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Indicators of vegetation composition, vegetation structure, bare ground cover, and gap size in drylands poten-
tially gives information about the condition of ecosystems, in part because they are strongly related to factors
such as erosion, wildlife habitat characteristics, and the suitability for some land uses. Field data collection based
on points does not produce spatially continuous information about surface indicators and cannot cover vast
geographic areas. Remote sensing is possibly a labor- and time-saving method to estimate important biophysical
indicators of vegetation and surface condition at both temporal and spatial scales impossible with field methods.
Regression models based on machine learning algorithms, such as random forest (RF), can build relationships
between field and remotely sensed data, while also providing error estimates. In this study, field data including
over 15,000 points from the Assessment, Inventory, and Monitoring (AIM) and Landscape Monitoring
Framework (LMF) programs on Bureau of Land Management (BLM) lands throughout the Western U.S.,
Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)
parameters, MODIS nadir BRDF-adjusted reflectance (NBAR), and Landsat 8 Operational Land Imager (OLI)
surface reflectance products with ancillary data were used as predictor variables in a k-fold cross-validation
approach to RF modeling. RF regression models were built to predict fourteen indicators of vegetation cover and
height, as well as bare gap parameters. The RF model estimates exhibited good correlations with independent
samples, with a low bias and a low RMSE. External cross-validation showed good agreement with out-of-bag
(OOB) errors produced by RF and also allowed mapping prediction uncertainty. Predicted distribution maps of
the surface indicators were produced by using these relationships across the arid and semiarid Western U.S. The
bias and RMSE distribution maps show that the sample insufficiency and unevenly pattern of sample strongly
impact the accuracy of the RF regression and prediction. The results from this study clearly show the utility of RF
as a means to estimate multiple dryland surface indicators from remotely sensed data, and the reliability of the
OOB errors in assessing the accuracy of the predictions.

1. Introduction

(Ludwig et al., 2007; Okin et al., 2009). As a result of the need for
monitoring, specialized biophysical surface indicators of vegetation and

The Western U.S. is largely composed of arid and semiarid lands
that provide a variety of important ecosystem goods and services, but
land degradation in these areas, a critical global issue in the 21st cen-
tury (Bestelmeyer et al., 2015), can be severe. In the mostly dry Western
U.S. vegetation can be sparse and composed of a mix of life forms (i.e.,
woody and herbaceous plants), often with a considerable amount of
non-photosynthetic vegetative material. This complex vegetation
structure and bare soil cover are important in regard to the functioning
of these lands. For instance, large amounts of bare connected soil can
make these environments susceptible to erosion by wind and water

surface condition have been developed for dryland ecosystems (e.g.,
Herrick et al., 2015). The large variations in bare soil cover, vegetation
cover, and vegetation structure at different landscape levels are
strongly related to erosion, determine wildlife habitat characteristics,
and control the suitability for some land uses, making the use of mul-
tiple indicators critical in the monitoring and management of lands in
the Western U.S. and elsewhere (Herrick et al., 2010; Knippertz and
Stuut, 2014). As the largest manager of land in the arid and semiarid
Western U.S., the Bureau of Land Management (BLM) has developed the
Assessment, Inventory, and Monitoring (AIM) and Landscape
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Monitoring Framework (LMF) programs to systematically collect in-
formation on lands it manages throughout the western states
(MacKinnon et al., 2011).

In situ observation is a commonly used method to measure surface
conditions. Field data collection based on points does not provide
spatially or temporally continuous information about the surface and is
susceptible to under-sampling, even in a relatively small area (Karl
et al., 2014). Moreover, measuring surface indicators in situ is time-
consuming and laborious, especially in harsh or remote areas (Elzinga
et al., 1998; Holthausen et al., 2005). Remote sensing is a practical
method for detecting surface indicators at different temporal and spa-
tial scales within a short time frame (Sun et al., 2008). Several studies
have shown that assimilating satellite remote sensing images and field
data can generate surface indicators at relatively large landscape scales
(Booth and Cox, 2009; Jones et al., 2018; Karl et al., 2012; Laliberte
et al., 2004; Luscier et al., 2006; McCord et al., 2017). However, remote
sensing techniques may have difficulty measuring all surface indicators
with the required accuracy and precision (Marsett et al., 2006). In ad-
dition, the relationship between surface reflectance and surface in-
dicators is usually nonlinear (Duniway et al., 2012) and the spatial
cover and temporal density of field data collection can be limited. The
small training sample size and nonlinearity make the use of traditional
regression approaches problematic for assimilating remote sensing
images and field data (Duniway et al., 2012; Liang et al., 2012). Ma-
chine learning algorithms, on the other hand, which were developed
first by artificial intelligence scientists, excel at solving nonlinear pro-
blems and can overcome the issue caused by small sample size (Lary
et al., 2016). As examples, a Bayesian additive regression tree (BART)
model has been applied to estimate six surface indicators in Northern
California and Nevada based on AIM data and high spatial resolution
satellite images (McCord et al., 2017); a 30-m annual vegetation map of
the Western U.S. was created based on remotely sensed and field data
by using the random forest (RF) regression approach (Jones et al.,
2018); and a 100-m soil property and class maps of the U.S. was gen-
erated based on land cover and gSSURGO polygon data by using a tree-
based regression model (Ramcharan et al., 2018).

In our study, a RF regression model based on the Frequentist fra-
mework (Breiman, 2001; Herrick et al., 2010; Jones et al., 2018;
Leenaars et al., 2017; McCord et al., 2017; Ramcharan et al., 2018) was
employed to derive the relationships between AIM and LMF field data
and remotely sensed data, combined with ancillary data. We added
bidirectional reflectance distribution function (BRDF) parameter pro-
ducts to our machine learning-based regression method to help retrieve
the structural indicators (i.e., plant height and bare soil gap size), as
BRDF is sensitive not just to surface brightness, but surface architecture
as well, and therefore potentially correlates better with structural in-
dicators (Li and Strahler, 1986; Jones et al., 2018). The objectives of
this study were to: (1) build RF regression models for fourteen bio-
physical surface indicators of vegetation and surface condition, (2)
apply the resulting RF regression models to generate predicted dis-
tribution maps for these indicators across the arid and semiarid Western
U.S., and (3) provide external k-fold cross-validation estimates of error
and map the error distribution in the study area. The addition of ex-
ternal cross-validation, as opposed to the internal cross-validation that
inherent to the RF approach, provides the opportunity to understand
the limitations on RF predictions in conditions more closely approx-
imating what a land manager might experience. They also provide the
opportunity to produce geographical estimates of error to better re-
present geographical variability in the quality of estimates which may
be used to better contextualize predictions or to prioritize the location
of new measurements.
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2. Random forest algorithm
2.1. Decision tree-based modeling

Decision trees are commonly used classification and regression
methods in remote sensing analysis (Friedl and Brodley, 1997). Deci-
sion trees create tree-like models in which each internal node represents
a test on an independent variable, each branch represents a criterion of
the test, and each ‘leaf’ represents a result of the test. The tests measure
the homogeneity (i.e., Gini impurity or mean squared error, MSE) be-
tween a descendant and its parent variable. If the root (i.e., dependent
variable) is categorical, this approach yields a “classification tree”. If
the root (i.e., dependent variable) is continuous, this approach yields a
“regression tree”. Because the AIM and LMF surface indicators are
continuous, we only concern ourselves here with the regression tree
approach. The most well-known regression tree approach is the classi-
fication and regression tree (CART) algorithm (Breiman et al., 1984;
Zhang et al., 2013; Zhang et al., 2012), which is a nonparametric al-
gorithm that recursively partitions the dataset through simple regres-
sion models into increasingly smaller subsets by the same splitting
decision (i.e., core function). Each simple regression model (i.e., re-
gression plane) only has one dependent variable and the relationship
between the regression planes is nonlinear.

Although CART shows good performance in regression, another
approach has been to employ an ensemble regression tree model (i.e.,
additive trees or ‘forests’), which is an algorithm that synthesizes
multiple related but different models, to improve the accuracy and
precision of predictive analytics (Lary, 2010). Specifically, for the re-
gression tree model, two or more regression trees are built based on
different subsets of training samples (Dietterich, 2000). The final result
of the ensemble regression tree model is the weighted result based on
the outcome of each tree. RF (Breiman, 2001) and BART (Chipman
et al., 2010) are the two most commonly used ensemble regression tree
approaches.

2.2. Random forest regression model

RF has been successfully used for regression in many disciplines
(Pal, 2005) and is characterized by the bagging (i.e., bootstrap ag-
gregating) approach (Breiman, 1996). RF has three qualities that re-
commend its use here. First, RF builds multiple regression trees in-
dependently by using different bootstrapped sample subsets of training
samples (Steinberg and Colla, 2009). There may be some outliers in one
of the bootstrapped sample subsets, but each tree relies on its own
subset, so the sensitivity of RF to outliers is reduced. Second, each node
of a tree is split by using a randomly chosen independent variable
among the entire set of independent variable (Liaw and Wiener, 2002),
and RF chooses the subset of trees with the least error as the final
output, making RF robust against overfitting (Rodriguez-Galiano et al.,
2012). Third, in the bagging approach, RF randomly chooses sample
subsets from the training samples with replacement (i.e., bootstrap),
which means that even a small dataset can be sampled multiple times
making RF resilient to sample insufficiency (Breiman, 2001). Although
RF has some advantages compared to other machine learning regression
algorithms, it is difficult to use it in datasets with missing data (Pal,
2005). One advantage of the AIM/LMF sampling approach is that there
are very few missing data. Nonetheless, the standard approach of RF in
these cases is to separate a dependent variable with missing data into
two dependent variables: one continuous variable consisting of the
present data and one categorical variable that labels missing data
(present data are marked as 1 and missing data are marked as 0).
However, adding the categorical dependent variable reduces the im-
portance of present data and impacts the measurement of the homo-
geneity (i.e., Gini impurity or MSE) of the original dependent variable
(Murphy, 2012).

RF has two control

hyperparameters (parameters that
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implementation of the algorithm, in contrast to parameters that are
determined through running the algorithm) to control tree growth: the
maximum number of independent variables for each tree and the
number of trees used to produce the forest. The maximum number of
independent variables controls the depth of the tree and is tuned to
generate the most efficient expression of the model. The number of
trees controls the size of the forest and is tuned to find enough trees to
improve the accuracy of the model without overly increasing compu-
tational costs. Here, MSE was used as the criterion to split the tree. If
the MSE of the descendant node is smaller than a threshold, then the
branch stops growing and the leaf of this branch is a possible outcome
of the tree. If the MSE of the descendant node is greater than a
threshold, then the node is the parent node for the next descendant
node. Inherent to the RF approach is out-of-bag (OOB) cross-validation
in which samples are divided into different training (usually 70-80%)
and validation (usually 20%-30%) sets in the production of each tree,
from which an overall OOB error can be estimated (Breiman, 2001). In
this approach, all data are eventually used to produce the final tree, and
thus OOB errors tend to underestimate the true error in the predictions.

2.3. k-Fold cross-validation

A complementary approach to cross-validation is external cross-
validation, in which small, random samples (usually 5%-10%) are
withheld from the predictions entirely, and then error is estimated
based on the final model's ability to predict these withheld points. This
typically done some number, k, of times (i.e., k-fold cross-validation)
and can be done with or without replacement. k-Fold cross-validation is
a commonly used cross-validation method for a machine learning al-
gorithm. The aim of k-fold cross-validation is to employ unseen data to
estimate the performance of an algorithm (James et al., 2013; Russell
and Norvig, 2011). Because the omitted data are not included in the
production of the model, these external estimates of error are higher
than the OOB errors, but better reflect the error that might be expected
by a user of the model (Roberts et al., 2017; Segal, 2004; Svetnik et al.,
2003). Thus, the advantage of k-fold cross-validation is that it can
utilize all samples as training and testing samples, which leads a less
biased or less optimistic estimate for the performance of the machine
learning algorithm (Kuhn and Johnson, 2013). In addition, this ap-
proach to cross-validation means that k different predictions are made,
allowing the production of distribution of estimates that can be used as
an indicator of the precision of the estimates. In our study, because each
data point is associated with a geographical location, we can make
geographically explicit estimates of error which potentially has utility
in prioritizing the location of new measurements or spatially con-
textualizing the quality of a prediction in a certain area.

3. Data and methodology
3.1. Study area

AIM and LMF measurements taken from 2013 to 2017 in eleven
states in the Western U.S. were used in this study (Fig. 1). Generally, the
Western U.S. has an arid and semiarid climate; however, the west coast
of California has a Mediterranean climate (Westerling et al., 2006).
Deserts, semiarid and arid areas, and mountains make up most of the
land cover in the area. The main types of vegetation are grass and shrub
with a small fraction of the forest (Loveland et al., 1991).

The study area covers about four hundred level IV ecoregions based
on the National Gap Analysis Project (GAP) dataset according to
McMahon et al. (2001). Within each ecoregion, the biotic (e.g., vege-
tation) and abiotic (e.g., climate) phenomena are similar (McMahon
et al., 2001). In our study, we included every ecoregion that contains
more than two AIM or LMF sites (Fig. 1). The urban areas, dry lakes,
and lakes in those ecoregions were removed from the study area by
using the GAP dataset (McMahon et al., 2001).
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Fig. 1. The pattern of Assessment, Inventory, and Monitoring (AIM) and
Landscape Monitoring Framework (LMF) sites in the study area (about 400
level IV ecoregions). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3.2. Field data collection

The Landscape Approach Data Portal (https://landscape.blm.gov/
geoportal) contains field measurements from BLM lands (MacKinnon
et al., 2011). The AIM and LMF dataset has a total of 20 common
surface indicators including bare ground cover, native vegetation cover,
invasive vegetation cover, plant height, and soil stability, measured
using consistent methods, such as line-point-intercept (LPI), gap inter-
cept, and belt transect (Herrick et al., 2017; MacKinnon et al., 2011).
AIM and LMF data were collected by different BLM surveying and
mapping teams (MacKinnon et al., 2011). These teams contributed to
approximately 50 projects in different states across the Western U.S.
Fourteen surface indicators were selected for this study (Table 1).

3.3. Remote sensing products and ancillary data

Three types of remote sensing products and three types of ancillary
data were used as independent variables in RF regression models
(Table 2). These remote sensing products are Moderate Resolution
Imaging Spectrometer (MODIS) BRDF parameters, MODIS nadir BRDF-
adjusted reflectance (NBAR), and Landsat 8 Operational Land Imager
(OLI) surface reflectance. MODIS data have 500-m resolution and OLI
data have 30-m resolution. Ancillary data including climate variables,
topographic variables, soil texture variables were also included. Each
dataset covers the whole study area.

The MODIS BRDF parameters product (MCD43Al) contains the
model kernels for each MODIS band obtained from the Ross Thick-Li
Sparse BRDF model used by MODIS to characterize the angular dis-
tribution of reflected light (Schaaf et al., 2002). For each of the seven
MODIS bands (Table 2), there are three kernel weights (i.e., isotropic,
geometric, and volumetric). The isotropic kernel weight (k;,) re-
presents the bidirectional reflectance of a simple, flat isotropic scatter,
the geometric kernel weight (kg,) represents the bidirectional re-
flectance of a surface containing a large number of objects (plants), and
the volumetric kernel weight (k,,) represents the bidirectional re-
flectance of a homogeneous thick medium consisting of randomly lo-
cated scattering plane facets with a particular volume density (Roujean
et al., 1992). The MODIS NBAR product (MCD43A4) constitutes a
prediction of reflectance viewed from the nadir in each MODIS band
(Strahler et al., 1999). The Landsat 8 OLI surface reflectance product
contains seven bands and has a much higher spatial resolution and
superior noise characteristics compared to MODIS (Roy et al., 2014).
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Table 1
The list of all surface indicators in this study.
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Surface indicators Description

Gap 25-50

Gap 51-100

Gap 101-200

Gap 201-250

Gap > 250

Bare soil cover
Total vegetation cover
Sagebrush cover
Sagebrush height
Herbaceous height
NInvPerennial Grass
NiInv Shrub
NInvPerennial Forb
InvAnnual Grass

The fraction of the transect comprised of bare soil gaps between 25 cm and 50 cm.
The fraction of the transect comprised of bare soil gaps between 51 cm and 100 cm.
The fraction of the transect comprised of bare soil gaps between 101 cm and 200 cm.
The fraction of the transect comprised of bare soil gaps between 201 cm and 250 cm
The fraction of the transect comprised of bare soil gaps > 250 cm.

The percent bare ground cover.

The percent canopy cover of herbaceous and woody plants (both invasive and non-invasive).
The percent canopy cover of sagebrush.

The mean value of the heights of living or dead sagebrush.

The mean value of the heights of living or dead herbaceous plants.

The percent canopy cover of non-invasive perennial grasses.

The percent canopy cover of non-invasive shrubs.

The percent canopy cover of non-invasive perennial forbs.

The percent canopy cover of invasive annual grasses.

Table 2
Spatial resolution and number of predictors for remote sensing products and
ancillary data.

Variable Original spatial resolution (m) Number of bands
MODIS BRDF parameters 500 30

MODIS NBAR 500 7

OLI surface reflectance 30 7

Vegetation indices 500 or 30 4

Climate 1000 3

Topography 90 3

Soil texture 1000 3

For each AIM or LMF site, the nearest neighbor, closest-in-time cloud-
free MODIS (daily) and OLI (every 16 days) pixel value (surface re-
flectance of MODIS and Landsat 8 and the kernel weights of BRDF
parameters) were extracted from images downloaded from Google
Earth Engine.

Climate variables used in this study were monthly mean (30 days
prior to the collection date of AIM or LMF samples) precipitation,
monthly mean temperature, and monthly mean solar radiation.
Monthly mean precipitation, temperature, and solar radiation were
taken from the daily surface weather and climatological summaries
(https://daymet.ornl.gov/), which have 1000-m resolution. To keep all
climate variables dimensionless, all of them were converted to nor-
malized value (Maclaurin et al., 2016) by using the following equation:

o x — min(X)
~ max(X) — min(X)’ (@)

where X represents the normalized value at a certain pixel, x represents
the original value at a certain pixel, X represents all the values in the
entire study area. The range of all three climate variables used in the RF
regression is therefore [0,1], which is also the range of the remote
sensing variables.

Topographic variables used in this study were elevation, slope, and
aspect derived from Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM)
data with 90-m resolution (Fujisada et al., 2005), downloaded from
Natural Resources Conservation Service (NRCS, https://datagateway.
nres.usda.gov/). To keep all topographic variables dimensionless, ele-
vation and slope were converted to normalized value using Eq. 1. Since
the impact of aspect is different on the east side and west side, a -cos@
function was used at a pixel if the pixel had an eastern orientation
(0°-179°), while a -cos(360°-0) function was used if the pixel had a
western orientation (180° to 359°) (Hafez et al., 2017; Smith, 1977).
The range of all three topographic variables used in the RF regression is
therefore [0,1].

Soil texture variables used in this study were the fraction of clay,
silt, and sand in the topsoil layer, which were derived from USDA's

State Soil Geographic Database (STATSGO) with 1000-m resolution
(Miller and White, 1998), downloaded from NRCS (https://
datagateway.nrcs.usda.gov/). The fractions of clay, silt, and sand are
percentages and are therefore unitless. The range of all three soil tex-
ture variables used in the RF regression is therefore [0,1].

3.4. Random forest implementation and mapping

In RF, the remote sensing and ancillary variables were treated as
independent variables (X;....X,) and each surface indicator was treated
as a dependent variable (Y). Fourteen RF models based on the re-
lationships between the fourteen surface indicators and remote sensing
and ancillary variables were used to generate the predicted distribution
maps. Python 3.6 with Scikit-learn 0.18 package (Pedregosa et al.,
2011) was used to create the RF regression models and output of the
resulting of cross-validation. ArcGIS 10.4 (ESRI, 380 New York Street,
Redlands, CA 92373, USA) was used to extract the pixel value of re-
motely sensed and ancillary data and generate the predicted distribu-
tion maps.

After extraction of the values for remotely sensed and ancillary data
(as discussed above), we conducted initial testing of RF models, and
finally set 8 as the maximum number of independent variables in each
tree and 100 as the number of trees to produce in the forest to provide a
good balance between error reduction and computation time (Fig. 2).

In our implementation of k-fold cross-validation, we set k to 20
without replacement. In this approach, each sample was omitted ex-
actly one time (i.e., 5% omission each time), in random order, and each
surface indicator was predicted 20 times. This led to the production of
20 separate RF models for each of the fourteen surface indicators. RF
models were produced with an 80%-20% split for training and vali-
dation to make out-of-bag (OOB) testing data, from which OOB error
for each model could be calculated. Predictions of the fully omitted 5%
of samples were then made. Thus, for each indicator, each sample point
is associated with a single in situ value and a single prediction derived
from a model in which the sample was not included in training data.
Each sample point also has 19 (20 minus 1) predictions from models in
which the point was included as training data. And ensemble mean of
these 19 points was calculated as the average of these 19 values.

The contribution of each variable to the overall regression, as the
total decrease in MSE from splitting on the variable based on the
method of Scikit-learn 0.18 package (Pedregosa et al., 2011). The total
decrease in MSE provides estimates of the importance of the variables
in the RF model results. The contributions reported here are the average
of each of the 20 RF models for each indicator.

To produce continuous prediction maps of each indicator, 20 in-
dividual maps were produced for each indicator, and the final predic-
tion map was calculated as the mean of these 20 maps. Because AIM
and LMF data were usually collected from June to September, remote
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Fig. 2. RF regression model performance as a function of number of trees and the maximum number of independent variables (using the indicator of Gap 201-250
and total vegetation cover as examples). Y axis represents the value in the normalized scale, which is the ratio of the present value to the maximum value.

sensing images during the mid-summer were selected to predict the
distribution of surface indicators. For the MODIS products, we chose
MODIS BRDF parameters and NBAR products collected on July 20th,
2016 that covered the Western U.S. A sequence of images (June
13-August 6, 2016) was chosen to create a cloud-free OLI surface re-
flectance product to cover the Western U.S. We chose the summer of
2016 to make the prediction maps of surface indicators because this is
the summer with the largest number of AIM and LMF points.

3.5. Error estimation and representation

Three statistics were employed to evaluate the relationship between
model predictions and in situ measurements. The coefficient of de-
termination (R?) represents how well the RF model predictions corre-
lated with in situ measurements:

Ty 0 =92
NS @

where y, represents a value of in situ measurement, §; represents the
mean value of in situ measurements, and §, represents a value of the RF
estimate. R? does not, however, provide an estimate for how well the RF
model predicts the correct values. For that, additional error metrics are
required. Mean error (ME) provides an estimate of the bias of the RF
estimates:

R=1-

1 no_
ME= %0, G =0 @)

The root-mean-square error (RMSE) provides an estimate of the
overall error of the RF estimates:

52’::1 (5); - yt)2

These three statistics (i.e., R%, ME, and RMSE) were calculated using
both OOB samples and external (from the 5% of samples left out of each
RF model) samples to produce estimates of OOB and external error,
respectively.

3.6. Spatial characteristics of error

Because each in situ data point was geographically located and had
associated with it a prediction where it was not included in the training
data, our approach allows characterization of the spatial distribution
predictions errors. Error (ME and RMSE) distributions for each in-
dicator were estimated and mapped as the mean value of all MEs or
RMSEs in each ecoregion in the study area.

4. Results

For the purposes of discussion, we only show five surface indicators,
a mixture of structural and non-structural (i.e., Gap > 250, Bare soil
cover, Total vegetation cover, Herbaceous height, and NInvPerennial
Grass cover), representing indicators that were both well-predicted and
poorly-predicted. Additional results for the other surface indicators may
be found in the supplementary data.

4.1. Model evaluation

Our results indicate strong positive relationships exist between
predicted values and in situ values, with external R® values ranging
from 0.21 for the poorly-predicted variable to 0.70 for the well-pre-
dicted variables (Table 3 and Fig. 3). Most of the MEs of surface in-
dicators are positive but only the ME of Gap > 250 is negative with

RMSE = \ " ) absolute values lower than 0.57 (Fig. 3). Most indicators show the same
pattern of over-prediction at low values and under-prediction at high

Table 3

Error metrics for individual surface indicators.
Surface indicator Coefficient of determination Mean error RMSE

Internal OOB External Internal OOB External Internal OOB External

Gap 25-50 0.88 0.23 0.22 0.06 0.05 0.16 1.97 5.08 5.01
Gap 51-100 0.89 0.28 0.26 0.05 0.01 0.13 2.51 6.38 6.37
Gap 101-200 0.89 0.32 0.32 0.08 0.20 0.22 2.89 7.25 7.28
Gap 201-250 0.92 0.49 0.51 0.24 0.47 0.57 5.92 15.34 14.90
Gap > 250 0.92 0.45 0.46 -0.07 —-0.53 -0.20 8.30 21.15 21.03
Bare soil cover 0.94 0.61 0.60 0.09 0.16 0.25 4.51 11.18 11.37
Total vegetation cover 0.95 0.70 0.71 0.02 0.10 0.09 4.82 12.22 12.16
Sagebrush cover 0.89 0.32 0.31 0.18 0.52 0.48 3.42 8.57 8.69
Sagebrush height 0.88 0.22 0.24 0.32 1.59 0.97 8.41 20.93 21.18
Herbaceous height 0.93 0.56 0.58 0.11 0.70 0.42 3.88 9.78 9.78
NiInvPerennial Grass 0.92 0.47 0.46 0.19 0.67 0.57 5.29 13.26 13.38
NInv Shrub 0.89 0.25 0.27 0.17 0.52 0.37 4.18 10.66 10.55
NInvPerennial Forb 0.88 0.24 0.21 0.11 0.30 0.26 1.54 3.86 3.88
InvAnnual Grass 0.90 0.37 0.37 0.25 0.41 0.57 4.46 11.50 11.23
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Fig. 3. Correlations between model-predicted external values, calculated using the external k-fold cross-validation, and in situ values of five surface indicators and
the relative contributions of remote sensing and ancillary variables to the regressions (inset). The diagonal represents the 1:1 line. The color bare shows the density of
points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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values (Fig. 3). MODIS BRDF parameters contribute more to the re-
gressions than any other variables. Climate and topographic variables
have the second greatest contributions to the regressions. In contrast,
MODIS NBAR, OLI surface reflectance, and soil texture contribute re-
latively little to the regressions (Fig. 3). The two vegetation indices for
both satellite surface reflectance products contribute very little, so their
contributions are not shown. The differences in R?, ME, and RMSE
between OOB samples and external samples are very small (Table 3).
For internal predictions (i.e., predictions of points used in the training),
correlations are much tighter with R? is considerably higher, and |ME|
and RMSE considerably lower, than either external or OOB estimates
(Table 3 and Fig. 4). Internal RMSE for all variables is generally 2.5

times lower than the OOB or external error estimates.

Our results indicate that there are some variances in indicator es-
timates during the k-fold cross-validation, though the magnitude of the
variance is small compared to the range of the predictions (Fig. 5). For
some indicators (e.g., Herbaceous height and NInvPerennial Grass
cover), there appeared to be significant correlations between ensemble
variance and mean. For other indicators (e.g., Gap = 250 and Total
vegetation cover), there was no clear correlation between ensemble
variance and mean. This suggests that it is not necessary to take great
care when conducting the cross-validation to sub-select points that span
the range of indicator values.
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4.2. Prediction map

The RF regression models were used to generate predicted dis-
tribution maps. The same indicators as shown in Fig. 3 were selected to
create the predicted distribution maps in eleven selected ecoregions
across the Western U.S. (Fig. 6). These maps show reasonable patterns
of the indicators, showing the lower total vegetation cover, herbaceous
height and non-invasive perennial grass cover in more arid regions such
as Mojave Basin and Range and Sonoran Basin and Range, as well as the
larger covers of Gap > 250 cm and bare soil cover in drier regions.

4.3. Error distribution maps

Error (ME and RMSE) distribution maps were produced based on
the mean value of ME and RMSE of all AIM and LMF sites in each
selected ecoregion using the external (cross-validation) errors. The
same indicators as shown in Fig. 3 were selected to create the error
distribution maps in eleven selected ecoregions across the Western U.S.
(Fig. 7). Compared to the distribution of AIM and LMF sites (Fig. 1), ME
and RMSE are closer to zero in the areas where have more sites, for
example, in the Wyoming Basin and Northern Basin and Range. Despite
this, there is no clear geographical pattern for ME or RMSE for any of

Gap>250(%)

Bare soil cover(%)

Total vegetation cover(%)

0 450 900 1,800 Kilometers

L ' ' ' 1 L L L I

Fig. 6. Ensemble mean distribution maps of surface indicators in eleven selected ecoregions of the Western U.S. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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legend, the reader is referred to the web version of this article.)

the variables. For Gap =250, for instance, positively- and negatively-
biased ecoregions abut one another. Likewise, there are no clear re-
lationships between RMSE (Fig. 7) and the mean value for individual
ecoregions (Fig. 6).

Analysis of individual ecoregions, in fact, indicates that ecoregions
with a larger number of points tend to have lower error (Fig. 8).
However, this is a sufficient but not necessary condition. Ecoregions
with more than about one hundred points tend to have RMSE below the
median. However, there are ecoregions with many fewer points that
have lower RMSE than ecoregions with many points.

Gapgt250(%)

Bare soil cover(%)

5. Discussions

In general, our results indicate that there is potential for using RF to
estimate AIM and LMF indicators based on optical remote sensing
products combined with location-specific climate, topographic, and soil
variables as predictors, though clearly some are more amenable to
prediction than others. Based on the RF work so far, the correlations
between model prediction and in situ measurement and the statistical
evaluation of the regressions indicate that assimilating optical satellite
remote sensing images and field data can provide good predictions of
those indicators in arid and semiarid areas in the Western U.S. This is
consistent with recent work by Jones et al. (2018).
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Fig. 8. RMSE of predictions in ecoregion polygons plotted against the number of points in each polygon.
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5.1. Sample insufficiency and unevenly pattern of the sample

AIM and LMF projects that are on the BLM public lands are mea-
sured by different surveying and mapping teams, so there are high
concentration AIM samples in specific areas that were targeted for
monitoring. In addition, AIM and LMF samples are limited to BLM lands
and are not evenly distributed within the study areas. For example, in
the Sonoran Basin and Range ecoregion, which covers the part of
California and Arizona, AIM and LMF samples are concentrated at
Southern California, but there are fewer samples in Arizona (Fig. 1).
This uneven spatial distribution of samples has the potential to result in
incorrect predictions of surface indicators in those areas without any
samples (Fig. 6). RF regression models can address the problem of
sample insufficiency because it adopts the bagging approach, which can
convert a small dataset to a large dataset by randomly sampling with
the replacement from the original dataset (Breiman, 2001). However,
RF regression model cannot correct the uneven spatial distribution of
input sampling sites. That said, our analysis indicates that a small
sample number is not sufficient to produce a high prediction error
(Fig. 8). Sample insufficiency is not, alone, a predictor of prediction
error at the ecoregion level.

5.2. Contribution of independent variables

Our results clearly indicate that BRDF parameter variables have a
strong influence on the RF regression models (Fig. 3). This was true
regardless of whether the variable quantified cover (i.e., Bare soil cover
and Total vegetation cover) or structure (e.g. Herbaceous height and
Gap > 250). Although the BRDF parameters do not, directly, include
information on surface brightness in different bands, we suspect that
the differences in BRDF parameters, arising from differences in re-
flectance nonetheless contain considerable spectral information. In-
dicating by the previous studies (Zhu et al., 2011; He et al., 2012; Pisek
et al., 2012; Jiao et al., 2014; Gao et al., 2003), BRDF parameters is
linked to both structural and surface cover indicators Thus, the BRDF
parameters are doing double duty, providing information about surface
structure through the parameters themselves, and providing informa-
tion about reflectance through the differences in parameters for dif-
ferent bands. MODIS NBAR and Landsat 8 OLI surface reflectance have
the lower contributions to the RF regression and prediction (Fig. 3).
That is because NBAR is retrieved from BRDF parameters and OLI
surface reflectance has a strong correlation with BRDF parameters.
Therefore, those two datasets are redundant. Moreover, those two ve-
getation indices (NDVI and NDNVI) are all based on MODIS NBAR and
OLI surface reflectance, so they are also redundant and have a very low
contribution compared to other variables. However, because of the
bagging algorithm, RF is able to preferentially select the most important
independent variables to build the regression model. Therefore, aside
from the complexity of the model, there really is no penalization for
adding independent variables.

Although the MODIS pixels are considerably larger than the actual
field measurements, which are better matched to the scale of OLI pixels,
there is little indication that the finer-scale OLI reflectance contributed
more than MODIS reflectance to the RF models, which might be caused
by the errors in registration of either field data or Landsat remote
sensing pixels. However, MODIS pixel has a lower spatial resolution but
totally covers the AIM or LMF field site, so MODIS products can get rid
of the registration error. Clearly, over smaller scales with a dense net-
work of points, the finer information provided by higher-resolution
satellites would be important in differentiating between values.
However, for this continental-scale analysis, there does not appear to be
a significant advantage of this finer-scale information.

5.3. Appropriate estimators of RF prediction errors

One of the advantages of RF over other methods is its use of
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bagging, in which, for each iteration, a certain percentage of the data is
randomly chosen to be left out of the tree-making process and is held
back for testing. In the iterative RF approach where many trees are
made, every point is eventually used to produce the final RF model and
predictions. Thus, the OOB error for an RF model is based on estimates
in which every point is, eventually, used in training. The use of OOB
error as a metric of prediction quality has, therefore, been criticized as a
form of model overfitting (Bernard et al., 2012). Our results indicate
that the OOB errors and the external error estimates produced through
k-fold cross-validation in which there truly are independent samples are
nearly identical. We conclude, therefore, that the use of OOB error as a
metric of RF prediction quality is an acceptable metric, at least in the
application here. Obviously, the use of internal error estimates (in
which the final model is used to predict the value of each point which is
then compared to the in situ value which was used in training) is in-
appropriate as a metric of error because it dramatically estimates error
(in this case by a nearly constant factor of 2.5).

5.4. Spatial distributions of error

An intuitive assumption about any model prediction is that larger
sample sizes produce better estimates (lower error) and that, con-
versely, smaller sample sizes produce worse estimates (higher error).
The first aspect of that assumption appears to be true in the context of
this study. Ecoregions with a high number of samples (one hundred
samples in this study) are generally predicted better than the median
(Fig. 8). However, there are many ecoregions with a small number of
samples that are predicted as well as, or better than ecoregions with
large sample sizes. Therefore, the concentration of samples is not, in
and of itself, a predictor of accuracy. The sample insufficiency in some
ecoregions (most of the ecoregions have less than ten samples) and the
unevenly distributed samples prevent us from investigating the differ-
ences in errors among ecoregions. In fact, in the analysis presented
here, there is little indication of what contributes to prediction error at
the ecoregion level. Considerable additional work including adding
more samples (around one hundred samples) evenly distributed in each
ecoregion will be required to address this issue and it is possible that a
relatively simple answer does not exist.

5.5. Limitation of RF

Despite performing well in many cases, RF regression has con-
siderable difficulty in cases where a variable may have a valid value for
some points but not others. For example, the indicator of sagebrush
height cannot have a value at a site where sagebrush does not exist and
using a value of zero for sagebrush height is not equivalent indicating
that sagebrush isn't present. In a case such as this, to model the sage-
brush height, two variables must be used: a dependent variable (i.e.,
sagebrush height) with all of the present values of sagebrush height and
an additive dependent variable (i.e., sagebrush missing) marking areas
where sagebrush is present as 1 and areas where sagebrush is not
present as 0. The additive dependent variable becomes as important as
the original dependent variable during tree growth because some ad-
ditional variables may be employed to build the regression of the ad-
ditive dependent variable. Moreover, because of the low cardinality
(i.e., 1 and 0) of the additive dependent variable, there is only one
option to split the additive dependent, thus impacting the gradient of
homogeneity.

In the context of predictions of AIM/LMF indicators, this is a critical
factor to keep in mind. For variables such as sagebrush height, we
observe the lowest coefficients of variation and highest errors among
the variables tested (Table 3). Some of the error in these predictions
may be due to this problem, and methodological improvements are
needed for managing this “null values” problem in the context of pre-
dicting certain landscape indicators.
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6. Conclusions

In this study, we employed a machine learning-based regression
model (i.e., random forest) to assimilate satellite remote sensing images
(i.e., MODIS BRDF parameters, NBAR, and Landsat 8 OLI surface re-
flectance) and in situ measurements (i.e., AIM and LMF data collection)
from four hundred selected ecoregions of the Western U.S. The field
data collection used consistent methods and was performed by different
teams or offices in different states, so the data are reproducible. Within
these data, the predicted distribution maps of nineteen surface in-
dicators, which are related to vegetation composition, vegetation
structure, and bare ground cover, were created. The correlations be-
tween the model predicted values and in situ values of all surface in-
dicators are strongly positive. The MODIS BRDF parameters product
tends to contribute more to the regression than other predictors.

These results exhibit the potential for predicting, using optical
imagery and ancillary data, the distribution of important dryland in-
dicators using RF. However, there are caveats. First, predictions are
strongest in areas that have in situ data. Care must be taken when ex-
trapolating out of these areas. Second, this approach tends to under-
predict at high values and over-predict at low values. The errors at high
values generally contribute low relative error and may be within ac-
ceptable ranges for many applications. However, the high relative error
is likely at low values, and care must be taken in cases with low values.
Nonetheless, within these limits, this study shows how these relation-
ships can be extended to produce spatially continuous datasets coupled
with quantitative estimates of the error. Therefore, assimilating satellite
remote sensing images and field data using machine learning methods
can provide usable predictions of the surface indicators in drylands.
There are many potential uses for such prediction maps that extend
beyond the management mandate for which the original in situ data
were commissioned. For instance, predicted distribution maps from our
study could be employed as inputs for climate models (particularly bare
soil cover, which is a common variable in global and regional models,
e.g., Xue and Shukla, 1993) to forecast the potential for dust emission in
the Western U.S.
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