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Abstract—Q-Table based Reinforcement Learning (QRL) is a
class of widely used algorithms in AI that work by successively
improving the estimates of Q-values – quality of state-action
pairs, stored in a table. They significantly outperform Neural
Network based techniques when the state space is tractable.
Fast learning for AI applications in several domains (such as
robotics), with tractable ‘mid-sized’ Q-tables, still necessitates
performing a large number of rapid updates. State-of-the-art
FPGA implementations of QRL do not scale well with the
increasing Q-Table state space. Thus, they are not efficient for
such applications. In this work, we develop a novel FPGA
based design of QRL and SARSA (State Action Reward State
Action), scalable to large state spaces and thereby facilitating a
large class of AI applications. Our architecture provides higher
throughput while using significantly fewer on-chip resources. It
is capable of supporting a variety of action selection policies
that covers Q-Learning and variations of bandit algorithms
and can be easily extended for multi-agent Q learning. Our
pipelined implementation fully handles the dependencies between
consecutive updates allowing it to process one sample every clock
cycle. We evaluate our architecture for Q-Learning and SARSA
algorithms and show that our designs achieve a high throughput
of up to 180 million samples per second.
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I. INTRODUCTION

Reinforcement Learning (RL) is a Machine Learning tech-

nique that governs the interactions of a goal-directed agent

interacting with an uncertain environment [1]. More formally,

a RL agent senses the environment to determine the current

state and chooses state dependent action that in the long run

will maximize the cumulative rewards. Reinforcement Learn-

ing has found widespread success in a plethora of applications

including robotics, games (Go, Atari, etc.), computer vision,

healthcare and several others [2].

Q-Table based Reinforcement Learning (QRL) algorithms

are classic algorithms for learning agent behavior [3]. QRL

works by successively improving the agent’s evaluation of the

“quality” of taking an action in a state – Q value for the state-

action pair. The Q table stores the values for all possible state-

action pairs.

Extensive research has been performed on accelerating Deep

Neural Network based Q learning algorithms (also known as

Deep Reinforcement Learning (DRL) [4]–[6]). DRL gained

attention due to its ability to tractably learn over very large

state spaces (greater than tens of millions). However, this has

led to a lack of research in accelerating classic QRL. QRL

acceleration merits attention as it can significantly outperform

DRL for medium sized state spaces (hundreds of thousands

to a few million state-action pairs that can fit on the on-chip

memory of the target platform). Specifically, (i) QRL provides

theoretical guarantee with respect to convergence to optimality,

and (ii) the update step for QRL, unlike DRL, does not require

the complexity of using neural networks [7, Ch. 7, p. 207-251]

which require backpropagation. Hence, for applications such

as robotics, accelerating QRL is expected to result in better

performance.
FPGAs have emerged as a platform of choice for ap-

plications requiring fine-grained parallelism and energy-

efficiency [8]. This makes them a suitable platform for acceler-

ating QRL which are sequential in nature (Section III-B). Ac-

celerators can achieve high throughput by using deep pipelined

architectures to exploit parallelism within each update step.

State-of-the-art FPGA devices [9], [10] provide abundant

user-controllable on-chip memory resources (up to 500 Mb)

allowing support for medium sized Q tables.
In this work, we significantly improve upon the state-of-the-

art FPGA implementation for Q-Learning [11] by developing

an architecture scalable to large state spaces. We highly

optimize the number of required multipliers to a small constant

as opposed to being proportional to the size of the state space

in [11]. Furthermore, we generalize the architecture to support

arbitrary action selection policies [12] and develop the first

known FPGA implementation of SARSA algorithm [1]. An

abstract-only version of this paper was published in the pro-

ceedings of ACM FPGA 2020 [13]. Our specific contributions

are as follows:

• We develop QTAccel: a generic pipelined FPGA architecture

for QRL. Our pipelined architecture handles all dependen-

cies between consecutive updates and processes one sample

in every clock cycle.

• We show the generality of our architecture by implement-

ing two Q Table based algorithms which differ in action

selection policies: Q-Learning (greedy action selection) and

SARSA (ε−greedy action selection [14]).

• Our design increases the limit on the on-chip Q-Table size

compared to the design in [11] by more than 1000× for

a similar sized device by reducing the number of required

multipliers to a small constant. This also enables launching

parallel pipelines to solve multi-agent Q learning problems.
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• We discuss how our architecture can be customized for

Multi-armed Bandit (MAB) [15] which are critical to next

generation 5G wireless networks [16]. Energy-efficiency is a

significant requirement for such problems [16]. Thus, QTAc-

cel provides a pathway for energy-efficient high-throughput

FPGA implementations for the same.

• Using experimental evaluations we show that our implemen-

tations achieve a high throughput of 180 million samples/s.

II. RELATED WORK

Extensive research has been performed on accelerating

DRL. Parallelization techniques for DRL implementations

targeting cloud as well as single machines with multi-core and

GPUs have been developed [4], [17]–[19]. FPGA accelerators

have also been developed for DRL [6], [12], [20]. Such

implementations enable tractable learning of agents in ex-

tremely large state spaces of size greater than tens of millions.

However, for medium sized state spaces ranging in several

hundreds to a few millions, significantly better performance

can be expected from QRL due to the simplicity of the update

step compared to the backpropagation updated step of DRL.

Limited research has been done on accelerating QRL.

Authors in [11] develop an accelerator for Q Learning. The

limitation of their design is that the on-chip resource required

is proportional to the number of state-action pairs. This

limits the scalability of the design. A parallel publication

[21] describes an optimized architecture that saves significant

resource compared to [11], which makes use of a comparator

tree that utilizes LUTs proportional to the state-action size.

In [22], the authors develop a FPGA implementation for

SARSA customized to the task of dynamic power manage-

ment. However, the design works with just one state space and

four actions. Thus, technically it is a stateless multi-arm band

(MAB) [16] implementation as opposed to a generic SARSA

implementation.

III. BACKGROUND

A. Reinforcement Learning (RL)

Reinforcement Learning (RL) is an area of machine learning

concerned with how an agent in an environment takes actions

so as to maximize the reward [1]. A RL problem involves an

agent, which is the learner and decision maker, taking some

action in an environment and observe its new state and the re-
ward for taking the action. The environment and agent interact

in discrete time steps. The agent receives some representation

of the environment’s state St ∈ S at each time step t. S is one

of the possible states for the environment. The agent takes an

action At where At ∈ A(St) is one of the possible actions in

state St. The agent then receives a reward Rt+1 for taking the

action At in state St. The RL algorithm then calculates the

quality function for the state-action pair. This process is run

over multiple episodes of training each lasting for several time

steps until some convergence criteria. The quality function
provides information regarding the optimal action to take in

each state.

B. Q-Table Based Algorithms

Q-Learning [1], [23] and SARSA (State-Action-Reward-

State-Action) [1], [24] are classical reinforcement learning

algorithms which use Q-tables for learning. Q-table stores the

“quality” of each state-action pair.

Q-Learning is a model-free and off-policy reinforcement

learning algorithm. This means that the learning is based on

trial-and-error and that the training is not done based on the

current policy but uses some “off-policy” [1] approach like

greedy or random selection. The algorithm includes a Q-value

(quality value) for each state-action pair. The update formula

for Q-Learning is:

Qt+1(St, At) =

Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]
(1)

Here Q(St, At) is the Q-value for the current state-action

pair. Rt+1 is the reward for taking action At on state St.

maxa Q(St+1, a) is the Q-value of the next state-action pair

which gives the maximum reward. α is the learning rate which

is simply a measure of how much to take the newer value as

compared to the old value. γ is the decay rate, which is used

to make sure that future rewards are given less preference

than current reward. The algorithm involves starting from

any one random state St and choosing an action At from

state S using some policy (can be random selection, greedy

or ε-greedy [14]). After taking the action from the state the

algorithm observes the reward Rt+1 and the next state St+1.

It then updates the Q-value using the formula given above.

Finally, the next state St+1 becomes the current state and the

algorithm continues till the final/goal stage is reached. The

algorithm is repeated multiple times for convergence. SARSA
[1], [24] (State-Action-Reward-State-Action) is a model-free

and on-policy reinforcement learning algorithm. In an on-

policy learning process the training of agent is based on a

specific policy and hence promotes “exploration” instead of

“exploitation” [25]. The update formula for SARSA is [1]:

Qt+1(St, At) =

Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]
(2)

Various action selection policies have been studied in the

literature such as:

• ε−Greedy [14] Action policy: The action with highest

Q-value is chosen greedily with probability of 1− ε, and

other actions are chosen with a probability ε
|A| where

ε determines the exploration/exploitation nature of the

agent

• Boltzmann Action policy [26]: An action is chosen with

a probability proportional to exp(Q(s, a)/T )

In our discussion, we focus on using ε−greedy.

C. Q-Table vs DQN based Q-Learning

Q-Learning involves updating Q-values for each state-action

pair. In traditional table based approach all the Q-values for all

the state-action pair need to be stored in a table. This requires

huge tables when the number of state-action pairs is in the
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order of billions or more. To remove this requirement, some

approximation function [7, Ch. 7, p. 207-251], [27] can be

used instead to calculate the Q-value for the required state-

action pair. The most common approximation functions are

neural networks like multi layer perceptron. For large state

space using approximation function is desirable. But for small

and medium sized state space (a few million) approximation

methods pose several challenges. Firstly, approximation func-

tions do not guarantee convergence. Secondly, they lead to

complex architectures. Multilayer perceptron based Q-learning

architecture can require 15 clocks per Q-value calculation

using fixed point operations or as high as 600+ using floating

point operations [12]. This is extremely slow compared to

table based approach where an efficient pipelined architecture

can perform a Q-value calculation every clock cycle (Section

VI-D). This makes table based Q-learning quite effective for

edge application like robotics, where medium sized state space

is required.

IV. QTACCEL: A GENERIC ARCHITECTURE FOR QRL

In this section, we present QTAccel: our generic pipelined

architecture for QRL.

A. Device Model

We implement our architecture design on a FPGA. The

starting state, learning rate and discount factor are user inputs

whose values are stored in registers. Q values associated with

each state-action pair and rewards observed by the learning

agent are stored in on-chip memory. The transition to next state

from current state-action pair is implemented as combinational

logic and LUTs. The action selector used to generate random

actions is implemented using linear feedback shift registers

(LFSR).

B. Architecture Details

A QRL algorithm executes the following steps until con-

vergence: (i) Start from any random state St. (ii) Select a

state dependent action At based on the behavior policy. (iii)

Determine the next state St+1. (iv) Read the Q-value and

the reward for the current state-action pair Q(St, At) and

Rt+1. (v) For St+1 select an action At+1 based on the update

policy. (vi) Read the Q-value for the new state-action pair

Q(St+1, At+1) from the Q table. (vii) Compute the updated

Q-value - Qt+1(St, At) for the original state action pair St, At.

(viii) Select St+1 as the current state for the next iteration and

write the new Q-value back into the table Qt+1(St, At).
To accelerate QRL algorithm we use the following re-

sources: (i) 2 |S| ∗ |A| sized tables implemented in internal

memory (BRAM), to store the Q values and reward values for

all state-action pairs. Another equally sized table is needed to

store the probability distribution of all state-action pairs for

RL algorithms which rely on stochastic distribution for action

selection, hence in that case 3 |S| ∗ |A| sized tables would

be required. (ii) A behavior policy based action generation

module for selecting the action for the current state. (iii) An

update policy based action selection module which chooses

the action for the next state St+1. (iv) A transition function,

which takes the inputs (St, At) and returns the next state St+1.

We propose a generic 4 stage pipelined architecture for

QRL accelerators. We start with empty Q-table and a reward

table. Figure 1 shows the complete pipelined architecture. The

following are the operations in the 4 stages of pipeline:

1) First stage: If this is the first iteration of the episode the

start/current state St is selected randomly, otherwise it is

the next state St+1 calculated in the previous iteration.

An action At is chosen for the current state based on the

behavior policy (e.g. random selection for Q-learning or

ε−greedy for SARSA), using random number generator.

We also provide a transition function module which takes

as input the current state St and an action At, and outputs

the new state St+1 based on the state-action pair. In the

interest of generality, we do not consider any application-

specific correlations between the states. For example,

in a grid based robotics application, states are usually

represented as the co-ordinates and the actions are usually

directions of movement, and transition function outputs

the new co-ordinates. In this stage we also read the Q-

value Q(St, At) and the reward value Rt+1 for the current

state-action pair. γ and 1 − α, are calculated to be used

in later stages.

2) Second stage: An action At+1 is chosen for the next

state St+1 based on the update policy (e.g. greedy policy

for Q-learning, ε−greedy policy for SARSA or proba-

bility distribution based policy for generic table based

approach). Using this state-action pair (St+1, At+1) the

Q-value Q(St+1, At+1) for this state-action pair is read

from the memory.

3) Third stage: This is the main computation stage of the

pipeline. It calculates the followings:

• Rt+1 ∗α− The product of learning rate and the reward

function

• (1−α) ∗Q(St, At)− The product of 1−α calculated

in the first stage of pipeline and the current Q value

for the current state-action pair (St, At)
• α ∗ γ ∗ Q(St+1, At+1)− The product of the product

of learning rate and discount factor α ∗ γ which we

calculated in the first stage of pipeline and the Q-value

for the next state-action pair calculated in the first and

second stage of the pipeline.

Then using an adder to sum up all three values, giving

the new updated Q value Qt+1(St, At) for the current

state-action pair.

Qt+1(St, At) =

(1− α) ∗Q(St, At) + α ∗Rt+1 + α ∗ γ ∗Q(St+1, At+1)
(3)

4) Fourth stage: In this stage we write the new/updated Q

value for the current state-action pair back into the Q-

table and if necessary in the Qmax table.
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Fig. 1: Pipelined architecture for QRL

V. REINFORCEMENT LEARNING ACCELERATORS

We customize QTAccel to implement two QRL algorithms

- Q Learning and SARSA on FPGA. We perform several

optimizations to improve the performance of the algorithms.

Moreover, we discuss how any general Q table based algorithm

can be implemented using QTAccel.

A. Q Learning

We propose the following optimization for Q learning on top

of our generalized architecture. We note that in Q learning the

action for the next state St+1 is calculated based on greedy

policy i.e. we choose the action with highest Q-value. Hence,

instead of accessing all the entries of Q-table corresponding to

the next state and finding the action with maximum Q-value,

we use an array - Qmax of size equal to the number of states

which stores the maximum Q-value for all the states. Thus,

the action is selected by a single access to Qmax. In the fourth

stage, while writing back the new Q-value into the Q-table, an

update is made to the Qmax if the new Q-value is higher than

the current value in the Qmax array for the state.

B. SARSA

In this work, we implement SARSA with ε−greedy policy

selection. Under this policy, the maximum Q-value is read

with probability 1− ε and all other Q-values for this state are

read with probability ε
|A| , where |A| is the number of actions.

Similar to the Q-Learning algorithm, we use an array Qmax to

store the maximum Q-values for each state. A random number

generator is used to sample the action using the probability

distribution described above. To simulate ε−greedy approach,

we use a random number generator to generate a N bit random

number. If the number is between 1 and (1 − ε) ∗ 2N then

we read the maximum Q-value else, any Q-value for this

particular state can be selected with equal probability. As we

know the range beforehand, we can use the random number to

directly index one of the Q-values. Since SARSA is on-policy

where the behavior policy is the same as the update policy,

the sampled action which is available at the beginning of 3rd

stage will be forwarded to the 1st stage as the next-step action.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implement the reinforcement learning accelerators de-

signed in this work using Xilinx UltraScale+ FPGA (xcvu13p).

We perform place-and-route simulations using Vivado Design

Suite 2019.1. A Q-learning python implementation is also

developed running on 2.3 GHz Intel Core i5 CPU as the

baseline for throughput comparison. We use the grid world

application to evaluate the performance of our accelerator.

In the grid world application, the environment is a grid of

cells and the agent is the robot which starts at one of the cells

in one of the cells and its aim is to reach a goal cell while

avoiding obstacles (unreachable cells) and walls. Under this

setting, the states represent the cells and the actions represent

the moves of the robot. The agent randomly selects a start

state and traverses the grid by choosing actions, collecting

rewards and updating the Q values. Figure 2 is an example

which shows a grid with 16 cells with starting and goal cells

labeled. Four actions are available - left, up, right, and down.

Every state-action pair in this environment is assigned with a

reward value. Reaching the goal state yields maximum rewards

while hitting a wall yields negative rewards.

B. Performance Metrics

We analyze the performance of our accelerator with the

grid-world robotics problem described above with different

state-action sizes. All evaluated sizes are listed in Table I
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Fig. 2: Grid world example

Case 1 2 3 4 5 6 7

|S| 64 256 1024 4096 16384 65536 262144
|A| 4,8 4,8 4,8 4,8 4,8 4,8 4,8

TABLE I: Test Cases

|S| represents the maximum total number of states and |A|
denotes the maximum total number of actions. The states are

addressed as (x,y) coordinates. For example, when there are

256 total possible states, the address of the state is an 8-bit

binary value where the most significant 4 bits represents the

x-coordinate and the least significant 4 bits represent the y-

coordinate. Actions are encoded as consecutive numbers. In

the case of 4 actions, each action is addressed as a 2-bit binary

value where 00 denotes going left, 01 denotes going up, 10

denotes going right and 11 denotes going down. When there

are 8 actions addressed by 3-bits binary values, 000 denotes

left, 001 denotes top-left, 010 denotes up, 011 denotes top-

right, and so on in clockwise direction.

C. Resource Utilization

Fig. 3: Resource utilization for Q-learning

1) Q-Learning: Figures 3, 4 presents the resource utiliza-

tion for various state sizes with 8 actions for Q-Learning. Our

pipelined architecture efficiently uses 4 multipliers (each utiliz-

ing a single DSPs) in the design. As the problem size increases,

the DSP usage stays the same. The logic/register utilization

does not increase much either as the architecture is fixed

for different state spaces as well. The overall logic/register

utilization remains less than 0.1% for state-action pair size

of 2 million. Block RAM utilization, shown in Figure 4,

increases linearly with the state and action size. The bottleneck

of our design is memory, as we need to store the whole

Fig. 4: BRAM utilization for both Q-learning and SARSA

reward table and Q-table in internal memory to reduce external

communication. Hence, for storing larger state-action space,

our design needs equally large BRAM resources to fulfill

the memory requirements. For state-of-the-art FPGA devices

we are able to support a state space of more than a million

states-action pairs which is sufficient to support many robotics

applications like space rovers.

Fig. 5: Resource utilization for SARSA

2) SARSA: As mentioned in section V-B, the architec-

ture for SARSA is very similar to Q-Learning. The main

difference comes in stage 2 of the pipeline. Where instead

of using greedy policy for finding the Q-value for the next

stage St+1, ε−greedy policy is used. To implement this we

need a random number generator. Hence the logic utilization

increases accordingly. A basic random number generator can

be implemented as a linear feedback shift register and hence

requires only a few registers for implementation. Hence our

logic utilization (register) has increased accordingly. Using

random number generator does not increase any DSPs or

BRAMs utilization and hence those resources remain the same.

Because of the increase in logic/register utilization the power

utilization increases accordingly.

As evident from the results, we are able to support a state

space of 262,144 states and 8 actions i.e. a state-action size

of more than 2 million. This is equivalent to the grid size

of 512X512 with 8 actions which is sufficient for typical

robotics applications. Theoretically, a state-action pair size of

10 million can be supported using the available 360 Mb of

on-chip UltraRAM. However, the synthesis tool times out for

such large state spaces.
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Fig. 6: Throughput for Q-Learning and SARSA

D. Throughput

Throughput (Tq) is measured by number (in Millions) of

Q values/samples calculated per second (MS/s). Our pipelined

architecture ensures that after the first iteration, the Q values

are output every clock cycle. Figure 6 presents the throughput

achieved by varying the state size |S| and fixing the action size

to 8 for both Q-Learning and SARSA. As evident from Figure

6, we achieve a consistent throughput of around 180 MS/s. The

high throughput is sustained even on very large state space due

to the efficiency of our architecture design in which the logic

and DSP utilization does not increase significantly. Please note

that the clock speed and hence the throughput starts decreasing

for extremely large state space i.e. state-space of more than

100k. This is to be expected because for such large state space

more than 50% of the BRAM would be fully utilized and this

in itself puts a huge pressure on the FPGA device and hence

degrades the clock speed.

E. Comparison with CPU implementation

exp. |S|=64 |S|=1024 |S|=16384 |S|=262144
CPU |A|=4 105.5K 91.41K 74.17K 157.85K

FPGA |A|=4 189M 187M 181M 156M
CPU |A|=8 105.89K 88.7K 70.25K 15.2K

FPGA |A|=8 189M 186M 179M 153M
� K: Thousands of Samples/s; M: Millions of Samples/s;

TABLE II: Throughput comparison with CPU

We run the Q learning algorithm on Intel Core i5 processor,

and compare the achieved throughputs for different state-

action sizes with FPGA implementation. For the CPU baseline,

we run a python program in which the Q values are stored in a

nested dictionary and are indexed by state coordinates tuples

and actions. As evident from Table II, our design achieves

a significantly higher throughput than CPU implementation.

This is due to: (1) Q learning, essentially being a sequential

algorithm, is executed in a sequential loop on CPU, not able

to exploit much parallelism; (2) The limited cache size on

processor (256KB L2 and 6MB L3) cannot hold all data in Q

Table and rewards Table, the performance is therefore bounded

by off-chip data accesses. On FPGA there is abundant on-chip

memory which provides low access-latency to all the Q values

and rewards.

F. Comparison with State of the Art

We compare our results with [11] which implements a Q-

learning algorithm on FPGA. They conducted experiments

on the Virtex 6 FPGA device. For fair comparison we also

implemented our design on Virtex 7 FPGA device which

has similar characteristics. Compared to [11] our resource

utilization is very low for the same state-action size. For 132

state, 4 actions the design in [11] fully utilized the DSP and

logic on the FPGA device. For the same state space with 8

action we only used 4 DSP (4 multipliers) and used ¡1% of

logic. For the same state-action size, our throughput was more

than 180 million samples per second (MS/s), which is more

than 15× higher than the throughput observed by [11].

The limitation of their design is the use of a finite state

machine for each state-action pair. Thus, the number of

multipliers required by their design is equal to the number

of state-action pairs. However, as in any given iteration the

Q value of only one state-action pair is updated, this leads

to a lot of wasted computation by their design. Our pipelined

architecture eliminates these wasted computations resulting in

low resource utilization and high scalability. Moreover, the use

of Qmax table further optimizes the amount of computation

required. Figure 7 compares the number of DSPs used in our

design and the state-of-the-art design [11] for same state-action

pair size.

Fig. 7: Comparison of the number of DSPs used in base-

line [11] and QTAccel.

Scalability - The number of DSPs available on the device

becomes a bottleneck for scalability of the design in [11].

Our efficient pipelined design can support a state space of

131,072 (more than 1000X) compared with 132 supported by

the design in [11] on a similar sized device while giving a

throughput improvement of 15X. For state-of-the-art FPGA

devices with on-chip memory of 450Mb, QTAccel can support

a state-action pair size of more than 2 million. This makes our

design well suited for a range of edge centric applications like

robotics.

VII. DISCUSSION

In this section we discuss how our pipelined design can be

extended to support multi-agent training and generalized to

solve other RL and Multi-Armed Bandit (MAB) problems.
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A. Parallel Pipelines

Even for the largest state-action space that saturates on-

chip memory, the DSP and Flip-Flop utilizations are fixed

and small. Therefore, our design can be easily employed to

train multiple agents on the same device. The design can be

extended to operate in two modes:

State Sharing Learners: In this mode, we support appli-

cations where two agents perform a task sharing the same

environment (i.e. same set of states, actions), for instance

hunter game [28] or multi-agent box pushing with/without

shared Q Table [29]. Our pipeline design can easily support

2 parallel pipelines without any change of configuration, as

modern FPGAs support up to 2 concurrent accesses to the

same block memory. Therefore for a given environment we

can deploy two agents to explore the same environment and

update the Q table, which effectively doubles the achievable

throughput. In case of shared Q Table, when there are concur-

rent writes to the same state address, one pipeline arbitrarily

overwrites the other. The effect on quality of training depend

on the rate at which two agents collide onto the same state

(If this rate is 100%, the throughput and convergence rate will

be approximately the same as using one pipeline; however for

widely-used behavior policy such as random action selection,

collision is much less likely to happen and both the throughput

and convergence rate should increase compared to those of

single-pipeline implementation).

Fig. 8: 2 pipelines

Independent Learners: For problems where multiple in-

dependent agents need to be trained on separate environments

(e.g. launching multiple rovers to explore the geomorphologi-

cal features of a ground surface, each responsible for a subset

of the entire state space), we can deploy N agents, each

accessing a separate memory block which stores the Q values

and rewards for states in its corresponding sub-environment.

To avoid bank conflicts the Q and reward tables need to be

stored in separate memory blocks. While N is upper bounded

by available BRAM blocks on FPGA, we claim that this

does not matter because the size of the state-action space of

each sub-environment is generally larger than that of a single

BRAM block.

B. Generalization to Other QRL and MAB

A policy in a RL algorithm is a probability distribution

on the actions conditional on the current state. This can

be represented as: an action ai at state Sj is selected with

probability

P (ai|Sj) ∝ ft(Sj , ai) (4)

Fig. 9: N pipelines

for some temporal function ft, that may be updated with every

sample. To implement such probability distribution based

policies, we use a table P which store the probability value

for each state-action pair. In the second stage, the actions

selection will evaluate the next action based on the probability

distribution. To simulate the action selection using probability

distribution we use a random number generator. Based on

a random number generated in [0,
∑

i ft(Sj , ai)], a binary

search can provide the selected action in log nj cycles, where

nj is the number of actions available at state Sj . In the final

stage, the probability values need to be updated.

High-throughput, energy-efficient Multi-Arm Bandit (MAB)

implementation is critical for next generation 5G wireless

network applications such as distributed channel selection,

opportunistic spectrum access, etc. [16]. To the best of our

knowledge, no FPGA implementation exists for general MAB

problems. In MAB, the agent chooses one out of M arms

where each arm is associated with its own state Sm at time t
and instantaneous reward gm,t which is obtained using some

probability distribution (usually normal distribution [30]). The

objective of the agent is to select arms in each time step

to maximize the accumulated reward. As the actions and

states are finite and discrete in MAB and policies such as

epsilon-greedy are also used in MAB problems, we can

adapt our design to accelerate MAB with only changes to the

rewards table in the first stage. To sample rewards, uniform

random numbers can be generated using linear feedback shift

registers whose output can be summed up to obtain the normal

distribution. [31]. While other methods exist to obtain normal

distribution [32], [33], they require large number of clock

cycles and are not efficient compared to our design where

the pipeline is compact and provides high throughput.

Stateless Bandits are a variant of MAB which do not have

states associated with rewards [16]. When implemented using

QTAccel, the Q table will have just a single state and M
actions - one action for each arm. The Q value for action

m will be a function of the awards received for the arm m.

For example, in EXP3 algorithm [34], the Q value of the

action is an exponential function of the average reward. The

probability distribution table will store the probabilities for the

policies to be selected. For example, in EXP3 algorithm [34],

the probability for action m is given as:

(1− γ)
Q(m)

∑
m Q(m)

+ γ
1

M (5)
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where γ ∈ [0, 1] is a fixed constant. For Stateful Ban-
dits [16], the state space can be represented by concatenation

of the states of individual arms. Typically, the number of arms

is very small (≈5) [35], so the size of the resulting table will

still be tractable.

VIII. CONCLUSION

In this work, we developed a pipelined FPGA design,

QTAccel, for accelerating QRL. QTAccel achieved a high

throughput of one sample per clock cycle. By making effi-

cient use of hardware resources, QTAccel was able to scale

to over one million state-action pairs on a state-of-the-art

FPGA platform. Experimental evaluations illustrated that our

implementation outperformed the state-of-the-art Q learning

accelerator in both throughput and resource utilization.
In the future, we will customize our architecture to imple-

ment other variants of MAB problems. We will develop effi-

cient pipelined implementation of probability sampling based

policy selection for such problems to ensure high-throughput

architecture with limited stalls due to dependencies.
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