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We consider the a priori traveling repairman problem, which is a stochastic version of the classic
traveling repairman problem. Given a metric (V,d) with a root r € V, the traveling repairman
problem (TRP) involves finding a tour originating from r that minimizes the sum of arrival-times at
all vertices. In its a priori version, we are also given independent probabilities of each vertex being
active. We want to find a master tour t originating from r and visiting all vertices. The objective
is to minimize the expected sum of arrival-times at all active vertices, when t is shortcut over the
inactive vertices. We obtain the first constant-factor approximation algorithm for a priori TRP under
independent non-uniform probabilities. Our result provides a general reduction from non-uniform to

uniform probabilities, and uses (in black-box manner) an existing approximation algorithm for a priori
TRP under uniform probabilities.
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1. Introduction

A priori optimization [5] is an elegant model for stochastic
combinatorial optimization, that is particularly useful when one
needs to repeatedly solve instances of the same optimization
problem. The basic idea here is to reduce the computational
overhead of solving repeated problem instances by performing
suitable pre-processing using distributional information. More
specifically, in an a priori optimization problem, one is given a
probability distribution I7 over inputs and the goal is to find
a “master solution” t. Then, after observing the random input
A (drawn from the distribution IT), the master solution 7 is
modified using a simple rule to obtain a solution t, for that
particular input. The objective is to minimize the expected value
of the master solution. For a problem with objective function ¢,
we are interested in:

min ~ Ex[é(a)l .

r:master solution

This paper studies the a priori traveling repairman problem.
The traveling repairman problem (TRP) is a fundamental vehicle
routing problem that involves computing a tour originating from
a depot/root that minimizes the sum of latencies (i.e. the distance
from the root on this tour) at all vertices. The TRP is also known as
the traveling deliveryman or minimum latency problem, and has
been studied extensively, see e.g. [11,12,16]. In the a priori TRP,
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the master solution 7 is a tour visiting all vertices, and for any
random input (i.e. subset A of vertices), the solution t, is simply
obtained by visiting the vertices of A in the order given by .

An a priori solution is advantageous in settings when we
repeatedly solve instances of the TRP that are drawn from a
common distribution. For example, we may need to solve one
TRP instance on each day of operations, where the distribution
over instances is estimated from historical data. Using an a pri-
ori solution saves on computation time as we do not have to
solve each instance from scratch. Moreover, for vehicle routing
problems (VRPs) there are also practical advantages to have a pre-
planned master tour, e.g. drivers have familiarity with the route
followed each day. See [7,17], and [ 10] for more discussion on the
benefits of a pre-planned VRP solution.

1.1. Problem definition

The traveling repairman problem (TRP) is defined on a finite
metric (V, d) where V is a vertex setand d : V x V — R, isa
distance function. We assume that the distances are symmetric
and satisfy triangle inequality. There is also a designated root
vertex r € V. The goal is to find a tour t originating from r
that visits all vertices. The latency of any vertex v in tour t is
the length of the path from r to v along 7. The objective in TRP
is to minimize the sum of latencies of all vertices.

In the a priori TRP, in addition to the above input we are also
given activation probabilities {p,},cyv at all vertices; we use IT to
denote this distribution. In this paper, as in most prior works on
a priori optimization, we assume that the input distribution I7 is
independent across vertices. So the active subset A C V contains
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each vertex v € V independently with probability p,. A solution
to a priori TRP is a master tour t originating from r and visiting
all vertices. Given an active subset A C V, we restrict tour t to
vertices in A (by shortcutting over V \ A) to obtain tour 74, again
originating from r. For each v € A, we use LAT4(v) to denote the
latency of v in tour 74. We also set LAT?(v) = 0 for v ¢ A. We
also use LAT? = Y~ _, LAT?(v) for the total latency under active
subset A C V. The objective is to minimize

ELAT, = E4 [LATA] = E, {Z LAT’:(U)} )

veA

1.2. Results

Our main result in this note is the first constant-factor approx-
imation for the a priori TRP.

Theorem 1.1. There is a constant-factor approximation algorithm
for the a priori traveling repairman problem under independent
probabilities.

Previously, [9] obtained such a result under the restriction that
all activation probabilities are identical, and posed the general
case of non-uniform probabilities as an open question — which
we resolve. Our result adds to the small list of a priori VRPs with
provable worst-case guarantees: traveling salesman, capacitated
vehicle routing and traveling repairman.

In fact, we obtain Theorem 1.1 by a generic reduction of a
priori TRP from non-uniform to uniform probabilities, formalized
below.

Theorem 1.2. There is a (6.27 p)-factor approximation algorithm
for the a priori traveling repairman problem under independent
probabilities, where p denotes the best approximation ratio for the
problem under uniform probabilities.

Clearly, Theorem 1.1 follows by combining Theorem 1.2 with
the O(1)-approximation algorithm for a priori TRP under uniform
probabilities by [9]. As the constant factor in [9] for uniform prob-
abilities is quite large, there is the possibility of improving it using
a different algorithm: Theorem 1.2 would be applicable to any
such future improvement and yield a corresponding improved
result for non-uniform probabilities.

1.3. Related work

The a priori optimization model was introduced in [15] and [3],
see also the survey by [5]. These papers considered the setting
where the metric is itself random and carried out asymptotic
analysis (as the number of vertices grows large). They obtained
such results for the minimum spanning tree, traveling sales-
man, capacitated vehicle routing and traveling salesman facility
location problems.

Approximation algorithms for a priori optimization are more
recent: these can handle arbitrary problem instances. Such re-
sults are known for the traveling salesman problem [13,18,19,21],
capacitated VRP [4,14] and traveling repairman [9].

The a priori TRP was recently studied in [9], where a constant-
factor approximation algorithm was obtained for the case of
uniform independent probabilities. They left open the problem
under non-uniform probabilities: Theorem 1.2 resolves this pos-
itively. The algorithm in [9] was based on many ideas from
the deterministic TRP, but it needed stochastic counterparts of
various properties. As noted in [9], their proof relied heavily on
the probabilities being uniform and it was unclear how to handle
non-uniform probabilities.

We note that the deterministic traveling repairman problem
(TRP) has been studied extensively, both in exact algorithms
[11,16,22] and approximation algorithms [2,6,8,12].

2. A priori TRP with non-uniform distribution

Consider an instance Z of a priori TRP on metric (V, d) with
|V| = n vertices and independent probabilities {p,},cv. We show
how to “reduce” this instance to one with uniform probabilities,
which would prove Theorem 1.2. OQur approach is natural: we
replace each vertex v € V with a group S, of co-located vertices,
where each new vertex is active with a uniform probability p
independent of the other vertices. Let 7 denote the new instance
and (V, d) the new metric. Intuitively, when p is chosen much
smaller than the p,s and |S,| &~ p,/p, the scaled uniform in-
stance J should behave similar to Z. However, proving such a
result formally requires significant technical work. For example,
the master tour found by an algorithm for the scaled (uniform)
instance might not visit all the co-located copies consecutively.
We define a consecutive master tour for 7 as one that visits all
co-located vertices consecutively. Then, we show an approximate
equivalence between (i) master tours in Z and (ii) consecutive
master tours in 7. This relies on the independence across vertices
and the correspondence between the events “vertex v is active in
7" and “at least one vertex of S, is active in 7. This is formalized
in Section 2.2. Then, we show in Section 2.4 that any master tour
for instance J can be modified to a “consecutive” master tour
with the same or better overall expected latency. Finally, in order
to maintain a polynomial-size instance 7 (this is reflected in the
choice of p), we need to take care of vertices with very small
probability separately. In Section 2.3 we show that the overall
effect of the small-probability vertices is tiny if they are visited in
non-decreasing order of distances at the end of our master tour.

Algorithm 1 Reducing non-uniform instance Z to uniform
instance J

: Y < {v e V|p, < 1/n?} denotes the low probability vertices.
: X < {v e V|p, > 1/n?} denotes all other vertices.
 p < Lmin,exp, R
: Construct instance 7 with vertex set V that contains for each
veX,asetS, oft, = {%1 copies of v. The distance between
any two vertices of S, is zero for all v € X. The distance
between any vertex of S, and any vertex of S, is d(u, v).
All vertices in V have an independent uniform activation
probability p.
5: Run any approximation algorithm for uniform a priori TRP on
J to obtain master tour 7.
6: Run procedure MAKECONSECUTIVE(7) to ensure that 7 visits
each group S, consecutively.
7: Obtain tour by visiting vertices of X in the same order that
7 visits S, for all v e V.
8: Extend 7 by visiting vertices w € Y in non-decreasing order
of d(r, w), to obtain tour 7.
9: return 7.

AW N =

Algorithm 1 describes the reduction formally. In Step 6, Al-
gorithm 1 relies on a procedure MAKECONSECUTIVE that modifies
tour 7 such that it visits all copies of the same node consecu-
tively. We will prove Theorem 1.2 by analyzing this algorithm.

2.1. Overview of analysis

We first assume that the master tour 7 on instance 7 already
visits copies of each vertex consecutively: so there is no need for
Step 6. We split this proof into two parts corresponding to the
X-vertices (normal probabilities) and Y-vertices (low probabili-
ties). The analysis for X-vertices (Section 2.2) is the main part,
where we show that the optimal values of Z and 7 are within
a constant factor of each other. In Lemma 2.3 we show that a
constant-factor perturbation in probabilities of V will only change
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the cost of any solution (including the optimal) by a constant
factor. Then we prove (in Lemma 2.4) that the optimal value of
instance 7 is within a constant factor of the optimal value of Z:
although 7 has many more vertices than Z, the proof exploits
the fact that the expected number of active vertices is roughly
the same as Z. Lemma 2.5 proves the other direction for the
cost of our algorithm, i.e. the cost of Algorithm 1 for 7 is at
most that of the consecutive master tour for 7. To handle the
Y-vertices, we use a simple expected distance lower-bound to
show (in Section 2.3) that visiting Y at the end of our tour only
adds a small factor to the overall expected cost.

Above, we assumed above that the master tour 7 visits copies
of each vertex consecutively. However, this is not necessary in
an approximation algorithm for the uniform a priori TRP (see
Appendix A). So in Section 2.4, we provide a subroutine that
ensures this consecutive property. Thus, our approach can be
combined with any algorithm for uniform a priori TRP.

2.2. Analysis for vertices in X

Here we analyze the steps of the algorithm that deal with
vertices in X, i.e. with probability at least niz In order to reduce
notation, we will assume here that X = V which is the entire
vertex set. Recall that p = % - min,ey p,. Note that g, is equal
to the probability of having at least one active vertex in S, for
each v € V. Also define p, = min {(1+ 1)p,, 1}, t, = [p,/p] and
gy = 1 — (1 —p)& for each v € V. We will refer to the instances
on metric (V, d) with probabilities {p,}vev, {qv}vey and {p,}vev
as T, I, and Zj respectively. Note that the original instance is
T = I. For simplicity we use p, q and p to refer to the vector of
probabilities for each corresponding distribution.

Lemma 2.1. For any v € V, we have p,(1— 1) < q, < p, <
po(1+ 1),

Proof. Note that for every real number x we have 1+ x < e*.
Using x = —p and raising both sides to the power of t, we obtain
(1 —p)» < e P, Now we have:

. 1
G =1-(1-p)" 21— > 1—e "7 = 1—e ™ > (1--)p, .
e

The second inequality uses t, = [p,/p] and the last one uses
1—e™ > (1—1/e)x for any x € [0, 1] with x = p,. Now, to prove
the other inequality we use union bound to obtain:

Py
Q@ =1-(-pf <1-(1-pt)=pt <p(Z+1)

p
<pu+—”—pv(1+ o)

Combined with the fact that g, < 1, we obtain q, < p,. O

Lemma 2.2. Let w be any master tour on (V,d). Consider two
probability distributions given by {q,},ev and {p,},ev Such that
0 <q, <py, <1 foreach v € V. Then the expected latency of
7 under {q,}vev is at most that under {p,}ycv.

Proof. Let function f(p1, ..., ps) denote the expected latency of
m as a function of vertex probabilities {p,}. We will show that
all partial derivatives of f are non-negative. This would imply the
lemma. We can express f as a multilinear polynomial

=Y |I]e. [T 0w

ACV \ ueA weV\A

-A
LATA .

Recall that LATA is the total latency of vertices in active set A in
the shortcut tour 4. So the vth partial derivative is:

=2 II» I

ACV\v \ ueA we(V\A)\v

(1—pw) | (LATA — LATE) .

pr

For any A C V \ v, it follows by triangle inequality that LAT;‘;U” >
LATA. This shows that each term in the above summation is
non-negative and so 3~ > 0. O

Lemma 2.3. Let w be any master tour on (V,d). Consider two
probability distributions given by {q,},ev and {p,},ev and some
constant B < 1 such that Bp, < q, < p, for each v € V. Then
the expected latency of w under {q,}vev is at least B> times that
under {I_’v}uev-

Proof. Let function f(py, ..., pn) denote the expected latency of
 under probabilities {p,},cv. For q and p as in the lemma, we
will show f(q) > B3 - f(p). To this end, we now view f as the
expected sum of terms corresponding to all possible edges used
in the shortcut tour w4 (where A is the active set). Renumber
the vertices as 1, 2,...,n in the order of appearance in 7; so
the root r is numbered 1. For any i,j € [n] let I; denote the
indicator random variable for (ordered) edge (i, j) being used in
the shortcut tour m,. For any j € [n], let N; denote the number of
active vertices among {j,j + 1, ..., n}. Then, the total latency of
tour 7y is

> diig) Iy N,
1<i<j<n
Under probabilities q, for any i < j we have E[l;] = q; - gq; -
]_[k _i+1(1 — q&) which corresponds to the event that i and j are
active but all vertices between i and j are inactive. Moreover,
]E[Nj'll,-j =1 =1+ ZZ:H] g, using the independence across
vertices. So we can write:

fl@)= > di.j)-Ell] - ENj|l; = 1]
1<i<j<n
j—1
= > dij-a-g- [Ja-a|1+ ZQZ
1<i<j<n k=i+1 £=j+1

Note that for any i < j, using the fact that 8-p < q < p we have:
j-1

g-g- [[a-a) |1+ ZQz

k=i+1 e=j+1
j—1

JTa-po|1+ sz

k=i+1 t=j+1

> B> i D

This implies f(q) > B3 - f(p) as desired. O

Lemma 2.4. Instances Z and 7 in Algorithm 1 satisfy

4
OPT(7) < (%) (1 + %) . OPT(Z) .

Proof. Recall the three instances Z = I, Z; and Z; on the
metric (V, d). Using q < p (Lemma 2.1) and Lemma 2.2 we have
OPT(Z;) < OPT(Z;). Further, using p < p < (1 + 1/n)p and
Lemma 2.3 we have OPT(II—,) <1+ 1/n)3OPT(Ip). So we obtain
OPT(Zy) < (1 + l/n) - OPT(Z).

Fora = %1+ ) we will show that OPT(J) < « - OPT(Zy)
which would prove the lemma. Recall that instance 7 is defined
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on the “scaled” vertex set V = UvevSy. Let w be an optimal master
tour for instance Z; and 7 be its corresponding master tour for
J: i.e. 7 visits each group S, consecutively at the point when =
visits v. It suffices to show that the expected latency ELAT: of
tour 7 for 7 is at most « - ELAT,, where ELAT, is the expected
latency of tour 7 for Z.

Let A C V and A C V denote the random active subsets in the
instances Z, and 7 respectively. For any v € V, let £, denote the
event that S, N A # {; note that these events are independent.
Moreover, for any v € V, Pri[&,] = PrA[S NA 0] =q, =
Pra[v € A]. Let ELATz(w) = E, [ZUES LATA( )] denote the total
expected latency of vertices of S,, in tour 7. Fix any vertex w € V:
we will show that ELATz(w) is at most « - ELAT,(w), where
ELAT,(w) is the expected latency of vertex w in w. Summing
over w € V, this would imply ELAT; < « - ELAT,, and hence
OPT(J) < & - OPT(Zy).

Consider now a fixed w € V. Note that the probability
distribution of the vertices in V' \ {w} whose groups (in V) have
at least one vertex in A is identical to that of A \ {w}. In other
words, the random subset {v € V \ {w} : &, occurs} has the same
distribution as random subset A\ {w}. Below, we couple these two
distributions: We condition on the events &, for all v € V\{w} (for
tour 7) which corresponds to conditioning on A\ {w} being active
(for tour 7). Under this conditioning (denoted &), the latency
of any active S,, vertex in 7 is deterministic and equal to the
latency of w (if it is active) in m; let L(w, w | &) denote this
deterministic value. So the conditional expected latency of w is
Lm,w | &) -Prlw € A] = L(zw,w|E) - q, where we used the
independence of A\ {w} and the event w € A. Similarly, the total
conditional expected latency of S,, in 7 is

L(zw, w|€)-E[ANS,|] = L, wl€) - (pt,,) < L(mr, wl€) - (P +P) -

The equality above uses the independence of {£, : v € V \ {w}}
and AN Sy, and the inequality uses t,, = [p,,/p]. Thus, the total
conditional expected latency of S,, in 7 is at most pg# times
the conditional expected latency of w in 7. Deconditiouning, we
obtam ELAT:(w) < p’l‘ﬁp ELAT,(w). Using Lemma 2.1, p’l‘ﬁp <
P 1 (1+p/py) < ;= 1(1 4+ 1/n) = «. So LATz(w) < o - LAT,(w)
as needed. O

Lemma 2.5. Consider any consecutive master tour 7 on instance
J with expected latency ALG(7). Then the expected latency of the
resulting master tour w on instance T is

e 3 1\°
ALG(Z) < () (1 + f) -ALG(T7) .
e—1 n

Proof. Let ALG(Z,), ALG(Z;) and ALG(Z;) denote the expected la-
tency of master tour 7 under probabilities p, q and p respectively.
Below we use & = (1 + %). Using p < p and Lemma 2.2 we
have ALG(Z,) < ALG(Zp). Using % -p <q<p(Lemma 2.1) and
Lemma 2.3, we have ALG(Z;) < o - ALG(Zy). Combining these
bounds, we have ALG(Z) < o3 - ALG(Z,). Finally, it is easy to see
that ALG(Z;) < ALG(7) as the probability of having at least one
active vertex in group S, (for any v € V) in J is exactly equal the
probability (q,) of visiting v in Z;. O

2.3. Overall analysis including vertices in Y

Now we have the tools to finish the proof of Theorem 1.2
assuming the tour 7 in J is consecutive. Recall that = is the tour
corresponding to 7 on vertices X and 7 is the extended tour that
also visits the vertices Y.

First, the analysis for the vertices X (Lemmas 2.4 and 2.5)
yields:

Corollary 2.5.1. The tour 7 on vertices X satisfies

4
Eq { Z LATg(v):| <(1+0(1)) <%> p - OPTy ,

veAnX
where p is the approximation ratio for the uniform a priori TRP
used in Algorithm 1 and OPTY is the optimal value of the instance
restricted to vertices X.

After extending tour m to 77, we can write the final expected
latency as

ALG(Z [ Z LATA (v

veANX

= F,4 [ Z LATA (v

veAnX

-z

veANY

)] + Ex [ > LAT?T(U)i| (1)
veANY

where A C V is the active subset. The last equality uses the fact

that 7 visits all vertices of X (along ) before Y. The first term

above can be bounded by Corollary 2.5.1. We now focus on the

second term involving vertices Y.

Let z denote the last X-vertex visited in tour 74 and let L
denote the length of tour 7, until vertex z. Note that z and
L are random variables. Clearly E4[L] is at most the expected
total latency of the X-vertices. Consider any v € Y, and let N,
denote the number of active Y-vertices appearing before v. By the
ordering of Y-vertices in master tour 77 and triangle inequality,

LATA(v) < L4+d(z, v)42N, -d(r, v) < 2L+ (2N, + 1) - d(r, v)) - 1yen »

where the second inequality uses d(z, v) < L+ d(r, v) which fol-
lows from symmetry and triangle inequality. Taking expectations,

Ea [LATA(v)] < py - Eal2L] + py - d(r, v) - (21EA[N]+1)
< py - Ea[2L] +p, - d(r, v)- (2n - —+1)
= pu - Eal2L] + p, - d(r, v) - (1+o(1))

The first inequality uses the fact that L, N, and 1,4 are indepen-

dent. The second inequality uses that N, is the sum of at most n

Bernoulli random variables each with probability at most ~ 1.
Summing over all v € Y, we obtain

Ex [ > LATﬁ(v)} (Zm) “Eal2L] + (14 0(1) Y py - d(r. v)

veANY veY veY

IA

IA

2
—EalLl+(1+0(1) Y _py - d(r, v)

veY

where the last inequality uses p, < 1/n? forall v € Y.

Let Ex denote the expected latency of the X-vertices: this is
the first term in the right-hand-side of (1). Recall that E4[L] < Ey.
Using the above bound on the latency of Y-vertices,

2
ALG(T) < Ex+ = - Ex +(1+0(1)) Y p, - d(r, v)
n

veY
= (1+0(1)) (Ex + ) py-dr, v))
. ve:
< (1+0(1)) <:> o <OPTx +§pv -d(r, v)) (2)
e 4
< (1+40(1)) <7> o - OPT. (3)
e—1

Above, inequality (2) uses Corollary 2.5.1. Inequality (3) uses the
fact that the latency contribution of Y-vertices in any master tour
isatleast ) _, p,-d(r, v) and the latency of X-vertices is clearly
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at least OPTy. This completes the proof of Theorem 1.2 assuming
that 7 visits each group S, consecutively. The next subsection
shows that this consecutive property can always be ensured.

2.4. Ensuring the consecutive property

The main result here is:

Theorem 2.6. Consider any instance 7 of uniform a priori TRP on
vertices U,<xS, where the vertices in S, are co-located for all v € X.
There is a polynomial time algorithm that given any master tour t,
modifies it into a consecutive tour having expected latency at most
that of t.

Note that an optimal TRP solution can be fairly complicated
even on simple metrics: for example, the optimum may cross
itself several times on a line-metric [1] and the problem is
NP-hard even on tree-metrics [20]. In Appendix A we provide
some examples that motivate why we need a non-trivial algo-
rithm to ensure the consecutive property.

Algorithm 2 describes the procedure used to establish
Theorem 2.6. We use IT to denote the distribution of active
vertices, where each vertex has independent probability p. It
is obvious that each iteration of the while-loop decreases the
number k of parts of S,: so the number of iterations is polynomial.
Moreover, the expected latency of any tour can be calculated
exactly (using the expression in Lemma 2.3). So all the steps
run in polynomial time. The key part of the proof is in showing
that the expected latency does not increase, which is done in
Lemma 2.7.

Algorithm 2 Algorithm to obtain a consecutive master tour.

Procedure MAKECONSECUTIVE(T ):
1: forz € V do

22 LetC},C2, ..., C¥ be the minimal partition of S, where for
every i e [k], the vertices in C, appear consecutively in tour
T.
while there exist C! and C; with i # j do
4: Construct tour ; from t by relocating vertices c
immediately after C] _
5: Construct tour 7; from t by relocating vertices C,

immediately before Cﬁ

6: T < argmin, ¢y, o) Ea [LATE]

7: Update k < k — 1 and the new partition of S,.
8: end while

9: end for

Lemma 2.7. Let C! and C£ be two parts of S, with respect to the
current tour t in procedure MAKECONSECUTIVE. Then we have:

Ex [LAT] = min(E, [LAT, ], Ea [LAT’%]) )

Proof. Let |C}| = k; and |C}| = k;. Without loss of generality we
assume that  visits C; before CJ. To reduce notation we use V to
denote the vertex set of instance 7 and let U = C!UC. Recall that
LATﬁ‘T(w) is the latency of vertex w in tour 7 when the subset A
of vertices is active; also LATA = >~ _ LATA(w). Forany R € V
and S C R we use the notation p(S, R) = p"*! - (1 — p)®\S! for the
probability that S is the set of active vertices amongst R.

It suffices to show E, [LAT?] is at least a convex combination

of B4 [LATA ] and E, [LAT% ] More specifically we show that:

Ep [LAT}] = 2 - Ea [LAT.] 4 (1= 1) Ea [LAT’,‘J_] .

where A € [0, 1] is a value that will be set later. The above
inequality is equivalent to proving the following:

> pA VAT = 3 p(A,v) (,\ LATA 4 (1-2)- LAT%_) .

AcV AcV

Let us define B = A\ U and C = AN U. Basically C is the
subset of active vertices among U = C! U CJ, and B is the subset
of active vertices among the rest of V. Then by independence of
probabilities we can re-write the above inequality as follows:

> p(B,V\U)Y p(C, UNATES

BSV\U ccu

> 3 pB. VAL R, U)(A»LATfiUC—I—(l—A)-LAT%_UC) .

BCSV\U ccu

Therefore, it is enough to prove

3 p(C ULATEE = 3 p(c, U) (x SLATRC 4
ccu ccu

x(l—x).LAlejUC), YBC V\U. (4)

In the rest of this proof we fix a subset B C V \ U. This can
be viewed as conditioning on the event “B is the active set of
vertices within V\U”; we denote this event by &p. Let the order of
visited vertices of BU U in t be By, C., By, G5, B3 where By, By, B3
are ordered sets of vertices that form a partition of B. Therefore,
together with C! and C, they form a partition of BU U. See Fig. 1
for an example.

If B, = ¢ then all three tours 7, 7; and 7; become identical
when restricted to BUC for any C C U. So (4) is satisfied with an
equality in this case. Below we assume B, # (). We will prove the
inequality (4) by considering the latency contributions of vertices
in each of the 5 different parts By, By, B3, CL, C.

We define I,, := LATEY®}(w) for all w € V and

BUCE

T; .= LAT; *(w) Yw € Czi, and T;:= LATEUCé(w) Yw € Cg.

(3)

Basically T; (resp. Tj) is the length of the path in v from the
root to any vertex in CZ" (resp. Cﬁ) when the active vertices are
BUC! (resp. BUG). Note that T; > T; by triangle inequality. Also,
let L8 (w) be the expected latency of any vertex w for any tour
7 € {7, 7, 7;} conditioned on the event . More formally:

L2 (w) =" " p(C, UILATE  (w),
ccu

YweV.

Finally, defining the following terms will help us simplify our
notation:

A; = LAT2 % (w) — LATR(w) = LAT: %(w) — 1, Vw € B, UBs.

(6)
Yw € Bs.

(7)
Note that A; (resp. Aj) corresponds to the increase in latency
(conditioned on &) of any B-vertex appearing after C; (resp. C})
if at least one vertex in CZ" (resp. C}) is active. Note that the right
hand side in (6) is the same for any w in the given set and
as a result independent of w; the same observation is true for
(7). Moreover, by triangle inequality, having a superset of active
vertices can only increase the latency of any vertex: so A; and A;
are non-negative.

Table 1 lists the expected latency of vertices in each of the five
different parts, conditioned on &£. We use a; = 1 — (1 — p)*i and

J J
A = LATG (w) — LATE(w) = LATBY% (w) — 1,
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Fig. 1. From left to right: Tours 7, 7; and 1;.

aj=1—(1— p)k as the probabilities of having at least one active
vertex in parts C! and C, respectively.

We first prove the lemma assuming the entries stated in the
table. Then we explain why each of these table entries is correct,
which would complete the proof.

2.4.1. Completing proof of Lemma 2.7 using Table 1
We now prove (4) for a suitable choice of A € [0, 1]. The value
A will not depend on the subset B: so (as discussed before) we can
take an expectation over B to complete the proof of the lemma.
Choosing any A such that A < ﬁ and 1—x < Jiﬁa
i%j
it follows from the first three columns otl Table 1 (for By, Bz and
B3) that:

Li(w) = - L (w)+(1 —,\)-ij(w), Yw € B. (8)

Next we show that the total latency contribution from U
satisfies a similar inequality:
— 1) )L (w). 9)

> owy=a- ) L(w

wel wel wel

To see this, note from the last two columns of the table that

Y Lw)=ki-Tp+ki-Tp, Y L8 (w) = (ki +k)Tip,

wel wel

Z LB (w) = (ki + k;)Tjp .

wel

So, to prove (9) it suffices to show kiTip + kTip > (ki + k;)(AT; +
(1 — A)T;)p. Using the fact that T; < Tj, it suffices to show ki >
(ki+k;)(1—2). In other words, choosing A such that 1—-2 < ’jikj
we would obtain (9).

Finally, adding the inequalities (8) and (9) (which account
for the latency contribution from all active vertices) we would
obtain (4). We only need to ensure that there is some choice for
A satisfying the conditions we assumed, namely:

o (24}
A ——, 1—-A<
o + o — o
kj
T ki+k

_—, and
o + o — o

1-1<

—(—p)ki -
LU=pPL satisfies these

It can be verified directly that A =
1—(1=p)* "1

conditions (see Appendix B).

2.4.2. Obtaining the entries in Table 1
Below we consider each vertex-type separately.

Vertices w € By. By construction of 7; and t; it is obvious that 7, 7;
and ; are identical until visiting any w € By. So for any C C U and
7 € {7, 7, 7} we have LATEY (w) = LATE(w) = LATEY)(w) =
l,,. This means that LB (w) =1, for all 7 € {r, 7, 7;}.

Vertices w € Bp. Consider first tour 7. Note that if there is at
least one active vertex in C; (which happens with probability «;)

then the latency of any w € B, will be LAT?UCé(w). However, if all

vertices in C! are inactive (which happens with probability 1—o;)
then the latency of w would be LAT’f(w). Now using (6) we have:

L(w) = LAT % (w) - o+ 1, - (1 — )

=Ly +A) - ai + 1y - (1 — o) =1, + Ajes .

Now, we can use a similar logic for ;. Here, if there is any
active vertex in U = C! U G} (with probability o; + o — eje;) the
latency of w is LATBU”( ), and if all of U is inactive the latency
is I,,. Note that by definition of r and 7; and the fact that all
vertices in C' appear consecutively on both tours, LAT’;UU (w) =

LATBUC (w) = LAT% (). So we have LB = L, + Ao+ — o).
Finally, by definition of 7; we have LAT%UC(w) = LATB(w) =1,

for any C € U. So L’jj(w) =1ly.

Vertices w € Bs.
w is:

Consider first tour . The latency of such a vertex

o I, if all of U = C} U is inactive,

1 . 3
LAT?UCZ(w) if some vertex in C, is active and all of cis
inactive,

LAT,UCZ(w) if some vertex in C] is active and all of C’ is
inactive, and

L ATBUC Tud (w
active.

) if some vertex in C! and some vertex in C} are

Therefore, we can write:

LE(w) = Ly(1 — a)(1 — o) + LTS (w)ou(1 — o)

J
+ LATS (w)oy(1 — o) + LATY Y (w)atiey; -

From (6) and (7) we have LAT?UCZI = l,+A;and LAT?UC = l,+A;
Also, since we assumed that B, # ), we have LAT?Y = [, + A;+
A;. Combined with the above equation,

Lf(w) =1y + Ajoi + Ajoj .

Now for tour 7; the latency would be equal to LAT?UC} (w) =
l, + A; if there is at least one active vertex among U which
happens with probability «; 4+ o — ajerj. Otherwise it would be
just [,. So Lfi = l, + Ai(e; + oj — a;ej). Similarly, for tour 7; we
have L’jj = l, + Ajlei + o — o).

Vertices w € C.. We start with tour 7. If w ¢ C then LATEY (w)
0. Otherwise, w is active and using (5) we have LATEYC(w) =
i

LAT; (w) = T;. So L¥(w) = Tip.

As C, appears in the same position in tours t and t;, we also
have L} (w) = Tip. .

In tour 7, part C! has moved to the position of part C, in 7.
Here, when w € C we have LAT’ijC(w) =T. So L’jj(w) =Tp.

Vertices w € Ci. As in the previous case, we have Lfi(w) =Tp
and L2 (w) = Tjp.
]
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Table 1 ) )
The values of LB (w) for w € ByUB, UB; UCI UG, and 7 € {7, T, 7j}.
Tour & Type . _
By B, Bs ci e]
T Ly Ly + Ao Ly + i + Aja; Tip Tip + Aiaip
T Ly Ly, + Aio + o — ajcrj) Ly + Ao + o — o) Tip Tip
7 Ly Ly by + Ajlai + o5 — i) Tjp Tip
Cl Cy

k1 vertices L,

ko vertices

Fig. 2. Examples without consecutive property.

Now, consider tour . First note that if w ¢ C, LAT?YC(w) =
0. Below we consider the cases that w is active, which hap-
pens with probability p. If there is at least one active vertex in
C! (which happens independently with probability «;) we have
LATEYC(w) = I, + A; = Tj+ A;. And if there is no active vertex in
C! (with probability 1 — &;), then we have LAT?C(w) = I, = T;.
So

L3(w) = pai - (Tj+ A) + p(1 — o) - T; = Tjp + Ajuip .

This completes the proof of all cases in Table 1, and hence
Lemma 2.7. O
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Appendix A. Useful examples for the consecutive property

Here we provide two examples that motivate why we need an
algorithm for ensuring the consecutive property. Both examples
involve a metric consisting of two clusters, cluster C; and G, that
have k; and k, vertices and are at L; and L, distance from root;
see Fig. 2. They differ in the values of these parameters.

Example 1. The algorithm from [9] does not necessarily produce
a consecutive tour. Recall that the algorithm for uniform prob-
abilities [9] is based on concatenating a sequence of a priori
TSP approximators. Given a bound L, a this involves finds a tour
visiting the maximum number of vertices with expected length
at most L. (Even a bicriteria approximation to this suffices.) We
provide an instance where an optimal TSP approximator visits
clusters partially. In Fig. 2, let ky = 1, L; = 1, [, = 11],
k, = f—) and bound L = 2(1 — 1/e) - %. The optimal TSP
approximator visits % = k, /2 vertices from C, and has expected
length 2L, (1 — (1 —p)"/?) — Las p — 0. So, if this were found
as an approximate solution then the resulting tour for a priori TRP
is not consecutive.

Example 2. An obvious way to make a tour consecutive is to visit
each cluster completely at the point when one of its vertices is
first visited. We show that this can lead to a large increase in
expected latency. Let p = é ky = a, k; = &% L; = o and
L, = a?, where o & 4/n. Consider the non-consecutive tour t that
visits one vertex from C,, then visits all of C; and returns to visit
the remaining vertices in C,. Let t’ be the tour that is obtained

by the algorithm that visits a cluster completely upon its first
visit. So 7’ visits all of C, and then all of C;. One can check that
ELAT, = O(«?) and ELAT, = $2(«?), implying a multiplicative
gap of 2(a) = 2(/n).

Appendix B. Choice of ) in proof of Lemma 2.7

% (where 0 < p < 1) satisfies
the following inequalities: b

Here we show that A =

o
A< —mMm8M (10)
O!,‘—FOlj—Olelj
o
1—-1< (11)
o + o — ooy
ki
1—r< 2 (12)
k;—i—kj

where ; = 1—(1—p)¥ and oj = 1 — (1 — p)¥.
We define function f(k) = 1 — (1 — p)*. Then we can write:

P (RS S %

© flki+ k)’
Clearly,

f(ki + ki) = f(ki) + f(k;) — f(ki)f (k;) (13)
Now, we can re-write inequality (10) as:
f(ki) f(ki)
flki + ki) = f(ki) + f(k;) — f(ki)f (k;)
which is true by Eq. (13).
For inequality (11), we rewrite it as:

fki) f(k;)

1 — =
Flla+ 1) = k) £ 0hg) — F (ki) (k)

& flki+ k) < f(k)+ (k) ,

which is true by (13) and the fact that f(k) > 0 for every k.

It remains to show the correctness of inequality (12) which
can be written as:

fk)
fki +k;)

f(ki) . ki N fk:) . (ki + kj) .
f(kl + kj) ki + kj ki ki + k]‘
So it is enough to show that g(k) = f(% is decreasing, or

equivalently g’(k) < 0. We can write:
, Kf'(k) = f(k) (1 —p)“(1 —klog(1—p))—1
g'(k) = = o
_ p)k . g—klog(1—p) _
_(=p)-e 1_ 0.
< 2
Above we used the inequality 14 x < e* for all real x.
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