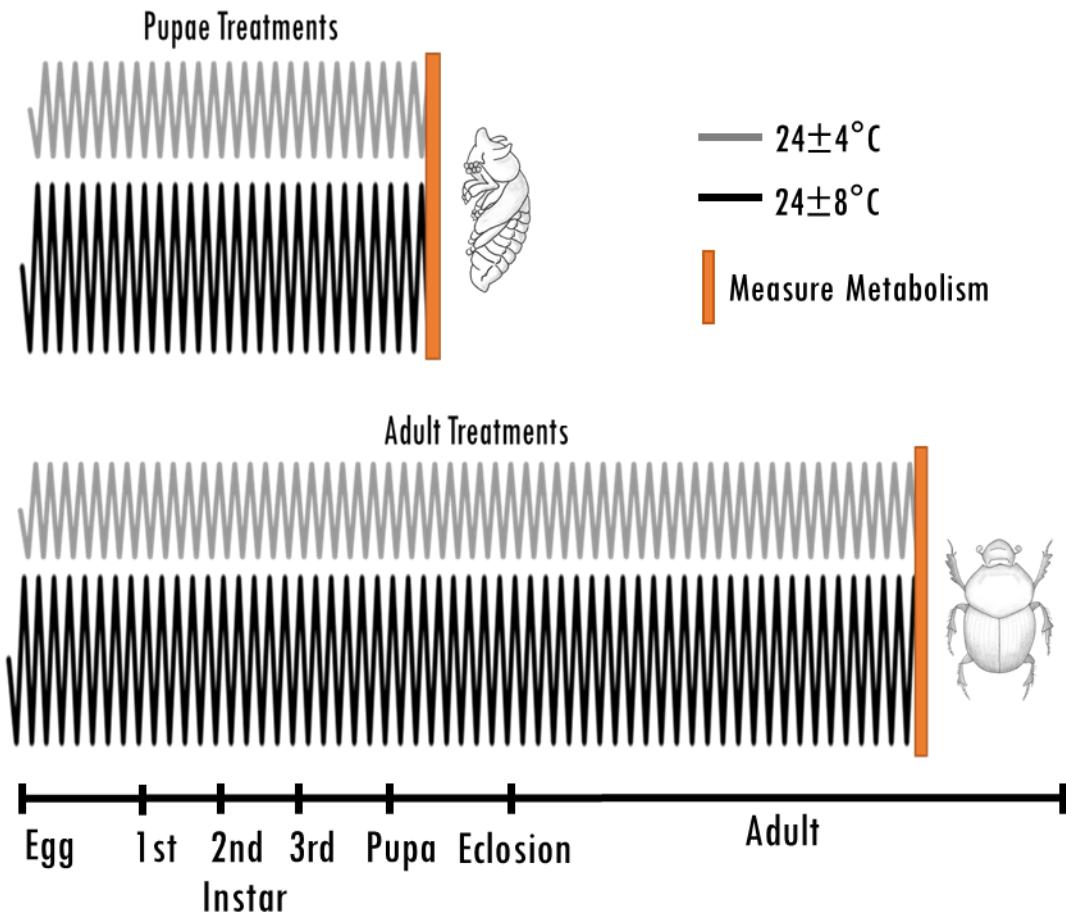
2

Table 2. Do temperature fluctuations during early life stages carry-over to affect adult plasticity and phenotype?

<i>Effect</i>	<i>df</i> <i>num, den</i>	<i>F-value</i>	<i>p-value</i>
Developmental treatment X Adult treatment X Metabolic trial temperature	3, 65	0.14	0.936
Adult treatment X Metabolic trial temperature	3, 65	3.45	0.022
Developmental treatment X Metabolic trial temperature	3, 65	1.31	0.278
Developmental treatment X Adult treatment	1, 65	0.18	0.674
Adult treatment	1, 65	4.08	0.048
Developmental treatment	1, 65	0.91	0.343
Metabolic trial temperature	3, 65	207.54	<0.0001
Body size (g)	1, 65	25.78	<0.0001

3 Note: Response variable is CO₂ production.

4

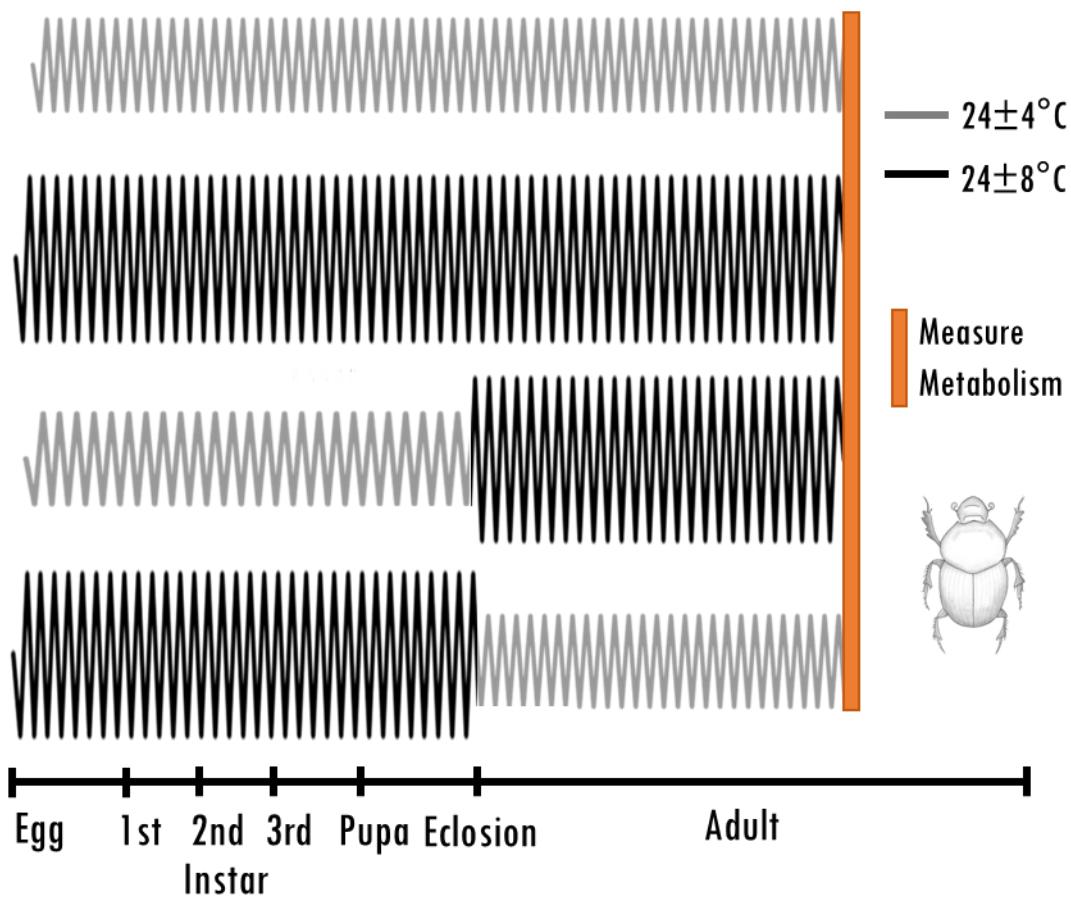

5

6

7

8

9

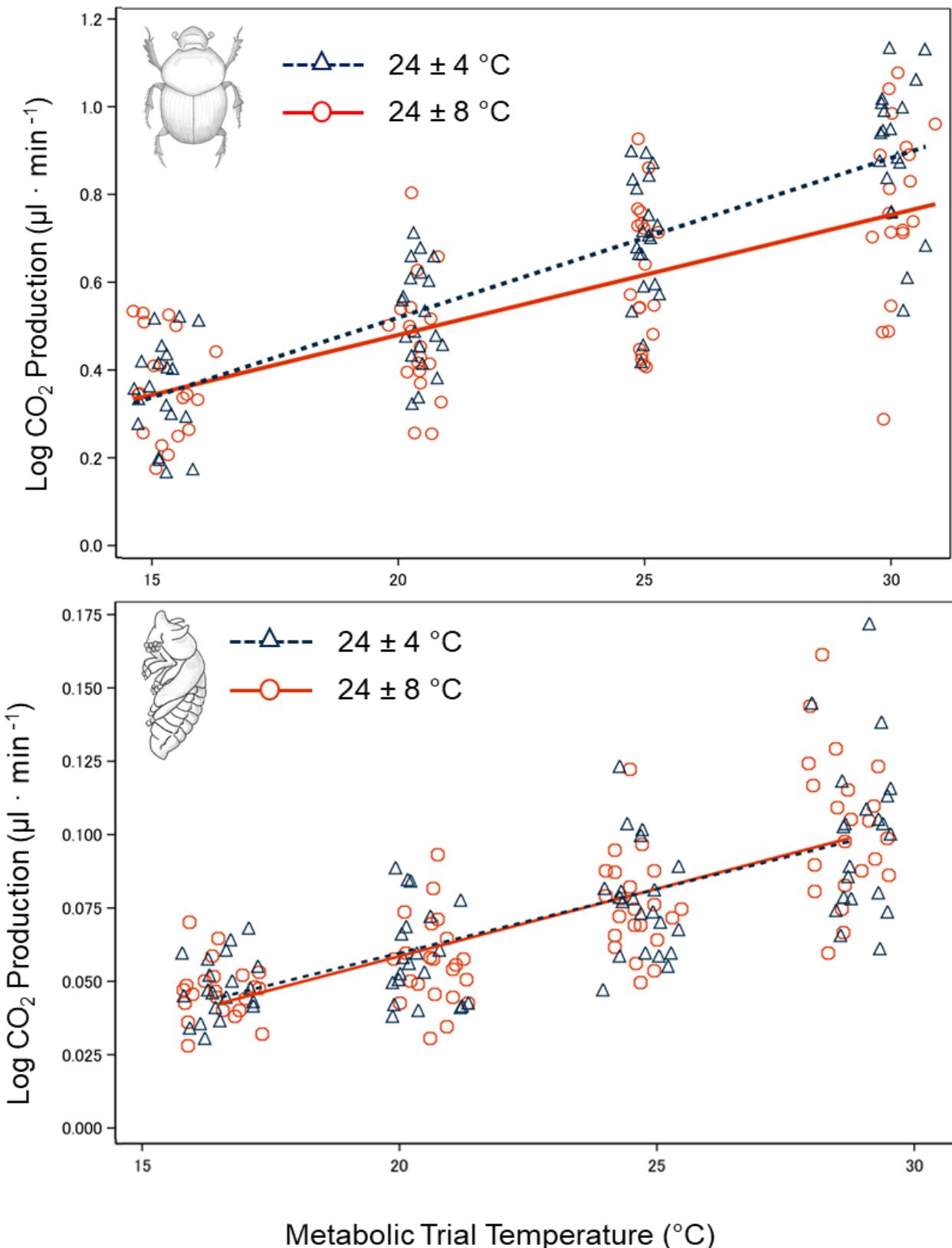


10

11 Figure 1. Do life stages differ in thermal plasticity to increased temperature fluctuation? Using a full-
 12 sibling design, the F_2 generation of *O. taurus* brood balls were placed into an incubator running either a
 13 low or high temperature fluctuation condition during the egg stage. At either the pupal or adult stage,
 14 we used respirometry to test for life stage differences in thermal plasticity, thermal sensitivity of
 15 metabolism, and metabolic rate.

16

17


18

19 Figure 2. Do temperatures during early life stages carry-over to affect adult plasticity and phenotype?

20 We reared the F₂ generation of *O. taurus* individuals from the egg stage through the pupal stage at
 21 either a low or high temperature fluctuation condition. At eclosion, half of the individuals in each
 22 treatment were switched to the opposite temperature fluctuation condition and remained there for an
 23 equivalent duration as development (approximately four weeks). Then, we used respirometry to test for
 24 treatment differences in thermal plasticity, thermal sensitivity of metabolism, and metabolic rate of
 25 adults. At this time, we also measured adult body mass to determine if temperature fluctuations during
 26 development affect this trait.

27

28

30

31 Figure 3. Life stages differ in thermal plasticity as demonstrated by a significant shift in thermal
32 sensitivity of metabolism between temperature fluctuation treatments in adults, but not pupae. The top
33 panel shows adult data and the bottom panel shows pupal data. The low temperature fluctuation
34 treatment is depicted in navy with a dashed line and navytriangles. The high temperature fluctuation
35 treatment is depicted in red with a solid line and red circles. Each point represents the CO₂ production of
36 an individual at that temperature (see methods for details on adult and pupal respirometry) and are
37 jittered along the x-axis to better display overlapping points.

38

39

40

41

42

43

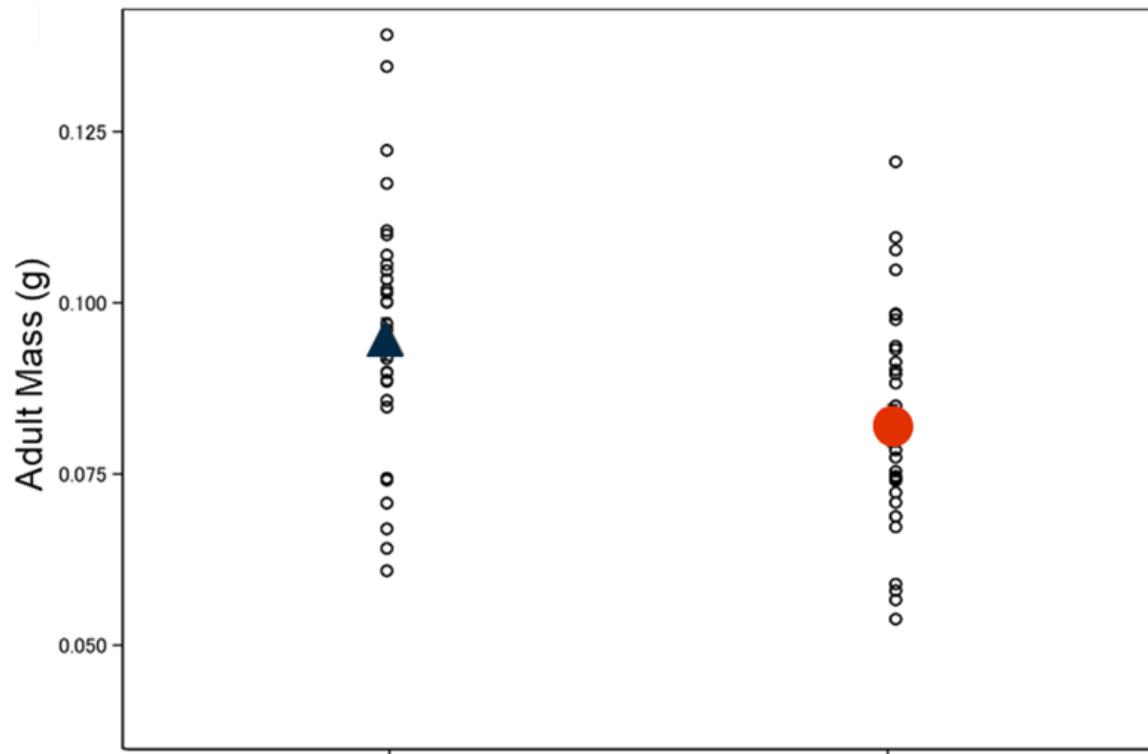
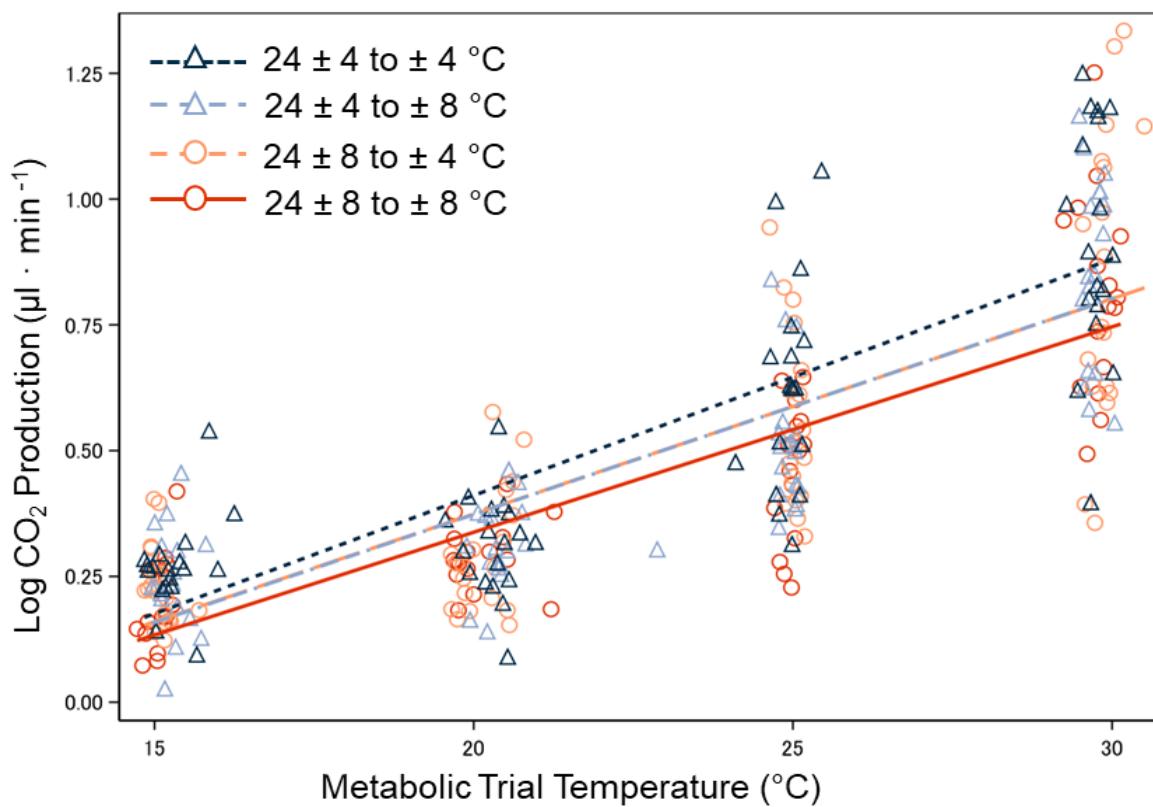
44

45

46

47

48



49

50

51

52

53

Low Fluctuation
 $24 \pm 4 ^{\circ}\text{C}$

High Fluctuation
 $24 \pm 8 ^{\circ}\text{C}$

Developmental Treatment

55 Figure 4. Temperatures during early life stages carry-over to affect adult body size but not thermal
56 plasticity. The top and bottom panels show adult thermal plasticity and body size, respectively, in
57 relation to different temperature treatments experienced during development. For thermal plasticity
58 (top panel), the temperature fluctuation treatments included high-high (red circles and solid red line),
59 low-low (navy triangles and dotted navy line, high-low (orange circles and orange dashed line), low-high
60 treatment (light blue triangles and dashed light blue line). The bottom panel shows adult body mass
61 (least square mean \pm 1 S. E.) as a function of the developmental temperature condition.

62

63

64

65

66

67