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Abstract. We study a general stochastic ranking problem in which an algorithm needs to
adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a
known distribution) at minimum expected cost. The coverage of each scenario is captured
by an individual submodular function, in which the scenario is said to be covered when its
function value goes above a given threshold.We obtain a logarithmic factor approximation
algorithm for this adaptive ranking problem, which is the best possible (unless P = NP).
This problem unifies and generalizes many previously studied problems with applications
in search ranking and active learning. The approximation ratio of our algorithm either
matches or improves the best result known in each of these special cases. Furthermore, we
extend our results to an adaptive vehicle-routing problem, in which costs are determined
by an underlying metric. This routing problem is a significant generalization of the pre-
viously studied adaptive traveling salesman and traveling repairman problems. Our
approximation ratio nearly matches the best bound known for these special cases. Finally,
we present experimental results for some applications of adaptive ranking.
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1. Introduction
Many stochastic optimization problems can be viewed
as sequential decision processes of the following form.
There is a known distribution$ over a set of scenarios,
and the goal is to cover an unknown realized sce-
nario i∗ drawn from $. In each step, an algorithm
chooses an element that partially covers i∗ and re-
ceives some feedback from that element. This feed-
back is then used to update the distribution over sce-
narios (using conditional probabilities). So any solution
in this setting is an adaptive sequence of elements. The
objective is to minimize the expected cost incurred to
cover the realized scenario i∗.

Furthermore, many different criteria to cover a
scenario can be modeled as covering a suitable sub-
modular function. Submodular functions are widely
used in many domains, for example, game theory,
social networks, search ranking, and document sum-
marization; see Shapley (1971), Lin and Bilmes (2011),
Prasad et al. (2014), and Kempe et al. (2015).

As an example of the class of problems that we
address, consider a medical diagnosis application.
There is a patient with an unknown disease, and there
are several possible tests that can be performed. Each
test has a certain cost, and its outcome (feedback)
can be used to restrict the set of possible diseases.

There are also a priori probabilities associated with
each disease. The task here is to obtain an adaptive
sequence of tests so as to identify the disease at
minimum expected cost.
As another example, consider a search engine ap-

plication. On any query, different user types are of-
ten interested in viewing different search results. Each
user type is associated with the set of results the user
type is interested in and a threshold number of results
the user type would like to see. There is also a proba-
bility distribution over user types. After displaying each
result (or a block of a small number of results), the search
engine receives feedback on which of those results were
of interest to the realizeduser type. The goal is to provide
an adaptive sequence of results so as to minimize the
expectednumber of results until the user type is satisfied.
Yet another example arises in route planning for

disaster management. After a major disaster such as
an earthquake, normal communication networks are
usually unavailable. So rescue operators would not
know the precise locations of victims before actually
visiting them. However, probabilistic information is
often available based on geographical data, etc. Then
the task is to plan an adaptive route for a rescue
vehicle that visits all the victims within a minimum
expected time.
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In this paper, we study an abstract stochastic op-
timization problem in the setting described that
unifies and generalizes many previously studied
problems, such as optimal decision trees (ODTs) studied
in Hyafil and Rivest (1976), Kosaraju et al. (1999),
Dasgupta (2004), Chakaravarthy et al. (2011), Cicalese
et al. (2014), and Gupta et al. (2017); equivalence class
determination (see Golovin et al. 2010 and Bellala et al.
2012); decision region determination studied in Javdani
et al. (2014); and submodular ranking studied in Azar
and Gamzu (2011) and Im et al. (2016). We obtain an
algorithm with the best possible approximation guar-
antee in all these special cases. We also obtain the first
approximation algorithms for some other natural prob-
lems that are captured by our framework, such as
stochastic versions of knapsack cover and matroid
basis with correlated distributions. Moreover, our al-
gorithm is very simple to state and implement. We also
present experimental results on the optimal decision
tree problem, and our algorithm performs very well.

We extend our framework to a vehicle-routing
setting as well, in which the elements are located in
a metric and the cost corresponds to travel distance/
time between these locations. As special cases, we re-
cover the adaptive traveling salesman (TSP) and re-
pairman (TRP) problems that were studied in Gupta
et al. (2017). Our approximation ratio almost matches
the best result known for these special cases. Our
approach has the advantage of being able to solve a
more general problem while allowing for a simpler
analysis. We note that submodular objectives are also
commonly utilized in vehicle-routing problems; see
Chekuri and Pal (2005) and references therein for
theoretical work and Singh et al. (2009) for applica-
tions in information acquisition and robotics.

For some stochastic optimization problems, one
can come up with approximately optimal solutions
using static (nonadaptive) solutions that are insen-
sitive to the feedback obtained; see, for example, sto-
chastic (maximization) knapsack in Dean et al. (2008)
and stochastic matching in Bansal et al. (2012).
However, this is not the case for the adaptive sub-
modular ranking problem. For all the special cases
mentioned, there are instances in which the optimal
adaptive value is much less than the optimal non-
adaptive value. Thus, it is important to come up with
an adaptive algorithm.

1.1. Adaptive Submodular Ranking
We start with some basics. A set function f : 2U → R+
on ground set U is said to be submodular if f (A) +
f (B) ≥ f (A ∩ B) + f (A ∪ B) for all A,B ⊆ U. The func-
tion f is said to be monotone if f (A) ≤ f (B) for all
A ⊆ B⊆ U. We assume that set functions are given in
the standard value oracle model; that is, we can
evaluate f (S) for any S ⊆ U in polynomial time. To

reduce notation, for any subset S ⊆ U and element
e ∈ U, we use f (S ∪ e) 
 f (S ∪ {e}).
In the adaptive submodular ranking problem (ASR),

wehave aground setU of n elementswith positive costs
{ce}e∈U. We also have m scenarios with a probability
distribution$ given by probabilities {pi}mi
1 totaling to
one. Each scenario i ∈ [m] :
 {1, · · · ,m} is specified by
i. A monotone submodular function fi : 2U → [0, 1],

where fi(∅) 
 0 and fi(U) 
 1 (any monotone submodu-
lar function can be expressed in this form by scaling).
ii. A feedback function ri : U → G, where G is a set

of possible feedback values.
We note that fi and ri need not be related in any way:

this flexibility allows us to capture many different ap-
plications. Scenario i ∈ [m] is said to be covered by any
subset S ⊆ U of elements such that fi(S) 
 1. The goal
in ASR is to adaptively find a sequence of elements
in U that minimizes the expected cost to cover a
random scenario i∗ drawn from $. The identity of i∗ is
initially unknown to the algorithm. When the algo-
rithm selects an element e ∈ U, it receives some feed-
back value g 
 ri∗ (e) ∈ G, which can be used to update
the probability distribution of i∗ using conditional
probabilities. In particular, the probability of any sce-
nario i ∈ [m] with ri(e) �
 g would become zero. The
sequence of selected elements is adaptive because it
depends on the feedback received.

Example 1. Figure 1 demonstrates an example for
ASR. In this example, we have elements U 
 {e1, e2, e3,
e4, e5, e6} and three scenarios. Each element has cost 1,
and there is a uniform probability distribution over
scenarios. Each senario i ∈ {1, 2, 3} is associated with a
subset Si with submodular function fi(S) 
 |S∩Si |

|Si | and
binary feedback function ri(e) 
 1[e ∈ Si]. So the re-
alized scenario i∗ is covered with subset S ⊆ U if and
only if Si∗ ⊆ S. And the feedback from an element e is
one if and only if e ∈ Si∗ . The decision tree in Figure 1
represents a feasible solution with expected cost 13 · 4+
1
3 · 3 + 1

3 · 3 
 10
3 .

A solution to ASR is represented by a decision tree7,
where each node is labeled by an element e ∈ U, and
the branches out of such a node are labeled by the
possible feedback we can receive after selecting e.
Each node in 7 also corresponds to a state that is
specified by the set E of previously selected elements
and the feedback θe ∈ G of each e ∈ E. From this in-
formation, we can obtain a more abbreviated version
of the state as (E,H), where H denotes the set of un-
covered and compatible scenarios based on the ob-
served feedback. Formally,

H 
 {i ∈ [m] : fi(E) < 1, ri(e) 
 θe for all e ∈ E}.
Every scenario i ∈ [m] traces a root–leaf path in the
decision tree 7, which, at any node labeled by ele-
ment e ∈ U, takes the branch labeled by feedback ri(e).
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Let Ti denote the sequence of elements on this path. In
a feasible decision tree 7, each scenario i ∈ [m] must
be covered, that is, fi(Ti) 
 1. The cost C7(i) of7 under
scenario i is the total cost of the shortest prefix Ti of Ti

such that fi(Ti) 
 1. The objective in ASR is to mini-
mize the expected cost

∑m
i
1 pi · (∑e∈Ti

ce). We em-
phasize that multiple scenarios may trace the same
path in 7: in particular, it is not necessary to identify
the realized scenario i∗ in order to cover it.

We also note that cost is only incurred until the
realized scenario i∗ gets covered even though the al-
gorithm may not know this. In applications in which
scenarios correspond to users and the goal is to mini-
mize cost incurred by the users, this is the natural
definition. An example is the multiple intent reranking
problem, which models the search engine application
(see Section 4.2). However, in some other applications
(such as optimal decision tree), we are interested
in algorithms that know exactly when to stop. For the
applications that we consider, it turns out that this
is still possible using the preceding definition; see
Section 4 for details.

An important parameter in the analysis of our al-
gorithm is the following:

ε :
 min
e∈U:fi(S∪e)>fi(S)

i∈[m], S⊆U

fi(S ∪ e) − fi(S). (1)

It measures the minimum positive incremental value
of any element. Such a parameter appears in all re-
sults on the submodular cover problem, for example,
Wolsey (1982) and Azar and Gamzu (2011).

1.2. Adaptive Submodular Routing
In the adaptive submodular routing problem (ASP),
we have a ground set U of n elements that are located
at vertices of ametric (U ∪ {s}, d), where s is a specified
root vertex. Here, d : U ×U → R+ is a cost function
that is symmetric (i.e., d(x, y) 
 d(y, x) for all x, y ∈ U)

and satisfies triangle inequality (i.e., d(x, y) + d(y, z) ≥
d(x, z) for all x, y, z ∈ U). We use the terms “element”
and “vertex” interchangeably. As before, we have m
scenarios with a probability distribution $ given by
probabilities {pi}mi
1 totaling to one, and each scenario
i ∈ [m] is associated with functions fi and ri. A feasible
solution toASP can again be represented by a decision
tree 7, at the end of which each scenario is covered.
Note that, in the actual solution, we need to return to
the root s after visiting the last vertex in 7. For any
scenario i, let τi denote the root–leaf path traced in
decision tree 7 and let πi denote the shortest prefix
of τi such that fi(πi) 
 1. The cost C7(i) of 7under
scenario i is the total cost of path πi. Specifically,
if πi 
 s, e1, e2, · · · ek, the cost under scenario i would
be C7(i) 
 d(s, e1) +∑k−1

i
1 d(ei, ei+1). The objective is to
minimize the expected cost

∑m
i
1 pi · C7(i). As with

ASR, cost in ASP is only incurred until the realized
scenario i∗ is covered.
This problem differs from ASR only in the defini-

tion of the cost: here, we want to minimize the expected
metric cost of thewalk that covers i∗. Note also that ASP
generalizes ASR (at the loss of factor 2 in the ap-
proximation ratio). To see this, for any ASR instance,
consider the ASP instance on the metric (U ∪ {s}, d)
induced by a star with center s and leaves U, where
d(s, e) 
 ce for all e ∈ U.

1.3. Results
Our main result is an O(log 1

ε + logm)-approximation
algorithm for ASR in which ε > 0 is as defined in (1)
and m is the number of scenarios. Assuming P �
 NP,
this result is asymptotically the best possible even
whenm 
 1. This is because the set cover problem on k
elements is a special case of ASR with m 
 1 and
parameter ε
1/k, and Dinur and Steurer (2014) showed
that approximating set cover to within a (1−δ)lnk fac-
tor (for any δ>0) is NP-hard. Our algorithm is a
simple adaptive, greedy-style algorithm. At each step,

Figure 1. An Example for ASR and a Feasible Solution
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we assign a score to each remaining element and select
the element with maximum score. Such a simple algo-
rithmwas previously unknown even in the special case
of an optimal decision tree despite a large number of
papers on this topic, includingHyafil and Rivest (1976),
Kosaraju et al. (1999), Dasgupta (2004), Guillory and
Bilmes (2009), Chakaravarthy et al. (2011), Golovin
andKrause (2011), Adler and Heeringa (2012), Cicalese
et al. (2014), and Gupta et al. (2017).

For ASP, we provide an O(log2+δ n · (log 1
ε + logm))-

approximation algorithm in which δ > 0 is any fixed
constant and ε is as defined in (1). This algorithm
utilizes some ideas from the algorithm for ASR and
involves combining a number of smaller tours into the
final solution. We also make use of an algorithm for
the (deterministic) submodular orienteering problem
in a black box fashion. Our result is nearly the best
possible because the group Steiner problem studied in
Garg et al. (2000) is a special case of ASP with m 
 1
and parameter ε 
 1/k, where k denotes the number of
groups. There is an Ω(log2−δ n)-factor hardness of
approximation for group Steiner by Halperin and
Krauthgamer (2003), and the best approximation
ratio known isO(log2 n · log k) from Garg et al. (2000).

We show that our framework is widely applicable
by demonstrating a number of previously studied
stochastic optimization problems as special cases. In
many cases, we match or improve upon prior ap-
proximation guarantees. We also obtain the first
approximation algorithms for some other stochastic
problems. More details on these applications can be
found in Section 4.

Finally, in Section 5, we provide computational
results for the optimal decision tree problem (and its
generalized version). We use a data set arising in the
identification of toxic chemicals based on binary symp-
toms. Our algorithm performs very well compared
with some other natural algorithms.

1.3.1. Outline of Key Techniques. Our algorithm for
ASR involves repeatedly selecting an element that
maximizes a combination of (i) the expected increase
in function value relative to the target of one and (ii) a
measure of gain in identifying the realized scenario.
See Equation (2) for the formal selection criterion.
Our analysis provides new ways of reasoning about
adaptive decision trees. At a high level, our approach
is similar to that for theminimum latency TSP in Blum
et al. (1994) and Chaudhuri et al. (2003). We upper
bound the probability that the algorithm incurs a
certain power-of-two cost 2k in terms of the proba-
bility that the optimal solution incurs cost 2k/α, which
is then used to establish an O(α) approximation ratio.
Our main technical contribution is in relating these
completion probabilities in the algorithm and the
optimal solution (see Lemma 2). In particular, a key

step in our proof is a coupling of “bad” states in the
algorithm (in which the gain in terms of our selection
criterion is small) with bad states in the optimum
(in which the cost incurred is high). This is reflected
in the classification of the algorithm’s states as good/
okay/bad (Definition 1), and the proof that the ex-
pected gain of the algorithm is large (Lemma 3). Our
algorithmand analysis for theASP are along similar lines.

1.4. Related Works
The basic submodular cover problem (select a min-
cost subset of elements that covers a given submodu-
lar function) was first considered by Wolsey (1982),
who proved that the natural greedy algorithm is
a (1 + ln 1

ε)-approximation algorithm. This result is
tight because set cover is a special case. The sub-
modular cover problem corresponds to the special
case of ASR with m 
 1.
The deterministic submodular ranking problem

was introduced by Azar and Gamzu (2011), who
obtained an O(log 1

ε)-approximation algorithm when
all costs are unit. This is a special case of ASR when
there is no feedback (i.e.,G 
 ∅) and costs are uniform;
note that the optimal ASR solution in this case is just a
fixed sequence of elements. The result in Azar and
Gamzu (2011) was based on an interesting “reweigh-
ted” greedy algorithm: the second term in our se-
lection criterion (2) is similar to this. A different proof
of the submodular ranking result, using amin-latency
type analysis, was obtained in Im et al. (2016), which
also implied anO(log 1

ε)-approximation algorithmwith
nonuniform costs. We also use a min-latency type anal-
ysis for ASR.
The first O(logm)-approximation algorithm for

an optimal decision tree was obtained in Gupta
et al. (2017), which is known to be best possible from
Chakaravarthy et al. (2011). This resultwas extended to
the equivalence class determination problem in Cicalese
et al. (2014). Previous results based on a simple greedy
“splitting” algorithm had a logarithmic dependence
on either costs or probabilities, which can be expo-
nential in m; see Kosaraju et al. (1999), Dasgupta
(2004), Guillory and Bilmes (2009), Chakaravarthy
et al. (2011), and Adler and Heeringa (2012). The
algorithms in Gupta et al. (2017), and Cicalese et al.
(2014) were significantly more complex than what we
obtain here as a special case of ASR. In particular,
these algorithms proceeded in O(logm) phases, each
of which required solving an auxiliary subproblem
that reduced the number of possible scenarios by a
constant factor. Using such a “phase-based” algo-
rithm and analysis for the general ASR problem only
leads to an O(logm · log 1

ε)-approximation ratio be-
cause the subproblem to be solved in each phase is
submodular ranking, which only has an O(log 1

ε)-
approximation ratio. Our work is based on a much
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simpler greedy-style algorithm and a new analysis,
which leads to the 2(logm + log 1/ε) approximation
ratio.

A different stochastic version of submodular ranking
was considered in Im et al. (2016), in which (i) the
feedback was independent across elements and (ii) all
the submodular functions needed to be covered. In
contrast, ASR involves a correlated scenario-based
distribution, and only the submodular function of the
“realized” scenario i∗ needs to be covered. Because of
these differences, both the algorithm and analysis for
ASR are different from Im et al. (2016): our selection
criterion (2) involves an additional “information
gain” term, and our analysis requires a lot more work
in order to handle correlations. We note that, unlike
ASR, the stochastic submodular ranking problem in
Im et al. (2016) does not capture the optimal decision
tree problem and its variants (equivalence class, de-
cision region determination, etc.).

For some previous special cases of ASR studied in
Golovin et al. (2010), Bellala et al. (2012), and Javdani
et al. (2014), one could obtain approximation algo-
rithms via the framework of “adaptive submodular-
ity” introduced by Golovin and Krause (2011). How-
ever, this approach does not apply to the general ASR
problem, and the approximation ratio obtained is at
least Ω(log2 1/pmin), where pmin 
 minm

i
1 pi can be ex-
ponentially small inm.We note that the original paper
byGolovin andKrause (2011) claimed anO(log 1/ pmin)
bound, which was found to be erroneous by Nan and
Saligrama (2017); an updated version in Golovin
and Krause (2017) addresses this error but only ob-
tains an O(log2 1/pmin) bound. So, even in the case of
uniform probabilities, our result provides an im-
proved O(logm) approximation ratio compared with
the O(log2 m) ratio from Golovin and Krause (2017).
We also note that our analysis is based on a com-
pletely different approach, which might be of inde-
pendent interest.

Recently, Grammel et al. (2016) considered the sce-
nario submodular cover problem,which can also be seen
as a special case of ASR. This involves a single integer-
valued submodular function for all scenarios, which
is defined on an expanded ground setU × G (i.e., pairs
of “element, feedback” values). For this problem, our
algorithm matches (in fact, improves slightly) the
approximation ratio in Grammel et al. (2016) with a
much simpler algorithm and analysis. We note that
ASR is strictly more general than scenario submodular
cover. For example, deterministic submodular ranking
studied in Azar and Gamzu (2011) is a special case of
ASR but not of scenario submodular cover.

A special case of the ASP, the adaptive TSP was
studied in Gupta et al. (2017), in which the goal is
to visit vertices in a random demand set. Gupta et al.
(2017) obtained an O(log2 n · logm)-approximation

algorithm for adaptive TSP and showed that any im-
provement on this would translate to a similar im-
provement for the group Steiner problem, which is a
long-standing open question. Although our approxi-
mation ratio for ASP is slightly worse, it is much more
general and involves a simpler analysis. For example,
using ASP, we can directly obtain an approximation
algorithm for the variant of adaptive TSP inwhich only
a target number of demand vertices need to be visited.
A problem formulation similar to ASP was also

studied in Lim et al. (2015), where approximation al-
gorithms were obtained under certain technical as-
sumptions on the underlying submodular functions
and probability distribution. To the best of our knowl-
edge, the approach in Lim et al. (2015) is not applicable
to the general ASP problem considered here.

2. Algorithm for Adaptive
Submodular Ranking

Recall that the state of our algorithm (i.e., any node in
its decision tree) can be represented by (E,H), where
(i) E ⊆ U is the set of previously selected elements and
(ii) H ⊆ [m] is the set of scenarios that are compatible
with feedback (on E) received so far and are still
uncovered.
At each state (E,H), our algorithm selects an ele-

ment that maximizes the value computed in Equa-
tion (2). This can be viewed as the cost-effectiveness of
any element e: the terms inside the parantheses mea-
sure the gain from element e, and this gain is nor-
malized by the element’s cost ce. The gain of any el-
ement e comes from two sources:

1. Information gain: this corresponds to the first
term in (2). Note that the feedback from element e
can be used to define a partition of the scenarios in H,
where all scenarios in a part have the same feed-
back from e. Then, subset Le(H) is defined to be the
complement of the largest cardinality part; note that
each part within Le(H) has size at most |H|/2. If the
realized scenario happens to be in Le(H), then we
make good progress in identifying the scenario: this
is because the number of compatible scenarios de-
creases by (at least) a factor of two. The term

∑
j∈Le(H) pj

in (2) is just the probability that the realized scenario
is in Le(H).

2. Function coverage: this corresponds to the second
term in (2) and is based on the algorithm for deter-
ministic submodular ranking from Azar and Gamzu
(2011). An important point here is that we consider
the relative gain of each function fi (for i ∈ H), which
is the ratio of the increase in function value (i.e.,
fi(e ∪ E) − fi(E)) to the remaining target (i.e., 1 − fi(E)),
rather than just the absolute increase.
Algorithm 1 gives a formal description. Note that

we may not incur the cost for all selected elements
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under scenario i∗ as the cost is only considered up to
the point at which i∗ is covered.

Algorithm 1 (ASR Algorithm)
1. E ← ∅, H ← [m].
2. while H �
 ∅ do
3. For any element e ∈ U, let Be(H) denote the set

with maximum cardinality among

{i ∈ H : ri(e) 
 t}, for t ∈ G.

Define Le(H) 
 H \ Be(H).
4. Select element e ∈ U \ E that maximizes

1
ce
· ∑

j∈Le(H)
pj + ∑

i∈H
pi · fi(e ∪ E) − fi(E)

1 − fi(E)

( )
. (2)

5. E ← E ∪ {e}.
6. Remove incompatible and covered scenarios

from H based on the feedback from e.
7. end.
8. Output E.

Note that H only contains uncovered scenarios. So,
for all i ∈ H, we have fi(E) < 1, and the denominator in
Equation (2) is always positive. We have the fol-
lowing theorem:

Theorem 1. Algorithm 1 is an 2(log 1/ε + log m)-
approximation algorithm for ASR.

Now, we analyze the performance of this algo-
rithm. For any subset T⊆ [m] of scenarios, we use
Pr(T) 
 ∑

i∈T pi. For any subset W ⊆U of elements, we
use c(W) 
 ∑

e∈W ce. Let OPT denote an optimal solu-
tion to the ASR instance and ALG be the solution
found by the algorithm. Set L :
 15(1 + ln 1/ε + log2 m),
and its choice will be clear later. We refer to the total
cost incurred until any point in a solution as the time.
We assume (without loss of generality by scaling) that
all costs are at least one. For any k 
 0, 1, · · ·, we define
the following quantities:

• Ak is the set of uncovered scenarios of ALG at
time L · 2k, and ak 
 Pr(Ak). More formally, we have
Ak 
 {i ∈ [m] : CALG(i) ≥ L · 2k}, where CALG(i) is the
cost of scenario i in ALG.

• Xk is the set of uncovered scenarios of OPT at
time 2k−1, and xk 
 Pr(Xk). That is, we have Xk 

{i ∈ [m] : COPT(i) ≥ 2k−1}, where COPT(i) is the cost of
scenario i in OPT. Note that x0 
 1.

To keep things simple, we assume that all costs are
integers.However, the analysis extends directly to the
case of noninteger costs by replacing summations
(over time t) with integrals.

Lemma 1. The expected cost of ALG and OPT can be
bounded as follows:

CALG ≤ L
∑
k≥0

2kak + L and COPT ≥ 1
2

∑
k≥0

2k−1xk . (3)

Proof of Lemma 1. In ALG, for all k ≥ 1, the probability
of scenarios for which the cover time is in [2k−1L, 2kL) is
equal to ak−1 − ak. So we have

CALG 
 ∑
i∈[m]

pi · CALG(i) 

∑
k≥1

∑
i∈Ak−1\Ak

pi · CALG(i)

≤ ∑
k≥1

∑
i∈Ak−1\Ak

pi · 2kL

≤ ∑
k≥1

2kL(ak−1 − ak) + L(1 − a0)


 ∑
k≥1

2kLak−1 −
∑
k≥1

2kLak + L(1 − a0)


 2
∑
k≥0

2kLak −
∑
k≥0

2kLak − La0

( )
+ L(1 − a0)


 ∑
k≥0

2kLak + L.

On the other hand, in OPT, for all k ≥ 1, the proba-
bility of scenarios for which the cover time is in [2k−2,
2k−1) is equal to xk−1 − xk. So we have

COPT 
 ∑
i∈[m]

pi · COPT(i) 
 ∑
k≥1

∑
i∈Xk−1\Xk

pi · COPT(i)

≥ ∑
k≥1

∑
i∈Xk−1\Xk

pi · 2k−2 ≥
∑
k≥1

2k−2(xk−1 − xk)


 ∑
k≥1

2k−2xk−1 −
∑
k≥1

2k−2xk


 ∑
k≥0

2k−1xk − 1
2

∑
k≥0

2k−1xk − 1
2

( )
≥ 1
2

∑
k≥0

2k−1xk.

We used the fact that x0 
 1. □

Thus, if we could upper bound each ak by some
multiple of xk, it would be easy to obtain the approxi-
mation factor. However, this is not the case, and instead
we prove Lemma 2.

Lemma 2. For all k ≥ 1, we have ak ≤ 0.2ak−1 + 3xk.

Using this lemma, we can prove Theorem 1.

Proof of Theorem 1. Let Q 
 ∑
k≥0 L · 2kak + L, which is

the bound on CALG from (3). Using Lemma 2,

Q ≤ L ·∑
k≥1

2k(0.2ak−1 + 3xk) + L(a0 + 1)

≤ 0.4L ·∑
k≥0

2kak + 6L ·∑
k≥1

2k−1xk + L(a0 + 1)

≤ 0.4(Q − L) + 6L
∑
k≥0

2k−1xk − x0
2

( )
+ 2L

≤ 0.4 ·Q + 12L · COPT. (4)

The first inequality in (4) is by definition of Q and
a0 ≤ 1, and the second inequality uses the bound
on COPT from (3). Finally, we have Q ≤ 20L · COPT.
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Because L 
 15(1 + ln 1/ε + logm) and CALG ≤ Q, we
obtain the theorem. □

2.2. Proof of Lemma 2
We now prove Lemma 2 for a fixed k ≥ 1. Consider
any time t between L · 2k−1 and L · 2k. Note that ALG’s
decision tree induces a partition of all the uncovered
scenarios at time t, where each part H consists of all
scenarios that are at a particular state (E,H) at time t.
Let R(t) denote the set of parts in this partition. We
also use R(t) to denote the collection of states corre-
sponding to these parts. Note that all scenarios in Ak
appear in R(t) as these scenarios are uncovered even
at time L · 2k ≥ t. Similarly, all scenarios in R(t) are in
Ak−1. See Figure 3.

Proposition 1. Consider any state (E,H) and element
e ∈ E. Then (i) the feedback values {ri(e) : i ∈ H} are all
identical, and (ii) Le(H) 
 ∅.
Proof of Proposition 1. Note that, by definition, at state
(E,H), all scenarios in H are compatible with the feed-
back received from elements in E. Thus, all of them
should have the same feedback for any element in E.
Furthermore, for any e ∈ E, Le(H) is the complement of
the largest part in the partition of H based on element
e’s feedback. According to the fact that all scenarios inH
have the same feedback for element e, they are all in
the same part, which is the largest part. So the com-
plement of the largest part of the partition, which is
Le(H), is empty. □

For any (E,H) ∈ R(t), note that E consists of all el-
ements that have been completely selected before
time t. The element that is being selected at state (E,H)
is not included in E. Let TH(k) denote the subtree of
OPT that corresponds to paths traced by scenarios
in H up to time 2k−1; this only includes elements that
are completely selected by time 2k−1. Note that each
node (labeled by any element e ∈ U) in TH(k) has at
most |G|outgoing branches, and one of them is labeled
by the feedback corresponding to Be(H) 
 H \ Le(H).
We define Stemk(H) to be the path in TH(k) that, at
each node (labeled e), follows the branch corresponding
toH \ Le(H). See Figure 2 for an example. We also use
Stemk(H) to denote the set of elements that are com-
pletely selected on this path.

Definition 1. Each state (E,H) in ALG is exactly one of
the following types:

• Bad if the probability of uncovered scenarios in
H at the end of Stemk(H) is at least Pr(H)

3 .
• Okay if it is not bad and Pr(∪e∈Stemk(H) Le(H)) is at

least Pr(H)
3 .

• Good if it is neither bad nor okay and the proba-
bility of scenarios in H that get covered by Stemk(H)
is at least Pr(H)

3 .

See Figure 3. This is well defined because, by def-
inition ofStemk(H), each scenario inH is (i) uncovered
at the end of Stemk(H) or (ii) in Le(H) for some e ∈
Stemk(H) or (iii) covered by some prefix of Stemk(H);

Figure 2. Stemk(H) in OPT for |G| 
 2

Figure 3. Bad, Good, and Okay States in ALG
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that is, the function value reaches one on Stemk(H). So
the total probability of the scenarios in one of these
three categories must be at least Pr(H)

3 . Therefore, each
state (E,H) is exactly one of these three types.

The following quantity turns out to be very useful
in our proof of Lemma 2.

Z :
 ∑L2k
t>L2k−1

∑
(E,H)∈R(t)

max
e∈U\E

1
ce

· Pr(Le(H)) + ∑
i∈H

pi · fi(e ∪ E) − fi(E)
1 − fi(E)

( )
, (5)


 ∑L2k
t>L2k−1

∑
(E,H)∈R(t)

max
e∈U\E

1
ce

· ∑
i∈H

pi · 1[i ∈ Le] + fi(e ∪ E) − fi(E)
1 − fi(E)

( )( )
. (6)

Basically Z corresponds to the total “gain” according
to our algorithm’s selection criterion (2) accrued from
time L2k−1 to L2k over all the decision paths. We note
that, if costs are not integer, we can consider an in-
tegral over time t ∈ (L2k−1,L2k] instead of the sum-
mation, and the rest of the analysis is essentially
unchanged.Now,we obtain a lower andupper bound
for Z and combine them to prove Lemma 2. The lower
bound views Z as a sum of terms over t and uses
the fact that the gain is “high” for good/okay states
as well as the bound on probability of bad states
(Proposition 2). The upper bound views Z as a sum of
terms over scenarios and uses the fact that if the total
gain for a scenario is high then it must be already
covered.

Proposition 2. For any t ∈ L2k−1,L2k
([ ]

, we have∑
(E,H)∈R(t)
(E,H):bad

Pr(H) ≤ 3xk.

Proof of Proposition 2. Note that Stemk(H) ⊆ TH(k).
Recall that TH(k) is the subtree of OPT up to time 2k−1
that only contains the scenarios in H. So the proba-
bility of uncovered scenarios at the end of Stemk(H)
is at most the probability of scenarios in H that are
not covered in OPT by time 2k−1. This probability is
at least Pr(H)/3 for the bad state (E,H) based on its
definition. Now, because states in R(t) induce a sub-
partition of scenarios, we have

xk 
 ∑
i∈Xk

pi ≥ ∑
(E,H)∈R(t)
(E,H):bad

∑
i∈H∩Xk

pi

≥ ∑
(E,H)∈R(t)
(E,H):bad

Pr(H)/3.

Rearranging, we obtain the desired inequality. □

Lemma 3. We have Z ≥ L · (ak − 3xk)/3.

Proof of Lemma 3. Considering only the good/okay
states in each R(t) in expression (5),

Z ≥ ∑L2k
t>L2k−1

∑
(E,H)∈R(t)
(E,H):okay

max
e∈U\E

Pr(Le(H))
ce

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
+ ∑

(E,H)∈R(t)
(E,H):good

max
e∈U\E

∑
i∈H

pi
ce
· fi(e ∪ E) − fi(E)

1 − fi(E)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
Fix any time t. For any state (E,H) ∈ R(t), define
W(H) 
 Stemk(H) \ E. The total cost of elements in
Stemk(H) is at most 2k−1, so c(W(H)) ≤ 2k−1.
Case 1. (E,H) is an okay state. BecauseW(H) ⊆U \ E,

we can write

max
e∈U\E

Pr(Le(H))
ce

≥ max
e∈W(H)

Pr(Le(H))
ce

≥
∑

e∈W(H)
Pr(Le(H))

c(W(H)) ≥ Pr(∪e∈W(H)Le(H))
2k−1


 1
2k−1

· Pr(∪e∈Stemk(H)Le(H)) ≥ Pr(H)
3 · 2k−1 . (7)

Theequality in (7) uses∪e∈ELe(H) 
 ∅ (byProposition 1),
and the last inequality is by definition of an okay
state.
Case 2. (E,H) is a good state. We use F⊆H to denote

the set of scenarios that get covered in Stemk(H); by
definition of a good state, we have Pr(F) ≥ Pr(H)/3.
Again using W(H) ⊆ U \ E, we have

max
e∈U\E

1
ce

∑
i∈H

pi · fi(e ∪ E) − fi(E)
1 − fi(E)

≥ max
e∈W(H)

1
ce

∑
i∈H

pi · fi(e ∪ E) − fi(E)
1 − fi(E)

≥ 1
c(W(H))

∑
e∈W(H)

∑
i∈H

pi · fi(e ∪ E) − fi(E)
1 − fi(E)


 1
c(W(H))

∑
i∈H

pi
∑

e∈W(H)

fi(e ∪ E) − fi(E)
1 − fi(E)

≥ 1
2k−1

∑
i∈H

pi · fi(W(H) ∪ E) − fi(E)
1 − fi(E) , (8)


 1
2k−1

∑
i∈H

pi · fi(Stemk(H)) − fi(E)
1 − fi(E)

≥ ∑
i∈F

pi
2k−1


 Pr(F)
2k−1

≥ Pr(H)
3 · 2k−1 . (9)

The last inequality in (8) is by submodularity of
the fi’s, and the next equality is by definition of
W(H). The first inequality in (9) is based on this
fact that fi(Stemk(H)) 
 1 for any i ∈ F, and the last
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inequality is by definition of a good state. Now, we
combine (7) and (9):

Z ≥ ∑L2k
t>L2k−1

∑
(E,H)∈R(t)
(E,H):okay

Pr(H)
3 · 2k−1 +

∑L2k
t>L2k−1

∑
(E,H)∈R(t)
(E,H):good

Pr(H)
3 · 2k−1


 ∑L2k
t>L2k−1

Pr(R(t)) −∑
(E,H)∈R(t)
(E,H):bad

Pr(H)
3 · 2k−1

≥ ∑L2k
t>L2k−1

ak − 3xk
3 · 2k−1 
 L · (ak − 3xk)

3
. (10)

The first equality uses the fact that the states (E,H) ∈
R(t) are exactly one of the types bad/okay/good. The
last inequality uses Proposition 2 and that {H : (E,
H) ∈ R(t)} contains all scenarios in Ak. □

Lemma 4. We have Z ≤ ak−1 · (1 + ln 1/ε + logm).
Proof of Lemma 4. For any scenario i ∈ Ak−1 (i.e., un-
covered in ALG by time L2k−1), let π̂i be the path traced
by i in ALG’s decision tree. For each element e that
appears in π̂i, we say that e is selected during the in-
terval Ke,i 
 (De,De + ce], where De is the total cost of
elements in π̂i before e. Let πi be the subpath of π̂i
consisting of elements selected between time 2k−1L and
2kL or when i gets covered (whatever happens earlier).
Let te,i ≤ ce denote the width of the interval Ke,i ∩
(L2k−1 , L2k]. Note that there can be at most two ele-
ments e in πi with ti,e < ce: one that is being selected at
time L2k−1 and another at L2k.

Recall that, for any L2k−1 < t ≤ L2k, every scenario in
R(t) appears in Ak−1. So only scenarios in Ak−1 can con-
tribute to Z, and we rewrite (6) by interchanging sum-
mations as follows:

Z 
 ∑
i∈Ak−1

pi ·
∑
e∈πi

te,i · 1ce
fi(e ∪ E) − fi(E)

1 − fi(E)
(

+1[i ∈ Le(H)]
)

≤ ∑
i∈Ak−1

pi ·
∑
e∈πi

fi(e ∪ E) − fi(E)
1 − fi(E)

(
+ ∑

e∈πi

1[i ∈ Le(H)]
)
.

(11)

For any e ∈ πi, we use (E,H) to denote the state at
which e is selected.

Fix any scenario i ∈ Ak−1. For the first term, we use
Claim 1 (see below) and the definition of ε in (1). This
implies

∑
e∈πi

fi(e∪E)−fi(E)
1−fi(E) ≤ 1 + ln 1

ε. To bound the second
term, note that, if scenario i ∈ Le(H) when ALG selects
element e, then the number of compatible scenarios
decreases by at least a factor of two in path πi. So such
an event can happen at most log2 m times along the
path πi. Thus, we can write

∑
e∈πi 1[i∈ Le(H)] ≤ log2m.

The lemma now follows from (11). □

We now complete the proof of Lemma 2.

Proof of Lemma 2. By Lemmas 3 and 4, we have

L · (ak − 3xk)/3 ≤ Z

≤ ak−1 · (1 + ln 1/ε + logm) 
 ak−1 · L15 .
Rearranging, we obtain ak ≤ 0.2 · ak−1 + 3xk as
needed. □

Claim 1 (Claim 2.1 in Azar and Gamzu (2011)). Let f :
2U → [0, 1] be any monotone function with f (∅) 
 0
and ε 
min{ f (S∪ {e})− f (S) : e ∈U,S⊆U, f (S∪ {e}) −
f (S) > 0}. Then, for any sequence ∅ 
 S0⊆S1⊆ · · ·Sk ⊆U
of subsets, we have∑k

t
1

f (St) − f (St−1)
1 − f (St−1) ≤ 1 + ln

1
ε
.

3. Algorithm for Adaptive
Submodular Routing

Recall that the ASP is a generalization of ASR to a
vehicle-routing setting in which costs correspond to a
metric (U ∪ {s}, d). Here,Udenotes the set of elements,
and s is a special root vertex. The rest of the input is
exactly as in ASR: we are given m scenarios in which
each scenario i ∈ [m] has some probability pi, a sub-
modular function fi, and a feedback function ri. The
goal is to compute an adaptive tour (that begins and
ends at s) and covers a random scenario i∗ atminimum
expected cost, and the cost corresponds to the cost of
the path of elementswe need to take untilwe cover the
realized scenario. For anywalkP, when it is clear from
context, we also use P to refer to the vertices/elements
on this walk.
An important subproblem in our algorithm for ASP

is the submodular orienteering problem (SOP), defined
as follows. There is a metric (U ∪ {s}, d) with root s, a
monotone submodular function f : 2V → R+, and a
bound B. The goal is to compute a tour P originating
from s of cost at most B that maximizes f (P). A (ρ, σ)-
bicriteria approximation algorithm for SOP returns a
tour P such that the cost of P is at most σ · B and f (P) ≥
OPT/ρ, whereOPT is the maximum value of a tour of
cost atmostB. Our ASP algorithmmakes use of a (ρ, σ)-
bicriteria approximation algorithm denoted ALG-SOP.
Our algorithm involves concatenating a sequence

of smaller tours (each originating from s), where the
tour costs increase geometrically. Each such tour is
obtained as a solution to a suitably defined instance
of SOP. The SOP instance encountered at state (E,H)
involves the function g(E,H) defined in (12). Similar to
the definition (2) of gain of an individual element in
the ASR algorithm, function g(E,H)(T) measures the
collective gain from any subset T of elements. This
again comprises two parts:
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1. Information gain: this is the first term in (12). The
definition of subsets Le(H) is the same as for ASR. If
the realized scenario happens to be in Le(H) for any
e ∈ T, then it is clear that we make good progress
in identifying the scenario: the number of compati-
ble scenarios decreases by (at least) a factor of two.
The term Pr ∪e∈TLe(H)( ) in (12) is just the probability
that the realized scenario is in Le(H) for some e ∈ T.

2. Function coverage: this is the second term in (12)
and is based on the algorithm for deterministic sub-
modular routing from Im et al. (2016).

Crucially, both of these terms in g(E,H) aremonotone
submodular functions, so SOP can be used.

Algorithm 2 (ASP Algorithm)
1. E ← ∅, π ← Ø,H ← [m] and

D 
 15ρ(1 + ln 1
ε + logm).

2. for phase k 
 0, 1, 2, . . ., do
3. If H 
 ∅, then output π and end the

algorithm.
4. for iteration u 
 1, 2, . . . ,D, do
5. For any element e ∈ U \ E, let Be(H) de-

note the set with maximum cardinal-
ity among {i ∈ H : ri(e) 
 t} for t ∈ G
and define Le(H) :
H \ Be(H).

6. Define the submodular function

g(E,H)(T) :
 Pr ∪e∈TLe(H)( )
+ ∑

i∈H
pi · fi(E ∪ T) − fi(E)

1 − fi(E) ,

∀T⊆U.

(12)
7. Use ALG-SOP to approximately solve

the SOP instance on metric (U ∪ {s}, d)
with root s, submodular function
g(E,H), and cost bound 2k to obtain tour
Pu.

8. E ← E ∪ Pu and concatenate Pu to π to
form a new tour.

9. Remove incompatible and covered sce-
narios from H based on the feedback
from Pu.

10. end
11. end

Aswith ASR, the algorithm for ASPmay not incur the
costof the entirewalk tracedunder scenario i∗: recall that
the cost is only incurred until i∗ gets covered.

We can always assume thatPu ⊆U \ E in line 7: this is
because g(E,H)(e) 
 0 for all e ∈ E as in Proposition 1. In
the rest of this section, we prove the following result.

Theorem 2. If ALG-SOP is any (ρ, σ)-bicriteria approxi-
mation algorithm for SOP, our algorithm for ASP is an
2(σρ(log 1/ε + logm))-approximation algorithm.

We can use the following known result on SOP.

Theorem 3 (Calinescu and Zelikovsky 2005). For any con-
stant δ> 0, there is a polynomial time (2(1),2(log2+δn))-
bicriteria approximation algorithm for submodular orienteering.

By combining Theorems 2 and 3, we obtain the
following:

Corollary 1. For any constant δ > 0, there is an 2((log 1/ε+
logm) · log2+δn)-approximation algorithm for the adaptive
submodular routing problem.

Instead of Theorem 3, we can also use the quasi-
polynomial time 2(log n)-approximation algorithm for
SOP from Chekuri and Pal (2005), which implies the
following:

Corollary 2. There is a quasi-polynomial time 2((log 1/ε+
logm) · log n)-approximation algorithm for the adaptive
submodular routing problem.

3.2. Analysis
We start by showing that the use of SOP is well defined.

Proposition 3. For any state (E,H) in Algorithm 2, the
function g(E,H) is monotone and submodular.

Proof of Proposition 3. First note that, for any mono-
tone submodular function fi and E⊆U, we have that
fi(E ∪ T) − fi(E) is a monotone submodular function
of T. Also f (T) 
 Pr(⋃e∈T Le(H)) is a weighted coverage
function, so it is monotone submodular. Now, be-
cause a nonnegative weighted sum of submodular
functions is submodular, the following function is
submodular:

∑
i∈H

pi · fi(E ∪ T) − fi(E)
1 − fi(E) + Pr(⋃

e∈T
Le(H)),

which is equal to g(E,H)(T). □

In the following, we use cost and time interchange-
ably. We refer to the outer loop in Algorithm 2 by
phase and the inner loop by iteration. Define L̄ :

2D · σ. Then we have the following proposition:

Proposition 4. All vertices that are added to E in the jth
phase are visited in π by time L̄ · 2j.
Proof of Proposition 4. In each phase k, we addD tours
of cost at most 2kσ each. So a vertex that is added
in phase j is visited by time

∑j
k
0 2

kD · σ ≤ 2j+1D · σ 

L̄ · 2j. □

Let ALG be the solution produced by Algorithm 2
and OPT be the optimal solution. For any k 
 0, 1, · · ·,
we define the following quantities:
• Ak is the set of uncovered scenarios of ALG at

the end of phase k, and ak 
 Pr(Ak).
• Xk is the set of uncovered scenarios of OPT at

time 2k−1, and xk 
 Pr(Xk). Note that x0 
 1.
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Lemma 5. The expected cost of ALG and OPT can be
bounded as follows:

CALG ≤ L̄
∑
k≥0

2kak + L̄ and COPT ≥ 1
2

∑
k≥0

2k−1xk . (13)

Proof of Lemma 5. By Proposition 4, for all k ≥ 1, every
scenario in Ak−1 \ Ak in ALG is covered by time L̄2k. So
we can write exactly the same inequalities as in the
proof of Lemma 1. □

As for ASR, in order to prove Theorem 2, it suffices
to prove the following:

Lemma 6. For any k ≥ 0, we have ak ≤ 0.2ak−1 + 3xk.

3.3. Proof of Lemma 6
Throughout this subsection, we fix phase k to its value
in Lemma 6. Consider any iteration u in phase k of the
algorithm. ALG’s decision tree induces a partition of
all the uncovered scenarios at iteration u, where each
part H consists of all scenarios that are at a particular
state (E,H) at the start of iteration u. Let Rk(u) denote
the set of parts in this partition. We also use Rk(u) to
denote the collection of states corresponding to these
parts. Note that all scenarios in Ak appear in Rk(u)
as these scenarios are uncovered even at the end of
phase k. Similarly, all scenarios in Rk(u) are in Ak−1.

The analysis is similar to that for Lemma 2. Anal-
ogous to the quantity Z in the proof of Lemma 2,
we use

Z̄ :
 ∑D
u
1

∑
(E,H)∈Rk(u)

max
P∈!(E,H,k)

g(E,H)(P) . (14)

Here,!(E,H, k) denotes the set of feasible tours to the
SOP instance solved in iteration u of phase k, and (E,H)
denotes the state at the beginning of this iteration.
We prove Lemma 6 by upper/lower bounding Z̄.

For any (E,H) ∈ Rk(u), note that E consists of all
elements that have been selected before iteration u.
The set of elements that are selected at iteration u are
not included in E. We also define TH(k) and Stemk(H)
as in Section 2. Recall, TH(k) is the subtree of OPT that
corresponds to paths traced by scenarios in H up to
time 2k−1; this only includes elements that are com-
pletely selected by time 2k−1. AndStemk(H) is the path
in TH(k) that, at each node (labeled e), follows the
branch corresponding to H \ Le(H). Again, we use
Stemk(H) to also denote the set of elements that are on
this path. We also use the definition of bad, okay, and
good states from Definition 1. Then, exactly as in
Proposition 2, we have the following:

Proposition 5. For any iteration u in phase k, we have∑
(E,H)∈Rk(u)(E,H):bad

Pr(H) ≤ 3xk.

Lemma 7. We have Z̄ ≥ D · (ak − 3xk)/3.
Proof of Lemma 7. Considering only the good/okay
states in each Rk(u) in expression (14),

Z̄ 
 ∑D
u
1

∑
(E,H)∈Rk(u)

max
P∈!(E,H,k)

· ∑
i∈H

pi · fi(E ∪ P) − fi(E)
1 − fi(E) + Pr

⋃
e∈P

Le H( )
( )( )

≥ ∑D
u
1

∑
(E,H)∈Rk(u)
(E,H):okay

max
P∈!(E,H,k)

Pr
⋃
e∈P

Le(H)
( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ ∑
(E,H)∈Rk(u)
(E,H):good

max
P∈!(E,H,k)

∑
i∈H

pi · fi(E ∪ P) − fi(E)
1 − fi(E)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Fix any iteration u. For any state (E,H) ∈ Rk(u), define
W(H) 
 Stemk(H) \ E. Note that the cost of Stemk(H)
is at most 2k−1, so the tour obtained by doubling this
path is in !(E,H, k): that is, the tour originates from s
and has cost at most 2k. We call this tour W(H).
Case 1. (E,H) is an okay state. Because W(H) ∈

!(E,H, k),

max
P∈!(E,H,k)

Pr
⋃
e∈P

Le(H)
( )

≥ Pr
⋃

e∈W(H)
Le(H)

( )


 Pr
⋃

e∈Stemk(H)
Le(H)

( )
≥ Pr(H)

3
. (15)

The equality uses∪e∈ELe(H) 
 ∅ (by Proposition 1), and
the last inequality is by Definition 1 of an okay state.
Case 2. (E,H) is a good state. We use F⊆H to denote

the set of scenarios that get covered in Stemk(H); by
definition of a good state, we have Pr(F) ≥ Pr(H)/3.
Again using W(H) ∈ !(E,H, k),

max
P∈!(E,H,k)

∑
i∈H

pi · fi(P ∪ E) − fi(E)
1 − fi(E)

≥ ∑
i∈H

pi · fi(W(H) ∪ E) − fi(E)
1 − fi(E)


 ∑
i∈H

pi · fi(Stemk(H)) − fi(E)
1 − fi(E) ≥∑

i∈F
pi


 Pr(F) ≥ Pr(H)
3

. (16)

Thefirst equalityof (16) isbydefinitionofW(H). The next
inequality is based on the fact that fi(Stemk(H)) 
 1
for any i ∈ F, and the last inequality is by definition of
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a good state. Now, we combine (15) and (16) with the
definition of Z̄:

Z̄ ≥ ∑D
u
1

∑
(E,H)∈Rk(u)
(E,H):okay

Pr(H)
3

+∑D
u
1

∑
(E,H)∈Rk(u)
(E,H):good

Pr(H)
3


 ∑D
u
1

Pr(Rk(u)) −∑
(E,H)∈Rk(u)
(E,H):bad

Pr(H)

3

≥ ∑D
u
1

ak − 3xk
3


 D · (ak − 3xk)
3

.

The first equality uses the fact that the states corre-
sponding to each (E,H) ∈ Rk(u) are exactly one of the
types bad/okay/good. The last inequality uses Propo-
sition 5 and that Rk(u) contains all scenarios in Ak. □

Lemma 8. We have Z̄ ≤ ak−1 · ρ(1 + ln 1
ε + logm).

Proof of Lemma 8. For any scenario i ∈ Ak−1 (i.e., un-
covered in ALG at the end of phase k − 1), let πi be the
path traced by i in ALG’s decision tree, starting from the
end of phase k − 1 to the end of phase k or when i gets
covered (whichever happens first). Formally, we represent
πi as a sequence of tuples (Eiu,Hiu,Piu) for each iteration u
inphase k,where (Eiu,Hiu) is the state at the start of iteration
u and Piu is the new tour chosen by ALG at this state.

Recall that, for any iteration u, every scenario inRk(u)
appears in Ak−1. So only scenarios in Ak−1 can con-
tribute to Z̄ because every part H in Rk(u) is a subset
of Ak−1. Furthermore, because ALG-SOP is a (ρ, σ)-
bicriteria approximation algorithm, it selects paths Pu
such that ρ · g(E,H)(Pu) ≥ maxP∈!(E,H,k) g(E,H)(P). So we
can bound Z̄ from above as follows:

Z̄ 
 ∑D
u
1

∑
(E,H)∈Rk(u)

max
P∈!(E,H,k)

g(E,H)(P)

≤ ρ ·∑D
u
1

∑
(E,H)∈Rk(u)

g(E,H)(Pu)

≤ ρ ·∑D
u
1

∑
(E,H)∈Rk(u)

∑
i∈H

pi · fi(E ∪ Pu) − fi(E)
1 − fi(E)

( )(

+Pr
⋃
e∈Pu

Le H( )
( ))


 ρ ·∑D
u
1

∑
(E,H)∈Rk(u)

∑
i∈H

pi · fi(E ∪ Pu) − fi(E)
1 − fi(E)

(
+1 i ∈ ∪e∈PuLe(H)[ ])

≤ ρ · ∑
i∈Ak−1

pi ·
∑

(Eiu,Hiu,Piu)∈πi

fi(Piu ∪ Eiu) − fi(Eiu)
1 − fi(Eiu)

((

+1[i ∈ ∪e∈PiuLe(Hiu)]
))

(17)


 ρ · ∑
i∈Ak−1

pi ·
∑

(Eiu,Hiu,Piu)∈πi

fi(Piu ∪ Eiu)− fi(Eiu)
1 − fi(Eiu)

(

+ ∑
(Eiu,Hiu,Piu)∈πi

1[i ∈ ∪e∈PiuLe(Hiu)]
)
, (18)

where the inequality (17) is due to an interchange of
summation and the fact that each part H of Rk(u) is a
subset of Ak−1. Now, fix any scenario i ∈ Ak−1. For the
first term in (18), we use Claim 1 and the defini-
tion of ε in (1). This implies

∑
(Eiu,Hiu,Piu)∈πi

fi(Piu∪Eiu)−fi(Eiu)
1−fi(Eiu) ≤

1 + ln 1
ε. To bound the second term, note that, if at some

iteration u with state (E,H), the algorithm selects
subset Pu, and if scenario i ∈ ∪e∈PuLe(H), then the
number of possible scenarios decreases by at least a
factor of two in path πi. So such an event can hap-
pen at most log2 m times along the path πi. Thus, we
can write

∑
(Eiu,Hiu ,Piu)∈πi1[i∈⋃e∈Piu Le(Hiu)] ≤ log2m. The

lemma follows from (18). □

Now we can complete the proof of Lemma 6.

Proof of Lemma 6. By Lemmas 7 and 8, we have

D · (ak − 3xk)/3 ≤ Z̄

≤ ak−1 · ρ(1 + ln 1/ε + logm) 
 ak−1 · D15 .

Rearranging, we obtain ak ≤ 0.2 · ak−1+3xk as needed. □

4. Applications
In this section, we discuss various applications of
ASR. For some of these applications, we obtain im-
provements over previously known results. Formany
others, we match (or nearly match) the previous best
results using a simpler algorithm and analysis. Some
of the applications discussed are new, for which we
provide the first approximation algorithms. Table 1
summarizes some of these applications. As defined,
cost in ASR andASP is only incurred until the realized
scenario i∗ gets covered, and the algorithm may not
know this (see Section 1.1). This definition is suit-
able for the applications discussed in Sections 4.1–4.3
and 4.10. However, for the other applications (Sec-
tions 4.4–4.9), the algorithm needs to know explicitly
when to stop. For these applications, we also mention
the stopping criteria used and show that it coincides
with the (usual) criterion of just covering i∗. So
Theorem 1 or 2 can be applied in all cases.

4.1. Deterministic Submodular Ranking
In this problem,we are given a set of n elements andm
monotone submodular functions f1, f2, . . . , fm, where
each fi : 2[n] → [0, 1]. We also have a nonnegative
weight wi associated with each i ∈ [m]. The goal is to
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find a static linear ordering of the elements that mini-
mizes the weighted summation of functions’ cover
time, with which the cover time of a function fi is the
first time that its value reaches one. This is a special
case of ASR in which there is no feedback. Formally,
we consider the ASR instance with the same fis, G 
 ∅,
and probabilities pi 
 wi/(∑n

j
1 wj). Theorem 1 directly
gives an 2(logm + log 1

ε)-approximation algorithm.
Moreover, by observing that, in (2), for any state
(E,H), we have Le(H) 
 ∅, we can strengthen the upper
bound in Lemma 4 to Z ≤ ak−1 · (1 + ln 1/ε). This im-
plies that our algorithm is an 2(log 1

ε)-approximation,
matching the best result in Azar and Gamzu (2011)
and Im et al. (2016).

4.2. Adaptive Multiple Intents Reranking
This is an adaptive version of the multiple intents
reranking problem, introduced in Azar et al. (2009)
with applications to search ranking. There are n re-
sults to a particular search query, and m different
users. Each user i is characterized by a subset Si of the
results in which the user is interested and a threshold
Ki ≤ |Si|: user i gets covered after seeing at least Ki

results from the subset Si. There is also a probability
distribution {pi}mi
1 on the m users from which the
realized user i∗ is chosen. An algorithm displays re-
sults one by one and receives feedback on e ∈ Si∗ , that
is, whether result e is relevant to user i∗. The goal is to
find an adaptive ordering of the results that mini-
mizes the expected number of results to cover user i∗.
We note that the algorithm need not know when this
occurs, that is, when to stop.

This can be modeled as an ASR with results cor-
responding to elementsU and users corresponding to
the m scenarios. The feedback values are G 
 {0, 1},
and the feedback functions are given by ri(e) 
 1(e ∈ Si)
for all i ∈ [m] and e ∈ U. For each scenario i ∈ [m],
the submodular function fi(S) 
 min(|S ∩ Si|,Ki)/Ki. Let-
ting K 
 maxi∈[m] Ki, we can see that the parameter ε
is equal to 1/K. So Theorem 1 implies an 2(logK+
logm)-approximation algorithm. We note, how-
ever, that in the deterministic setting, there are bet-
ter 2(1)-approximation algorithms in Bansal et al.
(2010), Skutella and Williamson (2011), and Im et al.
(2014). These results are based on a different linear

program–based approach: extending such an ap-
proach to the stochastic case is still an interesting
open question.

4.3. Minimum Cost Matroid Basis
Consider the following stochastic network design prob-
lem.We are given an undirected graph (V,E)with edge
costs. However, only a random subset E∗ ⊆E of the
edges are active. We assume an explicit scenario-
based joint distribution for E∗: there are m scenarios
in which each scenario i ∈ [m] occurs with probability pi
and corresponds to active edges E∗ 
 Ei. An algo-
rithm learns whether/not an edge e is active only
upon testing e, which incurs time ce. An algorithm
needs to adaptively test a subset S⊆E of edges so that
S ∩ E∗ achieves the maximum possible connectivity in
the active graph (V,E∗); that is, S ∩ E∗ must contain a
maximal spanning forest of graph (V,E∗). The ob-
jective is to minimize the expected time before the
tested edges achieve maximal connectivity in the
active graph. The algorithm need not knowwhen this
occurs, that is, when to stop.
We can model this as an ASR instance with edges

E as elements and scenarios as described. The
feedback values are G 
 {0, 1} and ri(e) 
 1(e ∈ Ei) for
all i ∈ [m] and e ∈ E. The submodular functions are
fi(S) 
 ranki(S∩Ei)

ranki(Ei) , where ranki is the rank function of the
graphic matroid on (V,Ei). The fi’s are monotone and
submodular because of the submodularity of matroid
rank functions. Moreover, the parameter ε is at least 1q,
where q 
 |V|. So Theorem 1 implies an 2(logm+
log q)-approximation algorithm. We note that the same
result also holds for a general matroid in which a
random (correlated) subset of elements is active and
the goal is to find a basis over the active elements at
minimum expected cost.

4.4. Optimal Decision Tree
This problem captures many applications in active
learning, medical diagnosis, and databases; see, for
example, Chakaravarthy et al. (2011) and Dasgupta
(2004). There are m possible hypotheses with a proba-
bility distribution {pi}mi
1, from which an unknown
hypothesis i∗ is drawn. There are also a number of

Table 1. Some Applications of Adaptive Submodular Ranking

Problem Previous best result Our result

Adaptive multiple intent reranking — 2(logK + logm)
Generalized optimal decision tree — 2(logm)
Decision region determination 2(r logm) in exp time 2(r logm) in poly time
Stochastic knapsack cover — 2(logm + logW)
Stochastic matroid basis — 2(logm + log q)
Adaptive traveling repairman problem 2(log2 n logm) 2(log2+δn(logm + logn))
Adaptive traveling salesman problem 2(log2 n logm) 2(log2+δn(logm + logn))
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binary tests; each test e costs ce and returns a positive
outcome if i∗ lies in some subset Ye of hypotheses and
a negative outcome if i∗ ∈ [m] \ Ye. It is assumed that i∗
can be uniquely identified by performing all tests.
The goal is to perform an adaptive sequence of tests
so as to identify hypothesis i∗ at the minimum ex-
pected cost.

This can be cast as an ASR instance as follows. We
associate elements with tests U and scenarios with
hypotheses [m]. The feedback values are G 
 {0, 1},
and the feedback functions are given by ri(e) 

1(i ∈ Ye), which denotes the outcome of test e on hy-
pothesis i. In order to define the submodular func-
tions, let

Te(i) 
 [m] \ Ye if i ∈ Ye,
Ye if i /∈Ye,

∀e ∈ U and i ∈ [m].
{

Then, for each scenario i ∈ [m], define the submodular
function fi(S) 
 | ∪e∈S Te(i)| · 1

m−1. Note that, at any point
in the algorithm atwhichwe have performed a set S of
tests, the set

⋃
e∈S Te(i∗) consists of all hypotheses that

have a different outcome from i∗ in at least one of the
tests in S. So i∗ is uniquely identified after performing
tests S if and only if fi∗ (S) 
 1. The algorithm’s stop-
ping criterion is the first point at which the number
of compatible hypotheses/scenarios reaches one: this
coincides with the point at which fi∗ gets covered. Note
that the parameter ε is equal to 1

m, so by Theorem 1, we
obtain an 2(logm)-approximation algorithm which is
known to be best possible (unless P = NP) as shown by
Chakaravarthy et al. (2011). Although this problem
has been extensively studied, previously such a result
was known only via a complex algorithm in Gupta
et al. (2017) andCicalese et al. (2014).We also note that
our result extends in a straightforward manner to pro-
videanO(logm) approximation in the case ofmultiway
tests (corresponding to more than two outcomes) as
studied in Chakaravarthy et al. (2011).

4.4.1. Generalized Optimal Decision Tree. Our algo-
rithm also extends to the setting in which we do not
have to uniquely identify the realized hypothesis i∗.
Here we are given a threshold t such that it suffices to
output a subsetH∗ of atmost thypotheseswith i∗ ∈ H∗.
This can be handled easily by setting

fi(S) 
 min | ∪e∈S Te(i)| · 1
m − t

, 1
{ }

, for all S⊆U

and i ∈ [m].
Note that, this time, we have fi(S) 
 1 if and only if at
leastm − t hypotheses differ from i on at least one test
in S, so this corresponds to having at most t possible
hypotheses. The algorithm’s stopping criterion here is
the first point at which the number of compatible
hypotheses is at most t: Again, this coincides with the

point atwhich fi∗ gets covered. And Theorem1 implies
an 2(logm)-approximation algorithm. To the best of
our knowledge, this is the first approximation algo-
rithm in this setting.

4.5. Equivalence Class Determination
This is an extension of ODT that was introduced to
model noise in Bayesian active learning by Golovin
et al. (2010). As in ODT, there arem hypotheses with a
probability distribution {pi}mi
1 and binary tests with
which each test e has a positive outcome for hy-
potheses inYe.We are additionally given a partitionQ
of [m]. For each i ∈ [m], let Q(i) be the subset in the
partition that contains i. The goal now is to minimize
the expected cost of tests until we recognize the part
of Q containing the realized hypothesis i∗.
We can model this as an ASR instance with tests as

elements and hypotheses as scenarios. The feedback
functions are the same as in ODT. The submodular
functions are

fi(S) 
 | ∪e∈S (Te(i) ∩Q(i)c)|
|Q(i)c| , for all S⊆U and i ∈ [m].

Here, Te(i) are as defined for ODT and Ac denotes the
complement of any set A⊆ [m]. Note that fi’s are mono-
tone submodular with values between zero and one.
Furthermore, fi(S) 
 1 means that Q(i)c ⊆ ∪e∈STe(i),
which means that the set of compatible hypotheses
based on the tests S is a subset ofQ(i). The algorithm’s
stopping criterion here is the first point at which the
set of compatible hypotheses is a subset of any Q(i),
which coincides with the point at which fi∗ gets cov-
ered. Again, Theorem 1 implies an 2(logm)-approx-
imation algorithm. This matches the best previous
result of Cicalese et al. (2014), and again our algorithm
is much simpler.

4.6. Decision Region Determination
This is an extension of ODT that was introduced in
order to allow for decision making in Bayesian active
learning. As elaborated in Javdani et al. (2014), this
problem has applications in robotics, medical diag-
nosis, and comparison-based learning. Again, there are
m hypotheses with a probability distribution {pi}mi
1
and binary tests for which each test e has a positive
outcome for hypotheses in Ye. In addition, there are a
number of overlapping decision regions Dj ⊆ [m] for
j ∈ [t]. Each region Dj corresponds to the subset of
hypotheses under which a particular decision j ∈ [t] is
applicable. The goal is to minimize the expected cost
of tests so as to find some decision region Dj con-
taining the realized hypothesis i∗. Following prior
work, two additional parameters are useful for this
problem: r is the maximum number of decision re-
gions that contain a hypothesis, and d is themaximum
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size of any decision region. Our main result here is
the following:

Theorem 4. There is an 2(log m + min(d, r log d))-
approximation algorithm for decision region determination.

This improves upon a number of previous papers
on decision region determination (DRD). Javdani
et al. (2014) obtained an 2(min(r, d) · log2 1

mini pi
)-

approximation algorithm running in time exponen-
tial in min(r, d). Then, Chen et al. (2015) obtained an
2(r · log2 1

mini pi
)-approximation algorithm for this prob-

lem in polynomial time. The approximation ratio was
later improvedbyGrammel et al. (2016) to 2(min(r, d) ·
log m), which, however, required time exponential
in min(r, d). In contrast, our algorithm runs in poly-
nomial time.

Before proving Theorem 4, we provide two dif-
ferent algorithms for DRD.

4.6.1. Approach 1: An O(r logm)-Approximation Algo-
rithm for DRD. Here we model DRD as an ASR with
tests as elements and hypotheses as scenarios. The
feedback functions are the same as in ODT. For each
i ∈ [m] and j ∈ [t] such that i ∈ Dj, define fi,j(S) 

|⋃e∈S(Te(i)∩Dj

c)|
|Dj

c | . Clearly fi,j’s are monotone submodular
with values between zero and one. Also, fi,j(S) 
 1
means that Dj

c ⊆ ⋃
e∈S Te(i), which means that the set

of compatible hypotheses based on the tests S is a
subset of decision region Dj. However, we may stop
when it is determined that the realized hypothesis is
in any one of the decision regions. This criterion (for
hypothesis i) corresponds to at least one fi,j(S) 
 1
among {j : i ∈ Dj}. Using an idea from Guillory and
Bilmes (2011), we can express this criterion as a
submodular-cover requirement. Define

fi(S) 
 1 − ∏
j:i∈Dj

(1 − fi,j(S)), for all S⊆U

and i ∈ [m].
One can verify that fi(S) 
 1 if and only if ∃j : i ∈ Dj and
fi,j(S) 
 1. The algorithm’s stopping criterion is the
first point at which the set of compatible hypotheses is
a subset of any decision region Dj, which coincides
with the point at which fi∗ gets covered. We can also
see that fi is monotone and submodular. Note that,
here, the parameter ε is equal to mini ∏j:i∈Dj

1
|Dj

c |, which
is much smaller than in previous applications. Still,
we have ε 
 Ω(m−r). So, in this case, Theorem 1 im-
plies an 2(r logm)-approximation algorithm in which r
is the maximum number of decision regions that
contain a hypothesis.

4.6.2. Approach 2: An m-Approximation Algorithm for
DRD. Here we use a simple greedy splitting algo-
rithm. At any state with compatible scenariosH⊆ [m],

the algorithm selects the minimum cost element that
splits H. Formally, it selects

argmin{ce : e ∈ U with H ∩ Ye �
 ∅ and H ∩ Yc
e �
 ∅}.

The algorithm terminates when the compatible sce-
nario H is contained in any decision region.
As the number of compatible scenarios reduces by

at least one after each chosen element, the depth of the
algorithm’s decision tree is at most m. Consider any
depth k ∈ {1, · · ·m} in this decision tree. Note that the
states occurring at depth k induce a partition of all
scenarios I⊆ [m] that are yet uncovered (at depth k).
For each scenario i ∈ I, let Ri ⊆ I denote all scenarios
that are compatible with i at depth k and let Ci denote
the minimum cost of an element that splits Ri. Note
that all scenarios i occurring at the same state at depth k
have the same Ri and Ci. Moreover, the kth element
chosen by the algorithm under any scenario i ∈ I
costs exactly Ci. So the algorithm’s expected cost at
depth k is exactly

∑
i∈I pi · Ci. The next claim shows that

OPT ≥ ∑
i∈I pi · Ci, which implies that the total ex-

pected cost of the algorithm is at most m ·OPT.

Claim 2. The optimal cost of the DRD instance
OPT ≥ ∑

i∈I pi · Ci.

Proof of Claim 2. Consider any i ∈ I. Note that Ri ⊆
I⊆ [m] does not contain any decision region (otherwise,
i would have been covered before depth k, which
would contradict i ∈ I). So the optimal solution must
select some element that splits Ri in its decision path
for scenario i. As Ci is the minimum cost element
that splits Ri, it follows that the optimal cost under
scenario i is at least Ci. The claim now follows by
taking expectations. □

Proof of Theorem 4. This algorithm involves two pha-
ses. The first phase runs the O(logm)-approximation
algorithm for generalized ODT (Subsection 4.4) on
the given set of scenarios and elements with threshold d
(this step ignores the decision regions). Crucially, the
optimal value of this generalized ODT instance is at
most that of the DRD instance. This follows simply
from the fact that every decision region has size at
most d, so the number of compatible scenarios at the
end of any feasible DRD solution is always at most d. So
the expected cost in the first phase isO(logm) ·OPT. At
the end of this phase, we are left with a set M of at
most d candidate scenarios and we still need to identify
a valid decision region within that set. Let {M1, · · ·Ms}
denote the partition of them scenarios corresponding to
the states at the end of the generalized ODT algorithm.
So we have |Mk | ≤ d for all k ∈ [s].
Next, in the second phase, we run one of the

aforementioned algorithms on the DRD instance con-
ditioned on scenarios M. For any k ∈ [s], let (k denote
the DRD instance restricted to scenarios Mk in which
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probabilities are normalized so as to sum to one.
Crucially, ∑s

k
1

∑
i∈Mk

pi

( )
OPT((k) ≤ OPT, (19)

where OPT is the optimal value of the original DRD
instance; (19) follows directly by using the optimal
tree for the original DRD instance as a feasible so-
lution for each instance (1, · · ·(s.

Note that the DRD instance in the second phase al-
ways has at most d scenarios as maxsk
1 |Mk | ≤ d. So the
two algorithms have approximation ratios of O(r log d)
and d, respectively, on this instance. Combined with
(19), it follows that the expected cost in the second
phase is O(min{r log d, d}) ·OPT. Adding the cost over
both phases proves the theorem. □

4.7. Stochastic Knapsack Cover
In the knapsack cover problem, there are n elements,
each with a cost and reward. We are also given a
target W, and our goal is to choose a subset of ele-
ments with minimum total cost such that the total
reward is at least W. Ibarra and Kim (1975) gave a
fully polynomial time approximation scheme for this
problem. Here, we consider a stochastic version of
this problem in which rewards are random and cor-
related across elements. Previously, Deshpande et al.
(2016) considered the case of independent rewards
and obtained a three-approximation algorithm. We
assume an explicit scenario-based distribution for the
rewards. Formally, there are m scenarios, and each
scenario i ∈ [m] occurs with probability pi and cor-
responds to element rewards {ri(e)}ne
1. We also as-
sume that all rewards are integers between zero and
W. An algorithm knows the precise reward of an
element e ∈ [n] only upon selecting e. The goal is to
adaptively select a sequence of elements so as to
achieve total reward at leastW at minimum expected
cost.

To model this problem as an instance of ASR, el-
ements and scenarios are as described. The feedback
values are G 
 {0, 1, . . . ,W}, and the feedback func-
tions are the rewards ri(·) under each scenario i ∈ [m].
The submodular functions are fi(E) 
 min(1, 1

W ·∑
e∈E ri(e)), where ri(e) is the reward of element e un-

der scenario i. Note that fi(E) 
 1 if and only if the
total reward of elements in E is at least W, which is
also used as the stopping criterion for the algo-
rithm. The parameter εwould be equal tow/W ≥ 1/W,
where w is the minimum positive reward. Using
Theorem 1, we obtain an 2(logm + logW

w)-approxi-
mation algorithm.

We note that, in the more general black-box distri-
bution model (in which we can only access the reward
distribution through samples), there are hardness

results that rule out any subpolynomial approxima-
tion ratio by polynomial-time algorithms.

4.8. Scenario Submodular Cover
This was studied recently by Grammel et al. (2016) as
a way to model correlated distributions in stochas-
tic submodular cover. We have a set U of elements
with costs {ce}e∈U . Each element, when selected, pro-
vides random feedback from a set G: the feedback is
correlated across elements. We are given a scenario-
based distribution of elements’ feedback values. There
are m scenarios with probabilities {pi}mi
1 from which
the realized scenario i∗ is drawn. Each scenario i ∈ [m]
specifies the feedback ri(e) ∈ G for each element e ∈ U.
Let ∗denote an unknown feedback value. There is also
a “state-based” utility function f : (G ∪ {∗})U → Z≥0
and an integer target Q. The function f is said to be
covered if its value is at least Q. The goal is to (adap-
tively) select a sequence of elements so as to cover f at
the minimum expected cost.
It is assumed f is monotone and submodular: as f

is not a usual set function, one needs to extend
the notions of monotonicity and submodularity to
this setting. For any g, g′ ∈ (G ∪ {∗})U, we say g′ is an
extension of g and write g′ ≽ g if g′e 
 ge for all e ∈ U
with ge �
 ∗. For any g ∈ (G ∪ {∗})U, e ∈ U, and r ∈ G,
define ge←r to be the vector that is equal to g on all co-
ordinatesU \ {e} and has value r in coordinate e. Now,
we say f is
• Monotone if receiving feedback does not decrease

its value; that is, f (g′) ≥ f (g) for all g′ ≽ g.
• Submodular if f (g′e←r) − f (g′) ≤ f (ge←r) − f (g) for

all g′ ≽ g, r ∈ G, and e ∈ U with g′e 
 ∗.
For any subset S⊆U and scenario i ∈ [m], define

x(S, i) ∈ (G ∪ {∗})U as

x(S, i)e 

ri(e) if e ∈ S

∗ if e ∈ U \ S.
{

Note that function f is covered by subset S⊆U if and
only if f (x(S, i∗)) ≥ Q.
We can model scenario submodular cover as an

ASR instance with elements, scenarios, and feedback
as previously. The submodular functions are fi(S) 
 1

Q ·
min{ f (x(S, i)),Q} for all S⊆U and i ∈ [m]. It can
be seen that each fi is monotone submodular (in the
usual set function definition). Moreover, the parameter
ε ≥ 1/Q because function f is assumed to be integer
valued. The algorithm’s stopping criterion is as fol-
lows. If S denotes the set of selected elements andθe ∈ G
the feedback from each e ∈ S, then we stop when
f (θ) ≥ Q with which θe 
 ∗ for all e ∈ U \ S. Clearly,
this is the same point at which fi∗ reaches one.
So Theorem 1 implies an algorithm with approxi-

mation ratio of 2(logm + log 1
ε), which is at least as good

as the2(logm + logQ) bound in Grammel et al. (2016).
We might have 1

ε � Q for some functions f , in which
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case our approximation ratio is better than the pre-
vious one.

4.9. Adaptive Traveling Salesman Problem
This is a stochastic version of the basic TSP that was
studied in Gupta et al. (2017). We are given a metric
(U ∪ {s}, d), where s is a root vertex, and there is de-
mand at some random subset S∗ ⊆ U of vertices. The
demand distribution is scenario based: each scenario
i ∈ [m] occurs with probability pi and has demand
subset S∗ 
 Si. We get to know whether u ∈ S∗ or not
upon visiting vertex u ∈ U. The goal is to build an
adaptive tour originating from s that visits all the
demands S∗ at minimum expected distance.

As described in Gupta et al. (2017), it suffices to
solve the related “isolation problem” in which one
wants to identify the realized scenario i∗ at minimum
expected distance and then use an approximate TSP to
visit Si∗ . The isolation problem, which can be viewed
as the metric version of ODT, can be modeled as ASP
by considering vertices as elements and scenarios as
previously. The feedback values areG 
 {0, 1}, and the
feedback function is ri(e) 
 1(e ∈ Si) for all e ∈ U and
i ∈ [m]. The submodular functions are exactly the
same as for the ODT problem (Section 4.4) in which
tests correspond to vertices: for each test e ∈ U, we use
Ye 
 {i ∈ [m] : e ∈ Si}. Recall that parameter ε is equal
to 1/m. So Corollary 1 implies an 2(logm · log2+δn)-
approximation algorithm. This almost matches the best
resultknown,which isan2(log2 n · logm)-approximation
algorithm by Gupta et al. (2017).

4.9.1. Adaptive k-Traveling Salesman Problem. The
input here is the same as adaptive TSP with an ad-
ditional number k, and the goal is to minimize the
expected distance taken to cover any k vertices of the
demand subset S∗. As for adaptive TSP, we can model
this problem as an instance of ASP. The only differ-
ence is in the definition of the submodular functions,
which are now fi(T) 
 min(|T∩Si |,k)

k for T⊆U and i ∈ [m].
The algorithm stops at the first point at which it has
visited k demand vertices, which is the same as fi∗ get-
ting covered. Here, parameter ε 
 1/k and Corollary 1
imply an 2((logm + log k) · log2+δn)-approximation al-
gorithm. To the best of our knowledge, this is the first
approximation algorithm for this problem.

4.10. Adaptive Traveling Repairman Problem
This is a stochastic version of the TRP, which was also
studied in Gupta et al. (2017). The setting is the same
as adaptive TSP, but the objective here is to minimize
the expected sum of distances to reach the demand
vertices S∗.

We now show that this can also be viewed as a
special case of ASP. Let ) be a given instance of adap-
tive TRP with metric (U ∪ {s}, d), root s, and demand

scenarios {Si ⊆U}mi
1 with probabilities {pi}mi
1. Let
q 
 ∑m

i
1 pi|Si|. We create an instance ( of ASP with
elements U,

∑m
i
1 |Si| scenarios and feedback values

G 
 {0, 1}. For each i ∈ [m] and e ∈ Si, we define sce-
nario he,i as follows:
• he,i has probability of occurrence pi/q.
• The submodular function fe,i(T) 
 |{e} ∩ T| for

T⊆U.
• re,i(e′) 
 1(e′ ∈ Si) for e′ ∈ U.
Note that the total probability of these

∑m
i
1 |Si|

scenarios is one. The idea is that covering scenario he,i
in ( corresponds to visiting vertex e when the real-
ized scenario in ) is i. Note that, for any i ∈ [m], the
feedback functions for all the scenarios {he,i : e ∈ Si}
are identical.

Claim 3. OPT(() 
 1
q ·OPT()).

Proof of Claim 3. Consider an optimal solution R to the
adaptive TRP instance). For each scenario i ∈ [m], let τi
denote the tour (originating from s) traced by R; note
that τi visits every vertex in Si, and let Ce,i denote the
distance to vertex e ∈ Si along τi. So OPT()) 
 ∑m

i
1 pi ·∑
e∈Si Ce,i. We can also view R as a potential solution for

the ASP instance (. To see that this is a feasible so-
lution, note that the tour traced by R under scenario he,i
(for any i ∈ [m] and e ∈ Si) is precisely the prefix of τi
until vertex e, at which point the tour returns to s. So
every scenario in ( is covered. Moreover, the expected
cost of R for ( is exactly

∑m
i
1

∑
e∈Si

pi
q Ce,i 
 1

q ·OPT()).
This shows that OPT(() ≤ 1

q ·OPT()).
Now, consider an optimal solution R′ to the ASP

instance (. For each scenario he,i (with i ∈ [m] and
e ∈ Si), let σe,i denote the tour (originating from s) traced
by R′ and let τe,i denote the shortest prefix of σe,i that
covers fe,i. Let C′

e,i denote the cost of the walk τe,i, which
is the cost under scenario he,i. So OPT(() 
 ∑m

i
1 ·∑
e∈Si

pi
q C

′
e,i. Note that, for each i ∈ [m], the tours {σe,i :

e ∈ Si} are identical (call it σi) because the feedback
obtained under scenarios {he,i : e ∈ Si} are identical.
So the walks {τe,i : e ∈ Si} must be nested. We now
view R′ as a potential solution for the adaptive TRP
instance ). To see that this is feasible, note that the
tour traced under scenario i ∈ [m] is precisely σi, which
visits all vertices in Si. Moreover, because of the nested
structure of the walks {τe,i : e ∈ Si}, the distance to any
vertex e ∈ Si under scenario i is exactly C′

e,i. So the ex-
pected cost of R′ for ) is

∑m
i
1 pi

∑
e∈Si C′

e,i 
 q ·OPT(().
This shows that OPT()) ≤ q ·OPT(().
Combining these two bounds, we obtain OPT(() 


1
q ·OPT()) as desired. □

Moreover, ε 
 1 for this ASP instance. Hence,
Corollary 1 implies an 2(logm · log2+δn)-approxima-
tion algorithm for adaptive TRP. Again, this almost
matches the best result known for this problem,
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which is an 2(log2 n logm)-approximation algorithm
by Gupta et al. (2017). Although our approximation
ratios for adaptive TSP and TRP are slightly worse than
those in Gupta et al. (2017), we obtain these results
as direct applications of a more general framework
(ASP) with very little problem-specific work.

5. Experiments
We present experimental results for the ODT and gen-
eralized ODT problems. We use an expected number of
elements as the objective; that is, all costs are unit. The
main difference between ODT and generalized ODT is
in the stopping criteria, which makes their coverage
functions ( fi’s) different. Recall that, in ODT, our goal
is to uniquely identify the realized scenario. As dis-
cussed in Section 4.4,

fi(S) 
 |∪e∈S Te(i)| · 1
m − 1

, (20)

where Te(i) is the set of all scenarios that have a dif-
ferent outcome from scenario i on test e. On the other
hand, for generalized ODT, we satisfy the scenario as
soon as the number of compatible scenarios is at most
t for some input parameter t. Here we have

fi(S) 
 min |∪e∈S Te(i)| · 1
m − t

, 1
{ }

. (21)

5.1. Data Sets
5.1.1. Real-World Data Set. For our experiments, we
used a real-world data set called WISER (http://
wiser.nlm.nih.gov/). It contains information related
to 79 binary symptoms (corresponding to elements in
ODT) for 415 chemicals (equivalent to scenarios in
ODT), which is used in the problem of toxic chemical
identification of someone who has been exposed to
these chemicals. This data set has been used for testing
algorithms for similar problems in other papers, for
example, Bellala et al. (2011), Bellala et al. (2012), and
Bhavnani et al. (2007). For each symptom–chemical
pair, the data specifies whether/not that symptom is
seen for that chemical. However the WISER data has
“unknown” entries for some pairs. In order to obtain
instances for ODT from this, we generated 10 different
data sets by assigning random binary values to the un-
known entries. Then we removed all identical scenarios;
otherwise, ODT would not be feasible. The number of
scenarios in the resulting data sets ranged from 393
to 407. As probability distributions, we used permu-
tations of the power-lawdistribution (Pr[X 
 x] 
 Kxα)
for α 
 0,−1/2,−1 and −2. To be able to compare re-
sults meaningfully, the same permutation was used
for each α across all 10 data sets.

5.1.2. Synthetic Data Set. We also used a synthetic
data set—SYN-K—that is parameterized by k; this is

based on a hard instance for the greedy algorithm
Kosaraju et al. (1999). Given k, this instance has m 

2k + 1 scenarios and n 
 k + 2 elements as follows:

Scenario i ∈ [1, k] has positive feedback on element
i and k + 1 and negative on the others.

Scenario i ∈ [k + 1,2k] has positive feedback on
element i − k and k + 2 and negative on
the others.

Scenario 2k + 1 has negative feedback on all
elements.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Also, the probabilities for the scenarios are as follows:

pi 
 pi+k 
 2−i−2 for i ∈ [1, k − 1],
pk 
 p2k 
 2−k−1 and p2k+1 
 2−1.

5.2. Algorithms
In our experiments, we compare and contrast the
results of four different algorithms:
• ASR: Our algorithm that uses the objective de-

scribed in (2) with corresponding fi’s described in
Equations (20) and (21), for ODT and generalized
ODT, respectively.
• Greedy: This isa classicgreedyalgorithmdescribed

in Kosaraju et al. (1999), Dasgupta (2004), Guillory
and Bilmes (2009), Chakaravarthy et al. (2011), and
Adler andHeeringa (2012). At each iteration, it chooses
the element that keeps the decision tree as balanced
as possible. More formally, at each state (E,H), we
choose an element e ∈ U \ E that minimizes

|Pr(i ∈ H : ri(e) 
 1) − Pr(i ∈ H : ri(e) 
 0)|.
Although the rule is the same for ODT and general-
ized ODT, the set of uncovered compatible scenarios
may be different, which affects the sequence of chosen
elements.
• Static: This is the algorithm fromAzar and Gamzu

(2011). This algorithm is not feedback dependent and
uses a measure that is similar to the second term in
our measure (2). More specifically, this algorithm at
each iteration chooses an element e that maximizes∑

i∈H
pi · fi(e ∪ E) − fi(E)

1 − fi(E)
with corresponding fi’s for each problem, described in
Equations (20) and (21).
• AdStatic: This is a modified version of the afore-

mentioned Static algorithm. It uses the observed feed-
back to skip redundant elements that have the same
outcome on all the uncovered compatible scenarios.

5.3. Results
The performance of these four algorithms is reported
in the tables. For each data set, we show normalized
costs, which is the actual cost divided by the minimum
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cost over all algorithms. The best algorithm ismarked in
bold. ForODT,wealso report (as “Best cost”) the actual
minimum cost over the four algorithms. Moreover,
for ODT with uniform distribution (Table 2) we also
report the information-theoretic lower bound, which is
the entropy (equal to log2 m); this lower bound varies
across the 10 data sets as the number m of scenarios
varies between 393 and 407.

5.3.1. ODT. Table 2 shows the expected costs of these
algorithms for the ODT problem with uniform dis-
tribution. It turns out ASR and Greedy algorithms
have the same cost for all data sets, and they both
outperform Static and AdStatic. Somewhat surpris-
ingly, the resulting cost is very close to the information-
theoretic lower bound. Table 3 shows the results for
power-law distribution with α 
 −1/2. Greedy does

Table 2. Normalized Costs for ODT with Uniform Distribution and the Information
Lower Bound

Algorithm

Data set

1 2 3 4 5 6 7 8 9 10

ASR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Greedy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Static 1.179 1.189 1.180 1.211 1.190 1.191 1.218 1.166 1.193 1.203
AdStatic 1.035 1.038 1.033 1.036 1.033 1.033 1.043 1.035 1.032 1.036
Bestcost 8.704 8.719 8.717 8.706 8.713 8.742 8.717 8.697 8.723 8.736
Lowerbound 8.662 8.626 8.640 8.640 8.626 8.633 8.669 8.640 8.618 8.647

Table 3. Normalized Costs for ODT with Power-Law Distribution α 
 −1/2

Algorithm

Data set

1 2 3 4 5 6 7 8 9 10

ASR 1.001 1.002 1.001 1.003 1.002 1.003 1.001 1.003 1.001 1.003
Greedy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Static 1.203 1.207 1.193 1.231 1.214 1.191 1.233 1.222 1.262 1.222
AdStatic 1.069 1.063 1.065 1.059 1.066 1.058 1.067 1.063 1.071 1.069
Bestcost 8.415 8.427 8.429 8.400 8.422 8.449 8.419 8.403 8.431 8.449

Table 4. Normalized Costs for ODT with Power-Law Distribution α 
 −1

Algorithm

Data set

1 2 3 4 5 6 7 8 9 10

ASR 1.038 1.051 1.010 1.000 1.005 1.000 1.024 1.027 1.041 1.006
Greedy 1.000 1.000 1.000 1.008 1.000 1.005 1.000 1.000 1.000 1.000
Static 1.308 1.361 1.320 1.320 1.284 1.336 1.335 1.345 1.339 1.383
AdStatic 1.199 1.250 1.193 1.209 1.149 1.195 1.198 1.237 1.187 1.237
Bestcost 7.097 7.075 7.214 7.082 7.302 7.398 7.048 7.099 7.156 7.122

Table 5. Normalized Costs for ODT with Power-Law Distribution α 
 −2

Algorithm

Data set

1 2 3 4 5 6 7 8 9 10

ASR 1.118 1.153 1.011 1.116 1.000 1.000 1.000 1.112 1.124 1.000
Greedy 1.000 1.000 1.000 1.000 1.050 1.193 1.096 1.000 1.000 1.011
Static 1.684 1.271 1.435 1.397 1.136 1.336 1.867 1.328 1.548 1.531
AdStatic 1.624 1.235 1.414 1.366 1.112 1.293 1.604 1.269 1.468 1.364
Bestcost 3.721 4.085 4.753 4.149 5.884 4.195 4.267 4.373 4.224 4.952
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slightly better than ASR on all instances; both Greedy
and ASR are much better than Static and AdStatic.
Table 4 has the results for power-law distribution
with α 
 −1. Both Greedy and ASR still outperform
Static and AdStatic on all instances. ASR achieves the
best solution on 2 out of 10 instances, whereas Greedy
is the best on the others. Table 5 is for power-law
distribution with α 
 −2. Here, ASR is the best on 4
out of 10 instances, and again both Greedy and ASR
outperform Static and AdStatic.

5.3.2. Generalized ODT. For these tests, we report the
average (normalized) costs for each distribution and
threshold. Each entry is an average over the 10 data
sets. Table 6 is for the uniform distribution, Table 7 is
for power-law α 
 −1/2, Table 8 is for power-law
α 
 −1, and Table 9 is for power-law α 
 −2. ASR
performs the best in about half the settings, and
Greedy is the best in the others. Note that the best
average number is more than one1 in some cases: this
shows that the corresponding algorithm was not the
best on all 10 data sets. As for ODT, we see that both
ASR andGreedy are better than Static andAdStatic in
all cases.

5.3.3. Results on Synthetic Data. Table 10 shows the
results on the synthetic instances.ASRandAdStatichave
the best result simultaneously, and Greedy’s perfor-
mance is much worse. It is somewhat surprising that
even Static performs much better than Greedy.

5.3.4. Summary. Both ASR and Greedy perform well
on the real data set, and the difference in their ob-
jectives is typically small. The largest gaps were for
ODT with power-law distribution α 
 −2 (Table 5),
with which Greedy is 19%worse than ASR on data set
6 and ASR is 15% worse than Greedy on data set 2.
Combined with the fact that Greedy performs poorly
on worst-case instances (Table 10), we think that ASR
is a good alternative for Greedy in practice. We also
observe that it is important to use adaptive algorithms
for ODT on the real data set, as Static consistently
performs the worst. For ODT, static is, on average,
30% worse than the best algorithm, and for gener-
alized ODT it is, on average, 18% worse.

Table 10. Normalized Cost for ODT and Generalized ODT on SYN-K

Data set: SYN-50 SYN-100 SYN-150 SYN-200

Algorithm

Threshold

1 3 5 1 3 5 1 3 5 1 3 5

ASR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Static 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
AdStatic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Greedy 9.64 9.46 9.27 18.73 18.55 18.36 27.82 27.64 27.46 36.91 36.73 36.55

Table 8. Average Cost for Generalized ODT with Power-
Law Distribution α 
 −1

Algorithm

Threshold

1 2 3 4 5

ASR 1.020 1.010 1.004 1.085 1.064
Greedy 1.001 1.004 1.010 1.000 1.000
Static 1.333 1.213 1.177 1.120 1.111
AdStatic 1.205 1.176 1.163 1.113 1.108

Table 7. Average Cost for Generalized ODT with Power-
Law Distribution α 
 −1/2

Algorithm

Threshold

1 2 3 4 5

ASR 1.003 1.000 1.000 1.000 1.004
Greedy 1.000 1.005 1.010 1.007 1.002
Static 1.218 1.126 1.084 1.084 1.054
AdStatic 1.065 1.075 1.060 1.068 1.050

Table 6. Average Cost for Generalized ODT with
Uniform Distribution

Algorithm

Threshold

1 2 3 4 5

ASR 1.000 1.000 1.000 1.000 1.001
Greedy 1.000 1.000 1.000 1.000 1.001
Static 1.192 1.088 1.111 1.061 1.008
AdStatic 1.035 1.040 1.088 1.050 1.003

Table 9. Average Cost for Generalized ODT with Power-
Law Distribution α 
 −2

Algorithm

Threshold

1 2 3 4 5

ASR 1.063 1.048 1.074 1.041 1.043
Greedy 1.035 1.038 1.045 1.058 1.059
Static 1.453 1.356 1.324 1.285 1.258
AdStatic 1.375 1.342 1.315 1.282 1.256
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