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Abstract

We study a nonlinear system of partial differential equations arising in macroeco-
nomics which utilizes a mean field approximation. This system together with the
corresponding data, subject to two moment constraints, is a model for debt and wealth
across a large number of similar households, and was introduced in a recent paper of
Achdou et al. (Philos Trans R Soc Lond Ser A 372(2028):20130397, 2014). We intro-
duce a relaxation of their problem, generalizing one of the moment constraints; any
solution of the original model is a solution of this relaxed problem. We prove existence
and uniqueness of strong solutions to the relaxed problem, under the assumption that
the time horizon is small. Since these solutions are unique and since solutions of the
original problem are also solutions of the relaxed problem, we conclude that if the
original problem does have solutions, then such solutions must be the solutions we
prove to exist. Furthermore, for some data and for sufficiently small time horizons,
we are able to show that solutions of the relaxed problem are in fact not solutions of
the original problem. In this way we demonstrate nonexistence of solutions for the
original problem in certain cases.

Keywords Mean field games - Energy method - Existence - Uniqueness - Income and
wealth distribution

1 Introduction

A recent paper of Achdou et al. calls attention to PDE models in macroeconomics;
we study a model proposed there for the distribution of wealth across many similar
households [1]. In this model, the independent variables are a, wealth, z, income,
and ¢, time. Each household of a given wealth and income must decide how much
of their income to put towards consumption and how much to instead save. Note that
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wealth and savings can be positive or negative, representing debt for negative values.
The authors make a mean field assumption in the modeling, so that a representative
household is seen as interacting not with all the many other individual households, but
only with the aggregation of these. In addition to introducing the model, the authors
of [1] work with stationary solutions and state that existence and uniqueness of time-
dependent solutions is an open problem. Achdou et al. have also studied the problem
in [2], finding existence of stationary solutions, developing a numerical method for
solution of the time-dependent problem, and studying properties of solutions in a
reduced case (in which the interest rate, r, is constant). The present work gives the
first theory of existence and uniqueness for time-dependent solutions of the mean field
game model introduced and studied in [1,2].
The particular nonlinear PDE model from [1] is given by the two equations

1
00 + 507 ()20 + (D00 + (2 + 1D + H(040) = po =0, @)

1
08 — Eazz(UZ(Z)g) +0:(1(2)8) + 9a((z + r(t)a)g) + 0a(g Hp(3,v)) = 0.
2

The dependent variables are g, the distribution of households, and v, the present
discounted value of future utility derived from consumption; the discount rate is p,
which is taken to be a constant. The nonlinear function H is the Hamiltonian for the
problem and is related to a given utility function, u; the specific form of H is given
below in Sect. 2. We consider the z variable to be taken from the doman [Zmin, Zmax],
and the a variable to be taken from R. The function o > 0 is a diffusion coefficient
and the function p is a transport coefficient. We take these to be smooth and to satisfy
0 (Zmin) = 0(Zmax) = 0 and w(zmin) = U(Zmax) = 0, so there is no transport or
diffusion through the boundary of the domain. The interest rate r(¢) is not given but
instead depends on the unknowns; determining » will be a major focus of the present
work. The model is based on models appearing previously in the economics literature
[4,9,19]. The household wealth problem (1), (2) of course comes from the optimization
problem that households engage in, namely [1]

o0
maxIEO/ e Pu(c) dt, 3)
0

Ct
subject to
day = (z; +r()a; —¢) dt,  dzy = p(ze) dt +o(z) dW;. 4)
Remark 1 The assumption o (Z;yin) = 0 (Zmax) = 0 is taken for convenience, and it
is likely that another choice, such as not making such a restriction but instead taking
Neumann conditions for the unknowns at z = z,,i,, and z = z,,4x, Would be effective.

We believe that the corresponding assumption on the function w is more natural,
however, since boundary conditions for transport equations are somewhat unusual.
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Our choice of domain with respect to the a variable is a different from [1], in
which the a variable was taken from the semi-infinite interval [amin, 00) for a given
value a,,i, < 0. (So the optimization problem (3), (4) is also subject to a; > amin.)
The theorem we prove will be for compactly supported distributions g, and thus our
theorem is consistent with [1] with respect to the spatial domain as long as a,,;, is
taken to be beyond the edge of the support of our g, especially at the initial time. At
the end, in Sect. 8, we will discuss further the restriction of our solutions to the domain
given in [1].

We have two moment conditions which must be satisfied:

/g dadz =1, (5)

fag dadz = 0. (6)

Of course condition (5) simply partially expresses that g is a probability measure.
On the other hand (6) is an equilibrium condition which expresses that the system is
closed in the sense that all money available to be borrowed in the system is in fact
borrowed, and conversely all money borrowed in the system comes from within the
system. Restated, condition (6) expresses that households with negative wealth have
borrowed from households with positive wealth, that households with positive wealth
have lent to households with negative wealth, and these total amounts borrowed and
lent balance with each other. It is from the condition (6) that the interest rate, r (), is
to be determined.

The Eq. (1) for v is backward parabolic, while the Eq. (2) for g is forward parabolic;
this is the typical situation for mean field games. We therefore specify initial data gg
for g, giving an initial distribution of households, and terminal data vr for v, giving
a final utility function.

We mention now that we do not actually typically consider the function v but
instead consider its derivative, d, v, in the sequel; upon differentiating (1) with respect
to a it is found that a closed system is formed for d,v and g. Thus, as for data, we
actually consider d,vr instead of vy. We will assume a particular form of the data,
0,VT = Weo + YT, Where wy 1s a positive real number and where yr is compactly
supported and in an appropriate Sobolev space (this will be made precise in the sequel).
As one very simple example, if v = a + ¢ (z) for some ¢, then d,v7 = 1, and thus
we may take wo, = 1 and y7 = 0. Smooth compact perturbations of this are also
admissible.

We actually are not able to fully solve the problem specified by (1), (2), (5), (6),
with the accompanying data; rather than being a defect of our method, we are able
to prove in some cases that this problem does not have a solution. In [1], the authors
did not indicate that a general terminal condition vy should be specified, but instead
indicated a particular choice: that 7" should be taken to be large and that vy should
be associated to a stationary solution of the system. We will discuss this proposed
restriction on the data further in our concluding section, Sect. 8 below.

Another condition was stated in [1], which is related to their choice of the spatial
domain with respect to the a variable being [a;,i,, 00). Since the Egs. (1), (2) include
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transport terms with respect to a, a boundary condition at a = a,,;, must be carefully
given. This is the “state constraint boundary condition” of [1], which indicates that the
relevant characteristics point into the domain; such boundary conditions for transport
equations have been developed by Feller [13]. The existence of the boundary at a;, is
amodeling decision, stating that lenders will no longer lend to households with debt of
amin; the state constraint boundary condition then implies that for these households,
their incomes are necessarily high enough that in the absence of further borrowing, their
debt load will not increase from the accumulating interest. By considering compactly
supported solutions and taking the support to be away from a given value of a,,;,,
we obviate the need for any such state constraint boundary condition. Furthermore,
with our compactly supported distribution g, our solutions feature a maximum and
minimum wealth at each time, but these maximum and minimum values are not fixed
in time.

The system (1), (2) is an example from the realm of mean field games, which
have been introduced by Lasry and Lions [20-22], and also by Caines et al. [17,18],
to study problems in game theory with a large number of similar agents. Existence
theory for such systems has been developed by several authors [10,11,14-16,25-27],
but the system (1), (2) does not fall readily into any previously developed existence
theory for two main reasons. First, some existence theory such as that of the author
relies strongly on the presence of parabolic effects [6-8], but in (1), (2) the diffusion
is anisotropic and cannot be used to bound derivatives with respect to the a variable.
Second, many of these works assume structure on the nonlinearity, especially additive
separability into a part which depends on v and a part which depends on g, and this
separability is not present here. Instead, the unknowns interact through the interest
rate r(¢), and this multiplies other terms in the equations.

The author’s prior works [6—8] could be described as viewing the mean field games
system as a coupled pair of nonlinear heat equations. With the anisotropic effects,
we now take the view instead that (1), (2) form a coupled pair of nonlinear transport
equations. Otherwise, once we have reformulated the system appropriately, the method
used to prove existence and uniqueness of solutions is broadly similar to that of the
author’s prior work [8]; this is the energy method, but adapted to the forward-backward
setting of mean field games.

The plan of the paper is as follows: in Sect. 2 we make some reformulation of
the problem, changing to a more convenient variable than v. In Sect. 3 we take care
to discuss how the interest rate r(¢) is calculated, introducing a modification of the
original problem. In Sect. 4 we set up an approximation scheme for solving our mod-
ified problem. In Sect. 5 we prove that our approximate problems have solutions, and
develop bounds for the solutions which are uniform in the approximation parameters.
We pass to the limit to find solutions of our modified problem in Sect. 6, to complete
our existence proof. We then prove uniqueness of these solutions in Sect. 7. Finally,
we make some concluding remarks in Sect. 8, including pointing out that our exis-
tence theory for the modified problem demonstrates that the original problem in some
cases in fact has no solution. Our main theorems are Theorem 6 in Sect. 6, which
establishes existence of solutions to our modified problem, and Theorem 8 in Sect. 7,
which establishes uniqueness of these solutions.
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2 Formulation

We have the Hamiltonian satisfying
H(p) = max (—cp +u(c)).
=

where u is a given consumer utility function. Since u is a consumer utility function,
standard economic assumptions are that u’(¢) > 0 forall c and u” (c) < 0 for all c. For
simplicity, we take u to be infinitely smooth away from ¢ = 0, and we also assume for
simplicity that the range of u’ is (0, 00) and thus the domain of )~ is also (0, 00).
We will comment briefly on the general case, in our concluding remarks in Sect. 8.

Doing some calculus we see that —cp + u(c) is maximized when p = u’(c), so we
may rewrite H as

H(p) = —pw) ' (p) +u(@) " (p)).

We may then also calculate H),, which is given by the formula

P p P
) Ty T Ty

Hy(p) = =)~ (p) —

Since we have taken u to be smooth, we see that H and H, inherit this smoothness.

The above calculation requires p > 0; if instead p < 0, then there is no maximum,
and the Hamiltonian would have the value 4+oco. To restrict to p > 0 we must take
d;v > 0, and thus it is convenient to change variables to w = d,v and seek positive
solutions for w. We furthermore wish to have compactly supported solutions, and this
is not possible with the condition we have just stated, that w > 0 on the whole domain.
So, we introduce y = w — f(f)wso for some positive constant ws,, and we require
y to be smooth and compactly supported. We will likewise require g to be compactly
supported.

Welet y = 9,v — f(f)weo, and seek a favorable choice of the function f(z). We
need to determine the equation satisfied by y and also to choose our f. To this end,
we begin by differentiating (1) with respect to a

1
07 (34v) + 502(2)3&(3(11)) + 1 (2)9:(34v) + r(1)d,v + (z + r(1)a)dy (3,v)
+H ) (340)04(3,v) — pdgv = 0. @)

To each d,v appearing on the left-hand side, we add and subtract f(f)we.. We find
the following evolution equation for y :

1
Wy + f(Dweo + Eaz(mazzy + u(2)dy +r@)y +r@) f(Hwoo
+(z+r®)a)d,y +0O(y, oy — py — pf (HDwe = 0.
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Here we have introduced © to be the function given by

Oy, /) =Hp(y + fweo).

We choose f such that

F@O+r@f@—pf)=0; ®)

note that this is a simple ordinary differential equation which may be solved with an
integrating factor. (Note also that in the sequel we will be seeking smooth solutions of
the system under consideration, and the interest rate » will thus be sufficiently regular
with respect to time for (8) to be solvable in the usual way.) We also must specify a
terminal condition for f, and we take f(7) = 1. This choice leaves the equation for
y as

1
&y+?¥@@ﬂ+u@@y+um—pw+@+rma+®@J»%y=0
)

In terms of y and f, and thus also in terms of ®, our equation for g is

1
%8 — §3zz(02(Z)g) +0:(u(2)8) + 9a((z +r()a+ O(y, f))g) =0. (10

3 Determining the Interest Rate, and a Relaxed Problem

In this section we explore the nature of the coupling between the v Eq. (1) and the g
Eq. (2). We will proceed first in terms of v, and then summarize in terms of our new
variable y. As stated in [1], the coupling is through the interest rate, r(¢), and this
interest rate is determined through the moment condition (6).

We proceed with our first calculation on this point, which we expect is what was
intended in [1]. We assume that (6) is satisfied by the data gg.

CallC = [ [ ag dadz. Then we differentiate C with respect to time:

aszﬁﬂ#wm&—//mmmmw
—//aaa((z—i-ra)g) dadz —//aaa(Hpg) dadz.

By assumptions on the diffusion and drift coefficients o and u, the first and second
terms on the right-hand side vanish. For the third and fourth terms on the right-hand
side, we integrate by parts:
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a=0oo

C = —/a(z—i—ra)g

—/aHpg

Because of our assumption of compact support with respect to a in (ai,, 00), the
first and third terms on the right-hand side also vanish. This leaves us with

dz + / /(z +ra)g dadz

Amin

a=0oo
dz+//H,,g dadz.

Amin

C—r)C =9, an

with the quantity Q defined by Q = [ [(z + H,)g dadz.

Unfortunately this is a difficulty, as it is unclear from this how to determine r from
(11). That is, if we believe that » will enforce C = 0, then we must have C; = 0 as
well, and then (11) tells us that Q must equal zero as well. However this would not tell
us what the interest rate is actually equal to. Worse yet, there is no reason to believe
at present that Q would equal zero. We deal with this difficulty by generalizing the
problem. Instead of seeking solutions for which C = 0, we now will determine the
interest rate by insisting Q; = 0.

Remark 2 Note that if g|,,,,, 7 0, then there would be another term proportional to r
in (11). It would then be possible to choose a value of r to cancel the Q term.

As we have just said, the condition C = 0 does indeed imply Q = 0 and thus
Q; = 0. Thus solutions of the original problem (C = 0) also solve the relaxed
problem (Q; = 0). In the other direction, if we have a solution of the relaxed problem,
since Q; = 0 we have Q = Qq for all 7. If Q9 = 0 and if C(0) = 0, then we may
conclude that C = 0 after all. If however Qg # 0 and if C(0) = 0, then we see that
C:(0) # 0 and thus C is not identically zero.

We will be proving existence and uniqueness of solutions for the relaxed problem.
Thus if there is a solution of the original problem, then it must be the solution we
prove to exist. We will in some cases be able to guarantee that in fact Qg # 0, and
thus in these cases, the original problem does not have a solution.

Now that we are considering the relaxed problem, we return our attention to deter-
mination of the interest rate. Taking the time derivative of Q, we have

Q= //Zatg dadz+//pr(Bav)(8t8av)g dadz
+//Hp(aav)(8[g) dadz = Ql + Q2 + Q3-

For each of these terms, we decompose into a part which explicitly involves r and a
piece which does not:
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0 =P - f f 200 (2 + r(Da)g) dadz, (12)
0s = Pr— f f ¢ (Hyp (a0 (2 4+ F(Da)3av) dadz, (13)
03 = Py — / / (Hy (32000 (2 + F(Da)g) dadz, (14)

where
P = —//zaz(u(z)g) dadz,

02(2)
P2=//ngp(8av) =T 0 000) — 1D (000)

—Hpp(3,0)9 (9qv) + pdav) dadz,

1
Py = f / Hy (340) <§azz(az(z)g> 8 (u(2)g) — 8a(ng(8av))> dadz.

(In the equation for Py, notice that we have used our compact support property for g
to conclude that the additional term f f 204(gHp(04v)) dadz is equal to zero.) We
first notice that, because of the compact support with respect to a in (a;,, 00), the
integral on the right-hand side of (12) is equal to zero. We apply the derivative in the
integral on the right-hand side of (13), and we integrate by parts in (14):

Or=P —r(t)/fg(pr(Sav))Eiav dadz
- / / g(Hpp(04v))(z + r(t)a)agv dadz, (15)
Q3= P+ / /(pr(ﬁav))(agv)(z +r(t)a)g dadz. (16)

We introduce the notation P = P; + P> + P3, and

K= //g(HPP(aaU))aav dadz.
Then adding Q1, Q»>, and Q3 back together again, we find
Q=P —-rK;

to arrive at this, notice that there is a cancellation when adding (15) and (16). We
therefore have concluded that we may determine () in the relaxed problem by

==

r(t) =—.
K

(Note that both P and K depend on time.)
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For this to be a complete description of the determination of the interest rate, we
must do two further things. First, we remark that it is clear that K is nonzero. Since
H,(p) = —@’)~'(p) and since u’ is strictly decreasing, we see that Hpp(p) > 0
always. As discussed above, we are only considering solutions for which d,v > 0.
Together with the fact that g is a probability distribution (since the initial data for g is
a probability distribution and since the Eq. (2) preserves both positivity and the mean
of g) , we have K > 0. We will still, however, need to control K to ensure that it
cannot get arbitrarily small. Finally, we give an explicit formula for P, in terms of y
and f rather than d,v :

P=Ply. fgl=— / f 20, (u(2)g) dadz

1
+//ngp(y+fwoo) (75(7282:))7/‘82)171']1)()) + fwoo)day + p(y + fwoo)> dadz

1 2
T / / Hy(y + feo) (Eazz(cr §) — 0.(ug) — da(gHy (v + fwoo») dadz. (17)

4 Iterative Scheme

We will prove our existence theorem using an iterative scheme, and we will now set
up this scheme.

We fix s € Nsuch thats > 4; we will provide some further comments on this later.
Let A > O be given. We let A; = [—A, A], Ay =[—-2A,2A], and A3 = [—-3A, 3A].
We let x be such that y € C*°(R), such that x (@) = 1fora € A;, suchthat x(a) =0
fora € A%, and such that on each component of A3\ A, x is smooth and monotone.
For all a € R, we then have |x(a)a| < 3A. We will henceforth work in the spatial
domain which we denote by D, which is D = A3 X [Zmins Zmax]-

Let data g9 € H*(D) and yr € H**t!(D) be given, such that the support of go
with respect to a is contained in the interior of A and the support of yr with respect
to a is contained in the interior of A;. We initialize our scheme with go = go.s and
Yy = yr.s. Here, for small parameter values § > 0, we have taken a C* function
go.s and a C* function yr s to be within § of go in H*(D) and within § of yr in
HST1(D), respectively. As we have assumed that go and yr are each supported in the
interior of A1 with respect to the a variable, we may take our approximations to also
be supported in this set with respect to a. That our data can be approximated in this
way follows from standard density results [3].

The solutions of our iterated system will actually depend on both n and § and would
more properly be called y™® and g"%; we will suppress this § dependence, however,
for the time being, considering for now 6 > 0 to be fixed, and we will call the iterates
y" and g", and so on. We take the function f°(¢) = 1 for all 7, and we let the initial
interest rate be given as rO(t) = 0 for all 7. We will still need to initialize K.

@ Springer



Applied Mathematics & Optimization

For our constant we, > 0 and the data yr we define

W= min (yr(a,z)+ ws), (18)
(a,2)eD

and we require that W > 0; this is the positivity condition for d,v. Noting that our
terminal data in our approximate problems is not exactly equal to yr + we, we also
take § sufficiently small so that

. 3w
min _(yr.s + woo) >

—_—. 19
(a,2)eD 4 (19)

We similarly define K47, > 0 as

Kaata = / / gO(pr(yT + Weo)) (Y7 + Weo) dadz.

Note that K44 is positive since go is a probability distribution, since Hp, > 0 (this
sign is inherited from properties of the utility function, u) and because we have taken
W > 0. We need to initialize K and use something like K44, , but adapted to the data
for our approximate problems,

K= / / 80.6(Hpp(YT,5 + Woo) (YT.5 + Weo) dadz,

and we may take § sufficiently small so that

K > 3KZ“”‘. (20)

Having initialized our iteration scheme with initial iterates y0 = yr sand gO = 80.5,
the support of each of y° and g° with respect to a is contained in A| and thus also in
As. We fix M > 1. We may take § > O sufficiently small so that we also have the
following bounds for y° and g° :

sup 1y, I3 + 180 G < M(nyTu%w - IIgOII%p)
tel0,T]

These two bounds, on the supports and on the norms, are features we will seek to
maintain for all subsequent iterates.

We introduce another cutoff function, related to the fact that the function H), is only
defined for positive arguments. We have given the definition of W > 0 above in (18).
We let ¢ : R — R be a C* function which satisfies ¥ (x) = x for x > W /2, which
satisfies ¥ (x) = W /4 for x < W /4, and which is monotone. We define ®, by

Oc(y, f) = Hp(Y(y + fwoo))-

It will be important later to note thatif y + fws > W/2, then O.(y, ) = O(y, f).
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We set up our iterative scheme, beginning with g :

1
atgn-‘rl _ Eazz <U2(Z)gﬂ+l) + 8z (M(Z)gﬂ-‘t-l)

+a (X @+ " 0" ) + 0 (8 100", M) =0. @D
We take this with initial data

"0, ) = g0, (22)

Note that we have inserted a factor of the cutoff function x in the transport terms. A
difficulty of the system is that as long as r # 0, the transport speeds are unbounded.
With the factors of x present, this is no longer the case for our approximate equations.
We will be able to remove the factors of x by the end of our existence argument.
The transport speed in (21) with respect to the variable a, then, is xz 4+ r"(¢) xa +
XxO.(", f*). Denote by R an upper bound on r"(¢), and denote by Y and upper
bound on ®(y", "), presuming for the moment that these bounds can be found
independent of our parameters n and §. Then the transport speed is bounded by z;,,4x +
3RA + Y, independently of n and 8. Thus, until time T, the support of g"+! with
respect to a, which is initially contained in A, remains contained in A; as long as

A
< 4a
T — Zmax+3RA+Y "

We next give the iterated equation for y :

1
9yt + 502(z)auy”“ + 1@y )y

+(X2+ " O X)Wy + xOO", fMday" T — py"t =0, (23)
As above, we take this with mollified data

YT, ) = s (24)

Again, the solutions may more properly be called y™%, but we will suppress the &
dependence for the time being. Note that we have the same transport speed with respect
to a as in the g"*! equation, and therefore we have the same support properties; with
initial data supported in A1, and with the presumed upper bounds, the support of y"*!

e A
< a0
remains in A as long as 7 < TARATY"

To finish specifying the iterated problem, we must specify f**! and "*!, and the
latter of these will require specifying P"*! and K"+!. We take f"*! to be the solution
of the ordinary differential equation

Y@+ e - p o) =0, (25)
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with terminal condition f(7) = 1. Notice that the solution of this terminal value
problem is

T
1) = exp { / () = p dt’} ) (26)
t

We take " *! to be given by

P)'l
+1 _
T = ﬁ’ (27)

where we need to define P and K". Consistent with our previous definition of K we
denote

Kly. g, f] Z//g(pr(y+fwoo))(y+fwoo) dadz;

but K[y", g", f"]is not sufficient for use in our iterative scheme because we need to
use the cutoff function v. Thus, for any value of n, given y", f", and g", we define
Kn+1 as

K :/ / " (Hpp(W (5" + f"weo)))(v" + ["weo) dadz. (28)

Finally, recalling P[y, f, g] as defined in (17), we must introduce a version P. which
involves the cutoff function v :

Py, fog) == [ [ 20.0u2)9) dadz
+ [ [t + rus (—%azaﬂy — bey — Ocly )iy
+o(y + fwoo)) dadz
+[ [own (%azzwzg) — 0.(18) — %a(gOe(y. f))) dadz.
We can then define our iterated P as

P" = P.[y", f", g"].

5 Existence and Bounds for the Iterates
In order to eliminate our approximation parameters, i.e. send n — oo and § — 0, we

need to establish bounds for the iterates which are uniform with respect to n and §.
We fix a value M > 1 and we assume the following are satisfied by the n-th iterates:
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Ny s+t < Myl gs+1, (29)

lg" e < Mllgollas, (30)
1

/e [5,2] Vi € [0, T], (31
K

K" > % Vi € [0, T1. (32)

We furthermore assume that the n-th iterates are infinitely smooth.
Based on these values, we define a value P,,4y; we take this to be the supremum of

the set of values {| P.[y, f, gl|}, where y, g, and f satisfy

150 gse1 < Mlyrllgser, 181as < Mlgollms,  f €11/2,21.

With this definition, we then have our inductive hypothesis for the iterates for the
interest rate:

n |: 2Pnax  2Ppax
rre|\l——m—, ——
Kaata  Kaata

} . Vielo,T]. (33)

Finally, we have one more condition we wish to have satisfied for our iterates, and
that is the positivity condition for d,v. Recall the definition of W > 0 in (18). Then
we desire that the following condition is satisfied for y” and f" :

(34)

l\.).l =

min "t,a,z) + f(DHwe) >
P (y ( )+ (@) oo) >

Note that with our specification of the initial iterates, the bounds (29), (30), (31),
and (33) are satisfied for n = 0. By (19) we have satisfied (34) as well for n = 0.
Similarly, by (20), we have satisfied (32) when n = 0. We may also note that all of the
initial iterates are in C°°. We must verify that each of (29), (30), (31), (32), (33), and
(34) are satisfied for the (n 4 1)-st iterates, but first we must ensure that the (n + 1)-st
iterates exist.

Lemma3 Let T > 0, and let y", g", r", f", and K" be as described above, on
the time interval [0, T']. There exists a unique C™ solution g"*! to the initial value
problem (21), (22) on the time interval [0, T1].

Proof We prove existence by the energy method, the steps of which are to introduce
mollifiers, use the Picard theorem to get existence of solutions, prove an estimate
uniform with respect to the mollification parameter, and then pass to the limit as the
mollification parameter vanishes. To use standard theory of mollifiers, we first replace
our spatial domain with a torus.

We make an extension of the domain in the z variable. Let w € N be any finite
degree of regularity, sufficiently large. We take &, jt, and O to be H**2 extensions
of o, i, and ®(y", ") to the domain [z;, — 3, Zmax + 3] (for o and w) and to the
domain A3 X [Zmin — 3, Zmax + 3] (for ®). There are many versions of the existence
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of such extensions available in the literature, and we cite [24] in particular. We let
¢ be a cutoff function which is equal to 1 for z € [zmin — 1, Zmax + 1] and which
is equal to zero on [zZmin — 3, Zmin — 2] and on [Zymax + 2, Zmax + 31, and which is
smooth and monotone on the remaining components of the new z domain. In writing
an evolution equation to approximate (21), we will replace o, i, and ®(y", f") with
#5, ¢, and ¢O, respectively. We also replace the transport coefficient x (z + r"a)
with ¢ x (z + r"a). We take gy to be an H® extension of go s, and we will use data
P x2o-

The coefficients in our new evolution equation, because they are zeroed out at the
ends of the interval [z,,i, — 3, Zmax + 31, are periodic with respect to z. Similarly, the
coefficients are all also periodic with respect to a on A3z. Because of the presence of x
and ¢ in our proposed data, we also have periodic initial data. We call our new domain
D, and we consider this now to be a torus, i.e. we take periodic boundary conditions.
We let J; be a standard mollifier on the two-dimensional torus with parameter 7 > 0.
We introduce an approximate equation:

1
8thT - Eazzjr(((bg)zjrhr) + 8zjr((¢ﬁ)jthr) + aajr (¢X (Z + rna)jrhr)
+0, T (¢ xOT:h") = 0. (35)

As we have said, we take this evolution with initial condition

h(0, ) = ¢ xZo.

The presence of the mollifiers turns all derivatives on the right-hand side of (35) into
bounded operators; the Picard Theorem [23] then implies that there exists a solution
foratime 7; > 0. This solution may be continued as long as the solution does not blow
up; in this case, an energy estimate, using standard mollifier properties and integration
by parts, implies that the H ®(D) norm of h does not blow up on [0, T']. We introduce
an energy, equivalent to the square of the H* (D) norm,

w w—j )
E() =§§ Ej (), Ej,g(t)z%fﬁ(agafhf(t,a,z))z dadz.

Taking the time derivative of the energy, using the facts that J; commutes with deriva-
tives and is self-adjoint, and using other mollifier properties such as || J; f||lgm <
| flgm for any f and any m, and integrating by parts yields the conclusion

< E, 36
dz_c (36)

where ¢ is independent of 7. (We do not provide further details of this energy estimate
as it is very similar to the estimate in Theorem 5 below). The bound (36) implies that
the solutions 4" are uniformly bounded in H* (D) with respect to the approximation
parameter 7, and that our solutions 47 all exist on the common time interval [0, T'].
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The uniform bound implies that the first derivatives of the solutions with respect to
a, z, and t are all uniformly bounded, and thus our solutions 4”7 form an equicontinuous
family. Thus there is a uniformly convergent subsequence (which we do not relabel),
as T vanishes; we call the limit /. Uniform convergence implies convergence in L?>
in a bounded domain, so we see that A" converges to & in C ([0, T]; L2(5)). Using
the uniform bound in H “’(5), a standard Sobolev interpolation theorem (see [5], for
example) then implies convergence in C([0, T']; H®~! (5)). Furthermore the uniform
bound implies that we have a weak limit at every time in H®, and this weak limit must
be h, so we have h € L*°([0, T]; H?) as well.

Taking the integral with respect to time of (35) and using the initial data for A”, we
have

T =g +/tla T ((dﬁ)zj h) dr'
0 ) ) zzJ1 T
t
—/ 3Tz (@) Tch™) + 04T (px (2 + r"a)T:h) di’
0
t
- / 00 e (GxBTHT) dr'. 37)
0

Because of the regularity we have established, including convergence in C ([0, T'];
He! ), we may take the limit of (37) as t vanishes, finding

t 1 t
h=oxo+ [ 5o (052h) ar' ~ [ o (oiom
0 N 0
da (px (z +r"a)h) + 3, (px Oh) dt’. (38)

When taking this limit we again use various standard mollifier properties; a good list
of such properties can be found in Lemma 3.5 of [23]. Perhaps the most useful of these
to arrive at (39) is, for any m € N,

ITef = fllEm < Tl fll gmer.

Then differentiating (38) with respect to time, we see that 4 satisfies
1 - - ~
drh — 5311((¢0)2h) + 0, (piah) + 34 (Px (z 4+ r"a)h) + 3,(pxOh) = 0. (39)

We define g"*! to be the restriction of £ to the domain D. On D, we have ¢ = 1,
0 =o0,0=u, 0= O (", f), and gp = go.s. Furthermore on D we also have
X20.s = 80.5- We conclude that g"*! satisfies (21) and (22).

We have two further points to make, to complete the proof. First, we mention that
uniqueness of solutions of the initial value problem (21), (22) is straightforward. The
initial value problem satisfied by the difference of two solutions is a linear equation
with zero forcing and zero data, and an estimate in L? for the difference of two smooth
solutions can be made. Finally, on regularity, we mention that the regularity parameter
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o was arbitrary, so we see that the solution g”*! is infinitely smooth with respect to
the spatial variables. Upon taking higher derivatives of (21) with respect to time, it
can be seen that the solutions are also infinitely smooth with respect to time. This
completes the proof. O

We also have existence of the iterated y"*!, given in the following lemma.

Lemma4 Let y", g", r", f", and K" be as described above. There exists a unique
C™ solution y"*1 to the initial value problem (23), (24) on the time interval [0, T].

We omit the proof of Lemma 4, as the method is entirely the same as that of
Lemma 3.

To conclude this section, we mention that it is immediate from their definitions and
the smoothness assumptions on the n-th iterates that f7+!, K"+ and r"*! are C>®
in time.

5.1 Uniform Bounds

Recall that we have fixed s € N satisfying s > 4, and we have taken gop € H® and
yr € H*t!. The requirement s > 4 will guarantee that the solutions we find are
classical solutions of the PDE system, and will allow us to use Sobolev embedding
and related inequalities as needed. Note that while we have demonstrated above that
the iterates are infinitely smooth, this has relied on the C* approximation go s to the
intended data go; with the data go € H* and yr € H**!, we can only expect bounds
on the iterates which are uniform with respect to the parameters in these spaces.

Theorem 5 There exists T, > O such that if the time horizon satisfies T € (0, Ty),
then for all n € N and for all § > 0, the iterates (y", g", f"*, K", r™) defined above
satisfy (29), (30), (31), (32), (33), and (34).

Proof The proof will be by induction. We have remarked previously that (29), (30),
(31), (32), (33), and (34) hold in the case n = 0; this is the base case. The statements
(29), (30), (31), (32), (33), and (34) then together constitute the inductive hypothesis.

We begin by determining a bound for the next iterate g"+!. We let the functional
E; ¢ be given by

1 ; 2
Ej (1) = E/ (aéafg”“) dadz,
D

and we sum over j and £ to form the energy E(7),

s s—J
E(t) = Z Z Ej ().

j=0¢=0

Of course, the energy E is equivalent to the square of the H*-norm of g"*!.
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We will now demonstrate a bound for the growth of the energy. For given values of
J and £, we take the time derivative of E; ¢ :

dE; < -
L / (adote") (adotog™") dadz. (40)
D

We therefore need to write a helpful expression for 86{ Bf 8;g" 1. Applying derivatives
to (21), we arrive at the expression
. 1 . . .
8,{ 8f8tgn+l — EUZaé af+2gl’l+1 4 (E + 2)0’(8ZO')3,5 8Z€+lgn+l _ Ma‘{ 8§+lgn+l
—(xz 4" )l ol — x 0.0, Mol 0lg ! + @,
(41)

where ® is a collection of terms which will be more routine to estimate. We can write
® explicitly:

t+2 : "t :
( M ) (8;"02) 3] 3f+27mgn+l _ Z < M ) (32'%) 3éaze+1fmgn+1

m=1

Jj+1 j+l=mal n+1
< m )(32"(x1+r”xa))8é "o

b =

M~

1
2 2

m

M-~

I
—

m

1

J .
Jj+1 i+ 1—m -
—EZO< N )(a:?x)aé "o gt
m=

+

e AR Gy OO B (A e PERCNLN
Using inequalities for Sobolev functions, we have an estimate for ®, namely
@02 < c (L4 17" O+ 100", s llg" s
Since ®, is smooth and since the prior iterates satisfy (29), (33), and (31), we see that
we may bound & by a constant (independent of our parameters n and §) times the
norm of g"*! ie.
1202 < cllg" s 42)
Before continuing, we make a comment on the constant, ¢, appearing in (42). We
have already noted that it does not depend on n or §. We mention now that it may

depend on other quantities in the problem, such as y7, ws, 0, i, p, A, and so on. The
point of pointing out that it is independent of # and § is to ensure that our bounds on the
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iterates do not degenerate as n — oo or as § — 0. The constant, ¢, may also depend
upon the cutoff functions ¥ and x, even though these were also part of developing the
approximate problems; this is because these are one-time approximations, and thus
they offer no opportunity for the bounds to degenerate.

We proceed by substituting (41) into (40):

dE; 2, .
d;,e :/ %(86{3§gn+1) (a‘{3§+2gn+1) dadz
D
+ / (£ +2)0(3,0) (agafg"+1) (aaf af+1g"+1) dadsz
D
_/ M(ac{afg}’hl*l) (35{3£+18n+1) dadz
D
—/ (e + rxa) (a0tg™") (ol olg ") dadz
D
—/DX(Dc(y",f”) (adote") (ad™ 0lg™") dadz
+f cb(agafg"“) dadsz
D
=I+II+II[+IV+V+VI.

We integrate I by parts with respect to z and add the result to /7, finding
2 i 2
[+11= —f 7 (a;af“g”“) dadz
p 2
FU+1) / o (3,0) (agafg"+1) (agaf“g"“) dadz,
D

where the properties of o eliminate the presence of a boundary term. The first integral
on the right-hand side could be used to find gain of regularity, but we will not need this
for the present and we instead simply note that it is nonpositive. The second integral
on the right-hand side can be integrated by parts with respect to z once more (and
there is again no boundary term), yielding

e+ 1 ~ 2
I4+11< —% (aafo + (320)2) (agafg"+1) dadz.
D

There exists ¢ > 0, then, depending on the function o such that
I+1I <CcE. 43)

Next, we integrate I [ I by parts with respect to the z variable, and we integrate each
of IV and V by parts with respect to the a variable. This yields the following:
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9 . 2
111:f Z—“(a,{afg”“) dadz,
p 2 '

2 n ~ 2
IV:/ M(aéafg"+l) dadz,
p 2

80 (XOH™, ™) /. 2
1% :/ 9 (X8G5, 1) /) (E)éafg"H) dadz.
D 2

Here, there is no boundary term when integrating by parts in /1 because of the
properties of p at z,,;, and z,,4y. There are no boundary terms in /V and V when
integrating by parts because of the presence of the factors of y. Just as we bounded
I+ 11in (43), we may bound 7717 :

111 < cE. (44)

For 1V and V, since they involve the prior iterates, we must utilize the inductive
hypothesis. For IV, we use (33) to find

2P,
IV§c<1+ "“”)E.

data

Since the constants Py, and K44, are considered to be fixed (and especially, they
do not depend on n or §), we incorporate these into the constant ¢ to write this as

IV <CE. (45)
Since the fupction ®. is smooth, there exists a constant ¢ > 0 such that
for all y and f satisfying [|ylgs+1 < Mllyrllgs+1 and f € [1/2,2], we have
10.©c(3, fllze(py < c. Inlight of (29) and (31), then, we conclude
V < cE. (46)
Finally, we may use (42) directly to bound V' I as
VI <cE. 47)
Adding (43), (44), (45), (46), and (47), also summing over j and £, we have

dE
_[ S CEv

with this constant ¢ independent of »n and §.
Thus, as claimed, for the given value M > 1 chosen above, there exists T, > 0
such thatif T € (0, T,), then for all t € [0, T'],

lg" (e, s < Mllgollus,
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and this value of T, is independent of both our parameters n and 4.
The details for y"+! are very similar and we omit them. Our conclusion is that there
exists T, > O suchif T € (0, Ty), then for all ¢ € [0, T,

1
Iy, st < Mzl s

Again, this value of Ty is independent of n and 6.

We now turn to the estimates for #"!, 7! and K”*!. The bound for r"t! is
immediate from the definition (27), the definition of P,,,, and the bounds in the
inductive hypothesis (29), (30), (31), and (32). Given the bound (33) and the formula
(26) for f n+l we see that there exists Ty > 0, independent of n and §, such that if
T € (0,Ty) then forall r € [0, T] we have f"‘“(t) e[1/2,2].

We next deal with K11, as defined in (28). Given the bounds on the n-th iterates in
the inductive hypothesis, we see that for sufficiently small values of the time horizon,
g" remains close to the initial data go s, f" remains close to its terminal value which
is f"(T) =1, and y" remains close to its terminal data yr s. Using the Fundamental
Theorem of Calculus, we can write

t
K}’l+1([) :K}’l+](0)+/ <iKn+](t/)> dt/
o \dt

Using the definition of K ntl (28), we see that its time derivative can be bounded by
a Sobolev norm of g" and y”, and these are bounded by the inductive hypothesis. We
conclude that there exists Tx¢ > O such thatif T € (0, Tx), thenforall t € [0, T], we
have K"t1(t) > Kgara/2. This value of Tx depends on the constant M and on the size
of the data, and is independent of our parameters n and §. (To be clear, we have already
taken § sufficiently small so that the initial iterate K 0 satisfies K0 > 3K 4414 /4, and
the value of Tk is otherwise independent of §.)

Finally we wish to ensure that y**t! 4+ f7+1y_ remains bounded below by W /2.
Similarly to the bound for K"*!, the bounds of the inductive hypothesis imply that the
time derivatives of y"*! and ! are uniformly bounded, and thus if T is sufficiently
small, the minimum of y’”‘1 +f n+1y oo remains close to its terminal value, which by
(19) is at least 3W /4. Thus there exists Ty > 0 such thatif T € (0, Ty ), then

w
min mt gty ) > —,
(t.a.2)€l0.T1x D (y ST e ) = 5

and this value of Ty is independent of n and 8.
Choosing T, = min{T,, Ty, Ty, Tk, Tw}, the proof is complete. O
6 Passage to the Limit

We now take the limit of our iterates, proving our main theorem.

Theorem 6 Let s € N satisfying s > 4 be given, and let woo > 0 be given. Let A > 0
be given and let the spatial domain D be as above. Let yr € H*Y' (D) and gy € H* (D)
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be given, such that the support of go with respect to a and the support of yr with respect
to a are in the interior of the interval [—A, Al, and assume that g is a probability
measure. Assume W > 0, where W is defined by (18). There exists Ty > 0 such that
if T € (0, Tys), then there exists y € L®([0, T1; HSt1(D)) N C([0, T1; H* *1(D))
foralls' <s,and g € L®([0, T]; H*(D)) N C([0, T1; H* (D)) forall s' < s, and
f e CY([0,TY), suchthat K[y, g, f1 > Oforallt € [0, T] and with r defined by r =
Ply. g, f1/Kly. &, f1, then (y, g, f) solve (9), (10), and (8) with data g(0, -) = go,
y(T,:) = yr, and f(T) = 1. The solution g is a probability measure at each time
t €[0,T]and y + fwes is positive at each time t € [0, T1].

We make a remark on the data and the constraint C = 0 before beginning the proof.

Remark 7 Note that we have not required in our existence theorem that | [ agodadz =
0; the existence theorem holds whether or not the constraint is initially satisfied. Of
course if one hopes to have C = 0 for all time, then the initial data should be taken to
satisfy C(t = 0) = 0.

Proof We have previously suppressed the dependence of the solutions on the mol-
lification parameter §, and we have left this value 6 > 0 to be arbitrary. We now
consider the sequence of solutions resulting from taking a specific value of é for each
n € N, namely § = 1/n. In this section we will show that there is a subsequence of
", g", f", K", r') which converges to a solution of the transformed system.

We restrict T to values in (0, T}), with T, given by Theorem 5. There will be
another restriction on 7 later in the proof.

We begin with y". By Theorem 5, on the time interval [0, T'], the sequence y”
is uniformly bounded in H**!(D). With s > 2, Sobolev embedding then implies
that V, . ¥" is bounded in L* uniformly with respect to n. Inspecting the family of
evolution equations (23), again using the uniform bounds of Theorem 5 and now using
s > 3, we see that 9, y" is bounded in L°°, uniformly with respect to n. We conclude
that {y” : n € N}isan equicontinuous family, and we apply the Arzela—Ascoli theorem
to find a uniformly convergent subsequence, which we do not relabel. We call the
limit y.

We now address regularity of the limit. The Arzela-Ascoli theorem gives
convergence in C([0,7T] x D), and this immediately implies convergence in
C(0, T]; LZ(D)). With the uniform bound in H**! from Theorem 5, Sobolev inter-
polation then implies convergence in C ([0, T]; H s/“), for any s’ < s. Furthermore,
since the iterates are uniformly bounded in H**!, at every time ¢ € [0, T'] there is a
weak limit in H*+! obeying the same bound, and this limit must again equal y. Thus
yis alsoin L ([0, T1; H*Th).

The argument for g” is the same, except that g" being bounded in H* rather than
H*T! means that we require s > 4 to have the L bound on the time derivatives. We
call the limit of the subsequence (which we do notrelabel) g. This gisin C([0, T]; H S,)
for any s’ < s, and also is in L*°([0, T']; H*).

We next take the limit of f”. From the uniform bounds of Theorem 5, inspection of
(25) implies that (f™)" is uniformly bounded. Thus { /" : n € N} is an equicontinuous
family on [0, T]. The Arzela—Ascoli theorem again applies, yielding a uniform limit
of a subsequence (which we do not relabel); we call the limit f.
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We turn now to the sequence K". Considering (28) and the fact that y", g", and
f™ all converge uniformly, we see that K" converges to a limit K which is given by

K =//g(pr(llf(erfwoo)))(y-irfwoo) dadz,

and this convergence is uniform. Since we have K" > K ,4,/2 for all n, we also have
K > Kga14/2 for all times.

Finally we consider convergence of 7" In light of (27) and since we know that K"
converges, we only need to consider the convergence of P". The convergence that we
have established for y" implies that up through second derivatives of y” converge to
the appropriate derivatives of y. Similarly, up to second derivatives of g" converge
uniformly to the appropriate derivatives of g. This is enough regularity to ensure that
P" = P.[y", f", g"] converges uniformly to P.[y, f, g]. Since P" and K" both
converge, we see that r”* converges to r = P /K, and this convergence is uniform.

We next demonstrate that the limits y and g satisfy the appropriate equations. We
provide the details only for g, as the argument for y is the same. We integrate (21)
with respect to time, on the interval [0, 7] :

t

1

gt ) = goaym + fo Eazzwzg”*‘)—@(ug"“)—aa<x<z+r"a>g"+‘>
—0,(x O, fMg" T dr'.

The uniform convergence of the iterates y”*, g", f", and r" implies convergence of
the integral. Taking the limit, we have

t

1
gt,)=go+ /0 5822(028) —0,(1ng) — da(x(z+ra)g) — 3,(xOc(y, f)g) dt’.

Taking the time derivative of this, we see that

1
%8 — Eazz(o'zg) +0:(ng) + 3 (X (z +ra)g) + 9a(xOc(y, f)g) =0. (48)

Similarly, we conclude that the equation satisfied by y is

1
oy + zazy + iy + @ —p)y+ (x(@+ra)dyy + xOc(y, sy =0. (49)

The last step in the existence proof is to remove the cutoff functions x and .
As discussed when the iterative scheme was set up, as long as the iterates remain
uniformly bounded, and as long as 7 is small enough, the support of the iterates
with respect to the a variable remains within the set A;. Since the iterates converge
uniformly, the support of y and g with respect to the a variable also remains confined
to the set A, throughout the interval [0, T']. Since the cutoff function satisfies x = 1
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when restricted to A, we see that in (48) and (49), we have yg = g and x 9,y = 9, .
Since (34) is satisfied for all n and since y” and f” converge to y and f, we see that

i w
min t.a, ; W
(t,a,2)€[0,T]x D (y(t,a,2) + f(Hweo) 5

This implies ¥ (y + fwoo) = ¥ + f weo, and therefore that O, (y, f) = O(y, f). We
conclude that the equations satisfied by y and g are (9) and (10), as desired.
The proof of the existence theorem is complete. O

7 Uniqueness
We now prove uniqueness of our solutions.

Theorem 8 Let s € N satisfying s > 4 be given, and let wo, > 0 be given. Let
A > 0 be given and let the spatial domain D be as above. Let yy € H T (D) and
go € H* (D) be given, such that the support of gy with respect to a and the support of
yr with respect to a are in the interior of the interval [— A, A], and assume that g is a
probability measure. Assume W > 0, where W is defined by (18). Let (y1, g1, f1) and
(y2, 82, f2) and the associated interest rates r; = Ply;, gi, fi1/Kyi, gi, fi] satisfy
9), (10), (8), with data g;(0,-) = go, yi(T,-) = yr, and fi(T) = 1. Let T > 0
be such that y; € L®([0, T1; H**1(D)) N C([0, T1; H *1(D)), forall s' < s, and
such that g; € L°°([0, T]; H*(D))NC([0, TT; HS,(D)),for all s’ < s, and such that
fi € CY([0, T1). Assume that g; and y; are compactly supported with respect to the a
variable in the interval (—2A, 2A). There exists Ty such that if T € (0, Ty), then

1, &1, f1) = (02, &2, f2).

Proof By arguments such as those in [12] we see that the evolution for d,v = y+ fweo
is positivity preserving, and thus we do not need to assume an explicit lower bound for
vy + fwe over the given interval [0, T'] (see Remark 9 below for more on this point).
Similarly we could dispense with the explicit bound on the support with respect to
the a variable, but we do state it here so as to keep the domain consistent with the
solutions we have already proved to exist.

We define three components for the energy for the difference of two solutions,
called Eq4 4, Eq,y, and Eg4 r, Where

1
Eq () = 3 / /(81 — g2)* dadz,

1
Eqy(1) = 3 / f |Va,:(y1 — y2)|* dadz,

and

1
Eay= swp SIfi) = O
te[0,T]
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Note that E4 ¢(0) = 0 and that E4 ,(T) = 0.
We start by estimating Ey y. Noting that for i € {1,2} we have the equations
fi = (p—r)fi, and that f;(T) = 1, we can write, for any € [0, T,

1 T
§|fl(t) - hOP = —/ (fit") = NS = f,a)) dr’.
t

Substituting from the equations for f; and adding and subtracting, this becomes

1 T T
SIA® - HO) = —f (fi = f)(ra —r1) frdt' — f (fi — p)*(p—r)dr.
t t

Taking the supremum with respect to time and performing some other manipulations,
we can bound this as

Egf <cTEqf+cTlr —rlix. (50)
We will now work with r; —r;. Since r; = P;/K;, itis clear that at any time r| —r»

can be bounded in terms of K; — K> and P; — P,. We consider K; — K> first. For
any t € [0, T'], we have

[K1(1) — K2(2)| = ‘//gl(pr()’I + [1wee)) V1 + flwese) dadz
- / / &2 (Hpp(y2 + Pweo)(y2 + frweo) dadz|.

After some adding and subtracting and using a Lipschitz estimate for H,,, itis evident
that this can be bounded by

K1 (1) — K2(0)] < c(Ey”” + B> + E/?). (51)

We will need (51) as well as the supremum of this with respect to time,

IKi — Kalpe <c | sup (E§/2+E§/2)+E}/2 . (52)
te[0,T]

The difference P; — P is similar but slightly more involved, as we must integrate
by parts in some instances. We start by noting that the definition (17) of P includes

three terms, so we decompose P; — P> as

Pr—P ="+ +Yqys.
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To be fully explicit, we write out these terms,
//zd (ng1) dadz+//zd (ng2) dadz,
Y= //ngpp(yl +flwc>o)< 2 —0zzy1 — nozy1 — Hpy(y1 + filwee)day1 + p(y1 +f1woo)) dadz
- / / &2Hpp(y2 + faweo) (-%%yz — o y2 — Hpy(y2 + faweo)day2 + p(y2 + fzwoo)> dadz,

and similarly

1
Ty = / / Hy(n +f1woo>(5311(02&)—az(ugo—aa(glﬂ,,(yl +f1woo)>) dad:
1
- / f Hy (2 + frweo) (iau(a@ (o) — aa<ngp<yz+fzwoo>>) dadz.

To estimate these, we will only treat Y;; in detail. We add and subtract to decompose
Y7 as

7
T = Z Yi1,)s
j=1
where we have the following definitions:

tia = [ [ = e tppon+ frue)

: (_%Uzazz}” — udzy1 — Hy(y1 + fiwoeo)day1 + p (1 + fi woo)) dadz,
Yo = //gz [Hpp 1 + fiwoe) — Hpp(y2 + frwoo) ]

: (*%023&)’1 — iy — Hp(y1 + fiweo)day1 + p(y1 + flwoo)> dadz,
Y13 = //ngpp()’2 + frweo) (_%Uzazz()ﬂ - y2)> dadz,
Yins = [ [ eatlpp(on+ frwee) (~poc(o1 = 32) dadz,
Tins = [ [ eatpp(on+ frwse) (~Hp01 + frwse) + Hy2 + fowse)) G dadz,

Tirg = / / g2 Hpp(v2 + fawne) (—Hp (32 + frwne)da(y1 — y2)) dadz,

and

Yir7= //gZpr(y2 + Hrweo)p(y1 — y2 + (f1 — f2)ws) dadz.

It is immediate that Y71, Yy7.2, Yy7,5, and Y;; 7 may be bounded in terms of Ey g,
Eg4.y, and E4 r; note that Lipschitz estimates for H, and H,, are needed, but these
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are smooth functions and the Lipschitz estimates are thus available. The terms Y7 3
and Y;; 4 may be bounded in terms of E, , after integrating by parts with respect
to the z variable; note that there are no boundary terms because of the properties of
the diffusion and transport coefficients, o and p, at the boundaries of the domain.
The term Yy ¢ can be bounded in terms of E, , after an integration by parts with
respect to the a variable; there is no boundary term because solutions are compactly
supported with respect to the a variable. We omit further details, and the result of these
and similar considerations is the bounds

1/2 1/2 1/2
|PL(1) = Py(0)] < e(E” + Ey* + E/7),

and

|P1 — P2[p= < c| sup (E;/2 + E;/z) + EJI/2 .
t€[0,7T]

From our bounds on differences of K and P, we conclude that at each ¢ € [0, T'],

lri(t) — ()] <c (Eél,/2 + E;/Z + E_}/z) ,

and taking the supremum in time,

() — P2l < ¢ sup (E;/2 n E;”) +EJ?). (53)
te[0,T]

Using this in (50), our bound for E4 r is

Eg 5 <cT ( sup (Ed,g + Ed,y) + Ed,f) . (54)
t€l0,T]

We next establish that there exists ¢ > 0 such that

dE
dj’g < c(Eaqg+ Edy+ Ea.p), (55)
and
dE, +
dft” < c(Edg+ Edy+ Eap). (56)

To this end, we take the time derivative of Ey , :

dEd’g
dt

= / /(81 — 82)9:(g1 — &2) dadz.
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We then substitute from the Eq. (10) satisfied by each g;, and add and subtract:

dEdyg 1 2
7 =3 (g1 — 82)9z:(0°(g1 — g2)) dadz

—[/(gl — 82)9;(n(g1 — g2)) dadz — / /(g1 — 82)04((r1 — r2)agy) dadz
- / /(81 — 82)0a((z +r2a)(g1 — g2)) dadz
—//(& — £2)3,((g1 — g2)O(y1, f1)) dadz

- / /(gl — 82)34(&2(0(y1, f1) — O(y2, f2))) dadz.

There are six terms on the right-hand side, and estimating these is very much like the
estimate for g"*! in the proof of Theorem 5. Specifically, for the first term, the two
derivatives with respect to z should be applied, and then some integrations by parts can
be made. For the second term, the one derivative with respect to z can be applied, and
then an integration by parts can be made. To estimate the third term, the bound (53)
is employed. For the fourth and fifth terms, the derivative with respect to a should be
applied, and then an integration by parts can be made. For the sixth term, the derivative
with respect to a should be applied, a Lipschitz estimate for ® is used, and a further
addition and subtraction can be utilized as well. We omit further details; this includes
omitting the details leading to (56). These further calculations are similar to those
demonstrated already for Ey , as well as to the energy estimates made previously in
Sect. 5.1.
Integrating (55) forward in time, and using the initial data, we find

t

Eq,(t) < c/ Eqq(t")+ Eqy(t") + Eq 5 dt’
0

<cT ( sup (Ed‘g(l‘) + Ed,y(t)) + Ed,f> . 67
te[0,T]

Integrating (56) backward in time, and using the terminal data, we find

T
Eqy(1) < c/ Eq o)+ Eq (") + Eq 5 dt’
t

<cT ( sup (Eq,4(1) + Eq,y (1)) + Ed,f> . (58)
te[0,T]

Adding (54), (57), and (58), and taking the supremum in time and reorganizing terms,
we find

(I —cT) (Ed,f + sup (Eqq(t) + Ed,y(t))> <0.
1€[0,T]
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Thus aslong as 0 < T < 1/c, we have y; = y2, g1 = g2, and f; = f>. O

Remark 9 We now give a sketch of the argument of Constantin and Escher [12],
which we indicated demonstrates that y 4+ fwqo remains positive. Consider a quan-
tity u that evolves according to d;u = —a10;;u + a20,u + a3d,u + oqu. Let
m(t) = min, ; u(t, a, z), and let this minimum be attained at (a, z) = (£1(1), &2(1)).
So, m(t) = u(t, &(t), &(t)). An evolution equation can be determined for m () by
differentiating this expression, notwithstanding the fact that the &; need not be differ-
entiable; instead, this evolution equation can be seen to hold for almost every ¢ by
Rademacher’s Theorem. At the point (&1(¢), &>(¢)), since this is where the minimum
is attained, d,,u has a distinguished sign, and d,u« and d,u are equal to zero. Assuming
that the coefficient o also has the appropriate sign, then the growth or decay of m can
then be seen to be at worst proportional to m. Thus the minimum value of # can only
decay exponentially. Over a fixed time interval, this does not decay to zero then.

8 Discussion

We mentioned above that we would remark again on the difference between choice of
spatial domain here as compared to [1]. We have taken the same domain with respect
to the z variable, but in [1] the domain with respect to the a variable was taken to
be [amin, 00) for a given a,,;, < 0. We have instead taken the initial support of our
functions with respect to the a variable in [—A, A] for a given A > 0 and the support
of our solutions has remained in [—2A, 2A] over the time interval [0, T']. If we take
the view that a,,;, < —2A, then our solutions fit into the framework of [1] with regard
to this aspect.

We also mentioned above that we would comment on our assumption that the
range of u’ is equal to (0, 00), as would be the case, for instance, if u(c) = +/c. This
assumption is only for simplicity and the general case can be treated by our same
method. We stated in Sect. 2 that the quantity in the definition of the Hamiltonian
is maximized when p = u’(c), and so ¢ = (u’)~!(p). This formula is still valid if
p is in Range(u’), which is necessarily an interval. Thus the formula we have used
throughout the work is valid for values of p in a given interval. But p stands in for
d,v, and the method we have applied does find solutions where d,v = y + fweo
only takes values in a given interval. For a general utility function, the terminal data
YT + W can be taken with values in the appropriate interval, and the time horizon T
can be taken sufficiently small so that solutions remain in this interval.

We have discussed in the introduction that we can show that in some cases, the
solutions we have proved to exist are not solutions of the original system. For every
solution we have proved to exist via Theorem 6, there is associated a value of the
constant Q. If this constant Q is equal to zero, then we can have a solution of the
original problem. This is the content of the following corollary.

Corollary 10 Let the assumptions of Theorem 6 be satisfied, and let (v, g, f) be the
solution of the system (9), (10), and (8) with data g(0, -) = go, ¥(T,-) = yr, and
f(T) = 1 which is guaranteed to exist by Theorem 6. Let C = [ [ ag dadz. Assume
that C(t = 0) =0, and that Q = 0. Then (y + fwoo, g) satisfies the original system
(1), (2), (5), and (6).
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Proof 1t is a conclusion of Theorem 6 that g is a probability distribution, so this
implies (5). As we have calculated in Sect. 3, since 9,C — r(t)C = Q = 0, and since
C(t = 0) = 0, we conclude that C = 0 for all time. Thus we have verified (6). Let ¢
be a real-valued function of 7 and z; then we let vy = ¢ (¢, z) + foa (y + fws) da'.
We clearly have d,vp = y + fwoo. Since (10) is satisfied, we see then that (2) is also
satisfied. Furthermore (7) is satisfied as well. O

We remark that if data vy had been specified instead of the data d,vr = weo + y7,
then a choice of ¢ may be made so that v = vy also satisfies (1) and v(7, -) = vr.

If instead the constant Q is nonzero, then the solution does not solve the original
problem, i.e., if Q # 0, then C # 0. It is straightforward to see that we can guarantee
in some cases that Q # 0, and thus the solution guaranteed by Theorem 6 does not
yield a solution of the original system.

Corollary 11 Under the assumptions of Theorem 6, there exist choices of T, Yy, Weo,
and go such that for the solution (y, g, f) of the system (9), (10), and (8) with data
g0, ) = go, y(T,:) = yr, and f(T) = 1 which is guaranteed to exist by Theorem
6, (6) does not hold.

Proof We define

Quara = / / (2 + Hy (7 + woo))go dadz.

Assume that gg, y7, and we are specified such that Qg4 # 0. Since y, f, and g
are continuous in time, we see that for sufficiently small values of 7 > 0, the solution
(v, g, f) will not vary much from the data. Therefore for small values of 7', we will
have Q close to Qgurq, and Q will therefore be nonzero. O

As mentioned in the introduction, the authors of [1] proposed a restriction on the
choice of terminal values for v, and thus in our case for the terminal data for d,v,
which is y7 + weo. In particular they proposed that T should be taken to be fairly
large and the final value of v should be associated to a stationary solution. Since a
stationary solution can be viewed as the infinite-7" limit of solutions of the system
under consideration, and stationary solutions would satisfy C = 0, this proposed data
would be expected to yield solutions satisfying only C & 0. Further work is warranted,
though, to find solutions which satisfy the constraint exactly. Specifically, given a value
of the time horizon T and the initial distribution g initially satisfying the constraint,
the author intends to perform computational and analytical studies seeking existence
of terminal data yr 4+ ws which yield @ = C = 0.
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