GraphACT: Accelerating GCN Training on CPU-FPGA
Heterogeneous Platforms

Hanqing Zeng
University of Southern California
Los Angeles, California
zengh@usc.edu

ABSTRACT
Graph Convolutional Networks (GCNs) have emerged as the state-

of-the-art deep learning model for representation learning on graphs.

It is challenging to accelerate training of GCNs, due to (1) substantial
and irregular data communication to propagate information within
the graph, and (2) intensive computation to propagate information
along the neural network layers. To address these challenges, we
design a novel accelerator for training GCNs on CPU-FPGA hetero-
geneous systems, by incorporating multiple algorithm-architecture
co-optimizations. We first analyze the computation and commu-
nication characteristics of various GCN training algorithms, and
select a subgraph-based algorithm that is well suited for hardware
execution. To optimize the feature propagation within subgraphs,
we propose a light-weight pre-processing step based on a graph
theoretic approach. Such pre-processing performed on the CPU
significantly reduces the memory access requirements and the com-
putation to be performed on the FPGA. To accelerate the weight
update in GCN layers, we propose a systolic array based design for
efficient parallelization. We integrate the above optimizations into
a complete hardware pipeline, and analyze its load-balance and
resource utilization by accurate performance modeling. We evalu-
ate our design on a Xilinx Alveo U200 board hosted by a 40-core
Xeon server. On three large graphs, we achieve an order of mag-
nitude training speedup with negligible accuracy loss, compared
with state-of-the-art implementation on a multi-core platform.

ACM Reference Format:

Hangqing Zeng and Viktor Prasanna. 2020. GraphACT: Accelerating GCN
Training on CPU-FPGA Heterogeneous Platforms. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA °20), February 23-25, 2020, Seaside, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3373087.3375312

1 INTRODUCTION

Recently, representation learning on graphs has attracted much
attention. By extracting structured, low dimensional features from
the unstructured, high dimensional graph, many downstream tasks
such as node classification [14, 18], link prediction [38], graph clas-
sification [32] and clustering [29] can be performed easily and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA 20, February 23-25, 2020, Seaside, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7099-8/20/02. .. $15.00
https://doi.org/10.1145/3373087.3375312

Viktor Prasanna
University of Southern California
Los Angeles, California
prasanna@usc.edu

effectively. Among the numerous representation learning methods,
Graph Convolutional Networks (GCNs) [18] are capable of learn-
ing significantly better features than traditional methods [12, 24].
GCNs have been used to facilitate user recommendation for social
networks [31], to identify protein functionality from interaction
graphs [14] and to help circuit testability analysis for EDA [20].
Despite the popularity of GCNs, training is still expensive in
terms of time and computation resources. To scale GCNs to larger
graphs and to enable fast re-training on dynamic graphs, it is critical
to develop accelerators. Existing works [14, 34] parallelize training
on GPU and multi-core platform. How to accelerate training by
exploiting the FPGA hardware is currently not well studied.
Similar to Convolutional Neural Network (CNNs), GCNs are built
by iteratively stacking multiple layers. Operations of a graph convo-
lutional layer are decomposed into two major steps, to (1) propagate
information within the graph and (2) propagate information along
the neural network layers. Correspondingly, FPGA accelerators
need to address the below challenges to improve performance:

Memory access. The feature propagation (step 1) in a large and
sparse graph incurs high volume of irregular memory accesses, both
on-chip and off-chip. The memory challenge is unique to the GCN
training problem. While CNN accelerators [19, 25, 30, 33, 35, 37, 39]
achieve high data reuse and regular accesses by tiling and sliding
windows on input tensors, such tensor operations do not generalize
to sparse graphs. In addition, while graph processing accelerators
[7, 8, 16, 36, 41] optimize data flow and layout for propagation of
node labels, such optimizations hardly lead to performance gain
when the labels are replaced with long feature vectors.

Computation. The propagation along GCN layers (step 2) in-
volves computationally intensive dense tensor operations on the
model weights and graph node features. Fast computation of this
step require high consumption of hardware resources.

Load-balance. Degree-imbalance of graph nodes can significantly
degrade the performance of feature propagation. Consequently, the
overall layer computation (steps 1 and 2) can be load-imbalanced. It
is challenging to design on-chip computation modules and the cor-
responding scheduler to ensure load-balance for arbitrary graphs.

We propose GraphACT, a framework to accelerate GCN training
by addressing the three challenges. The main contributions are:

e We propose GraphACT with the following optimizations:

- Algorithm selection: By analyzing various GCN train-
ing algorithms, we select a subgraph-based minibatch algo-
rithm to significantly reduce CPU-FPGA communication.

- Redundancy reduction: For each subgraph as a mini-
batch, we identify and eliminate the recurring aggregation

https://doi.org/10.1145/3373087.3375312
https://doi.org/10.1145/3373087.3375312

operations between common node neighbors. Such online
pre-processing on CPU significantly reduces the number
of on-chip operations and BRAM accesses on FPGA.

— Parallelization: We parallelize the key training steps
with optimized on-chip computation modules. Integrat-
ing the modules into the processing pipeline, we achieve
load-balance on a wide range of target FPGA devices.

e We develop an accurate performance model for GraphACT.
The model identifies architectural parameters of the FPGA
design, and algorithmic parameters of the minibatch sampler.

o We evaluate GraphACT on a Xilinx Alveo U200 board hosted
by a 40-core Xeon server. We achieve an order of magni-
tude training time speedup with negligible accuracy loss,
compared with state-of-the-art multi-core implementation.

2 BACKGROUND AND RELATED WORK

We use bold capital letters (e.g., X) to denote matrices (zero indexed).
We use Xy, X. » and Xy, o, to denote a row, a column and an element
of X, respectively. We use X [a : b,:] to retrieve a sub-matrix by
extracting rows of X (from the at? to the (b—1)" row). Similarly, we
use X [:, a : b] to retrieve a sub-matrix by extracting the columns.

We use superscript T to denote matrix transpose. Superscript
within brackets (-) denote index of a GCN layer.

2.1 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are built by extending the
convolution operation defined on grid matrices to unstructured
graphs [18]. The input to a GCN is an un-directed, node attributed
graph G (V,E,X), where V and & denote the set of all nodes
and edges. Each node is attributed by a length- f feature vector,
so X € RIVIXf denotes the feature matrix of V. A GCN embeds
each graph node into a f’-dimensional vector. So the output of a
GCN is simply an embedding matrix X’ € RIVIXF, generated by
information from both the node feature and the node connections.

A GCN consists of multiple graph convolutional layers. Figure
1 visualizes layer (¢ + 1), where 0 < ¢ < L — 1. The layer has |V|

T
input nodes, each attributed by a length- f () vector (X,(f)) . Note,

for the first layer (i.e., £ = 0), x© = X, and f(o) = f. For the last
layer, X) = X’ and f(I) = f’. The layer performs the following

T
operations to obtain the length-f° (£+1) output vectors (X,(fﬂ)) :

Feature aggregation. As shown in Figure 1, each node u sends its

T
feature (X,(f)) via two types of connection: the self-connection

(blue) and the neighbor-connection (green). Neighbor connection
is defined by the edges &. The features propagated to the same
destination via neighbor-connection are aggregated by vector mean.

g
Use node 0 as an example. Its input is (X(()[)) =[2,0, 6]T, and it

has neighbors 1, 2, 3. This step produces two vectors for node 0:

7 T
the blue one (X(()f)) , and the green one % (ng) + Xy) + ng)) .

Weight transformation. Each node independently transforms its
two vectors output from the feature aggregation step. In Figure
1, we denote the transform function as h (-), parameterized by the
GCN weights. Transformation function for u and v are identical.

Equation 1 defines the forward path of layer £ + 1. D is the
(diagonal) degree matrix, where Dy, ;, equals degree of node u, and
Dy, » equals zero for u # v. A is the adjacency matrix of G, where
Ay, v is 1if (u,v) € &, and 0 otherwise. Each layer has two weight
matrices: the self-weight Wo(ml) and the neighbor-weight W,(({?H).
The “|” operation concatenates two matrices column-wise. The
feature aggregation operation corresponds to D™! - A - X, and
the transformation function h (-) applies weights WO(ZH), Wig+1),
concatenates the intermediate results, and applies ReLU activation.

X+ — ReLy (X(e) _Wo(e+1)|D-1 CA-x© ‘Wim)) (1)

The output embedding X’ (or X (L)) of a GCN is often used in
downstream applications such as node classification [5, 6, 14]. To
classify nodes, we feed X” to a Multi-Layer Perceptron (MLP). A
softmax layer [11] converts the MLP outputs to node labels.

Such node classification procedure enables supervised learning
of WO({), W,(f). Suppose each training node v € V is provided with
a ground truth label. During training, we calculate cross-entropy
loss £ to measure difference between the ground truth and the
generated labels. We minimize the loss by updating Wo([), Wif)
using gradient descent. Gradients with respect to layer £ parameters
can be calculated from gradients of layer ¢ + 1 by chain rule:

asvfff() “‘“k(aif@[’ o ([)]) “
avﬁém = (pax) mask(a =2 [SF© f“)]) (2b)
cap s (LE [Lo o)) i)

where function mask (-) corresponds to gradient of ReLU (+). Both
mask and ReLU are light-weight elementwise functions on matrices.
For the node classifier, forward pass of a MLP layer is simply

Xy = ReLU (WMLP -Xli\fllLP), where Xfi\;’[lLP and X, are the in-

put and output features for all V, and Wy p is the layer weight.
Backward pass of a MLP layer performs computation similar to
Equations 2a and 2c. For the softmax layer, its forward pass involves
computation of exponential function, and its backward pass under
cross-entropy loss only involves matrix subtraction [1].

To train GCNs on large graphs, minibatches need to be con-
structed. Unlike the case of CNN training where images are inde-
pendent and identically distributed, training samples of GCNss (i.e.,
graph nodes) depends on each other due to edges. Thus, formulat-
ing GCN minibatches is challenging. There have been various tech-
niques to sample minibatches [4-6, 14, 15, 34]. Section 3.1 analyzes
the feasibility of hardware implementation for these techniques.

2.2 Deep Learning Training Accelerators

Various FPGA-based accelerators [10, 13, 23, 28, 40] have been pro-
posed to train CNNs. The work in [40] proposes a modular design
based on the types of layer operations, and improves performance

() (4)
o

© ©
Training graph G (V, &,X)

(Xé€+1))T(X§€+1))T(X£€+1))T(X§f+l))T(Xi(,’+1))T(X§t’+1))T

S S S S S
(O] [rO] [rO] [rO] [rO] [rO)]
t t

—_—
RS
S ——
NS
o R
——
NN
ML AN
———
N W N
AN B
—_—
N NN
MCANICAN N
NS
—_—
NS
r—\g’
FN SR)
S D
—_—
NS
D2 B
—_—
w W N
il
—_—
[S W el
D 9
—_—
W DN
o

<O\ (Xio) (Xéf))T (Xgo T (Xff) T x(T

0

2 6 2 4 4 0

0 2 6 4 0 2

6 2 6 4 2 2
One GCN layer based on G

Figure 1: Overview of the GCN model

via reconfiguration. The work in [10] proposes a scalable framework
to training CNNs on multi-FPGA clusters. Its partitioning and map-
ping strategy ensures load-balance. The works in [13, 23] accelerate
training by model compression. The reduced model size alleviates
the burden on BRAM and thus improves resource utilization.

To accelerate GCN training, the work in [34] proposes paral-
lelization techniques for multi-core platform. It partitions features
to increase cache-hit of each core. Although GCNs are an extension
of CNNs to graphs, challenges to accelerate GCNs are significantly
different. GCNs require both sparse and dense matrix operations.
Apart from intensive computation, GCN accelerators need to ad-
dress issues such as irregular memory access and load-balance.

2.3 Graph Analytics Accelerators

Many accelerator designs [7, 8, 16, 36, 41] have been proposed for
traditional graph analytic problems, such as PageRank (PR), single
source shortest path (SSSP) and breadth first search (BFS). The
works in [7, 41] process input graphs in a two-phased gather-scatter
manner, and utilize graph partitioning to improve access locality.
The work in [8] extends the above memory optimization to multi-
FPGA platforms, and the works in [16, 36] propose optimization
specific to HBM and HMC to further boost FPGA performance.
The memory optimizations proposed in the above works do not
directly apply to GCN accelerators. First of all, traditional graph
analytics often propagate scalars along the graph edges, while
GCNs propagate long feature vectors. Thus, although in both cases
memory accesses are irregular, the access patterns are very different.
Secondly, traditional graph analytics often propagate information

within the full graph, while GCNs propagate within minibatches.
Thus, techniques such as graph partitioning may not be effective
since minibatch size is much smaller than the full graph size.

3 TRAINING ALGORITHM

We observe from the forward pass (Equation 1) and the backward
pass (Equation 2), that GCN training involves three types of matrix
product P-Q: (1) P being dense and Q being dense, (2) P being binary
sparse and Q being dense, and (3) P being diagonal and Q being
dense. From acceleration perspective, type (1) operation is computa-
tionally intensive and thus requires massive parallelization of DSPs
(Section 4.3); type (2) operation incurs large number of irregular
BRAM accesses and motivates the graph topology based optimiza-
tions (Section 3.2); type (3) operation is equivalent to scaling each
row of Q by the diagonal elements of P, and thus its contribution
to the total training cost is negligible. Other operations (e.g., mask,
ReLU, concatenation, sub-matrix extraction) are light-weight and
straightforward to implement, and we do not discuss them in detail.

3.1 Algorithm Selection

For efficient training on large graphs, the first step is to reduce
external memory communication via minibatches. Ideally, a mini-
batch should be sampled such that all data required for gradient
calculation (e.g., X (©) of the minibatch nodes) fits in BRAM. Among
the numerous algorithms [5, 6, 14, 15, 34], some return minibatches
not suitable for hardware execution. We categorize these algorithms
and analyze the hardware cost on external memory accesses.

Minibatch by sampling GCN layers [5, 6, 14, 15]. Sampling algo-
rithms in this category traverse GCN layers backward from layer-L
outputs to layer-1 inputs to select minibatch nodes. Assume b nodes
of layer ¢ + 1 are selected. The sampler then take « - b nodes of
layer ¢ based on the inter-layer connections and/or the features of
the d - b neighbors in layer-¢ (where d is the average node degree).
Specifically, the sampling of [14] does not depend on neighbor fea-
tures and 10 < o < 50 in general. [6] uses the neighbor features as
“historical activation” and & = 2. [15] computes the node probability
by the neighbor features and a = 1 on average. [5] does not require
neighbor features and & = 1. In summary, suppose we sample by
output nodes of layer L. Then the sampler reads the neighbor fea-
tures of each layer (if required) to eventually return a* - by input
nodes in layer 1. During training, we read features of the a” - by
input nodes of layer 1, and then perform forward propagation to
compute output features of the layer-£ sampled nodes (1 < £ < L).

Minibatch by sampling training graph [34]. The algorithm sam-
ples from G instead of the GCN layers. Given a graph sampling
algorithm (e.g., multi-dimensional random walk [26]), [34] returns a
subgraph Gs (Vs, &s) induced from G (V, &) (where [V| < |V)).
The minibatch contains the same set of nodes Vs for all the GCN
layers. In other words, for each minibatch, [34] constructs a com-
plete L-layer GCN from G, with the layer nodes defined by Vs and
the layer connections defined by Es. Note that unlike [6, 15], the
graph sampler of [34] requires no information from node features.

Suppose we were to implement the above minibatch training al-
gorithms on FPGA. Since the full X ©) is too large to fit on-chip, we
need to read from external memory the following data: (1) layer-1

input features of the minibatch nodes, and (2) layer-¢ input features
of the minibatch neighbor nodes (if required). For ease of analysis,
assume the feature sizes of each layer are the same, and let the cost
of transferring one feature vector be 1. Also, let the cost of aggre-
gation and computing A (-) for one node (see Figure 1) be 1. Ignore
the computation cost of feature aggregation. Table 1 summarizes
the ratio between on-chip computation cost and off-chip commu-
nication cost, where for the “Value” row, we set L = 2, d =15 and
a as 25, 1, 2, 1 for [14], [5], [6], [15] respectively. Algorithms of
low computation-communication ratio (i.e., [6, 14, 15]) impede the
development of efficient hardware accelerators. For the remaining
two algorithms, the complexity of the sampler of [34] is much lower
than that of [5], and the training accuracy of [34] is higher. Thus,
we select [34] as the target training algorithm for acceleration.

Table 1: Computation-communication ratio of various train-
ing algorithms. Let B = Z%;é alby,and B’ = L - by.

(14] [5] (6] (15] [34]

E ; B B B _ B__ B
PIESSION GThy wlby olby+dB albyrdB b
Value 0.04 2 0.06 0.06 2

Remark on notation. Since we select the algorithm of [34], in the
following sections, we mainly focus on GCN built on a subgraph G;.
A symbol with an “s” subscript means it is related with a subgraph.
Thus, forward and backward pass of the GCN can be updated by

simply replacing A, D, X©) with As, Dy, xﬁ') in Equations 1 and 2.

3.2 Redundancy Reduction

Before designing the hardware architecture, we first optimize the
redundancy in minibatch training from an algorithm perspective.
Take Figure 2a as an example. Suppose the graph sampler returns a
subgraph G (of G in Figure 1) as the minibatch. In each GCN layer,
nodes 1, 2, 3 and 4 aggregate neighbor features, with node 0 calcu-

lating % (XlT +X2T + X;), node 1 calculating % (XOT + XZT), node 2
calculating % (Xg + XlT + X3T) and node 3 calculating % (Xg + X;—)
(omitting superscript (€) for simplicity). This corresponds to 6 vec-

tor additions and 10 vector reads in total. Observe that the vector
pair (XT,XZT) appears in the aggregation of both nodes 1 and 3.

Similarly, the pair (X;r, X;r) is aggregated by both nodes 0 and 2.

Thus, we can perform pre-processing to compute the partial sum
Xg +X2T and XI + X3T. The aggregation of the four nodes after pre-
processing requires only 2 additions and 4 reads. In general, even
considering the pre-processing cost, we can still significantly re-
duce both computation and communication of feature aggregation.
The redundancy reduction helps us achieve perfect load-balance of
the complete pipeline for a wide range of FPGAs (Section 5.3).

The key to reduce redundancy is to identify sets of nodes ap-
pearing frequently in the neighbor lists of v € V5. To simplify the
problem, we aim at finding such sets of size 2 — we identify common
pairs of neighbors. We first construct an un-directed aggregation
graph G, from G by Algorithm 1. Each edge (u, v) in G, represents
potential vector sum operations between u and v. The attribute

() © /:3{:\
(| oo drl

PR

(2) @ <>

(a) Gs (b) G, and M, (c) G5

Figure 2: Example on reducing redundancy in feature prop-
agation, using a graph theoretical approach.

of (u, w) consists of a set of nodes {v1, ..., v}, meaning that the
neighbor list of v; (1 < i < n) contains both u and w. The weight
of an edge is simply the size of its attribute set (we remove edges
of weight 1). In Algorithm 1, ‘W, and D, can be implemented as
a hash table. And W, [(u, w)] (or Dg [(u, w)]) returns the value
corresponding to the key (u, w). Figure 2b shows the aggregation
graph G, for our above example, where edges have weight 2.

Algorithm 1 Construction of aggregation graph G,

Input: Subgraph G (Vs, Es)

Output: Aggregator graph G,
1: Vo — Vs
22 W, < 0 > Key-value pairs mapping edges to edge weights
3: Dy < O » Key-value pairs mapping edges to edge attributes
4: forv € V, do

5 for u € neigh(v) do

6 for w € neigh(v) \ u do

7: if Key (u, w) not in ‘W, then

8 Add key-value pair ((u, w), 1) to W,
9: else

10: W [(u,w)] — Wy [(u,w)] +1

11: if Key (u, w) not in D, then

12: Add key-value pair ((u, w), {v}) to D,
13: else

14: Da [(u, w)] & Dq[(u, w)] U {v}

15: Remove key-value pairs of weight-1 edges in ‘W, and D,
16: Gq < Un-directed graph based on ‘W, and D,

Intuitively, the next step upon getting G, is to extract the edges
with largest weights, so that pre-computation of the correspond-
ing vector sums reduces the most redundancy. However, there
is one subtlety to notice. Suppose two edges of Ga, (u;, u;) and

(uj, uk), have large weights, and {v1, ..., vp}, the intersection of
their attributes, is non-empty. Consider the aggregation of nodes
{v1,...,vm} after pre-computing x” = XI.T+XJ.T and x”’ = XjT +X,I.

By replacing the pair (XITX]T) with x’, the other pair (X]TXII)
disappears in aggregation. So x’’ does not help reduce redundancy.
To avoid such useless pre-computation on x”’, a good solution is to
find a maximum weight matching of G,, so that the selected pairs
imply high redundancy, and share no common nodes.

THEOREM 3.1. For feature aggregation of each layer, number of vec-
tor reads and additions can decrease by at least 3o c pm, (Wale] — 2)
and 3, e pr (Walel = 1). My is maximum weight matching of Ga.

Proor. We first consider the reduction in number of reads. Since
edges in a matching are disjoint, for each (u,v) € M}, accessing
X;lr + Xl— instead ofX,I and XzT} saves (2 — 1) - ‘W, [(u, v)] number
of reads. The pre-computation of X} + X} consumes 2 reads. In
sum, the total reduction is), (‘Wy[e] — 2). The proof for reduction
in number of additions can be similarly derived. O

Note that Theorem 3.1 considers the total cost including any pre-
computation cost. Also, although polynomial complexity algorithm
[22] exists for computing the maximum weight matching, it is still
too expensive in practice. Thus, we propose a greedy approach
(Algorithm 2) to quickly compute a good matching M.

Algorithm 2 Greedy approach to find a good matching M,

Input: Aggregation graph Gg; threshold 6
Output: Matching M,
1: Ma — 0
2. H « Max-heap of edges &g, ordered by edge weights
3: 8 « Length |V,| vector of values True
4: while maxWeight (H) > 6 do
5 (u,v) « extractMaxEdge (H)
if = (S, ASy)then > (u,v) violates edge disjointness
continue
S, « False; S, « False

Mg — Mg U{(u,v)}

R Y

The next step after obtaining M, is to update the original G
to G¢ (following Algorithm 3), so that the pre-computed sums
can propagate in G. The idea is to merge each pair of nodes in
M into a new node, whose feature vector is returned by pre-
computation. Compared with Gs, the updated G/ has more nodes
(’(VS’| = |Vs| + | Mgl), but less edges. Note that G/ is directed, even
when G; is un-directed. The example G{ is shown in Figure 2c.

Algorithm 3 Construction of the update subgraph G

Input: Original subgraph Gs; Matching M; Edge attribute Dy
Output: Updated (directed) subgraph G (V/, &})
V) —Vs; & — &
2: for (u,v) € M, do
3: Assign a new node v’ corresponding to the edge (u, v)
Vi — VU {v'}
for w € Dy [(u,v)] do
Remove (u, w) from &/
Replace (v, w) with (v”, w) in &

Complexity analysis. Complexity of Algorithms 1, 2 and 3 are low
compared with the feature aggregation. Complexity of Algorithm
1is O (|&Eql) = O (Zue% d%), where d,, is v’s degree. Although
in the worst case, O (|&4]) = O (V5] -drznax), for the graphs in
practice, we may assume O (|E4]) = O (|Vs| 32) =0 (|85| 3)
where diay and d are the max and average degree of Gs. Complex-
ity of Algorithm 2 is O (|E4| + Nlog|E4|), where the first term

counts for line 2, and the second term is for the loop from line 4 to 9.
Number of times max-edge is extracted from heap, N, depends on

the threshold 0. Typically, N < |E4], |Vs| < 5000, d < 20. Overall
complexity of Algorithms 1 and 2 is much less than the complexity
of single layer feature aggregation (i.e., O (|Es| - f), where the fea-
ture length f is to the order of 10% to 10%). For Algorithm 3, lines
6 and 7 each takes at most d,, operations if we simply scan the
neighbor list of w. In return, we save one vector sum operation
for u and v. Considering d < f, overhead of Algorithm 3 is thus
negligible compared with the benefit in redundancy reduction.

It is worth noticing that (1) one time transformation from G; to
G/ benefits 3L number of feature aggregation in a L-layer GCN, and
(2) such transformation, which only involves integer operations,
reduces floating point arithmetics during feature aggregation. These
two observations further justify the cost of Algorithms 1, 2 and 3.

Iterative redundancy reduction. After obtaining G¢, redundancy
still exists when aggregating features of G/. Viewing G/ as the
new Gs, we can again apply Algorithms 1, 2 and 3 to obtain a G/’
This process can continue until few edges can be reduced (i.e., the
matching is small). Note that although the training graph (and thus
Gs) is often un-directed, Algorithms 1, 2 and 3 still apply when G
is directed. Therefore, iterative redundancy reduction is feasible.

For sake of notation, define one round of redundancy reduction as
one invocation of Algorithms 1, 2 and 3. Define the subgraph output
by the last round as G¥, and its adjacency matrix as A%. Define the
set of matchings in all rounds as My = {Mq, M/, M7/, ...}. Define

Add(GE)+ Mg IM .
Yadd = — I(Hiiz di‘ge)M“l | as the redundancy reduction rate

for additions, where numAdd (G) = ¥, ev.4, >1 (dv — 1) denotes
the number of additions to aggregate by traversing G’s neighbor
nunRead(G)+X men, 2IM|
numRead(Gs)
reduction rate for BRAM reads, where numRead (G) = Y, ey do =

d|V| denotes number of reads to aggregate features.

lists. Define yyeaq = as the redundancy

4 ACCELERATOR DESIGN

4.1 Overview

We first partition the workload between FPGA and CPU. We let
FPGA execute the computation intensive operations, and leave the
communication intensive parts to CPU. A natural partition is: CPU
performs graph sampling, and then converts G5 to Gf; FPGA per-
forms the forward and backward pass defined by Equations 1 and 2,
where feature propagation of each layer is based on G¥. Notice that
under supervised learning, the last graph convolutional layer is fol-
lowed by a node classifier (see Section 2.1). The softmax layer at the
end of the classifier and the cross-entropy loss require computation
of exponential and logarithmic functions. Since softmax and loss
contribute to a negligible portion of the total workload and their ac-
curate calculation requires complicated hardware [9, 21], we assign
their computation to CPU. Section 4.4 describes the scheduling.
To improve overall training throughput, we need to (1) reduce
the overhead in external memory access, and (2) increase the uti-
lization of the on-chip resources. The first goal can be achieved
by setting the minibatch parameters so that the size of Gs is ap-
propriate for the BRAM capacity. Ideally, once receiving the initial

node features (i.e., X§°) of Vs) and the connection information (i.e.,
Dy, A*;, Myg), the FPGA should propagate forward from the first
graph convolutional layer to the last classifier MLP layer without

accessing external memory. Similarly, once receiving the gradient
with respect to softmax, FPGA should propagate backward without
accessing external memory. Thus, CPU needs to communicate:

o To FPGA: X\, Dy, A*, M, and =24

¢ $ BXMLP
. oul

e From FPGA: Xy)

And on-chip BRAM needs to store:

o Node features: Jg<p<r. {ng)}

e Subgraph topological data: Ds, A% and M,
e Pre-computed vector sum for pairs in M,
o Intermediate feature aggregation results

o Model weights: | J;<p<1. {Wo([), Wig)} and Wy p

e Gradient information:

oL oL
ox 0 and X forany2 <{ <L

o Optimizer specific auxiliary data
e Other data (i.e., tile buffer in Section 4.3)

Note that we only need to store gradients with respect to acti-

oL and oL

w0 ow’
and % are stored on chip. When calculating
S

vations of consecutive layers. When calculating
oL
ax("
: oL ; oL
we overwrite ax(0T with the newly generated X

the data

oL
ax (D
Also note that the optimizer specific auxiliary data depends on the
optimizer used. For vanilla gradient descent, no auxiliary data is
needed. For gradient descent with momentum [27], we need to
store the gradient with respect to model weights for the previous
minibatch. For Adam optimizer [17], we need to store more gradient
related data (e.g., first moment estimate, second moment estimate,
etc.). No matter what optimizer is used, the size of the auxiliary
data is comparable to the size of model weights.

Regarding the processing pipeline on-chip, there are two main
computation modules to perform feature aggregation and weight
transformation. In Figure 3, the Feature Aggregation module con-
sists of a 1D accumulator array to sum the node vectors. The Weight
Transformation module consists of a 2D systolic array to compute
the dense matrix product between X and W. The two modules are
reused for the computation of the L graph convolutional layers, and
the Weight Transformation module is also reused for the MLP layer.
The various BRAM buffers stores the data listed above. During for-
ward pass, when computing layer ¢, the Feature Aggregation and

Weight Transformation modules read from the buffer of Xg_l), and
write into ng). In backward pass, for layer ¢, the two computation

modules read the buffer of ng_l), and read / write into the two
gradient buffers in a ping-pong fashion.

The xﬁ‘) and 6‘;[(6) buffers use feature major data layout. So

each cycle, a buffer can provide the full feature vector of one node.
For a BRAM block (36bits X 1K) of the Xilinx Alveo board we use,

we store feature values (32-bit floating point) of 1K different nodes.

4.2 Feature Aggregation Module

This module performs feature aggregation in three steps. The first
pre-computation step calculates the vector sum of node pairs in Mg,
and stores the results in the buffer for Xj1. The second step com-
putes A% - Xy) by reading Xy and Xﬁf). The final step applies the
scaling coefficient based on D;. The aggregated features are written

into a temporary buffer to be consumed by the Weight Transforma-
tion module. For the below discussion, we ignore step 3 since its
complexity is low (i.e., O (|'Vs|)) compared with the other steps (i.e.,
O (|&Es))). Regarding steps 1 and 2, since the feature length is large,
we explore parallelism along the feature dimension. In this case,
a simple 1D accumulator array of size Pagg = maxg<¢<i—1 f ©) i
sufficient. During pre-computation, pairs of node indices are read
sequentially from M. Vector sum of each pair consumes two cycles.
Similarly, during propagation of A%, indices in the neighbor lists
are read sequentially. Note that even though M, contains pairs
of multiple rounds (see last paragraph of Section 3.2), as long as
the pre-computation on the earlier rounds finishes before that of
later rounds, the memory controller for the accumulator array is
straightforward. For example, assume the original subgraph nodes
are indexed continuously from 1 to |Vs| and the new nodes gener-
ated in the first round are indexed from |Vs|+1 to | V| +|Mg|. The
matching in the second round, M, can only contain indices from
1to |Vs| + | Mg]. If the second round starts after the first round has
finished, all features required by M}, are ready. So the accumulator

array can directly read ng) and Xy, and continue filling X3y with
new features indexed from |Vs| + [Mg| + 1 to |Vs| + |IMg| + |M;’

Remark. To further increase parallelism, we can aggregate vec-
tors of multiple neighbors in the same cycle. Then the accumulator
array would be replaced by an accumulator tree, and the buffer
would be further partitioned to reduce bank conflicts in BRAM.
In this case, challenges such as load-balance would emerge. Fortu-
nately, for most target FPGA devices, parallelism of just max f)
is sufficient. We discuss this in detail in Section 5.3 and 5.4. Also,
we evaluate the storage overhead due to Xj in Section 6.2.

4.3 Weight Transformation Module

This module performs weight transformation of either a GCN layer
(i-e., h () function in Figure 1) or a MLP layer. The main operation
is multiplication of dense matrices. We use a 2D systolic array
to execute the blocked matrix multiplication algorithm. Let the
dimension of the systolic array be Psys (Where Psys < f ({’))). So the
computation parallelism of this module is Pszys, and each cycle 2Pgys
data are streamed in the array. Next we specify the data access
pattern. Suppose we compute X - W, where X € RIVsIXf and
W € R Then the X buffer is depth-wise partitioned to tiles
of layout Psys X f, and the W buffer is width-wise partitioned to

tiles of layout f X Pgys. There are l}(,v" X }f— pairs of tiles. For
sys sys

each pair, the systolic array reads a diagonal (or anti-diagonal if
matrix is transposed) of the two tiles per cycle. Thus, computing a
pair of tiles consumes f + Psys — 1 cycles, and computing the full
dot product takes l;:—;l . %;S (f+Psys —1) = %ys AVsl- f - f'
cycles. To perform ReLU in the forward pass, we only need to add
a comparator in each PE of the systolic array. When the results for
a pair of tiles are ready, the PEs clip negative values to zero and
append a status bit to indicate whether or not the clipping occurs.
The mask function in the backward pass can thus be implemented
in a simple way based on the True or False of the status bit.

Interaction with Feature Aggregation module. When operating on
the neighbor weight Wy, Weight Transformation module reads the

6?(?’) Optimizer data %
! ! ! [
l Feature Aggregation - WeightTransformation l
| b A5 D | | & . !®{®H®{9H®{9H®{e\i E
5]|) e/eHe/aHoeHe] | | £ |
BT & | : &/@le/@He/e e/ | T
1 [} ! | ! ") I I | ! g |
L= E : Xm E : Tile Buffer ’@/@H@/GBH@/GBH@/@‘: L= E

2 ¢
Xg) XMLp

Figure 3: Overview of the processing pipeline on FPGA (L = 2)

feature from the buffer filled by the Feature Aggregation module.
When operating on the self weight W, conflicts may occur since
both modules read from the X buffer. We add a small tile buffer in
the Weight Transformation module to completely avoid read conflicts.
The tile buffer of size Psys X f stores a tile of X, and is filled in f
cycles. Data in the tile buffer stay for (f + Pgys — 1)- %;S cycles to
enumerate all tiles of W. Read conflicts can only happen during the
filling of the tile buffer. And we simply stall the Feature Aggregation
module in this short period of time. Since f’ > Pgys, the pipeline
stall has negligible impact on performance. The above analysis is
based on the forward pass operation. In the backward pass, we
swap the dimensions of |'V| and f, and the same conclusion holds.

4.4 Scheduling

Scheduling between CPU and FPGA. CPU samples the subgraph
Gs, transforms it to Qﬁ , and calculates softmax, loss and the corre-
sponding gradients. These are shown in light blue blocks of Figure
4. FPGA handles majority of the computation workload in the for-
ward and backward pass, as shown in light green. Communication
between CPU and FPGA, as specified in Section 4.1, is in dark blue.
Notice that the subgraphs are independently sampled for each mini-
batch. Thus, CPU can prepare Gs and G¥ for the next minibatch,
while simultaneously FPGA is training the current one. This ex-
plains the overlap between step 7 and 2. Parallelism can be explored
by multiple cores of the CPU. The C cores can process subgraphs
for the next C minibatches in parallel without any dependency.

Scheduling of FPGA modules. In Figure 4, we only show the sched-
uling of the GCN forward pass. Scheduling of MLP and the back-
ward pass can be analogously designed. Computation on neighbor
weights depends on the aggregated feature and computation on self
weights has no dependency. Thus, we overlap the operations of a
and b. The avoidance of read conflicts between a and b is discussed

w
5 2E
g =2
s TT
» o g ¢ o]
_fS 8 = 2B) a
< o = Q X x
] S < - s g 2
3 A= E 8 EE 4
p= 2 3 2%5& 3
=1 [P [Q*Oo sl
=1 = .S g 9 g
= & 2 — 2
— .,“Q < == g <
& 2 8 & E S 1)
2] Q= < wn =5 2 <
§ £ & £32¢8 &
o s 2 = S < A =
= wn A~ = OHKH A
CPU“* iﬁi
FPGA 2 6
> Time
< -
Modules
b b

b L b
L Transform w.r.t. neighbor-weight

Transform w.r.t. self-weight
Aggregate features

Figure 4: Per-minibatch scheduling between CPU and FPGA
(up), and between FPGA computation modules (down).

in Section 4.3. During operation c, Feature Aggregation module is
idle. We analyze its impact on DSP utilization in Section 5.4.

5 PERFORMANCE ANALYSIS
To simplify notation, we assume f(f) = f,V0 < ¢ < L. So the
weight matrices Wo([) e RS x3f and W,(f) e RS x3f , where the

% factor is due to the concatenation in the forward pass. For the
classifier, we assume a single layer MLP, with Wy p € RS,

Regarding FPGA resources, we assume accumulators and multi-
pliers are implemented by DSPs and have the same hardware cost.
We assume the target FPGA can implement Rpgp number of accu-
mulators / multipliers, store Rgrapm Words, and communicate Rgw
words with external memory per cycle. Here a word represents an
element of the feature vectors or the weight matrices.

Training performance depends on the parameters related to:

e Minibatch and GCN: |V, d and f
e Redundancy reduction: y,dd; Yread and X pren, M|
e FPGA architecture: Pygg, Psys

We also use the fact that d < f < |Vs| to simplify analysis.

5.1 Computation

Each graph convolutional layer performs feature aggregation 3
times and product on weights 6 times. Two of the feature aggrega-
tion operate on length- f vectors, and the other one on length-% f
vectors. Since feature aggregation is parallelized along feature di-
mension only, it takes exactly yreaq - Vsl - d- f/Pagg cycles to
aggregate length- f features. All six products on weights have the
same complexity, and each takes % Vsl - £2 Pszys cycles. By the
schedule in Figure 4, to hide the feature aggregation time, we have:

= 1 2Psys\ 1 5 1
Yread - Vsl -d - f - =(1——)-—-|(Vs|'f' (3a)
e Pagg f 2 PSZys
Pagg + 2Pszys =Rpsp (3b)
Pagg <f (3¢)
2Py

where factor 1— is due to the pipeline stall analyzed in Section

4.3. Solving Equations 3a and 3b under the constraint of 3¢ gives the

architectural parameters Pjq, Pgy. Under reasonable values of f,

|Vs|, d, Yread and Rpsp, the solutions P, and Pgys always exist (see
also Section 5.3). Total FPGA cycles® to complete one minibatch is:

1

(75

Thatch = (3L +3) - [V5| - 2 5 @)

5.2 Communication

On-chip storage. All data listed in Section 4.1 have to fit on-chip.
Index data A% and M, and coefficient D are negligible compared
with feature data (since d < f). Size of the buffer for Xy is f -
2 Mem,, IM|. Size of the buffer between Feature Aggregation and
Weight Transformation modules is f - [Vs|. Size of the tile buffer in
Weight Transformation module is Pgys - |Vs|. Weights for each layer
takes f2. Under gradient descent with momentum, the optimizer
requires additional f? storage per layer for the auxiliary data. Thus,

L+5) fIVsl+f D IMI+Pys | Vsl +2(L+1) f* < Regan
MeM,
®)

“We ignore the number of cycles to apply gradients to weights (elementwise
operation), since it is negligible compared to the number of cycles to calculate gradients.

By adjusting § and number of rounds (see Algorithm 2 and Section
3.2), we control)] |M] to meet a pre-defined budget (say |Vs]).
Then, we tune the graph sampler so that [Vs| satisfies inequality 5.

Off-chip accesses. Ignoring Ds, A* and M,, CPU-FPGA data
transfer include the initial features and the MLP output features
and gradients. Thus, f, the ratio between on-chip computation and
off-chip communication, is lower bounded’ by £, indicating high
reuse of on-chip data, and low overhead in external memory access.

5.3 Load-Balance

If feature aggregation is parallelized along feature dimension only,
the full FPGA pipeline is perfectly load-balanced, regardless of the
graph connection. However, if we would have to aggregate features
of multiple nodes in parallel, BRAM access conflicts would cause
load-imbalance of the module and degrade training performance.

Load-imbalance is more likely to happen on FPGAs with more
DSP resources. The threshold Rpgp for a design to become load-
imbalanced can be derived by plugging Pagg = f into Equations 3a
and 3b. After simplifying the expression, we have:

Rpsp > (_ f

2
P) : (1 + a}’read -\ 1+ 2Yreada) (6)
Yread

Feature dimension is often set to 256, 512 or 1024 in the literature.
Subgraph degree is often less than 20, so we set d = 15. The ratio
Yread depends on G, and we set it to 0.7. With such parameter
values, Rpsp > 4048, meaning that there have to be at least 4048
multipliers / accumulators on chip for our FPGA pipeline to be-
come load-imbalanced. Even the largest FPGAs in the market (e.g.,
Xilinx UltraScale+, Intel Stratix-10) does not have such high DSP
capacity (considering that data in single precision floating point
are necessary to achieve high training accuracy). Note that yyeaq
helps keep the threshold Rpsp high. If yyead = 1, Rpgp is only 3038.

5.4 DSP Utilization

Since load-balance is achieved and BRAM conflicts are eliminated,
we can analytically derive the DSP utilization for any G;. From
the timeline of Figure 4, the systolic array is idle when CPU is
communicating with FPGA (ignoring the CPU computation time
on softmax and loss). The accumulator array of Feature Aggregation
module is idle during the stall and during computation on neighbor
weights. Using the fact that computation-communication ratio f§ >
f (see Section 5.2), we derive the overall DSP utilization y as:

1
’
p=H 14y . Rose @)
K FRew

where ji/ = = . (2 (P*

Rpsp sys

2 2P,
)+ 5P (1- fy)) and Plyy. Py

satisfiy Equations 3a and 3b. The % factor is due to the aggregation
of length-% f features in the backward pass. If we can reduce the

2Ps*ys -1 V2Rpsp

redundancy up to yyread > 1-— 7 — =, wecan then lower-
1
1+d/f

bound p’ by . With the typical parameter values specified in

To simplify expression, we only consider the computation of the systolic array
on graph convolutional layers. Therefore, f is just a lower bound on the ratio.

Section 5.3, y’ > 95%. For most FPGA platforms, f}?ES;V < 1, s0
overall DSP utilization p is close to 1. For example, on Xilinx Alveo

U200 board connected to CPU via PCle 3.0 x16, we have y > 93%.

6 EXPERIMENTS

We evaluate on a Xilinx Alveo U200 board hosted by a 40-core
Xeon server (E5-2698 v4 @2.2GHz, hyper-threaded). CPU-FPGA
communication is via PCle 3.0 x16 (peak bandwidth: 15.8GB/s). The
UltraScale+ XCU200 FPGA on Alveo has 5867 DSP slices, 1766 36Kb
block RAMs and 800 288Kb Ultra RAMs¥. For Float32, on-chip RAM
can store 8166K words, and DSPs can implement 1173 accumulators
or 1955 multipliers. We use Vivado 2018.3 for synthesis.

Table 2: Dataset statistics

Dataset Nodes Edges Attribute Classes Train/Val/Test

PPI 14,755 225,270 50 121 0.66/0.12/0.22
Reddit 232,965 11,606,919 602 41 0.66/0.10/0.24
Yelp 716,847 6,977,410 300 100 0.75/0.15/0.10

We use three standard, large benchmark graphs [5, 6, 14, 15, 34]
to evaluate the training speed and accuracy. In Table 2, “Attribute”
X;0)|). “Classes”
specifies total number of node classes. “Train/Val/Test” splitting
follows [34]. For all the datasets, following [5, 6, 14, 15, 34], the
GCN has two graph convolutional layers (L = 2) and one MLP layer
in the classifier. The hidden dimension is f({’) = 256, where £ = 1, 2.

We compare with the baseline [34] since GraphACT uses the
same minibatch algorithm as [34]. For [34], we run the public im-
plementation$ by Python (version 3.6.7) and Tensorflow (version
1.12). We run [34] on both the CPU and GPU platforms. Table 4
shows the hardware specification of the hardware. Parallelization
of [34] on CPU is via the Intel MKL library. Thus, we add the --mk1
flag to run [34] on CPU. Parallelization of [34] on GPU is directly via
Tensorflow. The implementation of GraphACT is open-sourced .

specifies the initial feature length (i.e., f © =

6.1 Training Accuracy

Under the same hyper-parameters, the accuracy and convergence
of GraphACT are identical [34]. However, since we set the subgraph
size under the BRAM constraint (Equation 5), it is necessary to
evaluate accuracy under our settings. Table 3 summarizes the com-
parison, where except the subgraph size, all hyper-parameters of
Para-GCN and GraphACT are the same. The popular GraphSAGE
does not sample subgraphs, and we use its default minibatch size of
512. Comparing with [14], we achieve much higher accuracy on PPI,
and comparable accuracy on Reddit and Yelp after similar number
of epochs. Comparing with [34], reducing the subgraph size |V;|
has negligible impact on the overall accuracy and convergence rate.

6.2 Redundancy Reduction

After transforming G to G¥, redundancy in computation and com-
munication are reduced at the cost of extra on-chip buffer to store

#In this paper, we refer to block RAM and Ultra RAM by a general term “BRAM”.
SBaseline code: https:/github.com/ZimpleX/gen-ipdps19, commit a6f531.
1GraphACT code: https:/github.com/GraphSAINT/GraphACT

the vector sums of M. Figure 5 shows such tradeoff, as well as
the effectiveness of redundancy reduction. Each “x” marker cor-
responds to one round of redundancy reduction, and we run for 5
rounds (0 = 2, Algorithm 2). We observe (1) number of reads and
additions can be reduced to as low as 60%, at the cost of a buffer less
than 2 |Vs|, (2) the yreaq value used in Section 5.3 and 5.4 (to ana-
lyze load-balance and DSP utilization) is realistic, and (3) amount of
redundancy depends on the graph topology — while our algorithm
is effective on many graphs (e.g., PPL, Yelp), exceptions exist (e.g.,
Reddit). By Figure 5, in our implementation, we set a budget B such
that 3 prenm, IM| < B+ |Vs|. For PPI, Reddit, Yelp, B = 2, 0.5, 0.5.

Yadd Yread

1 O Toee | T T T
2 oy
oI, ™]
—
g 06 o |- 1
S oal L PPI
= —— Reddit
Fg 0.2 - - I —%— Yelp —
~

N I O | N I S |

025 05 0.75 1.0 1.25 1.50 025 05 075 1.0 1.25 150
Normalized storage overhead: (3 MeM, IM]) /1Vs]

Figure 5: Reduced redundancy vs. Storage overhead

6.3 Comparison with State-of-the-Art

Table 4 shows the training speed comparison with the state-of-the-
art [34]. All implementations use single precision floating point for
weights and features. In our design, the DSP and BRAM resources
are heavily utilized. We set Psys = 24 and Parr = 128 for all datasets.
For the multi-core implementation, “L3” shows the aggregated L3-
cache size and “Off-chip bandwidth” shows the peak CPU-main
memory data transfer speed. For the GPU implementation, “Off-
chip bandwidth” is the same as the proposed implementation since
the GPU is connected via PCle 3.0 x16. “Total convergence time”
includes the time for graph sampling, pre-processing (for redun-
dancy reduction), GCN forward/backward propagation and data
transfer from/to main memory. It excludes the time for initial data
loading from the disk and Tensorflow initialization (for allocating
device resources and building computation graphs).

Comparing with the CPU baseline, we achieve 12X to 15X speedup.
Apart from the overhead of the Python language, inefficiency of the
CPU baseline is mainly due subgraph feature aggregation operation.
We observe that although feature aggregation requires less than
10% of the multiplication/addition of weight transformation, the
CPU spends about equal amount of time on the two operations
(see also Figure 3.D of [34]). Comparing with the GPU baseline,
our design convergences slightly faster (1.1x to 1.5x). The theoret-
ical peak performance of the GPU (9.3 TFLOPS for Float32 [2]) is
much higher than that of the FPGA (1.8 TFLOPS for Float32 [3]").
Inefficiency of the GPU baseline is mainly due to the sub-optimal
Tensorflow implementation of sparse matrix multiplication. Note
that the CPU in our proposed design only executes light weight op-
erations (Section 3.2 and 4.4). Thus, the training time improvement
mainly comes from the highly optimized FPGA architecture.

"Each Float32 multiplier consumes 3 DSPs. The max DSP frequency is 775MHz.

https://github.com/ZimpleX/gcn-ipdps19
https://github.com/GraphSAINT/GraphACT

Table 3: Comparison of convergence and test set accuracy (F1-micro score)

Method PPI Reddit Yelp
Accuracy Epochs Subgraph size Accuracy Epochs Subgraphsize Accuracy Epochs Subgraph size
GraphSAGE [14] 0.603 71 - 0.953 6 - 0.593 10 -
Para-GCN [34] 0.685 120 5500 0.957 5 8000 0.606 8 4000
GraphACT 0.678 104 4000 0.952 5 2750 0.598 7 2750
Table 4: Comparison of resources and training time with state-of-the-art implementations
Xilinx Alveo U200 Xeon E5-2698 v4 server NVIDIA Tesla P100
PPI Reddit Yelp PPI Reddit Yelp PPI Reddit Yelp
Data type Float32 Float32 Float32 Float32 Float32 Float32 Float32 Float32 Float32
Frequency (GHz) 0.2 0.2 0.2 2.2 2.2 2.2 1.2 1.2 1.2
DSP slices / CPU cores / CUDA cores 5632 (96%) 5632 (96%) 5632 (96%) 40 40 40 3584 3584 3584
BRAM /L3 /HBM2 (MB) 34.6(96%) 32.8 (91%) 27.3(75%) 102 102 102 16280 16280 16280
Off-chip bandwidth (GB/sec) 15.8 15.8 15.8 136.6 136.6 136.6 15.8 15.8 15.8
Total convergence time (sec) 9.6 7.6 23.4 151.4 95.5 359.4 10.6 114 30.4

Although the baseline training time may be further improved by
re-implementation using C++/CUDA, inefficiency in CPU and GPU
due to sparse feature aggregation may not be easily eliminated.

7 DISCUSSION

This work proposed several hardware-software optimizations for
GCN training on CPU-FPGA heterogeneous platforms. We discuss
these optimizations and their applicability to various platforms.

Design challenges. The key to accelerating GCN training is to
address the challenges of memory access and load-balance. The
solutions for these differ on various platforms. Regarding memory
access, the solution on FPGA must optimize both on-chip and off-
chip accesses. For data in BRAMs, we need to increase their reuse so
as to reduce off-chip communication. We also need to reduce bank
access conflicts to reduce pipeline stalls. In GraphACT, we reduce
off-chip communication by setting the subgraph size based on the
BRAM capacity (Section 5.2). We eliminate on-chip access conflicts
by appropriately parallelizing the feature aggregation operation
(Section 4.2) and buffering data tiles between computation modules
(Section 4.3). On the other hand, for CPU and GPU, the critical
issue is to enhance data access locality since the memory hierarchy
is not explicitly exposed to the programmer. Considering that the
full graph fits in the CPU main memory or GPU global memory
(sizes of which range from 10! to 103 GB), the memory access
challenge on CPU and GPU may be addressed by software node-
reordering or by hyper-threading. Regarding load-balance, CPU and
GPU can decouple the operations of feature propagation and weight
transformation, and then adopt separate strategies to balance them.
However, on FPGA, since the two operations are processed by
a single pipeline, an integrated strategy needs to simultaneously
balance the very different operations (one on dense tensors and the
other on sparse tensors). While memory access and load-balance
are challenging to optimize, a carefully designed FPGA pipeline can

achieve much higher efficiency than the CPU or GPU solutions. This
is due to the ability of FPGA to customize computation modules and
to control memory accesses in an explicit and fine-grained manner.

Remark on redundancy reduction. Although redundancy reduc-
tion is an algorithm-level optimization independent of the platform,
it may not be directly applicable to CPU to improve performance.
Recall that redundancy reduction (Section 3.2) constructs a sub-
graph G¥ with less edges yet more nodes than Gs. Thus, feature
aggregation on Gf may have worse data locality than Gs. On a CPU,
even though the L3-cache can hold the node features of G¥, the
overall feature aggregation performance may not benefit from the
reduced computation load due to the potential increase in L1- or L2-
cache misses. On the other hand, data access locality of GraphACT
does not affect FPGA performance, as long as data of one minibatch
completely fits in BRAM. Under the proposed architecture and data
layout (Section 4), BRAM will always provide the requested node
feature of G¥ to the Feature Aggregation module within one cycle.

8 CONCLUSION

We accelerated GCN training on CPU-FPGA heterogeneous plat-
forms. By multiple software-hardware co-optimizations, we achieved
conflict free BRAM access, load-balance and high DSP utilization.
We plan to extend GraphACT to accelerate inference, where the
GCN operates on large, un-sampled graphs. The redundancy reduc-
tion and the computation modules of GraphACT can be applied to
achieve high DSP utilization. In addition, since the inference graph
is much larger than the training subgraphs, we need to optimize
off-chip communication by partitioning and scheduling algorithms.

ACKNOWLEDGMENTS

This work was supported by US NSF under grant No. CNS-1643351,
Intel Strategic Research Alliance and the Defense Advanced Re-
search Projects Agency under contract No. FA8750-17-C-0086.

REFERENCES

(1]
(2]

(3]

(4]

(5]

6]
(71

=

[10]

[11]

[12

[13]

[14]

[15

[16]

[17

[18]

[21]

[22]

[23]

[24]

[n. d.]. Gradient of softmax. https://deepnotes.io/softmax-crossentropy. ([n. d.]).
Accessed: 2019-09-08.

[n. d.]. NVIDIA Tesla P100 peak performance.
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCle-
datasheet.pdf. ([n. d.]). Accessed: 2019-11-30.

[n. d.J]. Xilinx Alveo U200 peak perfor-
mance. https://www.xilinx.com/products/boards-and-
kits/alveo/u200.html#specifications. ([n. d.]). Accessed: 2019-11-30.
Anonymous. 2020. GraphSAINT: Graph Sampling Based Inductive Learning
Method. In Submitted to International Conference on Learning Representations.
https://openreview.net/forum?id=BJe8pkHFwS under review.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations (ICLR).

Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction.. In ICML. 941-949.

Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. Fpgp: Graph pro-
cessing framework on fpga a case study of breadth-first search. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 105-110.

Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong
Yang. 2017. Foregraph: Exploring large-scale graph processing on multi-fpga
architecture. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 217-226.

Florent De Dinechin, Pedro Echeverria, Marisa Lopez-Vallejo, and Bogdan Pasca.
2013. Floating-point exponentiation units for reconfigurable computing. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 6, 1 (2013), 4.
Tong Geng, Tianqi Wang, Ahmed Sanaullah, Chen Yang, Rui Xu, Rushi Patel,
and Martin Herbordt. 2018. FPDeep: Acceleration and load balancing of CNN
training on FPGA clusters. In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE, 81-84.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855-864.

Kaiyuan Guo, Shuang Liang, Jincheng Yu, Xuefei Ning, Wenshuo Li, Yu Wang,
and Huazhong Yang. 2019. Compressed CNN Training with FPGA-based Ac-
celerator. In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA °19). ACM, New York, NY, USA, 189-189.
https://doi.org/10.1145/3289602.3293977

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems
30. 1024-1034.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
sampling towards fast graph representation learning. In Advances in Neural
Information Processing Systems. 4558-4567.

Soroosh Khoram, Jialiang Zhang, Maxwell Strange, and Jing Li. 2018. Accelerat-
ing Graph Analytics by Co-Optimizing Storage and Access on an FPGA-HMC
Platform. In Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’18). ACM, New York, NY, USA, 239-248.
https://doi.org/10.1145/3174243.3174260

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907
http://arxiv.org/abs/1609.02907

Yufei Ma and et al. 2017. Optimizing Loop Operation and Dataflow in FPGA
Acceleration of Deep Convolutional Neural Networks. In Proceedings of the 2017
ACM/SIGDA Intl. Symposium on Field-Programmable Gate Arrays (FPGA ’17).
Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo,
Karthikeyan Natarajan, and Bei Yu. 2019. High Performance Graph Convo-
lutional Networks with Applications in Testability Analysis. In Proceedings of the
56th Annual Design Automation Conference 2019 (DAC °19). ACM, New York, NY,
USA, Article 18, 6 pages. https://doi.org/10.1145/3316781.3317838

AM Mansour, AM El-Sawy, MS Aziz, and AT Sayed. 2015. A new hardware
implementation of base 2 logarithm for FPGA. (2015).

S. Micali and V. V. Vazirani. 1980. An O(v|v| ¢ [E|) algoithm for finding maxi-
mum matching in general graphs. In 21st Annual Symposium on Foundations of
Computer Science (sfcs 1980). 17-27. https://doi.org/10.1109/SFCS.1980.12
Hiroki Nakahara, Akira Jinguji, Masayuki Shimoda, and Shimpei Sato. 2019. An
FPGA-based Fine Tuning Accelerator for a Sparse CNN. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
ACM, 186-186.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international

[25

[26

[27

S
&

[29

[30

[31

@
&,

[33

(34]

[36

(37]

[38

W
20,

[40

[41]

conference on Knowledge discovery and data mining. ACM, 701-710.

R. Rajat, H. Zeng, and V. Prasanna. 2019. A Flexible Design Automation Tool
for Accelerating Quantized Spectral CNNs. In 2019 29th International Conference
on Field Programmable Logic and Applications (FPL). 144-150. https://doi.org/10.
1109/FPL.2019.00031

Bruno Ribeiro and Don Towsley. 2010. Estimating and sampling graphs with
multidimensional random walks. In Proceedings of the 10th ACM SIGCOMM
cunference on Internet measurement. ACM, 390-403.

David E Rumelhart, Geoffrey E Hinton, Ronald] Williams, et al. [n. d.]. Learning
representations by back-propagating errors. Cognitive modeling 5, 3 ([n. d.]), 1.
Shreyas Kolala Venkataramanaiah, Yufei Ma, Shihui Yin, Eriko Nurvithadhi,
Aravind Dasu, Yu Cao, and Jae-sun Seo. 2019. Automatic Compiler Based FPGA
Accelerator for CNN Training. arXiv preprint arXiv:1908.06724 (2019).

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management. ACM,
889-898.

Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han
Hu, Yun Liang, and Jason Cong. 2017. Automated Systolic Array Architecture
Synthesis for High Throughput CNN Inference on FPGAs. In Proceedings of the
54th Annual Design Automation Conference 2017 (DAC °17). ACM, New York, NY,
USA, Article 29, 6 pages. https://doi.org/10.1145/3061639.3062207

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’18). 10.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Differentiable Pooling. In Proceedings of the 32Nd International Conference on
Neural Information Processing Systems (NIPS’18). Curran Associates Inc., USA,
4805-4815. http://dl.acm.org/citation.cfm?id=3327345.3327389

Hanging Zeng, Ren Chen, Chi Zhang, and Viktor Prasanna. 2018. A Framework
for Generating High Throughput CNN Implementations on FPGAs. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’18). ACM, New York, NY, USA, 10.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. 2019. Accurate, Effi-
cient and Scalable Graph Embedding. In 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 462-471. https://doi.org/10.1109/IPDPS.
2019.00056

Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason
Cong. 2018. Caffeine: Towards uniformed representation and acceleration for
deep convolutional neural networks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2018).

Jialiang Zhang, Soroosh Khoram, and Jing Li. 2017. Boosting the Performance of
FPGA-based Graph Processor Using Hybrid Memory Cube: A Case for Breadth
First Search. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’17). ACM, New York, NY, USA, 207-216.
https://doi.org/10.1145/3020078.3021737

J. Zhang, W. Zhang, G. Luo, X. Wei, Y. Liang, and J. Cong. 2019. Frequency
Improvement of Systolic Array-Based CNNs on FPGAs. In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). 1-4. https://doi.org/10.1109/ISCAS.
2019.8702071

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In Advances in Neural Information Processing Systems. 5165-5175.
Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei
Hwu, and Deming Chen. 2018. DNNBuilder: an automated tool for building
high-performance DNN hardware accelerators for FPGAs. In Proceedings of the
International Conference on Computer-Aided Design. ACM, 56.

Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang, Bo Feng, Yuchun
Ma, and Guangwen Yang. 2016. F-CNN: An FPGA-based framework for training
Convolutional Neural Networks. In 2016 IEEE 27th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE, 107-114.
S. Zhou, C. Chelmis, and V. K. Prasanna. 2016. High-Throughput and Energy-
Efficient Graph Processing on FPGA. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 103
110. https://doi.org/10.1109/FCCM.2016.35

https://openreview.net/forum?id=BJe8pkHFwS
http://www.deeplearningbook.org
https://doi.org/10.1145/3289602.3293977
https://doi.org/10.1145/3174243.3174260
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3316781.3317838
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/FPL.2019.00031
https://doi.org/10.1109/FPL.2019.00031
https://doi.org/10.1145/3061639.3062207
http://dl.acm.org/citation.cfm?id=3327345.3327389
https://doi.org/10.1109/IPDPS.2019.00056
https://doi.org/10.1109/IPDPS.2019.00056
https://doi.org/10.1145/3020078.3021737
https://doi.org/10.1109/ISCAS.2019.8702071
https://doi.org/10.1109/ISCAS.2019.8702071
https://doi.org/10.1109/FCCM.2016.35

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Graph Convolutional Networks
	2.2 Deep Learning Training Accelerators
	2.3 Graph Analytics Accelerators

	3 Training Algorithm
	3.1 Algorithm Selection
	3.2 Redundancy Reduction

	4 Accelerator Design
	4.1 Overview
	4.2 Feature Aggregation Module
	4.3 Weight Transformation Module
	4.4 Scheduling

	5 Performance Analysis
	5.1 Computation
	5.2 Communication
	5.3 Load-Balance
	5.4 DSP Utilization

	6 Experiments
	6.1 Training Accuracy
	6.2 Redundancy Reduction
	6.3 Comparison with State-of-the-Art

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

