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Woody Plant Encroachment has a
Larger Impact than Climate Change
on Dryland Water Budgets

Adam P. Schreiner-McGraw2™, Enrique R. Vivoni®3, Hoori Ajami?, Osvaldo E. Sala**,
Heather L. Throop* & Debra P. C. Peters’

Woody plant encroachment (WPE) into grasslands is a global phenomenon that is associated with

land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains
uncertain how the global processes of WPE and climate change may combine to impact water
availability for ecosystems. Using a process-based model constrained by watershed observations, our
results suggest that both xerification and climate change augment groundwater recharge by increasing
channel transmission losses at the expense of plant available water. Conversion from grasslands

to shrublands without creating additional bare soil, however, reduces transmission losses. Model
simulations considering both WPE and climate change are used to assess their relative roles in a late 21°*
century condition. Results indicate that changes in focused channel recharge are determined primarily
by the WPE pathway. As a result, WPE should be given consideration when assessing the vulnerability of
groundwater aquifers to climate change.

Global drylands covering nearly 40% of the Earth’s land surface have been dramatically transformed by woody
plant encroachment (WPE)'™*. Managed grazing is the predominant use of drylands, making it the single most
extensive form of land use on the planet'. As such, WPE into grasslands is often considered a negative outcome
since it may reduce forage production for livestock® and decrease habitat for native species®. As shrubs become
dominant in a dryland ecosystem, processes in the water and energy budgets are affected’~, including ground-
water recharge'’. Most prior observational''* and modeling"’ efforts indicate that WPE reduces diffuse vertical
recharge due to water uptake by deeply rooted woody plants'>'*. However, these cases have focused on flat areas
that lack topographic effects on water transport. Where terrain controls are important'>, WPE could potentially
have local and downstream consequences on both vertical and lateral water exchanges. Nevertheless, little evi-
dence is available on downstream consequences of WPE within interconnected hillslope and channel systems'¢,
even though many arid landscapes consist of these topographic features.

In addition to WPE, directional changes in climate are expected to impact water budgets in drylands'’. Prior
studies in these regions predict drying caused by increased temperatures and higher evapotranspiration (ET)'¢-%,
in some cases with decreases in precipitation**?. In addition to directional changes in precipitation and temper-
ature, changes to precipitation frequency, intensity, and seasonal distributions are expected”’. Recent work has
shown that increases in precipitation variability are more important than changes to the mean annual precipita-
tion in impacting groundwater recharge in dryland playa lakes®*. Prior observations and model simulations also
suggest significant climate change impacts of extreme precipitation events?>*°. These impacts are critical because
extreme storm events with a high magnitude or intensity can generate streamflow and channel transmission
losses. For instance, channel losses contribute up to 40% of recharge to arid and semiarid aquifers”, and these
losses are commonly used as proxies for recharge?®. While conceptual models of the hydrologic impact of WPE
and climate change have been proposed’, studies on their combined effects on channel transmission losses are
lacking. Indeed, it is unknown if WPE and climate change will interact in a linearly additive manner or in a non-
linear way to affect groundwater recharge in drylands.
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Figure 1. Model scenarios in the context of continental scale WPE. (a) Study site location along with WPE
pathways in the United States. Diamonds indicate states where woody plant encroachment, via xerification
(yellow) or thicketization (purple), has been observed”. (b) Current spatial pattern of grasses, shrubs, and bare
soils (2013) at the watershed study site. Stacked bar plots illustrate WPE model scenarios for the xerification
pathway (c) and the thicketization pathway (d).

In the U.S., WPE occurs via two pathways (Fig. 1a): xerification’ is where grass loss associated with WPE
leads to an increase in bare soil cover, while ‘thicketization’ involves the replacement of grasses by shrubs without
a simultaneous increase in bare soil”. In dry environments where water resources are limited, grassland plants
tend to be smaller and more tightly spaced together than do shrublands. Gaps between shrubs allow resource
removal by wind*” and water®' transport, which increases the bare soil coverage. Mean annual precipitation is
a good predictor for the occurrence of each pathway, with drier areas (<400 mm per year) in the western U.S.
undergoing xerification’>*?, while wetter sites in the central and eastern U.S. have experienced primarily thicketi-
zation®***. This distinction is important as these pathways directly affect the connectivity of surface flow over bare
soil patches, and the lateral subsurface water movement on hillslopes®®, which in turn impact focused recharge
in downstream channels®”**. Since channel losses depend on hillslope processes affected by plants, a modeling
approach that can account for both terrain and vegetation patch effects on hydrologic connectivity is needed.
Similar pathways of WPE can be found globally® and have been identified in Africa*’, South America*!, and
China®, although the precipitation thresholds indicating which pathway is more likely are not clear.

We applied a distributed, process-based ecohydrological model to determine the hydrologic impacts of WPE
and climate change. The investigation was performed using data from a small, densely instrumented watershed
(4.6 ha) in the Chihuahuan Desert (Fig. 1b) where historical WPE has been well documented**~**. We conducted
a series of simulation scenarios using observed meteorological data over a 6.25-year period (using all available
data) to quantify impacts of xerification (Fig. 1¢) and thicketization (Fig. 1d) pathways by varying the percent-
ages of shrub, grass, and bare soil cover. We then used a stochastic downscaling approach to construct synthetic
time series of meteorological forcings based on historical (1990-2005) and late century (2085-2100) conditions
projected from three general circulation models (GCMs) and one greenhouse gas emissions scenario (RCP 8.5).
Our analysis focuses on the consequences of the combined effects of WPE and climate change on the evapotran-
spiration and channel transmission losses that form the major parts of the dryland water budget.

With this framework, we address the following questions about the conversion of grasslands to shrublands: (1)
What are the impacts of woody plant encroachment on the dryland water budget? (2) Do varying WPE pathways
lead to different water budget components?, and (3) What are the relative roles of WPE and projected climate
conditions on channel transmission losses at the end of the 21* century?

Diverging effects of WPE on water budget components. Simulations using the 6.25-year observed
forcings (Fig. S1) with a calibrated model (see Methods) show that WPE via the xerification pathway increased
focused recharge in channel features during summer months with high precipitation (Fig. 2a). While WPE does
not affect the precipitation threshold necessary for recharge (40 mm/month in this system) among various xerifi-
cation scenarios, the annual ratio of transmission losses to precipitation (T;/P) increases with lower grass cover,
equivalent to +13 mm per year or +29% for the lowest grass cover scenario relative to an initial grassland. Due to
the higher bare soil cover during xerification, larger amounts of infiltration-excess overland flow from hillslopes
reach the channel network*, augmenting channel transmission losses that lead to focused recharge®’. This result
is consistent with prior studies showing a reduction of infiltration with increases in bare soil*’ at both the plot
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Figure 2. Impacts of two woody plant encroachment pathways on transmission losses. Relation between
monthly transmission losses (T}) and precipitation (P) for (a) xerification and (b) thicketization pathways.
Insets display annual T;/P relation with percent grass cover (%).

Scenario Grass Cover | P [mm/yr] | ET [mm/yr] | Q[mm/yr] | T; [mm/yr] | Mean © [mm] | T;/P[—]
70% 271 220 3 47 19.1 0.173
60% 271 215 6 49 18.9 0.181
50% 271 211 8 51 18.8 0.188

Xerification Pathway 40% 271 207 10 53 18.7 0.195
30% 271 205 11 55 18.5 0.202
20% 271 203 11 57 18.4 0.209
10% 271 201 10 59 18.2 0.216
0% 271 201 9 61 18.0 0.223
70% 271 220 3 47 19.1 0.173
60% 271 221 3 46 19.0 0.169
50% 271 223 3 44 19.0 0.164

Thicketization Pathway 40% 271 224 3 43 18.9 0.159
30% 271 225 3 42 18.9 0.154
20% 271 227 3 40 18.7 0.149
10% 271 228 3 40 18.7 0.146
0% 271 230 2 38 18.6 0.142

Table 1. Annual water budget components for xerification and thicketization pathways using observed
meteorological forcing. Water budget variables: P is the precipitation, ET is evapotranspiration, Q is streamflow
at the watershed outlet, and Tj is transmission losses. The mean soil moisture (Mean ©) for the 6.25-year period
is also presented as interannual changes in soil water storage are negligible.

and field scales®® as well as increases in the hydrologic connectivity of hillslopes and channel systems during
xerification®".

While increases in focused recharge caused by xerification are linear, other water budget components exhibit
nonlinearities with a reduction in grass cover (Table 1). Reductions in ET are due to the lower soil infiltration
caused by higher bare soil, yielding large declines of annual ET/P from 81 to 74%. In dryland settings, ET is water
limited, such that this trend reflects a decrease in plant available water with increasing T'. Indeed, the high arid-
ity in the study watershed results in all of the P that infiltrates into the soil being used for ET, irrespective of the
type of plant. As a result, changes to watershed ET reflect changes to the physical structure of the watershed that
impact infiltration of P into the soil. It is noteworthy that reductions in ET asymptote towards 200 mm per year
in the xerification pathway for the lowest grass cover. This asymptote is caused by the increase in ET from shrub
patches as the total vegetation cover decreases (Fig. S2). Since bare soil patches do not transpire soil water, their
expansion with xerification provides more opportunity for overland flow generation in bare soil patches and lat-
eral soil water redistribution to shrub locations.

By increasing infiltration-excess runoff, WPE via the xerification pathway also results in a nonlinear increase
in streamflow, Q (Table 1). Though annual Q/P are typically low (1 to 4%), a notable maximum in streamflow is
observed for grass cover between 20 and 30% for the xerification pathway. Since the partitioning between Q and
T; is controlled by the interaction between hillslope runoff and the initial channel infiltration capacity*®°!, this
nonlinearity is explained by the variation of hydrograph properties with changes in grass cover. Low grass cover
increases the hillslope flow connectivity which results in more overland flow reaching the dry ephemeral channel
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during a transient period when capillary forces increase infiltration rates (see Methods). This results in higher T}
and lower streamflow for the lowest grass cover cases.

Since WPE does not result in an increase in bare soil along the thicketization pathway, an opposite response to
the xerification case is noted. Indeed, T;/P shows a linear decrease as grass cover decreases (Fig. 2b, Table 1). This
reduction is caused by two mechanisms that increase ET/P from 81 to 85%: increased shrub canopy interception
of precipitation and increased soil infiltration underneath shrubs as compared to grasses®>>*. Canopy interception
capacity in shrub areas increases by 64% up to a threshold of 0.65 mm due to the higher leaf area index of shrubs*,
while soil infiltration increases by 66% due to the higher surface hydraulic conductivity underneath shrubs as
compared to grasses (Table S1). WPE along the thicketization pathway also reduces streamflow from Q/P of 1%
to 0.8%, though the sensitivity is quite low. While these effects also occur for the xerification pathway, the impact
of expanding bare soil cover on runoff production overwhelms other shrub-induced mechanisms, leading to the
diverging impacts of the two different encroachment pathways on evapotranspiration and channel transmissions
losses.

Non-stationarity of hydrologic impact of WPE with climate change. We simulated vegetation
cover conditions for the final states of the WPE pathways (Fig. 1¢,d) and an initial grassland state (70% grass,
30% bare soil) for late 21%-century climate conditions (2085-2100) and compared these to a historical climate
period parameterized with NLDAS-2 (Fig. S3, Methods). Overall, annual changes in channel transmission
losses show that WPE has a stronger impact on dryland water budgets than the worst-case climate change
conditions (late-century, RCP 8.5) explored here. As described previously, annual differences in T between
a historic grassland and final shrub states show diverging outcomes under the two pathways (Fig. 3a). These
effects are larger than the climate change impact on a grassland for the three GCMs. Indeed, the WPE cases
show a greater sensitivity than the possible future impacts of climate change alone. When the effects are com-
bined (Fig. 3b), the annual change in T} is not a linearly additive process and the directionality of the future
changes are determined almost entirely by the WPE pathway, rather than the magnitude of the imposed climate
change signal.

To further explore this outcome, Fig. 3c shows how the WPE pathways will affect T; for the projected cli-
mate conditions at late-century. While the general patterns discussed previously still hold, the sensitivity to WPE
varies considerably as compared to the historical period (Fig. 3b). This demonstrates that there is an embedded
non-stationarity imposed by climate change on the hydrologic response to WPE for both pathways. Specific
changes to T for each shrubland state depend on the climate-induced changes in precipitation amount and pat-
terns>®. For instance, the CSIRO projected climate (reduced total precipitation, increased precipitation intensity)
shows large impacts to the annual T; changes, with a reduced sensitivity for the xerification, and increased sen-
sitivity for the thicketization pathways, as compared to the historical climate. The non-stationarity in climate can
be linked directly to precipitation properties (Table S2) that determine whether WPE will yield greater focused
recharge. By comparing the projected changes to climate with Fig. 3, it is noted that in systems with high bare
soil, the CSIRO model with a high average storm intensity and low annual precipitation results in the most T;.
Along the thicketization pathway, the HadGEM2-ES model predicts the most T} due to its higher annual precip-
itation which overcomes the canopy interception from the higher amount of shrub cover. Interannual variability
in the T} representing a range of potential climate and WPE impacts demonstrates that WPE largely determines
the directionality of changes (Fig. S4). Changes to individual precipitation properties, such as an increase in the
average daily storm size or the average annual precipitation, can have a larger impact than WPE on transmission
losses (Fig. S5). GCMs do not predict such drastic changes to precipitation properties, however, so when the range
of likely changes to precipitation properties is considered WPE is shown to be the primary driver of changes to
T; (Fig. S6).

Implications of WPE for groundwater sustainability. Woody-plant encroachment into grasslands is
often considered a negative outcome and associated with land degradation. Nevertheless, our modeling results
illustrate that xerification in a landscape leading to high cover of bare soil can yield increased T}, leading to
focused groundwater recharge. At the same time, plant available water is reduced, providing an advantage to
shrubs in their competition with grasses®**” and yielding a positive feedback loop that promotes further WPE and
focused recharge. In contrast, the thicketization pathway decreases channel losses by increasing hillslope infil-
tration and evapotranspiration, suggesting that woody plant encroachment in humid regions will not enhance
groundwater recharge. Some studies have hypothesized that increases to streamflow in upland systems may result
in supplemental water deliveries to downstream ecosystems'®. Our results suggest that although both WPE and
climate change may increase runoff production on hillslopes, this runoff is absorbed in first order channels and
does not subsidize downstream ecosystems.

Under a changing climate, the impact of WPE on the dryland water budget is more important than the
climate change signal. However, a climate-induced non-stationarity in the hydrologic response emerges for
each WPE pathway. For the xerification pathway, water budget components are highly sensitive to changes in
extreme precipitation events, whereas the thicketization pathway is most sensitive to changes in total precipita-
tion. We illustrate how this global phenomenon can affect groundwater aquifers through positive (xerification)
or negative (thicketization) feedbacks linked to ecohydrological processes. Given that groundwater is the major
freshwater resource in many drylands, land managers should consider how woody plant encroachment could
affect aquifer sustainability. Because groundwater recharge is potentially more strongly linked to the vegetation
state than climate change, WPE should become part of the discourse about management of dryland aquifers
in the future.
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Figure 3. Combined impacts of climate change and WPE on transmission losses. (a) The difference in the
average annual T; between a historical grassland and end-member shrubland states forced with historical
climate (left) and grassland forced with climate change forcings (right). The X-path is the xerification pathway
and the T-path is the thicketization pathway. (b) The difference in the average annual T; between a historical
grassland and two shrubland states forced with a historical climate based on NLDAS-2 data (‘Hist’) or one of 3
climate change projections, CNRM-CM35 (‘CNR’), CSIRO Mk.3.6.0 (‘CSI’), or HadGEM2-ES (‘HGE). (c) The
difference in the average annual T; between shrubland and grassland when both vegetation states use the same
meteorological forcings for historical conditions (‘Hist.) or one of the 3 climate change projections.
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Methods

Ecohydrological Process Modeling. Numerical simulations were performed using the TIN-based Real-
time Integrated Basin Simulator, tRIBS*>*, a fully-distributed, physically-based ecohydrological model. The
tRIBS framework captures high-resolution topography, soil type, vegetation, and meteorological conditions
affecting the land-phase of the hydrologic cycle. For each model element, a range of processes that track the
watershed response are calculated, including: (1) canopy interception and evaporation; (2) infiltration, soil mois-
ture redistribution, and runoff generation; (3) evaporation from bare soil and transpiration from vegetation; (4)
shallow subsurface flow; and (5) overland and channel flow. The model is also capable of ingesting time-variable

vegetation parameters® and the modeling domain can be partitioned into subdomains for parallel computing®'.

60
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We briefly describe the infiltration, runoff generation, channel transmission losses, and vegetation representa-
tions for dryland systems with shallow soils. Each model element has a heterogeneous, sloped soil column above a
semi-impermeable carbonate layer®. A modified version of the Green-Ampt equation that represents unsaturated
flow in layered soils is used to calculate infiltration®®%%. Precipitation pulses lead to single infiltration fronts that
interact with antecedent soil water to impact runoff generation and subsequent infiltration. Soil water is redis-
tributed laterally based on topographic gradients. Following storm events, soil water is depleted through bare soil
evaporation and plant transpiration to meet the atmospheric demand via closing the energy balance using the
Penman-Monteith equation®®. A vegetative fraction for each model element determines the fractions of bare soil
evaporation and transpiration and is treated as a species-dependent parameter that varies with observed plant
phenology*.

tRIBS simulates runoff generation as either Hortonian (infiltration excess) or Dunnian (saturation excess)
processes depending on the wetness state in hillslope soils®. Groundwater exfiltration and perched return flow
can also be simulated, but are not observed in this system*. Runoff is transported to the watershed outlet by first
routing the runoff along each hillslope in the direction of steepest descent based on the hillslope path length and a
velocity dependent on the downstream channel discharge®®. In the channel network, river routing is simulated
using a one-dimensional, finite element, kinematic wave approximation using the Manning’s equation for rectan-
gular cross sections. Recent modifications to the model allow for channel transmission losses of hillslope-derived
runoff that account for the impact of capillary forces on infiltration in ephemeral channels during the initial
period of infiltration*’, termed the transient period. A key limitation of this approach is that this model is not a
fully integrated surface water-groundwater model. Therefore, transmission losses that are lost from the model
domain cannot be accessed by deep-rooted shrubs. Additionally, all shrubs in the modeling framework have their
roots limited to the soil layer (top 50 cm) and the carbonate layer is treated as a fully impermeable unit. While
these assumptions result in a simplified system, in situ observations suggest that they are reasonable approxima-
tions and will not significantly alter conclusions drawn from the model*”¢.

Woody Plant Encroachment Scenarios. This study was performed in a mixed shrubland of the Jornada
Experimental Range USDA-LTER site of southern New Mexico*. The study watershed has undergone woody
plant encroachment since 1850* leading to the current state consisting of creosote bush (Larrea tridentata),
honey mesquite (Prosopis glandulosa Torr.), several perennial bunchgrass species (Muhlenbergia porteri,
Pleuraphis mutica, and Sporobolus cryptandrus), and other shrubs (Parthenium incanum, Flourensia cernua, and
Gutierrezia sarothrae). The model was parameterized to ensure accurate representation of shrubs and grasses.
When conducting WPE scenarios, however, a generic shrub class was used based upon the time-variable param-
eters and phenology of mesquite shrubs. No significant differences in the water budget were obtained when a set
of mixed shrubs were represented.

To generate the WPE scenarios, we constructed random distributions of shrubs, grasses, and bare soil to meet
plant cover specifications (Fig. 1c,d). These were generated within ArcGIS to create spatially distributed raster
datasets. Several random realizations of shrub distribution for the same total shrub cover as the current observed
state yielded no significant difference in the hydrologic response (Fig. S7). Plant cover specifications were devel-
oped to follow the two WPE pathways. Xerification better represents dry conditions at the study site where WPE
results in high bare soil cover. To achieve these, we developed relations between aboveground net primary pro-
duction (ANPP) and plant cover for grasses and shrubs. Total ANPP does not change with WPE®* in arid envi-
ronments where xerification occurs, but the relation between biomass and percentage cover is steeper for shrubs
than for grasses; thus, to maintain constant ANPP with WPE, there is an increase in bare soil. Thicketization
occurs in more humid environments where grasses are replaced by shrubs since there is sufficient precipitation to
support increased ANPP (Fig. S8).

Model Scenario Simulations. We performed the hydrologic simulations for a period that corresponds with
hydrologic monitoring at the site*: July 1, 2010 - September 30, 2016 (6.25 years), a total of 7 growing seasons (1
July to 1 October). Meteorological forcings consisted of observed values of solar radiation, wind speed, air tem-
perature, relative humidity, and barometric pressure at 30-minute intervals and applied uniformly to the water-
shed*. Precipitation at 30-minute resolution was derived from four rain gauges in the watershed*. Simulations
were performed with a spatial resolution of 1 m resulting in ~47,000 computational elements requiring 25 CPU
hours per year of simulation. Parallel computations were used to decrease simulation time based on subdomain
partitioning of the channel network into 8 regions®'. A base case consisting of observed vegetation at the study
site was calibrated and validated using extensive observations of soil moisture, streamflow, evapotranspiration,
and the energy balance®. Static model parameters are presented in Table S1. Vegetation parameters include time
variable phenology based on phenocam measurements from the study site*®. The model outputs of interest are
the water budget components of evapotranspiration, streamflow, and transmission losses. Transmission losses are
defined as deep percolation in the channel network and can occur even when insufficient streamflow develops to
exit the watershed.

Climate change scenarios rely on stochastic downscaling of general circulation models (GCMs) to produce
representative realizations of potential future climates in the region®%. This technique applies delta change val-
ues to the statistical properties of historical precipitation and air temperature based on the differences between
current and future periods. We obtained projections from the Coupled Model Intercomparison Project ver-
sion 5 for three GCMs shown to be effective for desert regions®: (1) CNRM-CMS5, (2) CSIRO Mk3.6.0, and (3)
HadGEM2-ES. We selected single realizations from each model that represent a late century (2085-2100) period
under the representative concentration pathway (RCP) 8.5. The 15-year period was selected to match the length
of a historical period from NLDAS-27° (1990-2005). We used the statistical properties of the 15-year periods
to generate hourly forcing data, representative of the three GCMs and the historical conditions, over synthetic
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100-year periods. These forcings should be considered representative realizations of the climate under stationary
historical and late century conditions. Due to computational limitations, we selected three WPE scenarios to
combine with the climate change cases: (1) 70% grass (0% shrub), (2) 0% grass xerification (35% shrub), and (3)
0% grass thicketization (70% shrub). Each vegetation state was run with the stochastically generated forcings
representing historical conditions and late 21%-century conditions. We note that hourly precipitation values sup-
press finer-scale variations which are important for the short duration, high-intensity events leading to channel
transmission losses at the site. Because of this, simulations using the long-term synthetic data are used only to
compare the relative importance of WPE and climate change on the dryland water budget.
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