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ABSTRACT

We present Fabriccio, a touchless gesture sensing technique
developed for interactive fabrics using Doppler motion
sensing. Our prototype was developed using a pair of loop
antennas (one for transmitting and the other for receiving),
made of conductive thread that was sewn onto a fabric
substrate. The antenna type, configuration, transmission
lines, and operating frequency were carefully chosen to
balance the complexity of the fabrication process and the
sensitivity of our system for touchless hand gestures,
performed at a 10 cm distance. Through a ten-participant
study, we evaluated the performance of our proposed sensing
technique across 11 touchless gestures as well as 1 touch
gesture. The study result yielded a 92.8% cross-validation
accuracy and 85.2% leave-one-session-out accuracy. We
conclude by presenting several applications to demonstrate
the unique interactions enabled by our technique on soft
objects.
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INTRODUCTION

As computing becomes increasingly ubiquitous and blends
into our everyday devices (e.g. thermostats or speakers), the
need to bring interactivity to everyday objects, including
those made of soft and lightweight fabrics (e.g., garments,
toys, and furniture) has grown significantly. This need has
led to advances in sensing techniques that enable input to be
carried out on interactive fabrics, such as touching [38, 42,
47, 50] or deforming the fabric [39, 59].

However, a challenge with existing input modalities is that
physical contact with fabric must occur during the
interaction. Thus, opportunities are missed for users to utilize
other methods, such as touchless (or mid-air) hand gestures,
commonly seen on smartphones [23.], smart watches [19, 30,
61], car infotainment systems [10.], and smart [oT devices
[24]. The touchless, mid-air gestures performed by a hand
or fingers near a sensor, significantly extends the input
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Figure 1. Fabriccio enables touchless gesture sensing on
interactive fabric. For example, by embedding Fabriccio into
pants, a user can perform subtle arms-down gestures to
interact with a phone.

vocabularies of interactive fabrics including those carrying
special meaning that can’t be replaced by touch (e.g., waving
the hand for a greeting). Touchless gestures are also useful
in common scenarios where physical contact with a fabric is
undesirable by a user (e.g., the hands are unclean when eating
or exercising).

In this paper, we bring near-field touchless gestural input to
interactive fabric using doppler motion sensing. With our
technique, soft objects augmented with a textile motion
sensor can detect nearby finger gestures (e.g. in ~10 cm
distance [19]) to trigger a desired application. This enables
new types of interactions in a variety of contexts. For
example, a plush dog toy can make a greeting sound to
respond to a child’s wave in front of it. When standing or
walking, a user can perform micro finger gestures (e.g.,
sliding on the index finger using the thumb) with the hand
hanging naturally alongside the body to discretely interact
with a screen (Figure 1). This type of gesture is subtle, easy
to perform, and can now be sensed through trousers, instead
of needing heavy, leg mounted depth cameras which are used
in current methods for such scenarios [31].

To demonstrate technical feasibility and application
scenarios enabled by our technique, we developed a proof-
of-concept prototype called Fabriccio (Figure 1). Our
prototype was developed using a pair of loop antennas (one
as a transmitter and the other as receiver) made of a
conductive thread that was sewn onto a fabric substrate. The
antenna fype, configuration, and operating frequency were
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carefully chosen to balance sensor sensitivity and the
complexity and cost of the fabrication process, making it
easy for the system to be adopted by other researchers and
the maker community. Our prototype detects 10 touchless
gestures, involving hand and finger motions in different
scales. It can also detect the finger tapping the sensor. Results
from an evaluation with 10 participants revealed 92.8%
cross-validation accuracy and 85.2% leave-one-session-out
accuracy.

Our contributions are: (1) a touchless gesture sensing
technique for interactive fabrics that uses the Doppler effect;
(2) a prototype demonstrating technical feasibility; (3) a
study evaluating the accuracy our sensing technique; and (4)
several applications to demonstrate the unique interactions
enabled by our technique.

RELATED WORK

Our work intersects with previous research in three main
areas: sensing technique for interactive fabrics, sensing
techniques for touchless gestures, and textile antennas.

Sensing Input on Interactive Fabric

With current technologies, input techniques through
interactive fabrics includes touch [38, 42, 47, 50],
deformation [35, 39, 59], and object recognition [18, 43]
using sensing techniques based on capacitance [21, 33, 39,
40, 41], resistance [37, 38, 43, 58, 66], and inductance [18].

Capacitive sensing is based on the effect of capacitive
coupling and has been used in early explorations of sensing
touch [24, 40, 41] and pressure [34] on smart fabrics. For
example, the Musical Jacket [40] from MIT features a
capacitive touch keypad made of stainless-steel yarns
embroidered on denim for a user to provide touch input. This
technique was later used in other research prototypes [21, 41]
but has recently moved beyond research into commercial
products. Project Jacquard [42] exemplifies a recent attempt
to make the manufacturing process of capacitive sensing on
fabrics scalable. With Project Jacquard, the electrodes of the
sensor are created by weaving conductive yarn into a textile
using a process compatible with the current industry
standard.

Aside from capacitive sensing, techniques based on
resistance are also common on smart fabrics. A textile
resistive sensor has a three-layer structure involving a middle
semi-conductive layer sandwiched between two conductor
layers. eCushion [67] is an example of such an
implementation. With resistive sensing, input is sensed based
on the change detected in the resistance of the fabric when
the fabric is compressed. A wide variety of applications have
been developed using resistive sensing. For example, in
Rofouei et al.’s work [44] the authors used a textile pressure
sensor for object recognition based on the pressure footprint
of different objects (e.g., weight and shape). eCushion [67]
was developed for sensing the sitting posture of a user on a
chair. GestureSleeve [50] allowed users to use touch gestures
on the forearm to interact with a computing device. proCover
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[27], an augmented prosthetic limb with pressure sensing
capability uses a similar sensor. Recent advances in
fabrication technique by Parzer et al. [38] allows the three-
layer structure to be replaced by two thin threads.

Aside from resistance and capacitance, sensing techniques
based on inductance have also been explored on fabrics. For
example, Jun et al.’s work allows a metallic object to be
recognized when an object is in contact with fabric [18]. The
same technique can be used for sensing touch but the input
resolution in a 2D space is limited due to the coarse
arrangement of the sensor coils.

Our work differs from existing research in that it brings
touchless gestural input, commonly found in games, TV,
vehicles, mobile, and, wearable applications to interactive
fabrics using Doppler motion sensing.

Sensing Touchless Gestural Input

Sensing techniques for touchless gestural input can be
divided into those based on vision [52, 55, 60], radio
frequency [30, 54, 57, 43, 49, 62, 69, 71, 73], pyroelectric
infrared [19] and acoustics [20, 37, 64]. Cameras (both 2D
and 3D) are also often used in a wide variety of applications.
Examples include the work from Song el al. [56], which
enables the sense of gestural input in a 3D space using a 2D
camera, and the work from Wang et al. [60], which tracks
6DOF bimanual hand input using a depth camera. In addition
to the vision-based approaches, techniques using radio
frequency have also shown promise in sensing touchless
hand (e.g. flicking, sliding, or hovering) [43, 54, 62] and
finger gestures (e.g. pinching the thumb and index finger,
pinching the thumb and pinky, sliding the thumb along the
index finger, or rubbing the thumb and index finger) [19, 30,
49, 62]. Examples in this line of work include Mudra [70],
which detects finger gestures using home Wi-Fi signals, and
Soli [30, 62], which detects hand and finger gestures using
60 GHz radar signals. Our sensing technique is based on the
Doppler effect, which has been shown effective in sensing
hand motion as input for mobile devices [73]. Along with
these methods, techniques based on pyroelectric infrared
[19] and acoustics [20, 37, 64] are pushing the boundary of
touchless gesture sensing. However, the challenge in
adopting these methods on soft and thin fabrics is that
existing methods are developed on traditional devices with a
rigid body (e.g., the sensor is printed on a PCB) and thus do
not immediately work on a fabric, and its subsequent
integration limits the softness and breathability of the fabric.

Textile Antennas

Textile antennas made of conductive threads are an emerging
technology in electrical engineering with applications
primarily targeting wireless communication [6, 7, 9, 25, 36,
46, 65, 66], health monitoring [26, 46, 70], object
identification [13, 51], and energy harvesting [17, 32]. For
example, Roundjane et al.’s work [46] describes a spiral-
shaped textile antenna stitched on a T-shirt for transmitting
Bluetooth signals at a frequency of 2.4G Hz. Placed on the
chest, a textile antenna can be used to sense the wearer’s
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breathing rates using Bluetooth and received signal strength
indicator (RSSI). Shao et al. [51] proposed a textile RFID tag
for object recognition. Loss et al. [32] developed a monopole
antenna to harvest electromagnetic energy from the GSM
and DCS signals in the environment.

Our work is novel in that we are the first to investigate how
a textile antenna can be designed and developed for touchless
gestural input. We identified the challenges unique to this
problem and demonstrate a promising solution for a new set
of smart fabric applications.

SENSING PRINCIPLE AND BACKGROUND

Doppler motion sensors are known for being cost-effective
sensors for in-air gestures [16, 54, 69]. Its sensing principle
is based on the Doppler effect, described as the shift in the
frequency of a wave caused by the motion of an object (e.g.,
hand) in relation to the wave source. Most Doppler motion
sensors have a transmitter and receiver, with each connecting
to an antenna via transmission lines. The antennas are often
placed next to each other at a certain distance. When
operating, the transmitter supplies an electric current to the
transmitting antenna, which radiates energy from the current
as electromagnetic waves through the air. When there is a
moving object near the sensor, the receiving antenna
intercepts some of the power of the electromagnetic waves
reflected by the object and produces an electric current to the
receiver. The reflected signal is then mixed with the local
signal of the baseband frequency, resulting in an
intermediate frequency (IF) signal to allow the shift in the
frequency of the reflected waves to be observed by an analog
to digital converter (ADC) operates at low sampling rates.

The resolution of the frequency shift of the Doppler motion
sensor is related to the operating frequency. The higher the
operating frequency is, the more observable the shift in the
reflected frequency will be. The sensitivity of the sensor is
dependent on the signal-to-noise ratio (SNR), and often
related to the strength of the received signal. In designing a
textile Doppler motion sensor under a certain operating
power, the antenna type, the distance between the antennas,
and how the antennas are connected to the transmitter or
receiver may significantly affect the sensitivity of the sensor.
Our work strikes a balance between the sensitivity and
fabrication cost and complexity.

SENSOR DESIGN

In this section, we present the design of our textile Doppler
motion sensor based on four parameters: sensor operating
frequency, antenna type, transmitting/receiving antenna
configuration, and impedance matching.

Operating Frequency

For our implementation, we considered an operating
frequency of 1 GHz and above for the sake of sensing
resolution. In this range, three bandwidths are common in
commercial Doppler sensors that comply with the FCC
regulations [15]: X band (10.525 GHz), K band (24 G to 26
GHz), and V band (60 GHz to 67 GHz). The high frequency
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antennas are in general good in resolution but extremely
challenging to develop on fabric because of the level of
precision needed in the fabrication process. For example, the
diameter of a loop antenna running at 60 GHz must be made
precisely at 1.59 mm (circumference of a loop antenna equals
to wavelength). A small error of even +0.5 mm in diameter
will shift the antenna’s operating frequency dramatically to
45.7 GHz [5]. To lower the fabrication complexity, we used
the X band (10.525 GHz) in our exploration because the X
band antennas are relatively larger in size and can be made
in a level of precision that is achievable using a low-cost
home embroidery sewing machine. We restricted our system
to work at 3.3v, as we considered the capacity of the batteries
in toys and wearable applications.

Antenna Design Options

For touchless gesture sensing, a desirable transmitting
antenna design is one that can radiate a strong
electromagnetic field above it. The challenge is that no
existing knowledge provides an insight into the tradeoffs of
the possible design options under our application
requirements (e.g., X band, 3.3v, and near-field sensing). We
thus conducted a simulation test, an approach commonly
used in the design of textile antennas [29, 68].

We considered four common antenna types found in the
literature [4, 25, 36, 45, 46], including dipole, loop, patch,
and slot antenna. We created the candidate antennas in
COMSOL [22] by following the size requirement for them
to operate at 10.525 GHz (details later). Like prior work [48],
we simulate the antenna using copper fabric (conductivity =
0.05 /square). We are aware that the simulation may not
replicate the antenna behavior on a real fabric, but the
comparison using the estimation of the electric field served
well for our decision making. Table 1 shows the electric field
for each candidate in a 10 cm x 10 cm space.

Antenna Dipole Loop Patch Slot
Type Half-wave Large loop Patch antenna Half-wave slot

dipole antenna antenna
Photo

[

(a) [25] (b) [46] (© 9] (d) [36]

Electric
(©)] ® (8) (h)

Table 1. The antennas and the electric field radiated by them in
a 10 cm x 10 cm space.
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Figure 2. Top: the signal strength score of the reflected signal on the receiver. Bottom: the corresponding electric field at different
antenna distances with a step size of 4 mm, indicating the interference from the receiving antenna.

Dipole antenna. The dipole antenna consists of two traces of
equal length (1/2 wavelength), oriented end-to-end on a
substrate. The structure of the dipole antenna is simple and
can be made using conductive threads, embroidered onto a
fabric [25] (Table 1a). However, the electric field of the
dipole antenna appears to be the weakest amongst all four
candidates.

Loop antenna. The loop antenna features a simple structure
with a circular trace, where the circumference is equal to the
wavelength of the operating frequency (28.5 mm in our
case). Our simulation results suggest that the electric field of
the loop antenna is stronger than dipole antenna. The loop
antenna can also be fabricated using low-cost home
embroidery sewing machine [46].

Patch antenna. The patch antenna consists of three layers,
with the top and bottom layer made of a conductive plate,
serving as the radiating and grounding plane respectively.
The middle is an insulating dielectric layer. The size of the
patch antenna at 10.525G Hz is 6.04 mm x 8.59 mm [5]. The
complexity of the three-layer structure, as well as the harsh
material and thickness restriction for the insulation layer,
makes it difficult to develop on fabric [46]. Table 1g shows
that the strength of the electric field above the patch antenna
is similar to that of the loop antenna.

Slot antenna. The slot antenna is made of a conductive
surface with a slot cut out. The size of the slot antenna at
10.525G Hz is 14.25 mm % 1.34 mm [5]. Table 1h suggests
that the electric field radiated by the slot antenna is strongest
of all the four candidates. The transmission lines of the slot
antenna need to go through the center of the slot. Thus, an
isolation layer needs to be placed between the transmission
lines and the antenna.

Considering the balance between fabrication complexity and
strength of the electric field, we chose the loop antenna in
our implementation for both the transmitter and receiver.
Note that the loop antenna is bidirectional, which means
gestures can be sensed on both sides of the sensor, enabling
new types of interactions. However, if only one direction is
needed, an insulation layer can be used (more details later).
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Transmitting and Receiving Antenna Configuration

The next step is to understand the impact of antenna
configuration (or distance) on signal strength. If the antennas
are placed too close to each other, the electric field of the
transmitter may be interfered with the receiving antenna,
thus weakening the signal. Moving the antennas away from
each other can solve this problem but may also weaken the
received signal. We thus conducted a second simulation test.

Simulation Setup

We studied 20 configurations with the antenna distance
ranging from 1 mm to 41 mm, with a 2 mm step size. The
distance was calculated using the closest points on the two
loops. 1 mm was chosen as the closest distance because it is
the closest that two threads can be stitched without touching
each other using our embroidery machine. The other
parameters, such as material type, remained the same as the
first simulation study.

Since we were only interested in comparing the strength of
the reflected signal, our simulation did not need a moving
hand to create the reflection. Instead, we used a virtual
circular copper plate above the antennas to create the
reflection. We adjust the size of the plate to reflect the
difference in the size of the hand and finger. Considering the
average width of a hand [1] and finger [12], we used a plate
of 10 cm and 1.8 cm wide for the hand and finger scenario
respectively. Our data was collected with the copper plate
placed at 5 cm or 10 cm above the sensor. The larger plate
was positioned to cover both antennas, but the smaller plate
was not big enough to cover both. Thus, we included three
horizontal locations for the small plate, (1) the center of
transmitting antenna, (2) the center of receiving antenna, and
(3) the middle of the two antennas. In total, we sampled 20
distances x 2 heights x (1 location for the large plate + 3
locations for the smaller plate) = 160 data for test.

In COMSOL [22], the signal was represented using a
complex number. Therefore, the strength of the reflected
signal was calculated as the magnitude of the difference
between the signal received with and without the copper
plate. The collected data was then normalized across antenna
distances and means (signal strength score) were calculated
across the tested conditions for each antenna distance.
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Results

We highlight the study results and the corresponding
electrical field of the sensor with a step size of 4 mm in
Figure 2. The peak of the signal occurred when the distance
between the antennas was around 15 mm to 21 mm. The
strength of the signal declines with the antenna distance
exceeding 21 mm and beyond. On the other hand, the
strength of the signal declines with a steeper slope before the
peak, as the antenna distance is closer. This is due to the
interference in the electric field from the receiving antenna.
As shown in the bottom of Figure 2, the interference is
clearly visible when the antenna distance is below 13 mm.
To strike a balance between signal strength and sensor size,
we chose 15 mm distance in our final design (Figure 3).

Impedance Matching and Transmission Line Routing
Energy loss may occur if there is a mismatch in the
impedance of the antenna, its transmission line, and the
transceiver [5]. Unfortunately, impedance match can hardly
be guaranteed on a textile antenna and transmission lines
[11]. We mitigated the issue by restricting the length of the
transmission lines to a multiple of half of the wavelength of
the operating frequency [5]. In our case, this method has an
acceptable energy loss of around 11%, calculated using the
formula of reflected power [3] with an antenna impedance of
100 Q [33], and source impedance of the transceiver of 50 Q
(by most design). The challenge of this approach, however,
is that sensor applications may require the antennas to be at
any location on a substrate. When turns are made along the
way toward the target location, the curve line is longer in the
outer track of a turn than that in the inner track. As such, one
transmission line will fail to satisfy the length requirement.

We solved this problem by including a semicircle and two
quadrants in the track of the transmission line (Figure 3). The
semicircle and quadrants should have the same radius, but
their direction should be reversed to ensure that the total
length of the inner and outer transmission lines is equal after
turns occur. Assuming that in a coordinate system, where the
origin is the terminal of the RF transceiver, given the location
of the feed point (x, y), the length of a transmission line
connecting the origin and the feed point can be described as:

k2ﬁ=x+y+(n'—2)(2>(7”—g)+2><l €))
where £ is the factor, A is the wavelength (28.5mm), r is the
radius ( < y; 3 mm in our case), g is the distance between
the two parallel transmission lines (1 mm), and / is the length
of the line segment connecting the semicircle and a quadrant,
which is the only unknown valuable in the equation. As / is
the function of k, it can be calculated for any given &
specified by a user using a variation of the Equation (1):

x+y+(7t—2)(2><r—g)—k>2<—'1

[ =

)

The same approach can be used for two antennas. Figure 3
illustrates our implementation.

2
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Loop antenna
‘eedpoint

Transceiver

Transmission line

Figure 3. The final design for the antennas and transmission
lines. The antenna design includes two loop antennas with a
diameter of 9 mm and placed 15 mm away from each other. The
design of transmission lines includes a semicircle, two
quadrants, and several straight-line segments. A feed point
distance of 1 mm was used for the parallel transmission lines.

IMPLEMENTATION
In this section, we discuss implementation details of the
hardware and software.

Hardware

Conductive Thread Options

Another challenge of developing textile antennas is the
choice of conductive threads. For example, the conductivity
of the threads must be high, or energy loss may cause the
reduction of the sensitivity. We found four conductive
threads used in prior research [18] satisfy our needs (details
in Table 2). Like in prior work [46], we estimate the
performance of these threads using a simulation. We
repeated our second test by simulating the antennas made by
the candidate threads using the same thread conductivity.
Our results showed no noticeable difference between the
threads (Table 2). Considering that the higher conductivity
the thread is, the less energy loss will occur in transmission,
we used the LIBERATOR 40 in our implementation.

Name Stainless thin Smooth Conductive LIBERATOR
thread conductive Thread 40

thread Bobbin

Material 316L Stainless 12UM 316L Stainless Silver coated

steel fiber Stainless steel steel fiber polymer

fiber

Thickness 0.20 0.12 0.35 0.18

(mm)

Conductivity 51.18 27.00 91.84 3.28

(Q per m)

Signal 0.96 0.99 0.91 1

Strength
Score

o G 0 0 Q

Table 2. Different types of conductive yarns tested in our
simulation with the corresponding electric field shown in a 10
cm % 10 cm space.
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Fabricating Textile Antennas

Once the antenna design and choice for the conductive thread
is finalized, the textile antenna can be stitched using a
standard home embroidery sewing machine (e.g. Brother
SE600) on a fabric substrate (e.g. polyester in our case). We
used stitching in our implementation as the antenna traces
created using stitching can be mechanically stable and
durable [18]. Note that the standard stitching process on an
embroidery sewing machine pushes the conductive threads
through the substrate, which may cause a short circuit if an
insulation layer is used for unidirectional sensing. We
adopted a method discussed in Dunneet. al.’s work [14] to
overcome this challenge, where we carefully tuned the
tension of the top thread (e.g. non-conductive thread) to
ensure that the conductive thread only floats on the surface
of the substrate without penetrating it (Figure 4).

Figure 4. The fabrication of textile loop antennas. (a) Stitching
textile antennas using a regular embroidery machine (b) The
conductive thread floating on the surface of the substrate
without penetrating it

Customized Sensing Board

Our customized sensing board is composed of a Doppler
sensor board and a data collection board (Figure 5). The
Doppler sensor board was modified from the HB100 Doppler
Radar Motion Detector [55] by fully removing the patch
antennas and the transmission line traces from the PCB,
leaving only the RF transceiver component illustrated in
Figure 5b. Ideally, the distance between the vias for the
transmitter (or receiver) and ground should be the same as
the antenna’s feed-point distance (e.g., 1 mm), however this
is not the case with our off-the-shelf device (e.g., 1.5 mm).
This may affect sensitivity but can be fixed in the future with
a fully customized board. The Doppler sensor board operates
at a frequency of 10.525 GHz.

Our data collection board is a modification of an Adafruit
Bluefruit LE Micro, which accommodates a differential
amplifier circuit with a gain of 30 dB that amplifies the data
received from the sensor board to the range of Ov to 3.3v, pin
alignments for the sensor board, a micro-controller with an
built-in 10bit ADC (TMEGA32U4), and a Bluetooth low
energy module (nRF51822) for data transmission (Figure
5a). The data collection board was mounted on the sensor
board with the entire system operating at 3.3v with a
sampling rate of around 1000 Hz. All the sensor data was
sent to a laptop for data processing. In total, the entire system
consumes 158mW of power including those consumed by
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the micro-controller and Bluetooth radio (45 mW). With a
400 mAh lithium-polymer battery, the system can work for
approximately 2.5 hours. The cost of the sensing board is less
than 30 dollars.

Wire Connection

Connecting the conductive threads to rigid electronics is an
open problem in research that is yet to be solved [18, 38, 42].
Prior work has suggested methods, including soldering,
using snap buttons, sewing, conductive epoxy, and crimping
[8, 18, 38, 42]. Most of them except conductive epoxy,
however, do not work in our case for varying reasons. For
example, as suggested by [18], solder heat can make the
connecting tip of a thread fragile, causing unstable
connections between the transmission line and the vias. In
our implementation, we used a low temperature solder paste
[3]. We first push the tip of the thread into the via and then
soldered it with the solder paste using a heat gun at a
temperature of 140 °C. We also adhered the sensing board
on the fabric to avoid parts moving at the connection points.
Our initial test suggested that this type of connection was
stable, and durable in our experiments.

3- LA 400N
BKCEMT Mb804s32

Figure 5. The customized sensing board, which consists of (a) a
Doppler sensor board HB100 that is modified by removing
antennas and transmission lines marked as dark areas and (b)
a data collection board mounted on the modified HB100 sensor
board with a 400 mAh battery.

Software

Signal Processing & Featurization

Sensor data was processed with a low-pass filter at 100Hz to
remove the background noise. The features for machine
learning were extracted in both frequency and time domains.
For the features in the frequency domain, we first computed
a frequency spectrum using a 90% overlapping, 240
window-sized FFT, which is then used to compute the max,
mean, min, and standard deviation for each frequency band
(20 x 4 values), resulting in 80 features for the classifier. In
addition, we used a feature extraction toolbox (tsfresh [2]) to
compute numbers of features in both frequency and time
domain (e.g. continuous wavelet transform, the quantiles,
binned entropy and etc.) In total, 480 features were fed into
the machine learning model.

Machine Learning

To classify touchless gestures, we used the Random Forest
from Scikit-learn with a forest size of 100 and the maximum
depth of 30. We chose Random Forest because of its

Page 6



CHI 2020 Paper

accuracy in our initial tests rather than alternatives (e.g. SVM
and Neural networks). The value of the parameters was
chosen to balance the sensing accuracy and model
complexity. We ran the classifier on a Microsoft Surface
laptop. Table 3 shows the top-50 most effective and relevant
features ranked by a Random Forest classifier using within-
user model.

Time Linear least-squares regression (13)
Domain .
(38) Mean absolute change quantiles (8)

Complexity-invariant distance (2)

The unconditional maximum likelihood of an
autoregressive process (2),

Number of peaks (3)
Binned entropy,

Ratio beyond r sigma, energy ratio, maximum, minimum,
autocorrelation, percentage of reoccurring datapoints,
Friedrich coefficients, Kurtosis, absolute sum of changes.

Frequency

Domain .
(12) FFT coefficient (1)

Fast Fourier Transform (11)

Table 3. Top-50 features ranked by Random Forest.

APPLICATIONS AND SCENARIOS

We created several demo applications to elucidate Fabriccio
capabilities and highlight many of its usage scenarios in
everyday furniture, clothing, and soft objects.

Interactive Furniture

The first application we implemented is an integrated media
controller for a sofa, where a user controls the media playing
on a TV, with gestures performed above an armrest. A swipe
gesture can navigate the program, while a push gesture can
pause or play media currently playing on the TV. In the
scenarios where a user does not want to touch the sofa
because their hands are unclean (e.g., when eating), the
touchless hand gestures are useful additions to touch input
on fabric (Figure 6).

Figure 6. Interactive furniture. A touchless remote
control on the armrest of a sofa.

Interactive Clothing

Our second scenario involves turning everyday clothing into
interactive wearables. For example, we augmented the logo
of a sports shirt with Fabriccio to allow a user engaged in a
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fitness activity to receive different types of audio information
using gestures. For example, a user performing a check-mark
gesture above a logo can be used for checking the percentage
of their fitness goal, and similarly, a thumb circle gesture can
be used for listening to their fitness schedule through the
headphone, (Figure 7). In another example, we instrumented
a pair of pants with Fabriccio on the side. This allows a user
to perform subtle arms-down gestures alongside the body to
interact with a smartphone (Figure 1).

3

;5

&

Figure 7 An interactive logo on a fitness shirt.

Interactive Soft Things

Finally, we demonstrate how Fabriccio can be useful in
scenarios involving IoT-like devices by modifying everyday
fabric-based objects. For some people, the backpack is a
common part of life, and are used for carrying common
objects, like smartphones. However, in some weather
conditions (e.g. snow or rain) it is not ideal to take a
smartphone out for simple tasks like answering a call or
responding to notifications. We modified the two straps of a
backpack by sewing and covering the sensors on each strap
to allow for dual gesture input (Figure 8). For example, a
circular gesture on the right strap allows the wearer to
perform a circular gesture to listen their last text message
when they are listening to music, while swiping near the left
strap allows them to play and stop the music.

Figure 8. The straps of a backpack are modified by
covering the sensors, which also allows for dual gestural
input.

Interaction is also an important part of children’s toys. We
embedded Fabrricio into the head of a plush dog to enable
simple interactive games for children. Waving the hand near
the dog triggers a greeting sound. Touching its head plays a
prompting sound (Figure 9).
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Figure 9 Interactive plush toy for children. Waving the
hand near the dog triggers a greeting sound. Touching
its head plays a prompting sound.

EVALUATION

The goal of this study was to validate Fabriccio’s gesture
recognition accuracy, as well as its robustness against
individual variance and amongst different users.

Gesture Sets

To ensure that our exploration covered a wide variety of
different type of touchless gestures, we surveyed existing
work and chose 10 hand and finger motion gestures (Figure
10). Gestures selected varied in both motion trajectory and
motion size, as many of the finger gestures, such as check
mark and rectangle mark, are classified as micro gestures in
the literature. We also included a touch gesture, which
requires a user to tap the sensor.

Finger Gestures

E F
= o\
o\ —c o —> L o
T PP PP TP e oo
Click Rub Thumb Slide Thumb Circle Thumb Check  Thumb Rectangle

) Hand Gestures Touch
G Hes— J

N N @

Q N \\\
\% N

N S T H\
SN PP \ | Il

Pull Push Swipe ' Circle

Figure 10. Our gesture set. Click, rub, thumb slide, swipe, pull,
push, and circle were chosen from Soli [30, 62]; Thumb circle,
check, and rectangle were chosen from Pyro [19].

Participants
Ten right-handed participants (average age: 21.6, 6 females)
were recruited to participate in this study.

Data Collection

Each participant was instructed to sit in front of our textile
sensor that was placed on a desk. Before a session started,
participants were given several minutes to learn the 11
gestures. After a short training session, each participant
performed a gesture toward the textile sensor, roughly in a
distance between 5 to 10 cm using their right hand. The order
of gestures was randomly assigned. The start and end of each
gesture was indicated by clicking a computer mouse using
their left hand. Each gesture was repeated 10 times in each
session, which took about 30 minutes to complete. A 10-
minute break was given between sessions, where participants
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were asked to leave the desk and walk around the lab. Data
collection finished after three sessions. In total, we collected
3300 samples (10 participants % 11 gestures x 10 repetitions
x 3 sessions) for analysis.

Results

To demonstrate the accuracy of our system, we present our
result using within-user accuracy, cross-section accuracy and
cross-user accuracy. Also, we computed the SNR for each
gesture to demonstrate the sensitivity of our textile sensor.

Within-User Accuracy

Within-user accuracy is the measurement of the prediction
accuracy where the training and testing data are from the
same user. For each participant, we conducted a two-fold
cross validation, where half of the data was used for training
and the remaining data for testing. The overall within-user
accuracy was calculated by averaging the results from all the
participants. The result showed an accuracy of 92.8% (SD =
3.6%). Figure 11 left shows the confusion matrix. The major
source of error was the confusion between the finger gestures
with a similar motion. For example, Click, Thumb slide and
Thumb Check accounted for the most misclassifications, as
they all have two sharp turns in the motion trajectory.

Cross-Section Accuracy

Cross-section accuracy measured how stable the system was
against the data collected from a different session. We
calculated the leave-one-session-out accuracy for each
participant by training the model using the data from the first
two sessions and testing it using the last session. The overall
across-section accuracy was the average of the accuracy
from all participants. The results yielded an accuracy of
85.2% (SD = 10.4%). Figure 11 right shows the confusion
matrix. Again, we found Click (82%), Thumb slide (76%)
and Thumb Check (65.0%) contributed to the most errors. In
addition, some finger gestures (e.g. Thumb Rectangle) began
to cause confusions with others (e.g. Rub and Thumb Check).
A potential reason is that the position and orientation in
which the gestures were performed in relation to the sensor
changed more significantly between sessions. We expect this
issue can be mitigated with more training samples.
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Figure 11. Confusion matrix. Left: within-user accuracies.
Right: leave-one-session-out accuracies

Cross-User Accuracy
Across-user accuracy measured whether an existing model
works across different users. For the accuracy, we calculated
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the leave-one-subject-out cross-validation accuracy by using
the data from nine participants for training and the remaining
one for testing. The overall accuracy is the average of the ten
combinations of training and test data. The results yielded an
accuracy of 65.5% (SD = 6.6%), indicating that the different
users performed gestures differently. For example, some
participants performed Click by moving both the thumb and
index finger, while others only moved their index finger with
the thumb staying in a relatively fixed position. Figure 12
shows the confusion matrix of all gestures. The most
confusing gestures are Click (33.3%), Thumb Check (29.3%)
and Thumb Slide (36.0%), followed by Thumb Rectangle
(56.3%) and Circle (68.0%). We then removed them one by
one and calculated the accuracies using the remaining data.
The result yielded a higher accuracy of 75.3% (SD = 4.9%)
without Click and Thumb Rectangle, and 87.6% (SD =5.0%)
without Click, Thumb Check, Thumb Rectangle and circle.
This is encouraging, as the results showed that the
differences in how the gestures (7 in our case) were
performed across different people can be tolerated.

Without
click, check,
rectangle,
and circle

333 0.3 22.7 4.0 20014.0 00 2.3 1.0 2.3 00

03 0.0 2.3 0.0 40 1.3 33 2310003 100
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Figure 12. Left: confusion matrix of cross-user accuracies;
Right: cross-user accuracy with different gesture sets.
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Sensor Sensitivity

To validate the sensitivity of our textile sensor, we computed
the SNR for the samples classified successfully in the within-
user validation. As shown in Figure 13, the SNR for all the
gestures were above 3dB, indicating that a minimum SNR of
3dB and above is needed for the sensor to reliably capture
the gestures performed at a distance around Scm to 10 cm.

Click{ ° ° —f
Rub{ +—— T
Thumb Slide { —Y T
Thumb Circle{ T3 o
o Thumb Check ’ T 1 1
2 Thumb Rectangle | [ I
& pull{ I I R ]
Push I I N
Swipe | ° —{
Circle{ I e I I
Tap{ —_— T
0 5 o 15 20 25
SNR(dB)

Figure 13. The box plot of the SNR for each gesture.

THE EFFECT OF COVERING FABRIC

In applications, where a fabric cover may be used on top of
the sensor for design or aesthetic reasons, attenuation may
occur due to occlusion and the sensor signal may become too
weak to be used for reliable gesture recognition.
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To explore this issue, we collected through-fabric sensor data
using 17 fabrics made of acrylic, cotton, jute, linen, nylon,
polyester, PVC leather, PU leather, faux fur, rayon. T-spun
polyester, spun polyester, polypropylene, lyocell, olefin,
modal rayon, and metallic yarns. We selected fabrics that are
commonly found on garments, furniture, toys, and
upholstery. We purposefully included those with varying
thickness (0.17mm to 1.62mm) and materials (e.g. some
have metallic threads). For each fabric, we measured the
signal strength of our sensor in response to an object moving
in a consistent pattern in front of it. We shielded the sensor
on the back using a copper plate to avoid noise coming from
the back. The consistency of the object movement across the
tested fabrics is important to make an accurate comparison
of the sensor signal. Our method for controlling the
consistency was to use a motorized aluminum plate (20 cm
x 20 cm) moving toward the sensor from a start position 6
cm away, stopping at 3 cm, and then moving back to the start
position, achieved using an Ultimaker Original+ 3D printer.
The tested fabric was placed on top of the sensor and
tightened using a plastic frame.

Ten samples were collected for each fabric, with or without
the presence of a covering fabric. A 1850 ms window, the
movement time of the plate, was used for each sample to
calculate the SNR. An average SNR was then calculated for
each fabric per condition. The attenuation was calculated
using the (logarithm) difference of the SNR with and without
the fabric. It represents the ratio of the signal strength
between two conditions. In total, we gathered 170 samples
and we show the result in Figure 14.

The result showed that the fabrics woven with metallic
thread caused a significant loss of signal (larger than 8db).
As these fabrics could effectively block the signal of the
sensor, we used them for shielding. Other types of fabric do
not cause any significant attenuation of signal strength
(within 2.17db). In reference to the results of our main
evaluation, the attenuations of these fabrics are all lower than
the variation of SNR for each gesture. It means that our
model should be capable of handling such variation in the
signal caused by the tested fabric. The effect of attenuation
may slightly shorten the interaction range but may also not
significantly drop the accuracy of our system either.

LIMITATIONS AND FUTURE WORK
In this section, we discuss the limitations of our work and
propose potential directions for future research.

Effect of Body Motion. Sensor readings may be different if
the antenna is in motion. For example, if a user is jogging,
the training data acquired in a stationary condition may be
insufficient for recognizing the same set of gestures because
the relative motion between the hand and sensor has
changed. This is not a problem unique to Fabriccio, as touch
input on wearables has the same issue. Our next step is to
investigate the effect of sensor motion caused by different
user activities, identify the issues unique to touchless gesture
sensing, and explore practical solutions.
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Figure 14. The attenuation effect of covering fabric.

Effect of Antenna Deformation. During our lab study and
development of demo applications, we did not observe a
noticeable impact on sensing performance when there was a
small deformation in the antennas or transmission lines.
However, we expect that antenna deformation, especially in
large degrees, may eventually cause issues and affect the
performance of the system on some of its applications. We
plan to systematically investigate the change in the electric
field and ultimately the recognition ability of the touchless
gestures caused by antenna deformation. This will allow us
to understand the challenges for the proposed sensing
technique to be used in real-world scenarios and identify
novel solutions to overcome the challenges.

Sensing Region and Range. Touchless gestures are required
to be performed above the sensor. However, some
applications may benefit from an extended ability for gesture
sensing at any location on the fabric. The proposed sensor is
not designed for this purpose. Our future work will continue
in this direction. For example, we will develop an antenna
array in a grid layout to enlarge the sensing region and even
sense the coarse movement of the hand in a 2D space. Also,
many challenges still exist, with one being the routing of the
transmission lines and the interference of antennas.

Beyond Gesture Sensing. Radar technologies have found
their way in many HCI applications, such as object
recognition for tangible interactions [58] or activity sensing
for context-aware applications [63]. Many of these
technologies have great potential on daily objects covered or
made of interactive fabrics. We will explore ways that can
allow us to enable these novel interaction capabilities
through ubiquitous textile antennas.

Energy Consumption. Our current implementation is
powered using a battery. While sufficient for a research
prototype in an early stage, it is expected that sensors of the
future need to be self-sustainable. Textile antennas deliver
this promise because they have been used for energy
harvesting from radio waves in the environment (e.g., GSM)
[17, 32]. Tt is thus possible to make our technique self-
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powered for sensing or even data transformation [72]. We
see it a fruitful direction for future research.

CONCLUSION

In this paper, we demonstrated the feasibility of recognizing
touchless thumb-tip gestures on interactive fabrics using the
Doppler effect. We developed a proof-of-concept prototype
using a pair of antennas made of conductive thread sewn onto
a fabric substrate. We carefully chose the antenna type,
configuration, transmission lines, and operating frequency to
balance the complexity of the fabrication process and the
sensitivity of the system for touchless hand gestures. We
demonstrate that our system can achieve a 92.8% cross-
validation accuracy, and 85.2% cross-session accuracy in a
user study with 10 participants and 11 touchless gestures as
well as 1 touch gesture. For the subset of seven gestures, the
cross-user accuracy can reach 87.6%. Our technique
provides a useful addition to existing sensing techniques for
user input on soft fabrics, primarily based on touch and
deformation. This enables a new set of applications on
everyday objects that are covered or made of interactive
fabrics. We believe our technique may serve as important
groundwork for integrating the gestural input into the soft
objects in people’s daily life.
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