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a b s t r a c t

We consider the a priori traveling repairman problem, which is a stochastic version of the classic
traveling repairman problem. Given a metric (V , d) with a root r ∈ V , the traveling repairman
problem (TRP) involves finding a tour originating from r that minimizes the sum of arrival-times at
all vertices. In its a priori version, we are also given independent probabilities of each vertex being
active. We want to find a master tour τ originating from r and visiting all vertices. The objective
is to minimize the expected sum of arrival-times at all active vertices, when τ is shortcut over the
inactive vertices. We obtain the first constant-factor approximation algorithm for a priori TRP under
independent non-uniform probabilities. Our result provides a general reduction from non-uniform to
uniform probabilities, and uses (in black-box manner) an existing approximation algorithm for a priori
TRP under uniform probabilities.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

A priori optimization [5] is an elegant model for stochastic
ombinatorial optimization, that is particularly useful when one
eeds to repeatedly solve instances of the same optimization
roblem. The basic idea here is to reduce the computational
verhead of solving repeated problem instances by performing
uitable pre-processing using distributional information. More
pecifically, in an a priori optimization problem, one is given a
probability distribution Π over inputs and the goal is to find
‘‘master solution’’ τ . Then, after observing the random input
(drawn from the distribution Π ), the master solution τ is

modified using a simple rule to obtain a solution τA for that
particular input. The objective is to minimize the expected value
of the master solution. For a problem with objective function φ,
we are interested in:

min
τ :master solution

EA [φ(τA)] .

This paper studies the a priori traveling repairman problem.
The traveling repairman problem (TRP) is a fundamental vehicle
routing problem that involves computing a tour originating from
a depot/root that minimizes the sum of latencies (i.e. the distance
from the root on this tour) at all vertices. The TRP is also known as
the traveling deliveryman or minimum latency problem, and has
been studied extensively, see e.g. [11,12,16]. In the a priori TRP,
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0167-6377/© 2020 Elsevier B.V. All rights reserved.
the master solution τ is a tour visiting all vertices, and for any
random input (i.e. subset A of vertices), the solution τA is simply
obtained by visiting the vertices of A in the order given by τ .

An a priori solution is advantageous in settings when we
repeatedly solve instances of the TRP that are drawn from a
common distribution. For example, we may need to solve one
TRP instance on each day of operations, where the distribution
over instances is estimated from historical data. Using an a pri-
ori solution saves on computation time as we do not have to
solve each instance from scratch. Moreover, for vehicle routing
problems (VRPs) there are also practical advantages to have a pre-
planned master tour, e.g. drivers have familiarity with the route
followed each day. See [7,17], and [10] for more discussion on the
benefits of a pre-planned VRP solution.

1.1. Problem definition

The traveling repairman problem (TRP) is defined on a finite
metric (V , d) where V is a vertex set and d : V × V → R+ is a
distance function. We assume that the distances are symmetric
and satisfy triangle inequality. There is also a designated root
vertex r ∈ V . The goal is to find a tour τ originating from r
that visits all vertices. The latency of any vertex v in tour τ is
the length of the path from r to v along τ . The objective in TRP
is to minimize the sum of latencies of all vertices.

In the a priori TRP, in addition to the above input we are also
given activation probabilities {pv}v∈V at all vertices; we use Π to
denote this distribution. In this paper, as in most prior works on
a priori optimization, we assume that the input distribution Π is

independent across vertices. So the active subset A ⊆ V contains
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ach vertex v ∈ V independently with probability pv . A solution
o a priori TRP is a master tour τ originating from r and visiting
ll vertices. Given an active subset A ⊆ V , we restrict tour τ to
ertices in A (by shortcutting over V \ A) to obtain tour τA, again
riginating from r . For each v ∈ A, we use LATA

τ (v) to denote the
atency of v in tour τA. We also set LATA

τ (v) = 0 for v /∈ A. We
lso use LATA

τ =
∑

v∈A LAT
A
τ (v) for the total latency under active

subset A ⊆ V . The objective is to minimize

ELATτ = EA
[
LATA

τ

]
= EA

[∑
v∈A

LATA
τ (v)

]
.

.2. Results

Our main result in this note is the first constant-factor approx-
mation for the a priori TRP.

heorem 1.1. There is a constant-factor approximation algorithm
or the a priori traveling repairman problem under independent
robabilities.

Previously, [9] obtained such a result under the restriction that
ll activation probabilities are identical, and posed the general
ase of non-uniform probabilities as an open question — which
e resolve. Our result adds to the small list of a priori VRPs with
rovable worst-case guarantees: traveling salesman, capacitated
ehicle routing and traveling repairman.
In fact, we obtain Theorem 1.1 by a generic reduction of a

riori TRP from non-uniform to uniform probabilities, formalized
elow.

heorem 1.2. There is a (6.27ρ)-factor approximation algorithm
or the a priori traveling repairman problem under independent
robabilities, where ρ denotes the best approximation ratio for the
roblem under uniform probabilities.

Clearly, Theorem 1.1 follows by combining Theorem 1.2 with
he O(1)-approximation algorithm for a priori TRP under uniform
robabilities by [9]. As the constant factor in [9] for uniform prob-
bilities is quite large, there is the possibility of improving it using
different algorithm: Theorem 1.2 would be applicable to any

uch future improvement and yield a corresponding improved
esult for non-uniform probabilities.

.3. Related work

The a priori optimization model was introduced in [15] and [3],
ee also the survey by [5]. These papers considered the setting
here the metric is itself random and carried out asymptotic
nalysis (as the number of vertices grows large). They obtained
uch results for the minimum spanning tree, traveling sales-
an, capacitated vehicle routing and traveling salesman facility

ocation problems.
Approximation algorithms for a priori optimization are more

ecent: these can handle arbitrary problem instances. Such re-
ults are known for the traveling salesman problem [13,18,19,21],
apacitated VRP [4,14] and traveling repairman [9].
The a priori TRP was recently studied in [9], where a constant-

actor approximation algorithm was obtained for the case of
niform independent probabilities. They left open the problem
nder non-uniform probabilities: Theorem 1.2 resolves this pos-
tively. The algorithm in [9] was based on many ideas from
he deterministic TRP, but it needed stochastic counterparts of
arious properties. As noted in [9], their proof relied heavily on
he probabilities being uniform and it was unclear how to handle
on-uniform probabilities.
We note that the deterministic traveling repairman problem

TRP) has been studied extensively, both in exact algorithms
11,16,22] and approximation algorithms [2,6,8,12].
 c
. A priori TRP with non-uniform distribution

Consider an instance I of a priori TRP on metric (V , d) with
V | = n vertices and independent probabilities {pv}v∈V . We show
ow to ‘‘reduce’’ this instance to one with uniform probabilities,
hich would prove Theorem 1.2. Our approach is natural: we
eplace each vertex v ∈ V with a group Sv of co-located vertices,
here each new vertex is active with a uniform probability p

ndependent of the other vertices. Let J denote the new instance
nd (V̂ , d) the new metric. Intuitively, when p is chosen much
maller than the pvs and |Sv| ≈ pv/p, the scaled uniform in-
tance J should behave similar to I. However, proving such a
esult formally requires significant technical work. For example,
he master tour found by an algorithm for the scaled (uniform)
nstance might not visit all the co-located copies consecutively.
e define a consecutive master tour for J as one that visits all

o-located vertices consecutively. Then, we show an approximate
quivalence between (i) master tours in I and (ii) consecutive
aster tours in J . This relies on the independence across vertices
nd the correspondence between the events ‘‘vertex v is active in
’’ and ‘‘at least one vertex of Sv is active in J ’’. This is formalized
n Section 2.2. Then, we show in Section 2.4 that any master tour
or instance J can be modified to a ‘‘consecutive’’ master tour
ith the same or better overall expected latency. Finally, in order
o maintain a polynomial-size instance J (this is reflected in the
hoice of p), we need to take care of vertices with very small
robability separately. In Section 2.3 we show that the overall
ffect of the small-probability vertices is tiny if they are visited in
on-decreasing order of distances at the end of our master tour.

Algorithm 1 Reducing non-uniform instance I to uniform
instance J
1: Y ← {v ∈ V | pv < 1/n2

} denotes the low probability vertices.
2: X ← {v ∈ V | pv ≥ 1/n2

} denotes all other vertices.
3: p← 1

n minv∈X pv

4: Construct instance J with vertex set V̂ that contains for each
v ∈ X , a set Sv of tv = ⌈ pv

p ⌉ copies of v. The distance between
any two vertices of Sv is zero for all v ∈ X . The distance
between any vertex of Su and any vertex of Sv is d(u, v).
All vertices in V̂ have an independent uniform activation
probability p.

5: Run any approximation algorithm for uniform a priori TRP on
J to obtain master tour π̂ .

6: Run procedure MakeConsecutive(π̂ ) to ensure that π̂ visits
each group Sv consecutively.

7: Obtain tour π by visiting vertices of X in the same order that
π̂ visits Sv for all v ∈ V .

8: Extend π by visiting vertices w ∈ Y in non-decreasing order
of d(r, w), to obtain tour π̄ .

9: return π̄ .

Algorithm 1 describes the reduction formally. In Step 6, Al-
orithm 1 relies on a procedure MakeConsecutive that modifies
our π̂ such that it visits all copies of the same node consecu-
ively. We will prove Theorem 1.2 by analyzing this algorithm.

.1. Overview of analysis

We first assume that the master tour π̂ on instance J already
isits copies of each vertex consecutively: so there is no need for
tep 6. We split this proof into two parts corresponding to the
-vertices (normal probabilities) and Y -vertices (low probabili-
ies). The analysis for X-vertices (Section 2.2) is the main part,
here we show that the optimal values of I and J are within
constant factor of each other. In Lemma 2.3 we show that a
onstant-factor perturbation in probabilities of V will only change
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the cost of any solution (including the optimal) by a constant
factor. Then we prove (in Lemma 2.4) that the optimal value of
instance J is within a constant factor of the optimal value of I:
although J has many more vertices than I, the proof exploits
the fact that the expected number of active vertices is roughly
the same as I. Lemma 2.5 proves the other direction for the
cost of our algorithm, i.e. the cost of Algorithm 1 for I is at
most that of the consecutive master tour for J . To handle the
Y -vertices, we use a simple expected distance lower-bound to
show (in Section 2.3) that visiting Y at the end of our tour only
adds a small factor to the overall expected cost.

Above, we assumed above that the master tour π̂ visits copies
of each vertex consecutively. However, this is not necessary in
an approximation algorithm for the uniform a priori TRP (see
Appendix A). So in Section 2.4, we provide a subroutine that
ensures this consecutive property. Thus, our approach can be
combined with any algorithm for uniform a priori TRP.

2.2. Analysis for vertices in X

Here we analyze the steps of the algorithm that deal with
vertices in X , i.e. with probability at least 1

n2
. In order to reduce

notation, we will assume here that X = V which is the entire
vertex set. Recall that p = 1

n · minv∈V pv . Note that qv is equal
o the probability of having at least one active vertex in Sv , for
each v ∈ V . Also define p̄v = min

{
(1+ 1

n )pv, 1
}
, tv = ⌈pv/p⌉ and

v = 1− (1− p)tv for each v ∈ V . We will refer to the instances
n metric (V , d) with probabilities {pv}v∈V , {qv}v∈V and {p̄v}v∈V
s Ip, Iq and Ip̄ respectively. Note that the original instance is
= Ip. For simplicity we use p, q and p̄ to refer to the vector of
robabilities for each corresponding distribution.

emma 2.1. For any v ∈ V , we have pv(1 − 1
e ) ≤ qv ≤ p̄v ≤

pv(1+ 1
n ).

Proof. Note that for every real number x we have 1 + x ≤ ex.
sing x = −p and raising both sides to the power of tv we obtain
1− p)tv ≤ e−ptv . Now we have:

v = 1−(1−p)tv ≥ 1−e−ptv ≥ 1−e−p·
pv
p = 1−e−pv ≥ (1−

1
e
)pv .

he second inequality uses tv = ⌈pv/p⌉ and the last one uses
−e−x ≥ (1−1/e)x for any x ∈ [0, 1] with x = pv . Now, to prove

the other inequality we use union bound to obtain:

qv = 1− (1− p)tv ≤ 1− (1− ptv) = ptv ≤ p(
pv

p
+ 1)

≤ pv +
pv

n
= pv(1+

1
n
) .

ombined with the fact that qv ≤ 1, we obtain qv ≤ p̄v . □

Lemma 2.2. Let π be any master tour on (V , d). Consider two
probability distributions given by {qv}v∈V and {p̄v}v∈V such that
0 ≤ qv ≤ p̄v ≤ 1 for each v ∈ V . Then the expected latency of
π under {qv}v∈V is at most that under {p̄v}v∈V .

Proof. Let function f (p1, . . . , pn) denote the expected latency of
π as a function of vertex probabilities {pv}. We will show that
all partial derivatives of f are non-negative. This would imply the
lemma. We can express f as a multilinear polynomial

f (p) =
∑⎛⎝∏ pu

∏
(1− pw)

⎞⎠ · LATA
π .
A⊆V u∈A w∈V\A
Recall that LATA
π is the total latency of vertices in active set A in

the shortcut tour πA. So the vth partial derivative is:

∂ f
∂pv

=

∑
A⊆V\v

⎛⎝∏
u∈A

pu
∏

w∈(V\A)\v

(1− pw)

⎞⎠(LATA∪v
π − LATA

π

)
.

or any A ⊆ V \ v, it follows by triangle inequality that LATA∪v
π ≥

LATA
π . This shows that each term in the above summation is

non-negative and so ∂ f
∂pv
≥ 0. □

Lemma 2.3. Let π be any master tour on (V , d). Consider two
probability distributions given by {qv}v∈V and {p̄v}v∈V and some
constant β ≤ 1 such that βp̄v ≤ qv ≤ p̄v for each v ∈ V . Then
the expected latency of π under {qv}v∈V is at least β3 times that
under {p̄v}v∈V .

Proof. Let function f (p1, . . . , pn) denote the expected latency of
π under probabilities {pv}v∈V . For q and p̄ as in the lemma, we
will show f (q) ≥ β3

· f (p̄). To this end, we now view f as the
expected sum of terms corresponding to all possible edges used
in the shortcut tour πA (where A is the active set). Renumber
the vertices as 1, 2, . . . , n in the order of appearance in π ; so
the root r is numbered 1. For any i, j ∈ [n] let Iij denote the
indicator random variable for (ordered) edge (i, j) being used in
the shortcut tour πA. For any j ∈ [n], let Nj denote the number of
active vertices among {j, j + 1, . . . , n}. Then, the total latency of
tour πA is∑
1≤i<j≤n

d(i, j) · Iij · Nj .

Under probabilities q, for any i < j we have E[Iij] = qi · qj ·∏j−1
k=i+1(1 − qk) which corresponds to the event that i and j are

active but all vertices between i and j are inactive. Moreover,
E[Nj|Iij = 1] = 1 +

∑n
ℓ=j+1 qℓ using the independence across

vertices. So we can write:

f (q) =
∑

1≤i<j≤n

d(i, j) · E[Iij] · E[Nj|Iij = 1]

=

∑
1≤i<j≤n

d(i, j) · qi · qj ·
j−1∏

k=i+1

(1− qk)

⎛⎝1+
n∑

ℓ=j+1

qℓ

⎞⎠ .

Note that for any i < j, using the fact that β · p̄ ≤ q ≤ p̄ we have:

i · qj ·
j−1∏

k=i+1

(1− qk)

⎛⎝1+
n∑

ℓ=j+1

qℓ

⎞⎠ ≥ β3
· p̄i · p̄j

·

j−1∏
k=i+1

(1− p̄k)

⎛⎝1+
n∑

ℓ=j+1

p̄ℓ

⎞⎠ .

his implies f (q) ≥ β3
· f (p̄) as desired. □

emma 2.4. Instances I and J in Algorithm 1 satisfy

PT(J ) ≤
(

e
e− 1

)(
1+

1
n

)4

· OPT(I) .

Proof. Recall the three instances I = Ip, Iq and Ip̄ on the
etric (V , d). Using q ≤ p̄ (Lemma 2.1) and Lemma 2.2 we have
PT(Iq) ≤ OPT(Ip̄). Further, using p ≤ p̄ ≤ (1 + 1/n)p and
emma 2.3 we have OPT(Ip̄) ≤ (1 + 1/n)3OPT(Ip). So we obtain
PT(Iq) ≤ (1+ 1/n)3 · OPT(I).
For α = e

e−1 (1+
1
n ), we will show that OPT(J ) ≤ α · OPT(Iq)

which would prove the lemma. Recall that instance J is defined



602 F. Navidi, I.L. Gørtz and V. Nagarajan / Operations Research Letters 48 (2020) 599–606

o
t
J
v
t
l

i
e
M
P

P

L

w
u
r

l

A

t

T
d
B

A

n the ‘‘scaled’’ vertex set V̂ = ∪v∈V Sv . Let π be an optimal master
our for instance Iq and π̂ be its corresponding master tour for
: i.e. π̂ visits each group Sv consecutively at the point when π

isits v. It suffices to show that the expected latency ELATπ̂ of
our π̂ for J is at most α · ELATπ , where ELATπ is the expected
atency of tour π for Iq.

Let A ⊆ V and Â ⊆ V̂ denote the random active subsets in the
nstances Iq and J respectively. For any v ∈ V , let Ev denote the
vent that Sv ∩ Â ̸= ∅; note that these events are independent.
oreover, for any v ∈ V , Pr̂A[Ev] = Pr̂A[Sv ∩ Â ̸= ∅] = qv =

rA[v ∈ A]. Let ELATπ̂ (w) = EA
[∑

v∈Sw LATA
π̂ (v)

]
denote the total

expected latency of vertices of Sw in tour π̂ . Fix any vertex w ∈ V :
we will show that ELATπ̂ (w) is at most α · ELATπ (w), where
ELATπ (w) is the expected latency of vertex w in π . Summing
over w ∈ V , this would imply ELATπ̂ ≤ α · ELATπ , and hence
OPT(J ) ≤ α · OPT(Iq).

Consider now a fixed w ∈ V . Note that the probability
distribution of the vertices in V \ {w} whose groups (in V̂ ) have
at least one vertex in Â is identical to that of A \ {w}. In other
words, the random subset {v ∈ V \ {w} : Ev occurs} has the same
distribution as random subset A\{w}. Below, we couple these two
distributions: We condition on the events Ev for all v ∈ V \{w} (for
tour π̂ ) which corresponds to conditioning on A\{w} being active
(for tour π ). Under this conditioning (denoted E), the latency
of any active Sw vertex in π̂ is deterministic and equal to the
latency of w (if it is active) in π ; let L(π, w | E) denote this
deterministic value. So the conditional expected latency of w is
L(π, w | E) · Pr[w ∈ A] = L(π, w|E) · qw where we used the
independence of A \ {w} and the event w ∈ A. Similarly, the total
conditional expected latency of Sw in π̂ is

L(π, w|E) · E[|̂A ∩ Sw|] = L(π, w|E) · (ptw) ≤ L(π, w|E) · (pw + p) .

The equality above uses the independence of {Ev : v ∈ V \ {w}}
and Â ∩ Sw , and the inequality uses tw = ⌈pw/p⌉. Thus, the total
conditional expected latency of Sw in π̂ is at most pw+p

qw
times

the conditional expected latency of w in π . Deconditioning, we
obtain ELATπ̂ (w) ≤ pw+p

qw
· ELATπ (w). Using Lemma 2.1, pw+p

qw
≤

e
e−1 (1+ p/pw) ≤ e

e−1 (1 + 1/n) = α. So LATπ̂ (w) ≤ α · LATπ (w)
as needed. □

Lemma 2.5. Consider any consecutive master tour π̂ on instance
J with expected latency ALG(J ). Then the expected latency of the
resulting master tour π on instance I is

ALG(I) ≤
(

e
e− 1

)3 (
1+

1
n

)3

· ALG(J ) .

roof. Let ALG(Ip), ALG(Iq) and ALG(Ip̄) denote the expected la-
tency of master tour π under probabilities p, q and p̄ respectively.
Below we use α = e

e−1 (1 +
1
n ). Using p ≤ p̄ and Lemma 2.2 we

have ALG(Ip) ≤ ALG(Ip̄). Using 1
α
· p̄ ≤ q ≤ p̄ (Lemma 2.1) and

emma 2.3, we have ALG(Ip̄) ≤ α3
· ALG(Iq). Combining these

bounds, we have ALG(I) ≤ α3
· ALG(Iq). Finally, it is easy to see

that ALG(Iq) ≤ ALG(J ) as the probability of having at least one
active vertex in group Sv (for any v ∈ V ) in J is exactly equal the
probability (qv) of visiting v in Iq. □

2.3. Overall analysis including vertices in Y

Now we have the tools to finish the proof of Theorem 1.2
assuming the tour π̂ in J is consecutive. Recall that π is the tour
corresponding to π̂ on vertices X and π̄ is the extended tour that
also visits the vertices Y .

First, the analysis for the vertices X (Lemmas 2.4 and 2.5)
yields:
Corollary 2.5.1. The tour π on vertices X satisfies

EA

[ ∑
v∈A∩X

LATA
π (v)

]
≤ (1+ o(1))

(
e

e− 1

)4

ρ · OPTX ,

here ρ is the approximation ratio for the uniform a priori TRP
sed in Algorithm 1 and OPTX is the optimal value of the instance
estricted to vertices X.

After extending tour π to π̄ , we can write the final expected
atency as

LG(I) = EA

[ ∑
v∈A∩X

LATA
π̄ (v)+

∑
v∈A∩Y

LATA
π̄ (v)

]

= EA

[ ∑
v∈A∩X

LATA
π (v)

]
+ EA

[ ∑
v∈A∩Y

LATA
π̄ (v)

]
(1)

where A ⊆ V is the active subset. The last equality uses the fact
hat π̄ visits all vertices of X (along π ) before Y . The first term
above can be bounded by Corollary 2.5.1. We now focus on the
second term involving vertices Y .

Let z denote the last X-vertex visited in tour π̄A and let L
denote the length of tour π̄A until vertex z. Note that z and
L are random variables. Clearly EA[L] is at most the expected
total latency of the X-vertices. Consider any v ∈ Y , and let Nv

denote the number of active Y -vertices appearing before v. By the
ordering of Y -vertices in master tour π̄ and triangle inequality,

LATA
π̄ (v) ≤ L+d(z, v)+2Nv ·d(r, v) ≤ (2L+ (2Nv + 1) · d(r, v)) ·1v∈A ,

where the second inequality uses d(z, v) ≤ L+ d(r, v) which fol-
lows from symmetry and triangle inequality. Taking expectations,

EA
[
LATA

π̄ (v)
]
≤ pv · EA[2L] + pv · d(r, v) · (2EA[Nv] + 1)

≤ pv · EA[2L] + pv · d(r, v) · (2n ·
1
n2 + 1)

= pv · EA[2L] + pv · d(r, v) · (1+ o(1)),

he first inequality uses the fact that L, Nv and 1v∈A are indepen-
ent. The second inequality uses that Nv is the sum of at most n
ernoulli random variables each with probability at most 1

n2
.

Summing over all v ∈ Y , we obtain

EA

[ ∑
v∈A∩Y

LATA
π̄ (v)

]
≤

(∑
v∈Y

pv

)
· EA[2L] + (1+ o(1))

∑
v∈Y

pv · d(r, v)

≤
2
n
· EA[L] + (1+ o(1))

∑
v∈Y

pv · d(r, v) ,

where the last inequality uses pv ≤ 1/n2 for all v ∈ Y .
Let EX denote the expected latency of the X-vertices: this is

the first term in the right-hand-side of (1). Recall that EA[L] ≤ EX .
Using the above bound on the latency of Y -vertices,

ALG(I) ≤ EX +
2
n
· EX + (1+ o(1))

∑
v∈Y

pv · d(r, v)

= (1+ o(1))

(
EX +

∑
v∈Y

pv · d(r, v)

)

≤ (1+ o(1))
(

e
e− 1

)4

ρ ·

(
OPTX +

∑
v∈Y

pv · d(r, v)

)
(2)

≤ (1+ o(1))
(

e
e− 1

)4

ρ · OPT. (3)

bove, inequality (2) uses Corollary 2.5.1. Inequality (3) uses the
fact that the latency contribution of Y -vertices in any master tour
is at least

∑
p ·d(r, v) and the latency of X-vertices is clearly
v∈Y v
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at least OPTX . This completes the proof of Theorem 1.2 assuming
that π̂ visits each group Sv consecutively. The next subsection
shows that this consecutive property can always be ensured.

2.4. Ensuring the consecutive property

The main result here is:

Theorem 2.6. Consider any instance J of uniform a priori TRP on
vertices ∪v∈XSv where the vertices in Sv are co-located for all v ∈ X.
There is a polynomial time algorithm that given any master tour τ ,
modifies it into a consecutive tour having expected latency at most
that of τ .

Note that an optimal TRP solution can be fairly complicated
even on simple metrics: for example, the optimum may cross
itself several times on a line-metric [1] and the problem is
NP-hard even on tree-metrics [20]. In Appendix A we provide
some examples that motivate why we need a non-trivial algo-
rithm to ensure the consecutive property.

Algorithm 2 describes the procedure used to establish
Theorem 2.6. We use Π to denote the distribution of active
vertices, where each vertex has independent probability p. It
is obvious that each iteration of the while-loop decreases the
number k of parts of Sz : so the number of iterations is polynomial.
Moreover, the expected latency of any tour can be calculated
exactly (using the expression in Lemma 2.3). So all the steps
run in polynomial time. The key part of the proof is in showing
that the expected latency does not increase, which is done in
Lemma 2.7.

Algorithm 2 Algorithm to obtain a consecutive master tour.

Procedure MakeConsecutive(τ ):
1: for z ∈ V do
2: Let C1

z , C2
z , ..., Ck

z be the minimal partition of Sz , where for
every i ∈ [k], the vertices in C i

z appear consecutively in tour
τ .

3: while there exist C i
z and C j

z with i ̸= j do
4: Construct tour τi from τ by relocating vertices C j

z
immediately after C i

z
5: Construct tour τj from τ by relocating vertices C i

z

immediately before C j
z

6: τ ← argminτ∈{τi,τj}
EA
[
LATA

τ

]
7: Update k← k− 1 and the new partition of Sz .
8: end while
9: end for

Lemma 2.7. Let C i
z and C j

z be two parts of Sz with respect to the
urrent tour τ in procedure MakeConsecutive. Then we have:

A
[
LATA

τ

]
≥ min(EA

[
LATA

τi

]
,EA

[
LATA

τj

]
) .

Proof. Let |C i
z | = ki and |C

j
z | = kj. Without loss of generality we

assume that τ visits C i
z before C j

z . To reduce notation we use V to
denote the vertex set of instance J and let U = C i

z∪C
j
z . Recall that

LATA
π (w) is the latency of vertex w in tour π when the subset A

of vertices is active; also LATA
π =

∑
w∈A LAT

A
π (w). For any R ⊆ V

nd S ⊆ R we use the notation p(S, R) = p|S| · (1 − p)|R\S| for the
robability that S is the set of active vertices amongst R.
It suffices to show EA

[
LATA

τ

]
is at least a convex combination

of EA
[
LATA

τi

]
and EA

[
LATA

τj

]
. More specifically we show that:[

LATA]
≥ λ · E

[
LATA ]

+ (1− λ) · E
[
LATA

]
.
A τ A τi A τj d
where λ ∈ [0, 1] is a value that will be set later. The above
inequality is equivalent to proving the following:∑
A⊆V

p(A, V )LATA
τ ≥

∑
A⊆V

p(A, V )
(
λ · LATA

τi
+ (1− λ) · LATA

τj

)
.

Let us define B = A \ U and C = A ∩ U . Basically C is the
subset of active vertices among U = C i

z ∪ C j
z , and B is the subset

of active vertices among the rest of V . Then by independence of
probabilities we can re-write the above inequality as follows:∑
B⊆V\U

p(B, V \ U)
∑
C⊆U

p(C,U)LATB∪C
τ

≥

∑
B⊆V\U

p(B, V \ U)
∑
C⊆U

p(C,U)
(
λ · LATB∪C

τi
+ (1− λ) · LATB∪C

τj

)
.

Therefore, it is enough to prove∑
C⊆U

p(C,U)LATB∪C
τ ≥

∑
C⊆U

p(C,U)
(
λ · LATB∪C

τi
+

× (1− λ) · LATB∪C
τj

)
, ∀B ⊆ V \ U . (4)

In the rest of this proof we fix a subset B ⊆ V \ U . This can
be viewed as conditioning on the event ‘‘B is the active set of
vertices within V \U ’’; we denote this event by EB. Let the order of
visited vertices of B ∪ U in τ be B1, C i

z, B2, C
j
z, B3 where B1, B2, B3

re ordered sets of vertices that form a partition of B. Therefore,
ogether with C i

z and C j
z they form a partition of B ∪ U . See Fig. 1

or an example.
If B2 = ∅ then all three tours τ , τi and τj become identical

hen restricted to B∪C for any C ⊆ U . So (4) is satisfied with an
quality in this case. Below we assume B2 ̸= ∅. We will prove the
nequality (4) by considering the latency contributions of vertices
n each of the 5 different parts B1, B2, B3, C i

z, C
j
z .

We define lw := LATB∪{w}
τ (w) for all w ∈ V and

i := LAT
B∪C i

z
τ (w) ∀w ∈ C i

z, and Tj := LATB∪C j
z

τ (w) ∀w ∈ C j
z .

(5)

Basically Ti (resp. Tj) is the length of the path in τ from the
oot to any vertex in C i

z (resp. C j
z) when the active vertices are

∪ C i
z (resp. B∪ C j

z). Note that Tj ≥ Ti by triangle inequality. Also,
et LBπ (w) be the expected latency of any vertex w for any tour
∈ {τ , τi, τj} conditioned on the event EB. More formally:

B
π (w) =

∑
C⊆U

p(C,U)LATB∪C
π (w), ∀w ∈ V .

inally, defining the following terms will help us simplify our
otation:

i := LAT
B∪C i

z
τ (w)− LATB

τ (w) = LAT
B∪C i

z
τ (w)− lw ∀w ∈ B2 ∪ B3.

(6)

j := LATB∪C j
z

τ (w)− LATB
τ (w) = LATB∪C j

z
τ (w)− lw ∀w ∈ B3.

(7)

ote that ∆i (resp. ∆j) corresponds to the increase in latency
conditioned on EB) of any B-vertex appearing after C i

z (resp. C j
z)

f at least one vertex in C i
z (resp. C j

z) is active. Note that the right
and side in (6) is the same for any w in the given set and
s a result independent of w; the same observation is true for
7). Moreover, by triangle inequality, having a superset of active
ertices can only increase the latency of any vertex: so ∆i and ∆j
re non-negative.
Table 1 lists the expected latency of vertices in each of the five

ki
ifferent parts, conditioned on EB. We use αi = 1− (1− p) and
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j = 1− (1− p)kj as the probabilities of having at least one active
ertex in parts C i

z and C j
z respectively.

We first prove the lemma assuming the entries stated in the
able. Then we explain why each of these table entries is correct,
hich would complete the proof.

.4.1. Completing proof of Lemma 2.7 using Table 1
We now prove (4) for a suitable choice of λ ∈ [0, 1]. The value

λ will not depend on the subset B: so (as discussed before) we can
take an expectation over B to complete the proof of the lemma.

Choosing any λ such that λ ≤
αi

αi+αj−αiαj
and 1−λ ≤

αj
αi+αj−αiαj

,
it follows from the first three columns of Table 1 (for B1, B2 and
3) that:
B
τ (w) ≥ λ · LBτi (w)+ (1− λ) · LBτj (w), ∀w ∈ B. (8)

Next we show that the total latency contribution from U
atisfies a similar inequality:∑
w∈U

LBτ (w) ≥ λ ·
∑
w∈U

LBτi (w)+ (1− λ) ·
∑
w∈U

LBτj (w). (9)

o see this, note from the last two columns of the table that∑
w∈U

LBτ (w) ≥ ki · Tip+ kj · Tjp,
∑
w∈U

LBτi (w) = (ki + kj)Tip,∑
w∈U

LBτj (w) = (ki + kj)Tjp .

o, to prove (9) it suffices to show kiTip+ kjTjp ≥ (ki + kj)(λTi +
1 − λ)Tj)p. Using the fact that Ti ≤ Tj, it suffices to show kj ≥
ki+kj)(1−λ). In other words, choosing λ such that 1−λ ≤

kj
ki+kj

,
we would obtain (9).

Finally, adding the inequalities (8) and (9) (which account
for the latency contribution from all active vertices) we would
obtain (4). We only need to ensure that there is some choice for
λ satisfying the conditions we assumed, namely:

λ ≤
αi

αi + αj − αiαj
, 1− λ ≤

αj

αi + αj − αiαj
, and

1− λ ≤
kj

ki + kj
.

t can be verified directly that λ =
1−(1−p)ki

1−(1−p)ki+kj
satisfies these

conditions (see Appendix B).

2.4.2. Obtaining the entries in Table 1
Below we consider each vertex-type separately.

Vertices w ∈ B1. By construction of τi and τj it is obvious that τ , τi
and τj are identical until visiting any w ∈ B1. So for any C ⊆ U and
π ∈ {τ , τi, τj} we have LATB∪C

π (w) = LATB
τ (w) = LATB∪{w}

τ (w) =
lw . This means that LBπ (w) = lw for all π ∈ {τ , τi, τj}.

Vertices w ∈ B2. Consider first tour τ . Note that if there is at
least one active vertex in C i

z (which happens with probability αi)
then the latency of any w ∈ B will be LAT

B∪C i
z (w). However, if all
2 τ a
vertices in C i
z are inactive (which happens with probability 1−αi)

hen the latency of w would be LATB
τ (w). Now using (6) we have:

B
τ (w) = LAT

B∪C i
z

τ (w) · αi + lw · (1− αi)
= (lw +∆i) · αi + lw · (1− αi) = lw +∆iαi .

Now, we can use a similar logic for τi. Here, if there is any
ctive vertex in U = C i

z ∪ C j
z (with probability αi + αj − αiαj) the

atency of w is LATB∪U
τi

(w), and if all of U is inactive the latency
s lw . Note that by definition of τ and τi and the fact that all
ertices in C i

z appear consecutively on both tours, LATB∪U
τi

(w) =

AT
B∪C i

z
τi (w) = LAT

B∪C i
z

τ (w). So we have LBτi = lw+∆i(αi+αj−αiαj).
Finally, by definition of τj we have LATB∪C

τj
(w) = LATB

τ (w) = lw
or any C ⊆ U . So LBτj (w) = lw .

ertices w ∈ B3. Consider first tour τ . The latency of such a vertex
is:

• lw if all of U = C i
z ∪ C j

z is inactive,
• LAT

B∪C i
z

τ (w) if some vertex in C i
z is active and all of C j

z is
inactive,
• LAT

B∪C j
z

τ (w) if some vertex in C j
z is active and all of C i

z is
inactive, and
• LAT

B∪C i
z∪C

j
z

τ (w) if some vertex in C i
z and some vertex in C j

z are
active.

herefore, we can write:

B
τ (w) = lw(1− αi)(1− αj)+ LAT

B∪C i
z

τ (w)αi(1− αj)

+ LATB∪C j
z

τ (w)αj(1− αi)+ LATB∪U
τ (w)αiαj .

rom (6) and (7) we have LAT
B∪C i

z
τ = lw+∆i and LAT

B∪C j
z

τ = lw+∆j.
lso, since we assumed that B2 ̸= ∅, we have LATB∪U

τ = lw+∆j+

i. Combined with the above equation,
B
τ (w) = lw +∆iαi +∆jαj .

Now for tour τi the latency would be equal to LAT
B∪C i

z
τ (w) =

w + ∆i if there is at least one active vertex among U which
appens with probability αi + αj − αiαj. Otherwise it would be
ust lw . So LBτi = lw + ∆i(αi + αj − αiαj). Similarly, for tour τj we
ave LBτj = lw +∆j(αi + αj − αiαj).

ertices w ∈ C i
z . We start with tour τ . If w /∈ C then LATB∪C

τ (w) =
. Otherwise, w is active and using (5) we have LATB∪C

τ (w) =
AT

B∪C i
z

τ (w) = Ti. So LBτ (w) = Tip.
As C i

z appears in the same position in tours τ and τi, we also
ave LBτi (w) = Tip.
In tour τj, part C i

z has moved to the position of part C j
z in τ .

ere, when w ∈ C we have LATB∪C
τj

(w) = Tj. So LBτj (w) = Tjp.

ertices w ∈ C j
z . As in the previous case, we have LBτi (w) = Tip

B
nd Lτj
(w) = Tjp.
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Table 1
The values of LBπ (w) for w ∈ B1 ∪ B2 ∪ B3 ∪ C i

z ∪ C j
z , and π ∈ {τ , τi, τj}.

Tour π
Type

B1 B2 B3 C i
z C j

z

τ lw lw +∆iαi lw +∆iαi +∆jαj Tip Tjp+∆iαip
τi lw lw +∆i(αi + αj − αiαj) lw +∆i(αi + αj − αiαj) Tip Tip
τj lw lw lw +∆j(αi + αj − αiαj) Tjp Tjp
Fig. 2. Examples without consecutive property.
g

λ

g

Now, consider tour τ . First note that if w /∈ C , LATB∪C
τ (w) =

. Below we consider the cases that w is active, which hap-
ens with probability p. If there is at least one active vertex in
i
z (which happens independently with probability αi) we have
ATB∪C

τ (w) = lw+∆i = Tj+∆i. And if there is no active vertex in
i
z (with probability 1 − αi), then we have LATB∪C

τ (w) = lw = Tj.
o
B
τ (w) = pαi · (Tj +∆i)+ p(1− αi) · Tj = Tjp+∆iαip .

This completes the proof of all cases in Table 1, and hence
emma 2.7. □
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ppendix A. Useful examples for the consecutive property

Here we provide two examples that motivate why we need an
lgorithm for ensuring the consecutive property. Both examples
nvolve a metric consisting of two clusters, cluster C1 and C2 that
ave k1 and k2 vertices and are at L1 and L2 distance from root;
ee Fig. 2. They differ in the values of these parameters.

xample 1. The algorithm from [9] does not necessarily produce
consecutive tour. Recall that the algorithm for uniform prob-
bilities [9] is based on concatenating a sequence of a priori
SP approximators. Given a bound L, a this involves finds a tour
isiting the maximum number of vertices with expected length
t most L. (Even a bicriteria approximation to this suffices.) We
rovide an instance where an optimal TSP approximator visits
lusters partially. In Fig. 2, let k1 = 1, L1 = 1, L2 = 1

p ,
k2 = 2

p and bound L = 2(1 − 1/e) · 1
p . The optimal TSP

pproximator visits 1
p = k2/2 vertices from C2 and has expected

ength 2L2
(
1− (1− p)1/p

)
→ L as p→ 0. So, if this were found

as an approximate solution then the resulting tour for a priori TRP
s not consecutive.

xample 2. An obvious way to make a tour consecutive is to visit
ach cluster completely at the point when one of its vertices is
irst visited. We show that this can lead to a large increase in
xpected latency. Let p = 1

α
, k2 = α, k1 = α2, L1 = α and

L2 = α2, where α ≈
√
n. Consider the non-consecutive tour τ that

isits one vertex from C2, then visits all of C1 and returns to visit
the remaining vertices in C . Let τ ′ be the tour that is obtained
2
by the algorithm that visits a cluster completely upon its first
visit. So τ ′ visits all of C2 and then all of C1. One can check that
ELATτ = O(α2) and ELATτ ′ = Ω(α3), implying a multiplicative
ap of Ω(α) = Ω(

√
n).

Appendix B. Choice of λ in proof of Lemma 2.7

Here we show that λ =
1−(1−p)ki

1−(1−p)ki+kj
(where 0 ≤ p ≤ 1) satisfies

the following inequalities:

λ ≤
αi

αi + αj − αiαj
(10)

1− λ ≤
αj

αi + αj − αiαj
(11)

1− λ ≤
kj

ki + kj
(12)

where αi = 1− (1− p)ki and αj = 1− (1− p)kj .
We define function f (k) = 1− (1− p)k. Then we can write:

=
f (ki)

f (ki + kj)
, αi = f (ki), αj = f (kj)

Clearly,

f (ki + kj) = f (ki)+ f (kj)− f (ki)f (kj) (13)

Now, we can re-write inequality (10) as:
f (ki)

f (ki + kj)
≤

f (ki)
f (ki)+ f (kj)− f (ki)f (kj)

which is true by Eq. (13).
For inequality (11), we rewrite it as:

1−
f (ki)

f (ki + kj)
≤

f (kj)
f (ki)+ f (kj)− f (ki)f (kj)

=
f (kj)

f (ki + kj)

⇔ f (ki + kj) ≤ f (ki)+ f (kj) ,

which is true by (13) and the fact that f (k) ≥ 0 for every k.
It remains to show the correctness of inequality (12) which

can be written as:
f (ki)

f (ki + kj)
≥

ki
ki + kj

⇔
f (ki)
ki
≥

f (ki + kj)
ki + kj

.

So it is enough to show that g(k) = f (k)
k is decreasing, or

equivalently g ′(k) ≤ 0. We can write:

′(k) =
kf ′(k)− f (k)

k2
=

(1− p)k(1− k log(1− p))− 1
k2

≤
(1− p)k · e−k log(1−p) − 1

k2
= 0 .

Above we used the inequality 1+ x ≤ ex for all real x.
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