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CrossMark
Abstract
We propose a Bayesian inference framework to estimate uncertainties in inverse
scattering problems. Given the observed data, the forward model and their
uncertainties, we find the posterior distribution over a finite parameter field
representing the objects. To construct the prior distribution we use a topologi-
cal sensitivity analysis. We demonstrate the approach on the Bayesian solution
of 2D inverse problems in light and acoustic holography with synthetic data.
Statistical information on objects such as their center location, diameter size,
orientation, as well as material properties, are extracted by sampling the poste-
rior distribution. Assuming the number of objects known, comparison of the
results obtained by Markov Chain Monte Carlo (MCMC) sampling and by
sampling a Gaussian distribution found by linearization about the maximum
a posteriori estimate show reasonable agreement. The latter procedure has low
computational cost, which makes it an interesting tool for uncertainty studies in
3D. However, MCMC sampling provides a more complete picture of the pos-
terior distribution and yields multi-modal posterior distributions for problems
with larger measurement noise. When the number of objects is unknown, we
devise a stochastic model selection framework.

Keywords: inverse scattering, Bayesian inference, topological prior, PDE-
constrained optimization, MCMC sampling

(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse scattering techniques are a common tool to detect objects in areas such as medicine,
geophysics, or public security. The basic structure of the underlying mathematical problem
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is as follows. An incident wave field illuminates a set of objects integrated in an ambient
medium. The resulting wave field is measured at a set of detectors. Given the measured data,
the goal is to reconstruct the unknown objects and their material properties. In practice, the
process is affected by different sources of errors and uncertainty, such as external noise in the
recorded data and errors in the measurement systems and governing mathematical equations.
Some deterministic approaches are able to provide reasonable reconstructions of objects under
specific conditions. However, these reconstructions depend on the choice of tuning parameters,
such as thresholds in direct methods and regularization or stopping criteria in iterative proce-
dures. Moreover, deterministic approaches do not provide information on the confidence we
are allowed to have in the results and do not shine light on correlations between the inferred
parameters. This gap is addressed by a Bayesian probabilistic formulation which provides a
more complete picture of the reconstructed parameters and their uncertainties.

Details of the imaging process depend on the type of waves employed. To fix ideas, we focus
here on situations where the physical process is modelled by a wave equation. This is the case,
for instance, in inverse acoustic scattering [7, 20, 30, 58], and inverse electromagnetic scatter-
ing when using polarized radiation [2, 13, 23, 49]. When the incident wave is time harmonic,
Uine (X, 1) = e “ iy (), the total wave field is time harmonic too, i.e., U (X, 1) = e i (x). Its
amplitude u (x) obeys a Helmholtz transmission problem, which, in two dimensions, is

Au + Kjgu =0 in Q.,
Au+ =0 in 0
Ou-  Ou” (D)
I + = _— — = :
u u 0,8 on on 0 on 0%,
lim |X‘1/2 <—(u — Uine) — the(u — uinc)) =0,
x50 /x|

where (); is an inclusion, . = R? \ﬁi, and n is the unit outer normal vector for €2;. The symbols
~ and T denote values from inside and outside €2;, respectively. The Sommerfeld radiation
condition on the propagation of the scattered field us. = u — ujn at infinity implies that only
outgoing waves are allowed. The parameters 3, ;, k. > 0 depend on the frequency w and the
material properties. Moreover, x. ~ k. is assumed to be constant outside of a ball containing
the objects and the detectors x;, j = 1,...,N.

To model the measurement process, we generate data d by solving the forward problem
(1) with inclusions we consider as the ‘truth’ and evaluate the resulting wave field at detec-
tors located at x;, j = 1,...,N. We then add independent additive white noise of a magnitude
specified in each problem to obtain ‘synthetic’ measurement. Depending on the application,
the measured data are complex-valued amplitude fields u(x;) (in microwave imaging [2, 49] or
acoustic holography [30], for instance) or real-valued intensities |u(x;)[* (in light microscopy
[19, 47]). Given the measured data and the ambient properties x., our goal is to find the inclu-
sions {; = UéL,ZIQf . Different experimental imaging set-ups correspond to different arrange-
ments of emitted incident waves and detector distributions, see figure 1. Here, we focus on the
configuration displayed in figure 1(a) for our numerical tests, though the methods extend to
other arrangements. We will consider both types of data, complex valued fields and real inten-
sities, which is the case in acoustic and light holography [19, 30, 47], respectively. Bayesian
methods are particularly interesting for acoustic imaging, since the magnitude of noise in the
recorded data is usually larger.

If we assume that each object can be approximated by star-shaped parameterizations, that
is, the boundary of each Qf is defined by ‘rays’ emerging from a center, the inverse scattering
problem amounts to finding a set of parameters v: the number of components, their centers
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Figure 1. Schematic arrangements of incident waves (red beams) and detector grids
(black crosses) in different imaging set-ups. (a) In holography and microscopy, one inci-
dent planar wave interacts with the objects and is recorded at a fixed grid of detectors
behind the objects [30, 47]. (b) In acoustic imaging of materials, waves emitted from
a grid of sources interact with the medium and the reflected waves are recorded at a
grid of receivers in the same region [4, 27, 33]. Blue lines represent waves interacting
with the objects and black arrows indicate the reflections arriving at the detector grid.
Microwave imaging uses set-ups similar to (a) for multiple incident wave frequencies,
while the relative positions of objects, emitters and receptors are rotated to increase the
number of independent observations [2, 49].

and the coefficients of the trigonometric expansions defining their boundaries, as well as their
material constants {. The coefficients x{ may be spatially dependent, which increases the
complexity of the problem. Here, we take them to be constant and usually known. We represent
star-shaped objects using expansions in trigonometric polynomials for the radius [11, 13, 38]
instead of general functions varying with the angle [7, 25] to reduce the parameter dimension.

There is a broad literature on deterministic inverse scattering approaches, which basically
fall in two categories. Non-iterative methods such as linear sampling, factorization, multi-
ple signal classification, orthogonality sampling, direct sampling and topological derivative
analysis [8, 26, 39, 42] provide direct approximations to the objects from the data. Iterative
techniques may refine this information at a higher computational cost, and vary widely with
the specific application. In most set-ups, one can resort to regularized nonlinear least-squares
optimization formulations, where the governing equation is treated as an equality constraint.
The idea is to seek shapes that fit the measurements within the noise level, and to use regu-
larization or early termination of iterative algorithms to prevent overfitting. In principle, the
existence of several local minima is a possibility—if local minima occur depends on the dis-
tribution of detectors, the incident wave directions and the local wave speed. To obtain the best
estimate for the true configurations, one may follow different strategies: produce sharp initial
guesses of the objects or select wide ranges of detectors and incident waves or frequencies
[1, 11, 14, 34, 35, 37], when possible, and include additional regularizing terms in the cost
functional, see [13, 38] for instance.

Such optimization-based methods are naturally related to Bayesian approaches, which con-
sider all variables in the inverse problem as random variables. Assuming the variables are a
finite-dimensional vector v, the densities of the random variables are related using Bayes’
formula [40, 56]:

pd|v)
p(d)

(@)= pv|d) = Ppr(V). @)
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Here, p,,() is the prior density of the variables, which incorporates prior (expert) knowledge
available about the variables; p(d|v) is the likelihood or conditional probability of the obser-
vations d given the variables v; and p,(d|v) is the posterior density of the parameters given
the data, which is the solution of the Bayesian inverse problem. The density p(d) is a scaling
that does not depend on the parameters. Full characterization of the posterior density is an
extremely challenging probability problem for moderate and high-dimensional parameters v,
and often one has to rely on approximations of the posterior distribution. One approximation
is finding the maximum a posteriori (MAP) point, i.e., the parameters that maximize the pos-
terior density. This amounts to an optimization problem that, making assumptions on the prior
and likelihood and taking the negative logarithm of the densities, becomes a nonlinear least-
squares problem of the form used in deterministic inversion; see section 2. In this optimization
problem, the regularization is implied by the prior density and the likelihood corresponds
to the data misfit term. Linearization about the MAP point, also called Laplace approxima-
tion, results in an approximation of the posterior density by a multivariate Gaussian, allowing
for computationally efficient manipulations even for high- or infinite-dimensional parameters
[6, 58]. Alternatively, to avoid a Gaussian approximation of the posterior, we can sample
the posterior distribution using, for instance, MCMC techniques [25, 32, 54] at a higher
computational cost.

The results obtained with Bayesian methods depend on the choice of the prior [19, 25].
Prior distributions can involve additional parameters, so-called ‘hyperparameters’ [43]. There
are different approaches to handling hyperparameters. A straightforward strategy consists in
fixing subjective guesses for them. The results depend on how good such subjective guesses are.
A second possibility is to select empirical guesses, i.e., one solves the problem using different
hyperparameters and then chooses the most appropriate one [9]. Finally, one might introduce
additional probability densities for the hyperparameters, and work in an hierarchical Bayes
framework [5]. In this work, we construct subjective guesses for the prior distributions from a
topological sensitivity analysis of the cost functionals. This allows us to handle imaging set-ups
with rather limited data, i.e., in which detectors are located in a narrow area, only one incident
wave is used, multiple penetrable objects may be present, and the recorded data may not be the
complex amplitude field, but just its real modulus. We will show that both the Bayesian lin-
earized approach and MCMC sampling provide reasonable descriptions of statistical properties
of the objects for various noise levels in the observations, when the number of object compo-
nents is known. Previous work in 3D light holographic settings also applied MCMC sampling
to infer the location, size and refractive index of single spherical particles [19]. In [S0-52], scat-
tering from single 2D sound-soft objects is considered. Here, the objects are placed at known
locations and inference is based on far-field, small-noise, complex data. Similar to this work,
MCMC sampling is used to infer Fourier modes in a starshaped parametrization, amongst other
parametrizations. Bayesian approaches relying on more complex parameterizations varying
with the angle are presented in [7, 25] for 2D acoustic and tomography set-ups.

When the number of objects components is not known, this number becomes an additional
unknown. Compared to the other parameters, it is of a rather different nature: it is discrete, and
it controls the presence of other parameter blocks. In this case, we reformulate our problem
within the frameworks of hierarchical Bayesian modeling and model selection [15]. The num-
ber of objects can then be selected by empirical arguments or by MCMC methods with variable
selection [18], see also [24] for a hierarchical level set approach. [50] applies model selection
to estimate the number of modes in the radii of single starshaped objects instead.

The next sections are organized as follows. In section 2, we devise a general Bayesian
approach for object reconstruction, which we test in the physical set-ups described in section 3.
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Section 4 uses topological sensitivity analysis to estimate the number of objects and define pri-
ors. Assuming the number of objects and their material properties known, we compute MAP
points for their shape and then sample the Gaussian posterior approximation obtained by lin-
earization at the MAP point in section 5. The results for different geometries are compared
to MCMC sampling of the full posterior distribution in section 6. Section 7 discusses cases
where we allow for variations in the material constants of the inclusions. In section 8, the num-
ber of objects is considered as unknown, and thus we implement a Bayesian strategy for model
selection. Finally, section 9 presents our conclusions. For completeness, a final appendix A
discusses formulas for different derivatives relevant in sections 5 and 7.

2. Bayesian approach for a given number of objects

In this section we develop a framework for object detection. We assume that we can approxi-
mate the objects using star-shaped parameterizations, but more general parameterizations could
be used instead. The parameters for an inclusion consisting of L > 1 object components are

collected in a vector v = (v!, ..., vF) € RICMF where
vi=(cl.clah.al,. .. ay bl by, 0=1,... L. (3)
Here, (cf;, cf;) are the centers and r/(7) the radii of the object components, associated to the
parameterization
q' (1) = (c}. ¢}) + r'(t)(cos(2mr), sin(27t)), ¢ € [0, 1], 4)
M M
r(t) = ay+2)  dl, cosQmmi)+2) b, sin2mmi), (5)
m=1 m=1
for ¢ =1,..., L. Note that similar parametrizations are available in three dimensions, where

they could rely for instance on spherical harmonics instead of Fourier series [13]. The number
of modes M, which we fix, controls the complexity of the boundary. The Bayesian approach to
inverse problems requires to define a prior distribution for the parameters v. We choose p(v)
as a multivariate Gaussian

1 1 1
pv) = Wm eXP(—E(V - VO)Tpr_l(V — 1)) (6)

with covariance matrix I',. and n := L(2M + 3). Notice that the radii (5) belong to the space of
trigonometric polynomials Ty 1, and are expanded in an orthonormal basis ¢, ..., ¢y 1, S0
that the mass matrix associated to this basis is the identity. Otherwise, the mass matrix would
enter (6), see [6]. Modeling of the prior distribution, i.e., the choices for the covariance matrix
I',; and the mean v, are discussed in section 4.

We illuminate the L objects with an incident plane wave of amplitude u;,. (x), generat-
ing data d at detectors x;, j = 1,...,N. We denote by f: RECM 3 — RV the parameter-to-
observable map, i.e., the mathematical description of this process. To be more precise, for
parameters v, we denote by uq, the solution of the wave equation (1) with object ; = Q,,
defined by (3)—(5). Then f(v) = (f (MQV(XJ')))ij:l, where f is the measurement operator
(which may be real f(u) = |u|* or complex valued f(u) = u).

We assume additive Gaussian measurement noise, i.e., the observations and parameters are
related by

d="fw)+e. 7)



Inverse Problems 36 (2020) 105001 A Carpio et al

Here, the measurement noise € is distributed as a multivariate Gaussian N/ (0, I},) with mean
zero and covariance matrix I',. We consider the noise level for each sensor to be equal and
uncorrelated, so that I';, is a real diagonal matrix. For complex valued data, the additive noise
is represented by a standard complex Gaussian variable whose real and imaginary parts are
both real Gaussians of the form A/ (0, T}, /2) [46].

Due to these assumptions, on the measurement noise, the conditional probability density
p(d|v) takes the form

1 1
dv)=— — exp| —=|fw)—d|% ., ), 8
P = e p (- 100 -l ) @)
where Hv||i, _, = VT, 'v. Combining (2), (8), (6) and neglecting normalization constants, the

posterior density becomes, up to multiplicative constants,

1 1
Pul)  exp (—2||f<u> . uo@wl) | ©)

Taking logarithms, the problem of maximizing the posterior probability of the parameter
set v given the data d is identical to minimizing the regularized cost objective [3]:

1 1
J(v) ::EHf(l/)—dH%n,l + EHI/—I/OHEY,], (10)

where we neglect additional terms involving only the covariances. The first part of functional
(10) is related to the standard cost used in deterministic inverse problems, whereas the second
part originating from the prior takes the role of the regularization, which prevents ill-posedness
and overfitting of the observation data.

In our experiments, we choose a diagonal covariance matrix I} = diag(af, ol 012\,), and
set all the variances equal to a constant o2 Thus, /[T = 1T} 0; = o’y.. The mean v in
the prior multivariate Gaussian density and the elements of the covariance matrix I',; are con-
sidered hyperparameters to be selected as discussed in the next section. This selection reflects
our uncertainty in the prior information available, and affects the resulting parameter inference.
We introduce a strategy to generate guesses for all the hyperparameters based on the topological
fields of the objective functional (12). For that purpose, the available data are split in two parts:
a fraction d'V is used to generate the prior, whereas the remaining values d® =: d are used in
(9) to define the posterior distribution. We use intersperse grids as detailed in section 5.2. We
generate synthetic data d'” and d for our tests solving (1) by BEM methods using ‘true’ object
inclusions, and then add noise (as detailed in our numerical tests) to these observations.

3. Physical set-ups

We will study the behavior of the methods presented in this paper in light and acoustic
holography set-ups, adjusted to figure 1(a). In this section we briefly summarize the physics
background and the parameter choices we make for the remainder of this paper.

Let us fix a reference length scale L. Typical object sizes may range from L/10 to 2L, for
instance, while the distance to the detectors is about SL. In an acoustic setting, the evolution
of the total wave field U is governed by the wave equation p (x) U (X, 1) — div(a (x) VU (X, 1))
= 0, where p is the density and « represents a relevant ‘modulus’. In liquids, « represents the
bulk modulus and in solids, « is Young’s modulus. In gases, & = yp, where p is the pressure
and  is related to the specific heat. The speed of sound in the medium is then ¢ = (a/p)'/%.

6
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When the applied field is time—harmonic, then U (x,1) = e i (x), where the amplitude u (x)
obeys div(a (x) Vu (X)) + p (x) w?u (x) =

We nondimensionalize the problem accordmg tox=xL,y=yL Q=QL, ujp. = uoitl.,
u = ugu’ and then drop the ’ for ease of notation. Here, L is the reference length and ug the
modulus of the amplitude of the incident wave. The total amplitude field is then governed by
(1), where the parameters are the dimensionless wavenumbers,

2 2
fo=""L =L, (1n
Ce Ci
as well as the ratio § = . We denote by v = 5= the frequency of the emitted sound wave

and by c. and ¢; the sound speed in the ambient medlum and inside the objects, respectively.
The incident amplitude for the plane wave is uj,. = ei"eY where y points in the direction of the
detectors.

Frequencies for sound lie in the range 20 Hz—-20 kHz. The speed of sound in air is
343 m s~ ! If for instance L ~ 6 cm, K, ~ 12—20 for 11-18 kHz. Depending on the material
the object is made of, it can be sound-soft (it absorbs sound), sound-hard (it reflects sound),
or penetrable. We assume penetrable objects. For the other types, the governing equations and
formulas should be adjusted following [10].

In a light holography set-up, the general framework is similar [12, 13], assuming we use
polarized light in the presence of few well separated objects. Then, the equations governing
the amplitude field can be approximated by (1) and the wavenumbers are again given by (11),
¢ and v representing light wavespeed and frequencies. In this case, 8 = /‘? , e and ; are mate-
rial permeabilities. For the biological applications we target, S ~ 1. Visible light wavelengths
lie the range of 400—700 nm and result in wavenumbers x. ~ 12-20, setting L ~ 1pm, for
instance. While in classical light holography, the measured data are real intensities |u|* [12],
it has become possible to record complex-valued data u in acoustic holography set-ups [30].
The latter are affected by larger noise magnitudes.

4. Topological selection of priors

Topological derivative methods generate first guesses of objects without a priori information,
other than the measured noisy data, the ambient medium properties and the incident wave.
In deterministic frameworks, such guesses are then improved by level set, shape derivative,
topological derivative or Gauss—Newton iterations [11, 13, 14, 35]. Following a Bayesian
approach, we propose the following procedure to generate prior densities from topological
sensitivity studies of the underlying unregularized cost functional (12). Such prior knowledge
can significantly influence Bayesian inference results, as, e.g., observed in [19, 25].

4.1. Topological derivative of the cost functional

Given R C R?, the topological derivative of
_ 1
J.(RN\Q,) = 5; |d; — f(ugu(xj))|2, (12)

is a scalar field Dr(x, R) satisfying [57]:

J{(R\B(X,¢)) = J«(R) + Dr(x, R) meas(B(x, €)) + o(c?)

7
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for any x € R and any small radius € > 0. Here, meas(B(X, €)) is the volume of the ball cen-
tered at x with radius €. When Dp(x, R) < 0, the cost functional decreases by removing small
balls centered at x. This suggests that placing objects €2 in regions where the topological deriva-
tive is negative, the cost functional should decrease. In this way, we obtain guesses for object
component locations. When R = R2, the topological derivative admits an explicit expression
in terms of auxiliary forward and adjoint fields [11, 33]. For x € R?

2(1-p)
Dr(x,R?>) =Re | =2~
1+8
where k. is the wavenumber for the outer medium, x; the wavenumber for the inclusion whose
shape we are seeking and uj, is the incident wave. When &, is constant, the conjugate adjoint
field is

Vitine (X) VPine (X) + (BK] — £2) thine (X) Pine ®) |, (13)

N
Pine (0 = > HY (el = %, x(x)). (14)

=1

with HS" the Hankel function and x(x;) = @ — f tinc(X;))f ' (#inc(X,)). Standard choices for
the measurement operator are f(u) = u with f'(u) = 1 and f(u) = |u|*> with f'(u) = 2%. When
Ke varies spatially inside a bounded region, pi,c is a solution of:

N
. . op
AP+ Kp= ZX(Xj)5xj inR%,  lim |x|'/? (6 | zkcp> 0,

5 [x|—00
J=1
k. being its constant value at infinity.

4.2. Prior selection

Figure 2 displays the topological derivative field (13) for three objects when x; = 15.12 and
ke = 12.56. Regions where large negative values are attained provide guesses of the object
locations, which we use as prior knowledge as follows. We choose a constant Cy € (0, 1) and
define the set Qy = {x € Rops|D1(x, R?) < (1 — Co)minyeg, Dr(y, R?)} in the region where
we look for objects, the so-called observation region Rp,s. Then, we fit circles to each connected
component to construct our initial guess €2,

For single objects, we test 50 values between 0.01 and 0.3 for Cy, choosing the one which
yields the smallest value for the cost functional. Here, depending on the value selected for Co,
we will capture one, two or three dominant negative regions. Since we assume we know the
number of objects, we set Cy to capture L = 3 objects. Star-shaped objects are a deformation
of circles. We fit circles to each component Q,{O as follows. For £ =1,...,L, (c{,. Cfv,o) is
the center of mass of the component and ajj , is the minimum distance from the center to the
boundary (or the average of minimum and maximum distances). We set a}, , = 0 and b}, , = 0,
m=1,...,M to avoid inserting unnecessary bias in the hyperparameters. Flnally, we check
that Jc(Rz\Quo) < JL(IR?) for the cost functional (12). Otherwise, we divide ao,o by 2 until this
requirement is fulfilled.

These values define the prior mean v in (9) and (10), which are also the initial guesses
shown in the figures discussed in sections 5.2 and 6. We select covariances that render non-
positive radii in (5) unlikely. For that purpose, we choose I',; as a block diagonal matrix. In each
block, the components decrease with increasing mode number. Additionally, in our imaging
set-up, the uncertainty in the direction of the incident wave Cﬁ,o is larger than the uncertainty in
cfm. This is due to the increased uncertainty of the topological derivative in the incident wave,

8
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Figure 2. Topological derivative (13) for a configuration with three objects whose
contours are superimposed: (a) with data |u(x j)|2, j=1,...,101, (d) with data u(x;),
j=1,...,101, corrupted by noise of magnitude 5% and 10%, respectively. The noisy
data, depicted in panels (b) and (e), are recorded in the set-ups represented in Figure 1(a).
Red asterisks represent the noisy data, whereas blue circles are the ‘true’ synthetic values
generated solving the forward problem by BEM. Panel (c¢) represents the information on
the objects inferred for (a) and (b) by the Bayesian linearized approach developed in
section 5 with M = 5. Parameter values: k; = 15.12, ke = 12.56, 8 = 1.

i.e., the y-direction. Specifically, we choose the variances (o%)*> = 0.1 and (af)2 = 0.2. The
variances for the radius mode coefficients a,,o and b, are inspired by convergence results
for deterministic approaches which use H*-norms for the radius, that is, weighted L?>-norms
forcing decay [38]. We set (0§)> = 0.1 and (0,)> = 0.1/(1 + m?)*, s large, 1 <m < M. In
our tests, we usually set s = 3. In this way, the prior favors regular shapes, i.e., shapes with
r(t) > 0.

Once the prior distribution is defined, we resort to different techniques to explore the poste-
rior distribution. Methods for doing this as well as numerical results are presented in the next
two sections. The simplest one computes a maximum a posteriori (MAP) estimate and samples
the linearized posterior distribution to infer properties of the objects which generated the data,
as illustrated in figure 2(c). Green contours represent probabilities of belonging to a boundary
(built from the samples), whereas the magenta curve represents the MAP point.

5. Sampling from a Bayesian linearized formulation

An approximation of the posterior density (9), which builds on tools often available for opti-
mization in deterministic inverse problems, is the Laplace approximation obtained by lineariza-
tion at the maximum a posterior (MAP) point. The approach first computes the MAP parameter

9
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vector vyap, Which minimizes the negative log likelihood (10), and then approximates the pos-
terior distribution by a multivariate Gaussian N (ta1ap, I,)) with posterior convariance matrix
Ly = H !, where H is the Hessian of (10) evaluated at vpap [40, 56]. If the parameter-to-
observable map f(-) were linear (and with the additive Gaussian noise and Gaussian prior
assumptions made in section 2), this approximation of the posterior distribution would be exact.
In general, the accuracy of this Gaussian posterior approximation depends on the degree of
nonlinearity of f.

Efficient computation of the MAP point is discussed in section 5.1. Once vyap is
available, the Hessian can either be computed explicitly or using low-rank approximations
for large or infinite-dimensional parameters [6, 54]. For a parameter-to-observable map
fw) = (f (uq, (x j)))l}':1 with measurement operator f : C — C, f(u) = u one obtains

T, = (Re[F“T, 'FI+ T, ') . (15)

Here, F is the Jacobian matrix of f(-) evaluated at yap and its adjoint F* = F is the conjugate
transpose of F. If the measurement operatoris f : C — R, f(u) = |u|?, the first part of the Hes-
sian, which represents the amount of information learned from the data, is Re[FathI‘n’lF],
where M, is a real diagonal matrix, see section 5.1. Samples from this posterior distribution
approximation N (tArap, I}) can be drawn as

VP = tyap + Ty /7n, (16)

where n is a vector of independent and identically distributed (i.i.d.) standard normal random
values and I‘ptl/ 2 is a square root of the positive posterior covariance matrix [58]. Analogously,
samples from the prior are drawn using " = vy + l"prl/ ’n.

To compute the MAP point, we compared different strategies to solve the nonlinear
least-squares problem (10): gradient descent, Newton methods, Gauss—Newton (GN) and

Levenberg—Marquardt (LM) variants. We detail the procedure finally used next.

5.1. Computing the MAP point

Newton methods to minimize a functional /() implement the iteration ! = vf — H™'g,
where H is the Hessian and g is the gradient of J. This is equivalent to solving systems of
the form HE! = —g, followed by the update step 4! := ¥ + €. Levenberg—Marquardt
approaches add a ‘damping’ term pl, ¢ > 0, to the system matrix. The value of 4 is adjusted
at each iteration. If the objective yields a strong decrease from one iteration to the next, small
values of p are used and the method resembles a Newton-type scheme. When the decrease is
slow, large values of y are selected and the method becomes closer to gradient descent. We use
a variant of this method proposed by Fletcher [28], which scales this ‘damping’ term to allow
for larger steps in directions along which the gradient is smaller using p diag(H) instead of p1.

For the objective (10) and the two forms of the parameter-to-observable map f, we com-
pute gradients and Hessians as follows, where for the latter we neglect second-order deriva-
tives of measurement operators. The resulting Hessian approximation is sometimes called
Gauss—Newton Hessian. Given a parameter-to-observable map f(v) = (f (uq, (x j)))l}':1 with
measurement operator f : C — C, f(u) = u, we have

g():=Re[FW)L, ' (fw) — )] + Ly ' (v — vo).
HNw) :=Re[F“ )L, 'Fw)] + T !,

10
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where here and in the following, F denotes the Fréchet derivative of the parameter-to-
observable map v — (ugq, (X j))l}’:l, ug, being the solution of (1). The characterization of this
operator in terms of the solutions of auxiliary boundary value problems, as well as the way to
calculate F, are discussed in appendix A. For a measurement operator f : C — R, f(u) = |ul*,
and diagonal constant I, gradient and Hessian are

1
gw) = Re[F“ ()M, (f(v) — d)] + Ty ' (v — vy),

noise

HN®w) = Re[F“w)M,F(v)] + T, ',

2

noise

where M, and M, are diagonal matrices defined as follows:
M, = diag [Quo, (x,))Y\_,]. M, = diag [(6uq, (x))|* — 2d)L,] .

To summarize, we use the Levenberg—Marquardt method with scaled diagonal matrix and
the Gauss—Newton Hessian to compute the MAP point. That is, starting from v° = v, we use
the iteration At = Uk 4 €51 where €47 is the solution of

(HS ) + e diag(HS 04) €7 = —g,, 0.

Here, the subscript )\; indicates that we multiply Fpr_l by a factor )\; in the initial steps to
balance the different orders of magnitude of the two terms defining the cost J in (10). The
initial value \g = 0.10, 2., decreases each iteration by a factor 2/3 until it reaches the value
A = 1 corresponding to (10). We set z1, = 1073 for each iteration, and check if the functional
decreases sufficiently. If it does not, this value is increased by a fixed factor. This usually
only happens for a few steps, and p is bounded from above by 1. The iteration stops when
the difference between the new value of the cost and the previous one is smaller than 7o 2.,
where 7 is a tolerance (usually 7 = 1073). The final parametrization vyap is considered the
MAP point. Computing this MAP point typically requires 15-25 iterations for problems with
single objects.

Notice that a star-shaped parameterization of an object is uniquely defined when its center
is fixed. However, star-shaped objects (circles or ellipses, for instance) may be parameterized
with different centers, at least when infinitely many coefficients are used in the expansion. If we
consider only the cost functional (12), we may encounter different minima defining the same or
very similar objects. Some optimization strategies [13] overcome this issue by enforcing that
the center of the object must be the center of mass. In our Bayesian approach, the regularization
(which results from our choice of prior) in (10) results in a preference for one parametrization
for the same object.

5.2. Object detection with quantified uncertainty

Once we have computed the MAP point, we can apply the Bayesian linearized framework to
object detection. We have performed our tests in the set-up shown in figure 1(a), adapted to
either acoustic or light holography; these settings are described in detail in section 3. We place
detectors atx; = —5 + 0.05j, j = 0, ...,200, on a uniform grid of step size 0.05. The subgrid
with step size 0.1 is used to compute the MAP point, whereas the data at intermediate detectors
is used to generate the topological priors. The same splitting is used for our MCMC sampling
experiments in the next section.
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Figure 3. Linearized Bayesian solution for synthetic measurements of complex ampli-
tudes using a sphere centered at (0, 0) with radius 0.2 with noise (a) 1% and (b) 5%. Cyan
curves show the true object used to generate the synthetic data, whereas the obtained
MAP points are shown in magenta. Dashed curves are the prior means constructed by
topological methods, which are also used as initial guesses in the optimization. Black
contours show the probability of points to belong to the object. Parameter values are
ki = 15.12, ke = 12.56, 8 = 1,and M = 5. The arrow indicates the incidence direction.
Detectors are placed at a distance 5 in that direction, as in figure 1(a).
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Figure 4. (a) and (b) Inferred shapes for an ellipse centered at (0,0) with semi-axes
of lengths 0.2 and 0.1 in the x and y directions, respectively, when (a) x; = 15.12,
ke = 12.56, and (b) k; = 25.12, k. = 20.56, with 5 = 1, M = 5. (c) Displays results
for the same parameters as in (b) orienting the ellipse in the y direction. Green contours
show the pointwise marginal for each point on the curve. Data: Complex amplitudes at
detectors placed at a distance 5 in the incidence direction, with 5% noise.

Figures 2—5 show the results for two sets of wavenumbers, namely «; = 15.12, k. = 12.56,
and K = 25.12, k. = 20.56. The incident wave is uj, = ¢'“¥, where the y-coordinate is
oriented as in figure 1(a).

The topological approach described in section 4 is used to define the priors, and the prior
mean is used as initialization to compute the MAP point. The functional (10) is minimized as
explained in section 5.1 to obtain the MAP point. Linearizing about it and approximating the
posterior probability by a Gaussian, we generate samples by means of (16). Based on them, we
compute probabilities for points to lie inside the object (e.g., figure 4), the pointwise marginals
of the contour (e.g., figure 5), as well as the marginal distributions of the centers of mass, the
maximum and minimum distances from the center to the object border and their orientation.
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Figure 5. Inferred shapes from complex data with 10% noise for the physical parameters
ki = 25.12, ke = 20.56, 8 = 1,and M = 5. The true shape is an ellipse centered at (0, 0)
with semi-axes of length 0.2 and 0.1 in the x and y directions, respectively. Contours
represent the contours for the pointwise marginal for points on the curve in (a) or the
probability of being inside the object in (b). The histograms in (c) and (d) are discrete
approximations of the densities for the distribution of the area, the deviation from a
circular shape, the center of mass, the minimal and maximal radius and the angle of the
direction of the minimal and maximal extension of the inferred objects.

A small number of samples have negative radius as defined by (4) and (5) resulting in shapes
with loops, which we discard for these calculations.

Figure 3 compares the results for a circle-shaped object as the noise magnitude increases
from 1% to 5%, for the lower wavenumbers. The position, size and shape are inferred with
small uncertainty. Switching to ellipsoidal shapes, the values of x;, k. need to be increased for
a more precise description of the dimensions and the orientation of the object, see figure 4.
However, smaller values locate the true center more accurately. A similar phenomenon is
observed in 3D [13]. Improved resolution has also been achieved increasing the wavenum-
ber in acoustic 2D settings [4] with full aperture far field measurements, however, the number
of incident directions and sampling points is increased too. Here, we keep the same single inci-
dent direction and limited aperture sampling points. The inferred shapes are still reasonable for
higher noise magnitudes. Figure 5 illustrates the results for an ellipse, including statistics for
its center of mass, size and orientation, with 10% noise. Similar results are obtained when
halving the number of detectors (these results are not shown here). If we reduce the num-
ber of detectors further, the distance between them becomes larger than the object size. As
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a consequence, the MAP point looses the elliptical shape, but its location and size are still
adequate. In figure 5, we additionally study the uncertainty in the inferred objects in terms
of quantities that do not depend on the parametrization, namely the area, the center of mass
and the minimal and maximal radii and their directions. The area for a closed curve C is com-
puted as fc r(s) ds. The center of mass of a curve with the parameterization q(7) = (x(¢), y(¢)),
relis [,q()|q'®)|dt/ [, |q'(0)|ds, where |q'(1)|dr = \/x'(t)> 4 y'(1)*dt = ds is the differen-
tial of arch length. The deviation from a circular shape is fc\r(s) — rap| ds, where r(s) is
the distance to the center of mass and r,, the average radius. The maximum and minimum
radii are the longest and shortest distances of the curve to the center of mass, respectively.
The angle between the x-axis and the direction of longest and shortest radius is denoted as
maximum and minimum direction in figure 5. Figures 3—5 use as data complex amplitudes
measured at 101 detectors placed at a distance 5 of the object in the incidence direction.
As commented earlier, figure 2(c) uses real intensities at the detectors as measured data.
Unlike ellipsoidal shapes, these three objects can be exactly parametrized for a small number
M =5 of modes to represent the object geometry. The reconstruction of the configuration is
reasonable.

The computational cost of this procedure is moderate. The MAP points are usually obtained
in about 15-25 iterations, and sampling with the expression (16) requires no additional for-
ward solves besides computing the Hessian at the MAP point. The figures discussed here use
10, 000 samples. However, we have introduced some approximations in the Bayesian inference
process: first, when approximating the posterior by a Gaussian, second, when approximating
the full Hessian with the Gauss—Newton Hessian at the MAP point. To assess the validity of
the procedure, we will compare to results obtained by MCMC sampling of the whole posterior
distribution.

6. Sampling with Markov Chain Monte Carlo

MCMC techniques have the potential to fully explore and statistically characterize the pos-
terior distributions without linearizing the parameter-to-observable map. A Markov chain is
a sequential stochastic process, which moves from one state to another within an allowed set
of states: X° — X'... — X*.... To define a Markov chain we need three elements: (1) the
state space, that is, the set of states X the chain is allowed to reach, (2) the transition opera-
tor p(X**!|X*) which establishes the probability of transitioning from state X* to X**!, and
(3) the initial distribution 7y which defines the initial probability of being in any of the pos-
sible states. To generate a Markov chain, one moves from one state to another guided by the
transition operator p(X**1|x%).

In our context, we wish to sample posterior distributions 7 by means of Markov chains, and
a natural choice for 7 is the prior distribution. There are many MCMC variants for sampling
posterior distributions [3], which are based on different transition operators. MCMC algo-
rithms often suffer from ‘slow mixing’, i.e., the underlying Markov Chain takes (too) many
samples to explore the parameter space and thus provide a good characterization of the distri-
bution we aim at sampling. For large scale problems near a continuous limit, preconditioned
Crank—Nicholson and stochastic Newton variants have been shown successful [17, 25, 54].
However, when the target distribution is multimodal, these samplers may fail to jump from
one mode to another. Thus, we resort to affine invariant MCMC samplers working with several
chains [32] because their strategy to generate new proposals reduces the occurrence of samples
with negative radii during the sampling process and the use of many chains allows us to handle
multimodal distributions.
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In our imaging set-up, the initial distribution 7 is the truncated prior distribution, where
we neglect normalization factors

0, if intersections,

To(v) = (17)

1
eXP(—E(V —v)'Ty ' (v — vo)), otherwise.

By intersection we mean that the radius of the star-shaped curves with coefficients v vanishes
at at least one point and thus the curve is degenerate, and, for multiple objects, that we have
intersecting or nested boundaries. Disregarding the normalization constants, which do not play
a role in MCMC methods, the posterior to be sampled is

|
(V) = mo(v) exp (—2(d — )T, 'd - f(V))) .

For the algorithm to sample the posterior distribution we follow [32], which we summarize for
completeness:

e Initialization: generate the initial positions of the walkers Xy’ € RLw=1,...,W by sam-
pling from the prior distribution 7. Choose the acceptance parameter a (typically 2) and
the number of steps K.

e foreachstepk =0,...,K — 1, evolve the walkers w = 1, ..., W as follows:

+ Draw a walker X! at random from the set of walkers {X/} ..
* Choose a random value z,, from the distribution g(z) = % when z € [1/a,al, zero

otherwise.
* Calculate proposition X}";;op = XZ + 2o (X} — XZ).
* Calculate s = 74! %%f‘” Calculate s = Min (1, ).
* Draw r with probabilitky UQO, 1. If r < sset X | = X1, Otherwise set X | = Xj'.
e Final result: the Markov chains {X{/, ..., X} }, for all the walkers w = 1,..., W.

The number of walkers is chosen as atleast W > 2d to increase mixing and to take advantage
of parallelization [29].

With this algorithm, we revisit the configurations studied by Bayesian linearized techniques.
Figures 6 and 7 are the counterparts of figures 4 and 5, generated by MCMC sampling. We
have used Gelman—Rubin tests [31] to check that the sample distributions under study are
properly converged. Notice that in both cases we have rejected samples with negative radius.
The results are similar but the computational cost is higher, several tens of thousand samples
have been used, depending on the shapes and wavenumbers. Each sample requires solving a
forward problem to evaluate the likelihood. Magenta curves in this case represent the sample
with maximum probability, which is an approximation to the MAP point. The approximation
improves increasing the number of samples.

Comparing figures 4 and 6, we see that the approximations to the MAP point are similar.
However, there are differences in the lower probability contours around the MAP point for the
ellipse oriented orthogonally to the incidence direction and the larger values of x, see panel
(b). These low probability features are converged as when increasing the number of Monte
Carlo samples, they remain mostly unchanged. We analyze this phenomenon in more detail in
figures 7 and 8 for larger noise. Comparing figures 5 and 7, the MAP and expected curves show
again reasonable agreement. However, the Bayesian posterior becomes bimodal, as seen in the
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Figure 6. Same as figure 4 but with MCMC sampling. Sampling parameters are
W =200, K = 200, B= 35000 and a = 2 in (a), and are increased to K = 500 and
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Figure 7. Same as figure 5 but with MCMC sampling. Sampling parameters are a = 2,
W =800, K = 1500, B = 80 000. Due to the bi-model nature of the posterior distri-
bution, only parts of the figures are shown. See figure 8 for a study explaining the
bimodality of the posterior.

histograms for centers, radii, orientation and area. These observations persist varying the num-
ber of walkers W = 200, 400, 800, steps K = 500, 1000, 3000, 7000, 14000, and acceptance
ratesa = 2,1.1,2.5.

To further study this, figure 8(a) displays a collection of samples. Most of them wrap around
the true object, as shown in panel (b). However, a significant number of samples is oriented
in the incidence direction of the waves, along the y axis, orthogonal to the true orientation of
the object. Tracking the evolution of the initial walkers, we observe that when they are above
a certain size, the proposed curves evolve toward this second family, whereas smaller shapes
get closer to the true object. Comparing figure 8(d) with Figure 8(a), we notice that samples
concentrate in regions of large negative values for the topological derivative. Some concentrate
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Figure 8. Samples from the problems discussed in figures 5 and 7. Shown in (a) are
the last 800 walker states generated by the MCMC algorithm in the imaging region
[—5,5] x [-5, 5], in (b) zoom-ins showing 100 of such samples around the true object,
and in (c) 100 samples generated by Bayesian linearized sampling. Using the linearized
approach, all samples wrap around the true object (black curve), while samples from the
posterior obtained using MCMC show that other shapes are consistent with the data. To
study this further, in (d) the topological derivative of the cost functional (12) is shown,
and in (e) and (f) a comparison of the data (asterisks) with observations generated from
a sample wrapped around the object (circles in (e)) and by one of the large, elongated
samples (circles in (f)).

around the spot where largest negative values are attained, marking the true object location,
while the other elongate along stripes of less negative values. As commented in section 4.1,
we expect the physical cost functional (12) to decrease by removing regions of negative values
of the topological derivative, that is, placing objects in them. Panels (d) and (e) compare the
synthetic data used in the simulations to the measurements corresponding to samples wrapped
around the true object and to elongated samples.

Elongation and loss of axial resolution are aberrations present in traditional holographic
reconstruction techniques based on numerical backpropagation [59] due to the use of only
one incident direction. They indicate the potential presence of additional local minima in the
original cost functional and highlight ambiguity due to ill-posedness, in particular if the data
contains larger noise levels.

Figure 9 compares the results for a asymmetric egg-like shapes when we replace complex
valued data by just intensities. As can be seen, when only using intensities, the uncertainty in
the shape increases.

7. Varying the material properties

In the previous sections, we fix the object properties and aim at inferring their geometry. In
practice, one may have to infer also material constants entering the equations such as x;. In
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Figure 9. Results for an egg-like object inferred from complex data u(x;) (a), and from
the modulus data |u(x;)|* (b), j = 1,..., 101, with 5% noise. Parameters are x; = 24.79,
ke = 20.6, 8 = 1 and M = 5. Sampling parameters are « = 2, W = 200 and K = 3000.
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Figure 10. (a) Same as figure 3(b) but with MCMC sampling for unknown «;, shown in
(b). Shown in (d) is the counterpart of figure 4(b) using intensity data with MCMC sam-
pling for unknown ~;, shown in (e). (c) and (f) are the equivalent of (b) and (e) obtained
by linearizing about the MAP point. We use the same MCMC sampling parameters as
for the previous figures. The true values for x; are x; = 15.12 in (a)—(c) and x; = 25.12
in (d)—(f). Expected values are x; = 15.04 and x; = 23.18, respectively.

the MCMC framework, this can be handled by adding an additional element to the prior. The
forward problem has one parameter in addition to those defining the shapes, which enters the
equation. Hence, we sample with respect to one more parameter. The results are shown in
figure 10.



Inverse Problems 36 (2020) 105001 A Carpio et al

In the Bayesian linearized framework, we also include a new parameter in the prior. When
optimizing, we simply compute derivatives with respect to one parameter more. The Fréchet
derivative with respect to «; is then the solution of a boundary value problem obtained differ-
entiating the Helmholtz equations with respect to x;, see appendix A2. Once this is done, a
similar iteration to that proposed in section 5.1 provides a MAP estimate. Sampling by means
of (16) we obtain figures 10(c) and (f).

8. Model selection when the number of objects is unknown

In the previous sections, we inferred object shapes from observational data assuming that the
number of objects is known. Here, we are considering the number of objects L as an additional
variable to be inferred. The number of objects is substantially different from other variables that
characterize the object geometry because it is discrete and changing it amounts to the addition
or removal of blocks of parameters defining object components. Thus, the number of objects
defines different models with different numbers of parameters [15]. The probability of the data
given the model, that is, the number of objects m, is computed by integrating over the model
parameters:

pdm) = / pd0)pe|myd, (18)

where p(d|v) is the likelihood (8) and p(v|m) the prior (17) given the model. It can be evaluated
by sampling one of them, p(v|m) for instance, and computing a Monte Carlo estimate based
on these samples v;, i = 1, ..., S, amounting to éZiS:l p(d|v)), [3]. The resulting quantity is
called the evidence for model m [53]. We have implemented this procedure for the synthetic
observations coming from the configuration with 3 objects shown in figure 2. Computing the
evidence for models with m = 1,2, 3,4, we find a clear maximum for m = 3, i.e., the true
number of objects. Once we have selected a number of objects, we sample the posterior dis-
tribution (9) using the MCMC techniques described in section 6 to infer the expected objects,
which resemble the MAP points in figure 2(c).

9. Summary and conclusions

We have developed a Bayesian framework for object detection which uses topological methods
to generate priors. In this approach, objects are represented by star-shaped parameterizations.
Assuming the number of objects and their material properties are known, we compute the
‘maximum a posteriori’ (MAP) estimate for the parameters defining centers and radii through
minimization of the proper cost functional. Linearizing the parameter-to-observable map about
the MAP point, one can generate samples of the Laplace approximation to the posterior distri-
bution to quantify the uncertainty in the object location and its shape at a low computational
cost. We test the scheme in 2D holography imaging set-ups, for both acoustic and light waves.
The former uses complex fields measured at detectors as data, whereas in the latter only real
intensities are available. In these set-ups, wave fields are governed by transmission boundary
problems for Helmholtz equations and the incident waves reduce to a single beam. For small
noise magnitudes, many shapes can be inferred with moderate uncertainty for a wide range of
wavenumbers. As the magnitude of the noise increases, larger wavenumbers (i.e., smaller fre-
quencies) provide better shape descriptions whereas smaller wavenumbers approximate their
location more accurately. Even for noise magnitudes of 10% and higher, topological derivatives
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are useful to generate priors, and the Bayesian approach with complex data results in param-
eter inference with moderate uncertainties. This is particularly relevant for acoustic imaging
set-ups, in which the magnitude of the noise is larger.

To assess the performance of Bayesian linearized methods, i.e., Laplace posterior approx-
imations, we compared the results with those obtained by direct MCMC sampling of the
full posterior distribution, finding reasonable agreement. However, MCMC sampling pro-
vides more complete insight into the structure of the posterior distribution, which become
multimodal for larger noise levels. Comparisons are made under the assumption of piecewise
constant material properties, which allows us to use fast boundary element schemes to solve
forward and Fréchet problems. Also, working with 2D star-shaped objects represented in a
trigonometric basis, we only need to infer 14—50 parameters for sets of 1-3 objects. When
the number of objects is also unknown, we used a Bayesian model selection strategy to obtain
information on the number of objects, as well as on their location and shapes.

Our methods extend to 3D set-ups, involving a larger number of parameters. Whereas
Bayesian linearized techniques may yet be efficient once the derivatives needed to implement
optimization techniques are characterized as solutions of specific boundary problems, the com-
putational cost of direct MCMC sampling increases. Here, computing a MAP point requires
15-25 Newton-type descent steps. Each iteration implies solving a small linear system, as
well as boundary value problems for the derivatives. Instead, MCMC requires solving a large
amount of boundary value problems. The problem becomes even more difficult if we allow for
spatial variations in the material parameters. Tempering approaches [19] may help to reduce
that cost.

Topological sensitivity is a flexible tool to obtain prior information. It uses an explicit for-
mula which accommodates limited aperture data, only one incident wave, large noise, and
measurements of the full complex field, or functions of it, such as intensities. Moreover, it has
an interpretation as a measure of the decrease of the physical cost functional which provides
insight into the multimodality of the posterior. However, the proposed Bayesian framework
is independent of the choice of the prior. Other initialization procedures, such as linear or
direct sampling [8, 39], may be used to construct priors when the combination of receivers
and incident directions provides complex amplitude data widely distributed around the
object.

Here, we mostly consider tests in which the material properties are considered known.
Assuming material properties to be characterized by constant parameters, the proposed frame-
work can be adapted by including a few additional parameters. To consider more general
spatially variable material properties, one could combine these methods with those developed
in [6, 58] and implement coupled BEM—FEM or spectral-FEM solvers as in [12, 13]. The meth-
ods would extend to wave fields governed by systems different from Helmholtz equations,
provided characterizations for the derivatives and adequate solvers for the boundary value
problems involved are available. Finally, note that the objects in our tests are assumed to be
stationary. Time-dependent Bayesian methods to track moving contours are discussed in [55].
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Appendix A. Characterization of Fréchet derivatives

In this appendix, we study Fréchet derivatives for transmission problems of the form (1), where
the total wavefield u = wu,c + Uy in the exterior region 2, = Rz\ﬁi and the transmitted wave
field u = uy in a bounded smooth inclusion €2;. We require Fréchet derivatives of the solu-
tions with respect to the parameters defining €2; and with respect to x;. Fréchet derivatives with
respect to the domain are calculated using integral equations in [36, 38]. We recall these expres-
sions here and give a different proof by variational methods. Similar, but simpler, variational
arguments yield expressions for the Fréchet derivatives with respect to problem coefficients,
for similar arguments see [11, 58]. Our summary also includes remarks on the relation to shape
derivatives, as well as computational details.

To simplify, the parameters ke, xi, 3 are taken to be constant, real and positive. General
conditions on the parameters k., ki, J guaranteeing existence and uniqueness of a solution
u € H. (R?) for this problem can be found in [16, 44, 45]. When 09 € C?, u is in H*(Q;)U
H2 (), which ensures continuity away from the interface.

Let us recall that given two Banach spaces X, Y and a function F:D(F) C X =7,
its Fréchet derivative 7' : X — Y is a linear bounded operator satisfying F(x + &) = F(x)
+ F'(x)€ + o) for £ € X as ||€]|x — O, for any x € X. In terms of the directional Gateaux
derivative F'(x)§ = D¢ F(x) with DeF(x) = limT_,ow. In our context, Fréchet
derivatives can be characterized as solutions of adequate boundary value problems.

A1. Fréchet derivative with respect to the domain

We consider variable domains ; = €)', whose boundaries I" are generated from
a smooth curve T e C? (twice differentiable) following a family of deformations
I'"={x+1tV(x) |x € "}, along asmooth vector field V € C*(I"’). The solutions of (1) with
O = Q' are denoted by «'. For small # > 0, T € C? is a perturbation of I'°. The deformation
x' = ¢ (x) = x + 1V (x) maps Q° to . For small 7, ¢' is a diffeomorphism and its inverse
7' maps €' to Q°. We extend V to R? in such a way that it decays fast away from T'°, while
preserving the same regularity.

The operator F that assignsto V€ C 1(O) the far field values (u(x j))’}’:1 of the solution
of the forward problem (1) is Fréchet differentiable with derivative (F'(9€2;), V) = (v(x j))’}’:l,
where v is the solution of

Av—t—miv:O in Q., Av+m?v:0 in €,

Ou~  Out

-t — (V. b _dn .

v —v (V-n) ( on on ) on 0%,
I (A.1)

ﬁai—aizi (V~n)i(5u’—u+) +(V-n)(Br*u™ —r2u™)  on 0L,

On On ds ds

0

. 2 9 _

‘il‘%\x\ <8x v zkw) 0,

and % is the derivative with respect to the arclength, as proven in [36, 38].

In practice, the forward (1) and Fréchet (A.1) problems are discretized and the solution
operators they induce are represented by matrices. We use the boundary element formulations
introduced in [21, 22] to approximate the solutions. To do so, we recast (1) as a bound-
ary value problem for the scattered and the transmitted fields with transmission conditions
Uy — Use = Uine and BOpityy — Onltse = Onlline.
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Note that the difference between two close domains €2, and 2, ¢ parameterized by (4)
and (5) defines a vector perturbation V of the boundary in terms of the difference of their
parameterizations, which can be written in the form with (4) and (5) with parameters & [14].
Thus, the action of the Fréchet derivative is identified with the action of a matrix on a vector,
that is, (F'(9€2,), V) becomes F(v)€ ~ (v(x j))l}':l. In this way, we compute the matrices F(v)
employed in section 5.1.

The characterization (A.1) is proven using integral equations in [36, 38] for V € C'. We
give an alternative proof here using a variational approach inspired by the work in [48] for 2D
exterior elasticity problems with zero Dirichlet boundary conditions on a moving boundary,
which clarifies the role of the transmission conditions.

Theorem 1. Keeping the previous notations and assumptions, the ‘Frechet derivative’ of
the far field of the solution u of (1) with respect to the domain is given by the far field of the
solution of the boundary value problem (A.1).

Proof. The proof proceeds in the following steps.

Step 1. Variational formulation. Firstly, we reformulate the transmission problem (1) as
an equivalent boundary value problem posed in a bounded domain. Let I'; be a large circle
which encloses the objects €);. The Dirichlet-to-Neumann operator [27, 41] associates to any
Dirichlet data on 'y the normal derivative of the solution of the exterior Dirichlet problem:
L:H'>(T'r) = HV2(TR), f > L(f) = Oav, where v € H}. (R*\Bg), Br:=B(0,R), is the
unique solution of

Av+r2v=0 inR*\Bg, v=f onlkg,

lim r'/2(0,v — 1kev) = 0.
r—00

In the sequel, J, stands for the normal derivative at the interface and 0, denotes the radial
derivative. H. .(R?\Bg) is the usual Sobolev space and H'/*(T'r) and H~'/*(T'r) denotes the
standard trace spaces. We replace (1) by an equivalent boundary value problem set in Bg with
a non-reflecting boundary condition on I'g defined by the Dirichlet-to-Neuman operator:

Au+rku=0 inQ,:=Bg\%, BAu+priu=0 inQ,
u —ut =0 ond, POau” —Ohut =0 ondsy, (A.2)
On(u — tine) = L(u — tine) onlgr.

Unit normals are exterior to 9€2; and to I'g. The solution u of (A.2) also solves the variational
problem

weH' (By), b(h;u,w)="Llw), Yw€e H (Br),
b u, w) = (VuVw — k2uw)dx + / (BVuV® — Bruw)dx
QL Q4

(A.3)
—/ LuwdSy, Yu,w e H'(BR),
I'r

Uw) = [ (Onttine — Litine) WdSyx, Yw € H'(Bg).
I'r

Step 2. Deformed problems. Since V decreases rapidly to zero away from I'?, ¢'(I'g) = I'r
and ¢'(x;) = X, j=1,...,N. Setting in (A.3) & = ¢'(Q°) = Q" and Q. = ¢'(2) = Br\ Y,
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the variational reformulations in the deformed domains take the form: Find «’ € H'(Br) such
that

B U, w) = lw), Yw € H'(Br),

b (Y5 u,w) :/

(Vy V@ — k2um)dx’ — / LuwdSy
BR\Q!

g (A.4)
+ / (BVxuVyw — ﬁm?uﬁ)dx’, Yu,w € H'(Bg).
Qt

Step 3. Change variables to initial configuration. We now transform all the quantities
appearing in (A.4) back to the initial configuration Q°. The process is similar to transform-
ing deformed configurations back to a reference configuration in continuum mechanics. The
deformation gradient is the Jacobian of the change of variables

V)= Vio' (x) = (axi <x)> —1+1VV (), (AS)

Ox;

andits inverse (J))~! = (d"’> is the Jacobian of the inverse change of variables. Then, volume

Ox',
and surface elements are related by

dx' = det J'(x) dx, dSy = det J' (%) || (J' (x)) "n||dSy. (A.6)

and the chain rule for derivatives reads Vyu(x'(x)) = (J' (x))TVXru (x'(x)), that is,
Vit = (J)~TVyu. For each component we have

0 0
o (X () = a—i(x’ U (x) . (A7)

Defining i (x) = u' o ¢' (x) = /(X' (X)), changing variables and using (A.6) and (A.7) yields:

. _
bi(Qsu',w) = / {5 g;l, (X’)S%(X’) — Briu (Xw(x)| dx'
Qf @ «

N o
- /Q | g UL I 00 0y 00 i 0 0

x det J' (x) dx = bI(Q; i1, 1b). (A.8)

A similar relation holds on Bg\{Q defining bL(Bg\&Y;u', w) = b'(Bg\Q°; it, ). For
w € H'(Br), we have w € H'(Bg). Therefore, we obtain the equivalent variational formula-
tion: Find # € H'(BR) such that

b'(Q°; it, w) = bUQ°; 1, w) + bL(BR\; i1, w) — / LawdSy = {(w),
I'r

for w € H'(Bg). Let us analyze the dependence on  of the terms appearing in b! and b. From
the definitions of the Jacobian matrices (A.5) we obtain [27, 48]

det ¥ (x)=1+1div(VX)+0#), IV 'x)=I-tVVE)+0#). (A.9)
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Inserting (A.9) in (A.8) we find

Uw) = b'(Q°; i, w) = b*(Q°; it, w) + 1[I () + L (i) + I (i) |+ O(F%), (A.10)
where
on ow on ow
0,00. _ vu ow o
b (Q7; i, w) —/ {Bax” . ﬁm } dx—&—/BR\QO {axa . K uw] dx
—/ LiiwdSy, (A.11)
I'r

o= [ (BT ] Mo [ [OLOT ] o0
11(”)_/ {5(%@13& Bri }ax,, Rl A {8)((13)((1 R | e, 9%

L) = 5o o ow 3Vpdx / O 0w OV,
B

Q0 Oxp 8xa Ox,

o 8_@8Vq dx—/ on ow 0V,
O0xq 0x4 O0x,

— —— —"dx, .
R\ 20 0xp 0xo Oxq X (A.12)

L) = —
3@ 0 O0x, 3xq 3xa

Step 4. Variational problem for the domain derivative u'. Let us compare the transformed
function i and the solution u° of b°(Q%; u°, w) = ¢(w). Thanks to (A.10), for any w € H'(Br)
we have

BYQ% it — 1, w) = —1[1 (1) + L(it) + I3(@)]. (A.13)

Well posedness of the variational problems (A.2) with respect to changes in domains ' implies
uniform bounds on the solutions for ¢ € [0, T1: [|u'[| g1, < C(T), [|it]| 15y < C(T). The right
hand side in (A.13) tends to zero as ¢ — 0. Well posedness of the variational problem again
implies it — u° in H'(BR).

D1V1d1ng (A 13) by #, we find °(Q°; =

w) —[1(it) + Iy(ir) + I3(r)]. Then, the limit

200 i, w) = —[L )+ L)+ L] (A.14)

The function # is the so called ‘material derivative’, that is, it = g—;‘ + V- Vu. The domain
derivative is then u' = it — V - Vu®. Then,

2%, w) = BO(Q%; i, w) — b2V - Vil w), (A.15)

where b°(Q°; V - Vi, w) is obtained from (A.11) replacing it by 9¢ o’ V.

Step 5. Differential equation for u'. We evaluate the terms in the right hand side of (A.14)
to calculate the right hand side in (A.15) using (A.12). Recalling the equations for «° and that
V vanishes at I'g, (A.15) becomes after integrating by parts

o
bO(QO;u',w):/ (5804) _8( ) )aanadS
FO

Ox, Ox,, 0

au°)” )"\ ow . o
_/1‘0 (5 (8x2 - (8)62 ) TMV,,n,,dx%-/ro(ﬁmiz(uo) — mg(uo) YwV,yn, dx.

(A.16)
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Integrating by parts in b°(Q°; &', w) for w vanishing on T"” this identity yields the equation (A.1)
foru': Au' + rk2u' = 0 inBR\Q°, BAW + Briu’ = 0 inQ°, as well as the radiating boundary
condition at infinity.

Step 6. Transmission conditions for u'. When 3 = 1, u° and its derivatives Vu° are contin-
uous across I'°. As a result, «’ is continuous across T' and it belongs to H|. (R?). Integrating
by parts in (A.16) we get

N— N+
a(aun) - a(;‘,f = B3R (%) = K2(®) )V -m) onTy.

1

B

When 3 # 1, Vu® is not longer continuous across I'’. Denoting by t and n the unit tan-
gent and normal vectors on T, we have V(u°)* = (V(u®)* - t)t + (V(u°)* - n)n. The relation
w' =it — V- Vu gives the jump at the interface:

(&) — () = m) (a(MO) - 8(u0)+> |

on on

Notice that u° being continuous across I'’, the tangent derivatives ‘% = Vu® - ttoo. To obtain
a transmission condition for the derivatives of «’ at the interface I'° we revisit (A.16). The first
term vanishes due to the transmission boundary conditions satisfied by u” at T'y. The second

term can be rewritten as

o) o)t ow o))" o)™ ow
_/FO (5 an om %Vpnpdx—/ro 8 % ot Evpnpdx.

The first integral vanished again due to the transmission boundary conditions satisfied by
u°, whereas the second one, together with the third integral on the right hand side of (A.16)
provides the transmission boundary condition in (A.1). (|

Given the characterization of the Fréchet derivative (A.1), we find an expression for
the shape derivative of the cost (12) along a smooth vector field V, defined as DJ.()) -
V= % Jo(@'(%))] =0, keeping the previous notations and following [12, 13]:

(DJ(R*\{), V) = Re [ /8 . (1 =) (BOnu 0up + O 0P ")
+ Bk — k) uPp) V-ndSy], (A.17)

where u and P solve the forward and adjoint problems (1) and (A.18)

N
Ap+rP=> xx)l, inR\Q, AF+rIF=0 in;

~ A.18
7 —P =0 ondf, PP —0hp =0 on O, ( )
limr'/? (8, — kep) = 0,
r—00
d; —u(x;), forf(u)=u,
x(u(x)) = { j L f 2 N
2(d; — [u(xpulx;), for f(u) = |ul’,

with r = |x|. This expression agrees with that established in [10, 12] when V = V;n. The same
proofs hold for general fields V keeping track of the terms involving tangential components
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and the transmission boundary conditions. Writing p = 7' + Pinc, Where Piyc is given by (14),
7 is a solution of a problem of the form (1) with incident wave Py, solvable by boundary
elements too.

For the functional (10), the derivatives with respect to v are given in section 5.1
in terms of Fréchet derivatives. In terms of shape derivatives, the gradient
method reads Viim = Vi — Tom [Tnase (DIR\Q,), Vi) + 0,2 Wi — Vo] »
for ¢=1,....,L, m=1,....2M+3, 7., >0 small, with directions V;=(1,0),
V, =(0,1), Voimt1 = cosQmmt)(cos(2nt), sin(2nt)), for m=0,....M and
Viipypm = sin(2mmt)(cos(2rt), sin(2nt)), for m=1,...,M. We have used the above
formulas to check codes and iterative procedures.

A2. Fréchet derivative with respect to the coefficients

An analogous but much simpler procedure to that followed the previous section, provides an
expression for Fréchet derivatives when «; is a constant.

Theorem 2. Keeping the notations and assumptions of the previous section, the ‘Frechet
derivative’ of the far field of the solution u of (1) with respect to k; is given by the far field of
the solution of the boundary value problem (A.20):

Av + mgv =0 inQ., Av-+ mizv = —2kiu in £,

ov-  ovt
- A4 ) 7 .
v —vt=0 on 0%, B—an n =0 on 09, (A.20)

Proof. Let u be the solution of (1), x; constant, and u’ the solution of (1) with coefficient
k! = K; +t. Then u’ — u is a solution of (1) with right hand side f' = —2x;tu’ — 2u' and zero
incident wave. As argued in step 1 of the proof of theorem 1, the forward problem (1) admits
the variational reformulation (A.2). Well-posedness of the variational problems (A.2) with
respect to changes in the coefficients implies uniform bounds on the solutions for ¢ € [0, T]:
[|'] 118y < C(T). Thus, the right hand sides f tend to zero as r — 0. Well-posedness of the
MO

u'—

variational problem again implies that u’ — u® = uin H'(Bg). The quotients are solutions

t

of (1) with right-hand side £~/  — 2k — !, which tends to —2k;u in H'(Bg). Well-
posedness of the variational problem again with respect to the right hand side implies that
< i a solution of (A.20). O

u'—
1

the limit &z = lim,

This boundary problem has a non zero right-hand side. We may solve it by finite elements.
However, in an iterative optimization procedure that requires solving problems of the form
(A.20) for different €2; in each iteration, we have to use fine meshes and remesh each time
we change the proposed objects, which is expensive. Alternatively, we can solve for the right
hand side in the whole space by convolution with the Green function of the exterior Helmholtz
problem and correct it solving a transmission problem with zero source by BEM. The convo-
Iution makes this option equally expensive. From the computational point of view it is more
convenient to use the definition a“éfi) = “(”i“;*“(”i) for small # > 0 to approximate it. In this
way we only have to solve an additional forward problem with parameter «; + t by BEM per
iteration. In this way we complete the Fréchet matrices F(r) with an additional column to
obtain the Fréchet matrices F(v, k).
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