Inverse Problems

PAPER

Optimal experimental design under irreducible uncertainty for linear
inverse problems governed by PDEs

To cite this article: Karina Koval et al 2020 Inverse Problems 36 075007

View the article online for updates and enhancements.

This content was downloaded from IP address 216.165.95.86 on 04/10/2020 at 20:49


https://doi.org/10.1088/1361-6420/ab89c5
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstsZ9blvC-2xqY35xmFfZoGY2dNNyoEGNgckbF6jzoirig8DptEjbsNbwLb7GZf33hpeJ7bHj2X15mMyGyppeYPquIDWYPOsnnWxmPc-6wL_opG64KRvchkcEZt15EZc5kXb3BVhyfbN-e6ljfGJfsz93yZF6Edfb0h80M-INkRw7vQFyZ4gYOaLdbVUBX0BuD3l1qHVK3GoBjAlGN964vQujek8iR93hTOGJx_W2s2FAtBnL4s&sig=Cg0ArKJSzB0cf7mr1fRh&adurl=http://iopscience.org/books

IOP Publishing

Inverse Problems

Inverse Problems 36 (2020) 075007 (23pp) https://doi.org/10.1088/1361-6420/ab89c5

Optimal experimental design under
irreducible uncertainty for linear inverse
problems governed by PDEs

Karina Koval', Alen Alexanderian? and Georg Stadler'3

' Courant Institute of Mathematical Sciences, New York University, New York, NY,
United States of America

2 Department of Mathematics, North Carolina State University, Raleigh, NC, United
States of America

E-mail: koval @cims.nyu.edu, alexanderian@ncsu.edu and stadler@cims.nyu.edu

Received 15 December 2019, revised 30 March 2020
Accepted for publication 16 April 2020

Published 17 June 2020
CrossMark

Abstract

We present a method for computing A-optimal sensor placements for infinite-
dimensional Bayesian linear inverse problems governed by PDEs with
irreducible model uncertainties. Here, irreducible uncertainties refers to uncer-
tainties in the model that exist in addition to the parameters in the inverse
problem, and that cannot be reduced through observations. Specifically, given
a statistical distribution for the model uncertainties, we compute the optimal
design that minimizes the expected value of the posterior covariance trace.
The expected value is discretized using Monte Carlo leading to an objective
function consisting of a sum of trace operators and a binary-inducing penalty.
Minimization of this objective requires a large number of PDE solves in each
step. To make this problem computationally tractable, we construct a composite
low-rank basis using a randomized range finder algorithm to eliminate forward
and adjoint PDE solves. We also present a novel formulation of the A-optimal
design objective that requires the trace of an operator in the observation rather
than the parameter space. The binary structure is enforced using a weighted reg-
ularized ¢y-sparsification approach. We present numerical results for inference
of the initial condition in a subsurface flow problem with inherent uncertainty
in the flow fields and in the initial times.

Keywords: optimal design, inverse problems, model uncertainty, optimization
under uncertainty, model reduction, subsurface flow

(Some figures may appear in colour only in the online journal)

3 Author to whom any correspondence should be addressed.

1361-6420/20/075007+23$33.00 © 2020 IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1361-6420/ab89c5
https://orcid.org/0000-0001-7762-6544
mailto:koval@cims.nyu.edu
mailto:alexanderian@ncsu.edu
mailto:stadler@cims.nyu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ab89c5&domain=pdf&date_stamp=2020-6-17

Inverse Problems 36 (2020) 075007 K Koval et al

1. Introduction

Many problems in the sciences and engineering require inference of unknown/uncertain param-
eters from indirect observations and a mathematical model that relates the parameters to these
observations. Having access to informative data is integral to accurate parameter inference.
However, the cost of data collection or physical restrictions often limit how much data one can
collect. Even if one has access to large stores of data, processing large amounts of it can be
expensive; moreover, data can be full of redundancies—poor experimental design choices can
limit the information data contains about the parameters. A natural question to ask is: how can
we design experimental conditions for data collection to optimally reconstruct/infer parameters
of interest? Addressing this requires solving an optimal experimental design (OED) problem.

Inverse problems stemming from real-world applications often contain uncertainties in the
governing model, in addition to the uncertain inversion parameters. We focus on irreducible
model uncertainties, i.e., uncertainties that—for all practical purposes—cannot be reduced
via parameter estimation. Examples of such irreducible uncertainties arise in inversion of the
initial concentration of a contaminant in groundwater flow. In this problem, one usually only
has rough estimates of the true groundwater velocity field. Additionally, one might not exactly
know the exact time at which the contaminant has been released. Unlike uncertainties that
could be reduced with observations and parameter estimation, these uncertainties are difficult
to reduce. However, they should be taken into account when computing experimental designs.
This article is about design of experiments for inverse problems governed by models containing
such irreducible uncertainties.

We focus on infinite-dimensional Bayesian inverse problems in which the parameter-to-
observable map is linear; see section 2 for a brief overview. The irreducible uncertainty may
enter nonlinearly into the model and we assume some knowledge about its distribution. This
knowledge could be based, for instance, on historic data, or it could be the posterior distri-
bution obtained as the solution of another Bayesian inverse problem. To accommodate such
an irreducible additional uncertainty in OED, we extend the notion of A-optimal design to A-
optimal design under (irreducible) uncertainty, which we define as the design that minimizes
the expected value of the average posterior variance; see section 3.

In the present work, we restrict the idea of experimental design to that of choosing locations
for placing data collecting sensors, though our approach can be adapted to more general experi-
mental design problems. We formulate the OED problem as that of finding an optimal subset of
locations for sensor placement from a pre-specified network of candidate sensor locations. We
assign to each candidate location a non-negative design weight indicating its importance. We
seek binary designs and interpret a candidate sensor location with a design weight of 1 as a loca-
tion where a sensor should be placed. To circumvent the computational challenges of binary
optimization, we relax the binary condition and add a sparsity-inducing (or binary-inducing)
penalty to our optimal design objective; see section 3.3.

Literature survey and challenges. Classical references for optimal experimental design
problems include [6, 25,27, 32]. OED for inverse problems governed by computationally inten-
sive models has been subject to intense research activity in the past couple of decades; see, e.g.,
[4,7, 16, 19-21, 23, 29, 34]. Our focus is on ill-posed infinite-dimensional Bayesian linear
inverse problems. We build on previous work [3, 15, 17], which developed efficient meth-
ods for computing A-optimal designs for high- or infinite-dimensional linear inverse problems
using either a Bayesian or a frequentist approach. Other approaches for computing optimal
experimental designs for high/infinite-dimensional linear inverse problems are explored, for
example, in [2, 5, 24]. In [24], the authors propose a measure-based OED formulation that does
not choose sensor locations from a finite number of candidate locations but allows sensors to
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be placed anywhere on a closed subset of the domain. The articles [2, 5] explore an alternate
OED criterion—D-optimality—for infinite-dimensional Bayesian linear inverse problems.

We extend previous approaches by taking into account irreducible uncertainty in the model.
This results in a challenging optimization under uncertainty (OUU) problem [9, 22, 30], as we
now describe. In linear inverse problems, the average posterior variance of the inversion param-
eters—the A-optimal criterion—is defined by the trace of the posterior covariance operator
C post- This operator is high-dimensional (upon discretization), dense, and expensive-to-apply.
Specifically, applying C poy to vectors requires many PDE solves. This covariance operator is a
function of the vector of experimental design weights and the random variables characterizing
the model uncertainty. The resulting OED under uncertainty (OEDUU) problem is challenging
because the OEDUU objective is the expected value of tr [C post|, with expectation taken with
respect to the model uncertainty. It is worth noting that optimizing tr [C yoy| even for a single
instance of C poq is in itself a challenging problem [3].

As mentioned above, our goal is finding binary design vectors, which are in general difficult
to compute. Our approach for this considers a relaxation of the problem and uses an adapta-
tion of the regularized /,-sparsification approach outlined in [3]. Note that there are different
options to control sparsity of designs; see e.g., [11, 17, 34].

Our approach. We follow a sample average approximation (SAA) approach for the
OEDUU problem, where we approximate the expectation in the OEDUU objective by sam-
ple averaging over the model uncertainty. Corresponding to each realization of the irreducible
model uncertainty, we have a realization of the parameter-to-observable map (forward opera-
tor) that defines a specific instance of C po; see section 4.1. Computing traces of these operators
is challenging due to their high-dimensionality (upon discretization) and the high cost (in terms
of PDE solves) of applying the covariance operators to vectors.

To mitigate the computational cost of OEDUU, we present a novel formulation of the OED
criterion in the observation space. Thus, we only require computing traces of operators defined
on the observation space which in many infinite-dimensional inverse problems has a smaller
dimension than that of the discretized parameter space; see section 4.2. However, computing
the resulting OEDUU objective and its gradient still requires many PDE solves, and these com-
putations are repeated in each step of an optimization algorithm used for solving the OEDUU
problem. Hence, it is imperative to exploit problem structure to compute low-rank approxima-
tions of the forward operator samples to eliminate frequent PDE solves from the optimization
iterations. To do so, we employ randomized matrix methods to compute a low rank basis that
Jjointly approximates the range space for all or subsets (clusters) of forward operator samples;
see section 5.

We explore the effectiveness and performance of our methods for a realistic ground-
water initial condition inversion problem; see sections 6—8. In this application, the (high-
dimensional) irreducible uncertainties stem from: an unknown groundwater flow field (as a
result of uncertainty in the subsurface permeability field), and from an uncertain observation
time.

Contributions. The contributions of this article are as follows: (1) we propose a mathemati-
cal formulation for OED under irreducible model uncertainty in infinite-dimensional Bayesian
linear inverse problems. (2) We present a novel OED objective formulation in the observation
space that avoids trace estimation in high-dimensional discretized parameter spaces. This for-
mulation also applies to A-optimal OED without additional model uncertainty. (3) We develop
an efficient and practical reduced order modeling framework for OEDUU that eliminates
PDE solves from the optimization process. (4) We present a comprehensive set of numerical
experiments that illustrate the proposed approach and demonstrate its effectiveness.
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Limitations. The present work also has limitations. (1) Our formulation is restricted to lin-
ear parameter-to-observation maps, Gaussian priors, and additive Gaussian noise. Further work
is needed to extend it to nonlinear inverse problems. One possible extension is to use a Gaus-
sian approximation of the posterior distribution as in [4]. (2) We use Monte Carlo sampling to
approximate the irreducible uncertainty. If the aim is a highly accurate approximation of this
uncertainty, a large number of samples might be needed.

2. Background

In this section, we review relevant material required for the formulation of OED problems under
uncertainty for infinite-dimensional Bayesian inverse problems. We also summarize previous
work which this paper builds on.

2.1. Infinite-dimensional Bayesian linear inverse problems

We begin our discussion by formulating a prototypical Bayesian linear inverse problem, which
is the primary focus of the present work. A detailed treatment of general nonlinear Bayesian
inverse problems can be found for instance in [13].

Given finite-dimensional observations, d € R¢, we seek to infer an unknown parameter, m,
which is related to the data through

d=Fm+n. (1)

We consider the case where m is an element of an infinite-dimensional Hilbert space H, e.g.,
H = L*(D) with D being a bounded domain in R? or R3. Here, F : # — R? is a continuous
linear parameter-to-observable map (forward model). In our target applications, computing Fm
for a given m involves solving a partial differential equation (PDE) followed by application of
an observation operator. In (1), we assume 1 ~ N (0, T yoise)-

Following a Bayesian approach, we model the parameter m as a random variable and impose
a prior probability law for m. The prior law is a probabilistic description of our prior knowledge
about the parameter. We use a Gaussian prior NV (1, C ) where the mean my, is a sufficiently
regular element of H and the covariance operator C  is a trace-class operator defined through
the inverse of a differential operator. More precisely, we let C ,, = A2 where A = —pA + 67,
here, A is the Laplace operator,d > 0 controls the magnitude of the variance and p > 0 controls
the correlation length. This choice ensures that the prior covariance operator is trace-class in
two and three space dimensions; see [13] for details.

The solution of the Bayesian inverse problem is the posterior probability law for the param-
eter, which is conditioned on measurement data. For a linear inverse problem with a Gaussian
prior and an additive Gaussian noise model, which is what we assume, it is well known [13]
that the posterior distribution is also Gaussian, namely N (m posts C post) With

Cpost = (f'*]__‘_1 f—i—c;rl)_l and  m post = C post (]:*F_l d +C;r1mpf) :

noise noise
(2)

2.2. Bayesian linear inverse problem with model uncertainty

We are interested in the design of experiments for inverse problems governed by PDEs with
uncertain parameters representing the irreducible uncertainty. Note that these uncertainties are
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in addition to the uncertainty in the inversion parameter. In such cases, the forward operator F
is a function of uncertain parameters. We will formalize this below.

Let (€2, G, P) be a probability space, where €2 is a sample space, G is a suitable o-algebra
on €2, and P is a probability measure. We let £ = £(w) denote a random variable, defined on
(£2, G, P), that models the irreducible uncertainty in F; for example, £ could be a random vector
whose entries define uncertain parameters in the governing PDEs, or ¢ could be a function-
valued random variable (i.e., a random field coefficient). In this case, the forward operator is
a random variable F : Q — L(H,R?), where £(H,R?) is the space of linear transformations
from # to R?. For each w € 2, we have a realization F(w) = F(&(w)) of the forward model.
Thus, the solution of the corresponding Bayesian linear inverse problem depends on £ and is
given by N (1 post(€), Cpost(§)), with

Coos(©) = (FEO T F©O +Cp) ™ and  mpo(€) = Copox (FEO T ke + Colmpr) .
3)

2.3. A-optimal design of infinite-dimensional inverse problems

We focus on A-optimal design of Bayesian linear inverse problems. That is, we seek designs
(sensor placements) that result in minimized average posterior variance. In the present infinite-
dimensional formulation, this amounts to minimizing the trace of C os; see [3] for details.
The additional challenge for inverse problems with uncertainties in the governing model is
that the covariance operator itself depends on the random variable £ that defines the uncertain
parameters in the model. In the next section, we formulate the A-optimal design problem as
that of optimization under uncertainty. We refer to this problem as optimal experimental design
under uncertainty (OEDUU).

3. A-optimal design of experiments for linear Bayesian inverse problems with
irreducible model uncertainty

‘We begin with a discussion of experimental design for infinite-dimensional linear inverse prob-
lems with uncertain forward models in section 3.1. In section 3.2, we present our formulation
of Bayesian A-optimality for such inverse problems, and in section 3.3, we formulate the
optimization problem for finding A-optimal designs in the inverse problems under study.

3.1. Design in the Bayesian inverse problem with uncertain forward models

In OED for inverse problems we are interested in determining how to collect measurement data
to optimize the parameter inference. The definition of an ‘experimental design’ is problem spe-
cific. For example, in inverse problems in tomography, the design could correspond to choosing
a subset of angles for an x-ray source to hit an object. On the other hand, in the inverse problem
of identifying the source of a contaminant, the design corresponds to the placement of sensors
that are used to measure the contaminant concentration.

We consider a finite generic set of candidate experiments denoted by x; € X, i =1,...,d,
where X is a problem specific set of admissible experiments. More concretely, in the tomog-
raphy example, x;s are measurement angles and X corresponds to the set of all possible
measurement angles; and in the subsurface flow example, x;s indicate sensor locations and
X is the physical domain in which the sensors can be placed. We assign a nonnegative
weight w; to each choice of x;. Thus, an experimental design is specified by a design vector
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w = (Wi, wy, ..., wy). Ideally, we would like binary design vectors: in the case w; = 1, we will
collect the measurement corresponding to x;, and if w; = 0, the corresponding experiment will
not be performed (or the data not be collected). However, an OED problem of finding binary
optimal design vectors has combinatorial complexity—an extremely challenging problem. To
cope with this, we relax the binary assumption on the weights and allow the weights to take
values in the interval [0, 1]. We then seek to enforce a binary structure on the computed weights
using a suitable penalty method, as discussed further below.

To incorporate a generic design w into the Bayesian inverse problem, we define a
diagonal matrix W € R?*¢_ which, in a generic OED problem, contains the weights
w = (wy,wy, . ..,w,) on the diagonal. In a sensor placement problems for an inverse problem
governed by a time-dependent PDE, as in the example used in section 6, the goal is to select
an optimal subset of s candidate sensor locations, which collect measurements at r observation
times. When a sensor location is chosen, we assume that it collects measurements for all »
observation times. In this setup, the design vector w has dimension s, and the vector of mea-
surement data has dimension d = sr. Thus, W € R"** is a block diagonal matrix with each
s x s diagonal block being a diagonal matrix with the sensor weights on the diagonal.

We incorporate the design vector w in the Bayesian inverse problem by considering a
weighted forward operator F(&; W) == WiF (&). As before, ¢ is the random variable that mod-
els uncertainty in the governing PDEs. The posterior law of m now depends on the design w
as follows:

-1
Cpon(&W) = (FOWIDLWIF©+C, ) and
| 4)
mpost(g’ w) = Cpost (-F(ﬁ)*wfl_‘;(l)ised + C;rlmpr) .
As discussed later, if the noise covariance I', L _ is diagonal, the expression for the posterior
covariance operator simplifies and it is not necessary to consider the square root of W.

3.2. A-optimal design under uncertainty

We focus on A-optimal design of linear inverse problems. Following [3], for a fixed realiza-
tion of £, the A-optimal design is one which minimizes the average posterior variance, i.e.,
the design which minimizes tr [Cpoy(¢, W)]. We extend the notion of A-optimal designs to
Bayesian inverse problems with uncertain model parameters by formulating the OED problem
as that of minimizing the expected value of tr [C post(£(w), w)|. Thus, the OED criterion we
consider is given by

(W) := /Q tr [C post(§(w), W) P(dw). (&)

Note that taking the perspective of optimization under uncertainty, minimizing (5) amounts
to a risk-neutral design. Other scalarization methods are possible, e.g., risk-averse objectives,
which place emphasis on avoiding particularly poor designs [22, 31].

3.3. The OED problem

An effective solution method for finding OEDs must provide the user a mechanism to strike
a balance between the competing goals of minimizing posterior uncertainty and using as few
sensors as possible. We address this by using a sparsifying penalty function to promote sparse
(and eventually, binary) optimal design vectors. Accordingly, we formulate the optimization
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problem for finding an OED as follows:

min G(W) + v (W), (6)

wel0,1]8

where ¢(w) is the OED criterion defined in (5), ¢ : R%, — [0, c0) is a sparsity-inducing penalty
function, and ~y controls the degree of sparsity.

A simple choice for v is the ¢;-norm, 1)(w) = 17w, where 1 is the vector of all ones. While
using an ¢;-norm penalty leads to sparse designs, it does not yield binary design vectors. To
obtain binary designs, using an ¢;-norm penalty can be combined with thresholding to decide
where the sensors should be placed, but as numerically studied in [3], the resulting designs are
suboptimal.

In the present work, we follow the regularized ¢y-sparsification procedure introduced in
[3], which typically results in binary optimal design vectors. This approach involves a contin-
uation procedure in which a sequence of minimization problems with penalty functions that
successively approximate the ¢y-‘norm’ are solved. For w € R*, we denote the ¢y-‘norm’ as
|w||¢, and define it as the number of non-zero entries in w. The procedure is initialized with
W), wWhich is obtained by solving (6) with an ¢; penalty. Then, at step i of the continuation
procedure, a new solution w.(; is obtained by solving

i G(W) + 7P (W) (7

using the previous w.;_jy as an initial guess; the penalty function v.;(W) is chosen from a
family of continuously differentiable penalty functions that approach the ¢;-‘norm’ as i — oc.
This procedure uses non-convex functions and thus one cannot guarantee uniqueness of solu-
tions beyond the /;-norm initialization. However, numerical experiments in [3] and in section 8
show that the method performs well in practical examples.

We find that using the ¢ sparsification approach, there may be a large disparity between the
sparsity (and the values of the objectives) for the ¢; solution, w.(, and for the binary weight
vector w- obtained at the end of the continuation procedure. That is, for a fixed v, we found
that ||W-)|l¢, < ||W.]||¢,- This results in the continuation procedure being rather sensitive to
the choice of the sequence £(i). As a remedy, we use a rescaling to help mitigate this issue, as
follows. Note we can scale the /; penalty linearly with a scaling factor o > 0 through || aw||,, =
alw|l¢,. However, this scaling has no effect on the ¢y norm ||aw||,, = ||w]|,. Since the first
step in the continuation strategy in [3] involves solving the minimization problem with an ¢,
penalty to obtain w.(, we can control the sparsity of w., by using an «-scaled ¢; penalty.
More specifically, o € (0, 1) produces a less sparse initial guess for the continuation procedure
than o > 1. Once an initial guess w.( is obtained, we use the following family of scaled
sparsity-inducing penalty functions:

Ye(aw) =Y flaw), ®)
i=1

where, fore > 0,

aw/e if w< i,
20 2%
. 13
frlaw) = es(aw)’ + calaw)* + ei(aw) +¢o  if S Sw<
2
1 if w> —6;
«Q



Inverse Problems 36 (2020) 075007 K Koval et al

asin [3], the constants c3, ¢2, ¢; and ¢( are chosen such that f-(aw) is continuously differentiable
on [0, 1].

To summarize, we choose a decreasing sequence {(i)}?°, such thate(1) < 1 and () — 0
as [ — oo. For a fixed ~, we initialize the procedure with w.(), the solution to (7) with an
a-weighted ¢, penalty, and in each subsequent step i of the procedure we minimize

(W) + yib=ip (aW), ©))

using w.(;—1) as the initial iterate, until we converge to a binary solution, w=. In practice, the
choice of « is problem-specific and we heuristically choose it such that |W-)ll¢, = |[W.||¢s
where W, is the non-binary weight vector obtained using the penalty function ||aw||,,, and
w- is the binary weight-vector obtained following the continuation procedure with initial guess
W.(0)- This might require solving the problem with a few choices of a.

4. Finite-dimensional approximation of OED objective and its gradient

In this section, we describe the discretization of the OED problem. This includes the discretiza-
tion of the operators defining the OED objective and gradient, and the approximation of the
expected value in the OED objective in (6) (see section 4.1). We also present novel efficient-
to-evaluate expressions for the OED objective and its gradient by taking traces of operators
on the measurement space (see section 4.2). The latter provides computational advantages in
cases where the measurement dimension is significantly smaller than the discretized parameter
dimension.

4.1. The discretized OED problem

Henceforth, we assume that the forward operator has been discretized in space and, if appli-
cable, in time. That is, we consider F : (Q, G, P) — L(V,, R?%) where V}, is a finite-dimensional
subspace of H given by the span of n finite-element nodal basis functions {;}" ;. For
each realization of &, which parameterizes model uncertainty, F(£) is a linear transforma-
tion from V), to the measurement space R?. The discretized inversion parameter is given
by my =Y., myp;. Thus, instead of inferring the probability law for our random func-
tion m, we focus on characterizing the posterior distribution for the vector of coefficients,
m = (ml nmyp ... mn)T.

The discretized parameter space is R” equipped with the so called mass-weighted inner
product that approximates the L?>(D) inner product. The latter is the Euclidean inner prod-
uct weighted by the finite element mass matrix; see [10] for details. Thus, the discretized
forward operator is F(£) : R” — RY. In this setting, the adjoint F (&) of F(¢&), is given by
F (€) = M 'F7(¢) where M is the mass matrix.

In what follows, we assume the observations are corrupted by uncorrelated Gaussian noise
with a constant variance of o'2; that is, T'yoise = 021 The posterior distribution of the discretized
parameter m is then given by N (m pos(§, W), T' post(§, W)) with

T o (6 W) = (0 2F(OWF©) +T,)) " and
1 (10)
mPost(g’ w)=T post (UﬁzF(g)*Wjd + F;rlmpr) :

Here, Iy, and my, are the discretizations of C , and my,, respectively.
We follow a sample average approximation (SAA) approach for solving (6). Thus, the
expectation in the OED objective is approximated via sample averaging. Possibilities include

8



Inverse Problems 36 (2020) 075007 K Koval et al

Monte Carlo (MC) sampling, quasi-Monte Carlo, or quadrature. In the present work, we rely
on MC. Let&;,i = 1,...,N, be realizations of £, and let F; = F(&;). We approximate (5) with

_ 1 & N
6w) ~ dy(w)= >t | (o FWE +T)) . (11
i=1

Note that the sample set {&}Y_, will be fixed in the optimization problem.

Additionally, we note that the map w — ¢y (W) is convex. Since Ipost(§, W) is a self-adjoint
positive definite operator for any fixed £ € 2 and w € R?, the convexity of ¢y follows from
(1) the strict convexity of X +— tr [X‘l] on the cone of self-adjoint positive definite operators
(see [25]), (2) the mapping W — [T pogt(&, W) ! being affine (for fixed €), and (3) the finite
sum of convex functions being convex. To argue strict convexity of ¢y, we need an additional
assumption on the affine map w +— [I‘ post(€, w)] 71, that is, we require that for any wy, w, € R4
(W # wy), FFW/F; £ FIW,F,, foratleastonei € {1, ..., N}. This will nothold, for example,
if no information about the parameter m could be learned from data obtained at one or more
sensor locations.

4.2. Efficient computation of OED objective and its gradient

In (11), each term in the summation requires computing the trace of the inverse of an operator
whose dimension is determined by the discretized parameter dimension n. For inverse prob-
lems governed by PDEs in two and three space dimensions, n is typically very large. Thus,
computing these traces directly is infeasible and methods based on low-rank spectral decom-
position or randomized trace estimation must be employed [3]. Here, we outline an alternate
strategy and present a reformulation of the OED objective that involves computing traces of
operators defined on the measurement space. In problems where the measurement dimension
d is considerably smaller than the discretized parameter dimension 7, this approach provides
significant computational savings, in particular in combination with low-rank approximation of
the (preconditioned) parameter-to-observable map as in [3], which we generalize in section 5
to accommodate additional model error. Moreover, while n grows upon mesh refinement, d
remains fixed due to finite-dimensionality of the observations.

The following result facilitates our proposed reformulation of the A-optimal OED objective.
We state the result for a generic forward operator F.

Proposition 1. The following relation holds:
(e F'WF+T,)"' =T — 0 T, F'd+ 0 *WFT ,F*)"'WFT',.. (12)

Proof. The result follows by the Sherman—Morrison—Woodbury identity ([14],
2.1.4), which states that for matrices A € R and U Ve R A+4+UV' =
A" —A'U(I+V'A'U)'V'A"! provided (I+V'A'U) and A are invertible.
Setting A := I‘;}, U:=02F" and V' := WF, it is thus sufficient to prove the invertibility of
the matrix I + WFT,F .

With no loss of generality, we assume o> = 1 for simplicity. In the present setup, we have
I, = M’II‘irM =T\, where M is symmetric positive definite. Moreover, we have that

F = M 'F” and thus

(FT . F)" = (F)'TT F" = FM 'T! MF* = FT',F".

9
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Hence, FFer* is symmetric; it is also clearly positive semidefinite. Since W and FI‘er*
are both symmetric positive semidefinite matrices, their product WFI‘er* has nonnegative
eigenvalues. Hence, I + WFI‘er* is invertible, which ends the proof. O

Using this result, we have, forall i € {1,...,N},
T post(&i, W) = T pr — 0T F; S, (WWF,T (13)
where S;(w) := (I+ o *WF,I' , F;). Using properties of the trace,

tr [T pos(§. W)| = tr [T] — tr [0S, (WWF.I?, F; ] . (14)

Denoting

K(&,w) = 028, (W)WF.I2 F;

prei>

the discretized OED objective ¢n(W) in (11) can thus be rewritten as
on(W) = tr [T | + dn (W), (15)

where

1 N 1 N d
IN(W) = — N;“ K& wl==3> > (e, K& we;). (16)

i=1 j=1

Here (-, -) denotes the Euclidean inner product.
Since I, is independent of w, we can neglect that term in the optimization and focus on
minimizing ¢n(w). The optimization problem for finding an OED is then,

Join on(W) + 71 (w). (amn

Note that since (ZEN (and hence ¢y) is convex, the above objective is convex as long as the
penalty function is convex.

‘We next derive the gradient of ¢n(W). We begin by defining some notations to facilitate this
derivation. Let us denote W := o 2W. Note that

s
=> wE with E/ =01 ®ee,
I=1

where e; the /th coordinate vector in R* and I, the » x r identity matrix. Next, we consider the
partial derivatives of S;(w) which appears in the definition of K(§;, w) in (16). Note that with
the notation we just introduced

K&, w) = ST W)WOFL2 Fi,  with Si(w)= (I+WFT,F), i=1,...N.

prei>
It is straightforward to see that

ISi(w)

=EFTC,F, k=1,...,5,i=1,...,N. (18)
3wk

Then, fork=1,...,s,

10
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IoxW) 1~y OW" o8, (w) I P
owy ;; e],<S (w ) —S (w ) S; '(w )W>Frerz i)
1 N d
= NZZ (.87 (WE (I - FiT ,F;S; (wW?) F.I'2, Fe;)

1 j=1

~.

N
= Z (S, (WEA(W)B] . (19)
where A;(w) =1 —F,T erf-‘Sfl(w)WJ and B; == F,-l"zer:-‘, i=1,...,N.

5. Model reduction

Evaluating the objective function in (17) and its partial derivatives in (19) requires many dis-
cretized PDE solves. Specifically, computation of the trace in the OED objective function (17)
requires d applications of K(§;, w) foreachi = 1, ..., N; see (16). Each application of K(&;, w)
involves a forward and adjoint PDE solve as well as the inverse of the operator S;(w), and each
application of S;(w) requires two PDE solves. Additionally, evaluating the partial derivatives
d%NT(AW) foreachk = 1, ..., srequires d applications of Sfl(w)EkA,-(w)B,- fori=1,...,N,each
of which require four PDE solves and two applications of S; '(w). Since computing the objec-
tive and its gradient is required in each step of an optimization procedure, the resulting large
number of PDE solves can become computationally infeasible.

In this section, we propose a method for replacing PDE solves in the OED objective and gra-
dient computation with a reduced model to make the optimization computationally tractable.
The upfront computation of this reduced order model (ROM) for F; fori = 1, ..., N requires
upfront forward and adjoint PDE solves. Once the reduced order models are computed, we can
solve the optimization problem for all choices of «y without requiring additional PDE solves. In
section 5.1, we exploit the problem structure to find low-dimensional subspaces of the observa-
tion and parameter spaces that capture the effective action for each forward operator sample F;,
i=1,...,N (preconditioned by the prior). As discussed in section 5.2, this can be made more
efﬁment by clustering the samples of uncertain parameters {&; }%'_, such that the corresponding
forward operator samples (F;’s) in each cluster share similar features Then, low-dimensional
bases are computed for each cluster.

5.1. Composite low-rank basis

The article [3], which concerns OED with no model uncertainty, proposes computing a low-

rank approximation to the prior-preconditioned forward map F =F; I‘ pr in terms of a low-rank
singular value decomposition (SVD); in that article only one copy of F; is considered, due to
lack of model uncertainty. The prior-preconditioned forward operator is commonly low-rank
due to properties of the inverse problem, the limited number of observations and the smoothing
properties of the prior. Following this procedure directly would require computing and storing
the left and right singular vectors for each F;, i = 1, ..., N. While each individual map may
require a small number of vectors to approximate its effective domain and range, computing
and storing such a low-rank approximation for every F; individually could become infeasi-
ble. Additionally, there may be some overlap in the singular vectors required to approximate

1
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Algorithm 1. Composite randomized range finder algorithm.

1: procedure CRE([Fy, ..., Fyl,[F;,..., F}l, 1)
2: Given N Gaussian random matrices ©; € R?*" and N Gaussian random matrices
Q eR>i=1,...,N

3: Compute Y; = l<~“,~ﬂ,- and f(,- = f}‘ﬁi

4: SetY =[Yy,....Yyland Y = [Y1,..., Yu]

5: Compute SVDs of Y = UEV and of Y = USVT with singular values o
ando;(j=1,...,d,l=1,...,n) respectively

6: Setk—max{max (jst < u) max (lst u)}

7: Set Q to be the first k columns of U and Q to be the first k columns of U

8: return Q and Q

each forward operator. Thus, we propose a method for finding spaces that capture the effective
composite actionof F;, i = 1,...,N.

Accordingly, we seek to find two matrices, Q € Rk and 6 € R™k with k € N as small
as possible, such that

[ﬁh R} FN] ~ QQT[Fla e aFN]’

- ~ o - (20)
[F,..., Fy1~ QQ'[F},..., Fyl.
While the comp051te spaces spanned by Q and Q do not give us precise bounds for
HF QQTF QQTH for each individual F, (i=1,...,N),in practice we find that

F;~QQ'F.QQ’, i=1,...,N. (21)

We find Q and 6 via the randomized range finder algorithm (RRF) ([18], algorithm 4.1). The
idea is to simultaneously compute a basis for the subspaces of R¢ and R” that capture the action
of each l~7i and fj‘ (i=1,...,N) respectively. To do so, we choose a d x r Gaussian random
matrix* €; and an n x r Gaussian random matrix ﬁ,- and compute Y; = f,ﬂ,- and SA(i = Fffl,
for each i. The SVDs of [Y,...,Yy] and [?1, cl, SA(N] are computed and truncated up to a
specified tolerance to obtain Q and (3 respectively. The algorithm is summarized in algorithm
1.

To fully eliminate the PDEs from the optimization problem, the small inner matrices QTﬁ‘,@
in (21) must be computed and stored foreachi = 1, ..., N, which requires solving k more PDEs
for each forward operator sample. If desired, these additional PDE solves can be avoided at the
cost of additional error by modlfymg the single-pass approach presented in [18]. Specifically,
a matrix B; approximating Q" F; Q foreachi = 1,..., Ncanbe found using a minimal residual
method to approximately satisfy the relations

B.Q' =Q"Y, and B/Q'Q;=Q’Y. (22)

4By Gaussian random matrix, € € R¥* we mean that entries of € are independent standard normal random
variables.

12



Inverse Problems 36 (2020) 075007 K Koval et al

Algorithm 2. Composite randomized range finder algorithm with clustering.

1: procedure CRREWC([F,, ..., Fy1,[F}, ..., Fyl, 1,1, m)
2 [c1,..., cy] = CLUSTER([Fm,.. ., Fym],/ tol)
3 InitializeQ =[]and Q =[]
4 fori=1,...,ldo
5: Initialize F = [ Jand F* =[],
6: forj=1,...,Ndo
7: if ¢; == i then append F; to F and append F; to F~
8 Compute [Q;, Q;] = CRF[F, F*, ;]
9 Append t0 Q, Q = [Q,Q;] and to Q, Q = [Q, Q;]
1 fori=1,...,Ndo
I Q.FQ., = Q,FQ,
return [Q1,.... QL[Qi. ., Q] and [QFQu.- . @ FQuy ]

0
1

5.2. Clustering

To reduce the amount of PDE solves needed to compute the inner matrices and the amount
of basis vectors stored, we follow the ideas presented in [26] and break up the sample space
Q into [ clusters. To do this, we use a standard k-means clustering algorithm where we define
the distance measure between two samples &; and &; as the Euclidean distance between the
observations they produce for an instance of the inversion parameter m. Specifically, for an
m € R”, we define the distance between two samples as

d(&;, §;m) = |[Fim — Fjm[;. (23)

Naturally, this distance depends on the choice of m. One could pick m as a random draw from
the prior distribution or one could pick a suitable parameter m, which is an interesting design
problem itself. For the model problem used in this paper, we choose the parameter as a sum of
radial basis functions with different centers and magnitudes.

We compute matrices Q, and (A)p of rank k, using algorithm 1 for each clusterp =1, ...,/
to approximate the effective action of all the forward operators in the cluster. This preliminary
clustering step allows us to reduce the amount of PDE solves needed when computing the inner
matrices in algorithm 1. In addition to k, being smaller than k due to the clusters containing less
samples, sample parameters £; and {; corresponding to the same cluster p produce more similar
data than parameters in different clusters. This means that forward operators corresponding to
the same cluster have overlapping range spaces, thus requiring less basis vectors to cover them.

The updated composite low-rank basis algorithm given is provided in algorithm 2, where
the CLUSTER procedure refers to a standard k-means clustering procedure which takes
as_inputs the synthetic observations obtained for an instance of the inversion parameter
([Fym, ..., Fym]), the number of desired clusters /, and a tolerance tol, and outputs the clusters
[c1, ..., cy] for each forward operator F; (i = 1,...,N).

6. Subsurface flow example: the inverse problem

This section is devoted to the description of the example inverse problem used to illustrate our
methods. The subsurface flow forward and inverse problems are described in this section. The
sources of irreducible uncertainty, which enter in this problem, are discussed in section 7, and
optimal designs taking into account the irreducible uncertainty are the topic of section 8. The

13
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inverse problem we consider seeks to estimate an uncertain initial contaminant concentration
field using sensor measurements of contaminant concentration recorded at a discrete set of
observation times.

6.1. The forward problem

We consider the transport of a contaminant in a rectangular domain D := [0, a] x [0, b] C R25
The evolution of the contaminant’s concentration, u(Xx, t), in groundwater flow is modeled by
a time-dependent advection-diffusion equation

u,— kAu+v-Vu=0 inD x (Ty, Th),
u(-,Top) =m inD,
(—kVu+uv) -n=0 inl'; x (Ty, Ty),
kVu-n=20 inOD\T'; x (To, Ty),

(24)

where x > 0 is a known diffusion coefficient, v is the advection velocity field, 7, < T; are the
initial and the final time, respectively, and m € L,(D) is the initial concentration field. Here,
I';:={0} x [0, b] is the left boundary of the domain. We assume I'; is impermeable, as modeled
by the zero total flux condition at that boundary. We want the contaminant to be able to leave
the domain, so we allow it to advect freely through the remaining portion of the boundary,
OD\T';; this is modeled by imposing a homogeneous pure Neumann condition. For a more
detailed explanation and a derivation of a model for two-dimensional flow in an aquifer, see
e.g., ([8], section 5.3).

A major source of uncertainty in the governing equation (24) is the velocity field v, which is
an irreducible model uncertainty considered herein. Moreover, the time interval [Ty, 7;] might
be uncertain as we can only estimate how long ago a contaminant has been released. Our model
for these irreducible uncertainties is detailed in section 7. Before that, we detail the Bayesian
inverse problem for fixed advection velocity v and time interval [Ty, T}].

6.2. Bayesian inversion for initial state

For the Bayesian inversion of the initial concentration m given a fixed velocity field v; and
a fixed time interval [Ty, T1], we impose a Laplacian-like prior. We define the prior operator
on the domain D as Cp, := A~%:=(—pA + 872, To reduce the variance near the boundary
of the domain resulting from combining the differential operator A with Neumann boundary
conditions, we instead impose Robin boundary conditions [12, 28]. Accordingly, given s €
L*(D), the weak solution m of Am = s satisfies

p/Vm-Vpdx—Fé/mpdx—Fﬁ mp ds = /spdx, for all p € H'(D),
D D oD D
(25)

where 5 = (p/ 1.42)@ as proposed in [28]. The parameters p and § control the correlation
length and variance of the covariance operator, and were set to p = 0.008 and 6 = 0.02 for
our simulations as these parameters lead to prior samples which have realistic smoothness and
correlation length.

3 This two-dimensional setting can be understood as a top-down view of the evolution of an initial concentration in a
horizontal slice of an aquifer or a slice resulting from averaging the properties of a thin 3-dimensional domain.

14
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Figure 1. Discrete MAP points, or my,g, at the ‘true’ velocity field and time interval
[—1, 16] obtained for different sensor locations. The top left figure shows the ‘true’ initial
concentration, m, we wish to characterize in (24), overlaid with the velocity field v,
The top right figure shows the MAP point obtained using all 234 possible sensor and

thus depicts the best we can do for our particular problem formulation. On the bottom,
we show MAP points obtained with two different designs (D1 and D2) consisting of 5

Sensors.
Var
500
. _V >
D Prior - D2
. D1y rior | - . 1979
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Figure 2. Shown is the pointwise variance for the prior (middle) and posterior using the
designs D1 and D2 shown in the bottom row of figure 1.

We choose s = 234 candidate locations (these locations are shown in the top right graphic
in figure 1) where we can place sensors. Setting 77 = 16, we assume that at each candi-
date location, we can take r = 5 concentration measurements at equally spaced observa-
tion times 7; = 7,9, 11, 13, 15. Measurements are time-averaged concentrations over intervals
[7: — 0.5, 7; + 0.5]foreachi = 1, ...,5. This leads to a vector of possible (i.e., if sensors were
to be placed on all possible locations) observations d € R*".

As discussed in section 3.1, for a fixed velocity field v, time interval [T, 7], and design
w, under the assumption of Gaussian prior and additive Gaussian noise, the posterior distri-
bution is also Gaussian. In particular, it is fully characterized by its mean mp., and posterior
covariance matrix, C poy. Different sensor placements lead to different MAP points and dif-
ferent updates to the prior covariance matrix, as can be seen in figures 1 and 2. The advection
velocity field used for these results is also shown in figure 1. We illustrate the effect of different
design choices on the posterior pointwise variance in figure 2 setting 7o = —1 and 7; = 16. In
figure 1 we show the MAP points (1,05 ) obtained for these same choices of design.

6.3. Discretization and implementation

To discretize the forward and adjoint operators as well as the prior operator, we use the hIP-
PYIib [33] framework. We use implicit Euler for time-stepping using 250 timesteps in the
interval (T, T1]. A streamline upwind Petrov Galerkin (SUPG) discretization in space is used
to stabilize the discretization of the advective term. The spatial discretization uses 3750 trian-
gles resulting in 1976 degrees of freedom. To accelerate the linear solves in the implicit Euler
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Figure 3. Snapshots of the forward propagation of an initial concentration (¢t = 0). The
white arrows depict the velocity field used for the simulation.

steps, we build sparse LU factorizations of the spatial forward and adjoint operators and reuse
them throughout the implicit Euler iterations. The evolution for one choice of velocity field and
initial condition is shown in figure 3. All other solver components detailed in sections 7 and 8
also use hIPPYlIib for the PDE discretization and Python for the numerical linear algebra.

7. Subsurface flow example: irreducible uncertainties

In this section, we characterize the irreducible uncertainties we must take into account when
computing optimal sensor locations for the inverse problem presented in section 6.2. The
sources of irreducible uncertainty are the advection velocity v and the initial time 7, in
(24). As explained further below, the uncertainty in the velocity field (26) stems from the
log-permeability field #(x) of the aquifer being uncertain. Therefore, the random variable &,
introduced in section 2.2, that parameterizes model uncertainty is given by & = (6, T).

71. Characterizing the irreducible uncertainty in the subsurface flow velocity

We will use a steady state inverse problem, different from the inverse problem discussed in
section 6.2, which is the main target of this work, to characterize a distribution of the velocity
field v and obtain samples from this distribution. Darcy’s law describes the flow of a fluid
through a medium in terms of the physical properties of the medium and the pressure gradient.
Using Darcy’s law, the background velocity field v in (24) is described by

v(x) = —e"¥Vp(x), (26)

where 6(x) is the log-permeability field of the aquifer and p(x) denotes the pressure of the
groundwater transporting the contaminant through the medium.

The equation governing the pressure field is obtained using Darcy’s law along with mass
conservation and assuming incompressibility (of the fluid carrying the contaminant). This
results in a linear elliptic PDE that can be written in the following dual-mixed form:

—v — ee(X)Vp =0 inD,
V-v=0 inD,
27
P=Do onl';UT,,

—v-n=0 onOD\(I'; UT ).

Here, T';:={0} x [0,b] and T, := {a} x [0, b] denote the left and right domain boundaries,
respectively. The Dirichlet boundary conditions are prescribed as po =0 on I'; and py = 1
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Figure 4. Left: the ‘true’ log permeability field used to generate synthetic pressure
data to estimate the log-permeability field. This ‘true’ log-permeability field is a
scaled version of the 71st slice of the log-permeability field data from the SPE10
model [1]. Specifically, letting /(x) be the SPE log-permeability data, we use yye(X) =
0.5 [l(x) — min(/(x))] + min(/(x)). Right: the maximum a posteriori estimate of the per-
meability field obtained after solving the Bayesian inverse problem governed by (27)
using six pressure observations. The observation locations are shown as black dots.

Figure 5. Three log-permeability field samples ¢; and their corresponding velocity fields
v(0;) (shown as black arrows) obtained from the posterior distribution 7y and the log-
permeability field and velocity field corresponding to the MAP point (lower right).

on I',. We mention that using the mixed form (27) when deriving the weak formulation and
finite element discretization ensures mass conservation over the elements in the numerical
solution. Also, porosity and fluid viscosity are omitted from (26) and (27) because they are
assumed constant and thus can be absorbed in the remaining terms in the equations through
scaling.

As mentioned earlier, the uncertainty in the velocity field (26) is due to uncertainty in the
log-permeability field (x). One way to obtain a statistical distribution for the uncertain perme-
ability field is to solve a Bayesian inverse problem governed by the forward problem described
in (27). This is described next.

As synthetic data for estimating , we use six noisy pressure observations obtained by solv-
ing (27) using a scaled version of the 71st slice of the SPE10 permeability model (shown in
figure 4). We use a bi-Laplacian prior for 6 (see [10]) and assume a Gaussian noise model. The
Bayesian inverse problem of estimating 6 using pressure measurements is a nonlinear inverse
problem that in general requires a sampling algorithm. We compute an approximate solution to
that Bayesian inverse problem using a Laplace approximation to the posterior, which is a Gaus-
sian approximation of the posterior centered at the maximum a posteriori probability (MAP)
point; see e.g., [10].

To generate samples of the uncertain velocity field, we proceed as follows: we generate
log-permeability field realizations by drawing samples from the approximate posterior for 6,
subsequently, we solve the pressure equation to obtain the corresponding pressure fields, which
are then used to compute velocity field samples, v(6;), using Darcy’s Law (26). For illustration,
four different Darcy velocity field samples, together with the permeability fields, are shown in
figure 5.
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Table 1. Comparison of the number of basis vectors needed to compute Q and (3 for
different numbers N of velocity samples (columns) and tolerances p = 0.002, 0.0001
(rows). Here, we use algorithm 2 with one cluster.

w\N 50 100 300 500
0.002 350 410 469 494
0.0001 881 985 1051 1082

72. Uncertainty in the initial time

The second source of irreducible uncertainty we consider is the initial time 7). Receiving mea-
surements of the concentration, one usually does not know exactly when the contaminant has
been introduced and thus we might only have an estimate for 7y. This uncertainty of the ini-
tial time should be taken into account when computing optimal designs, i.e., optimal designs
should be tailored to a range of initial times Tj. This uncertainty in the initial time is an addi-
tional irreducible uncertainty we take into account, and we target designs that are optimized
for Ty € [—1, 1] and assume Ty ~ U(—1,1).

8. Subsurface flow example: optimal experimental design under uncertainty

In this section we present numerical results for optimal sensor placement under uncertainty and
compare results obtained taking into account the irreducible model uncertainty with results that
are computed for a fixed realization of the irreducible uncertainty.

8.1. Setup of the OEDUU problem

As explained above, we solve the optimal experimental design under uncertainty (OEDUU)
problem using sample average approximation. In our numerical tests, we use 100 Monte Carlo
samples of the irreducible model uncertainty £ = (6, Tj), i.e., N = 100 in (17). In table 1, we
show how many reduced model basis vectors are needed for different tolerances. The moderate
growth in the number of needed ROM basis vectors indicates that 100 Monte Carlo samples
capture a reasonable amount of the overall uncertainty.

As discussed in section 5, minimization of the OEDUU objective (17) is made tractable by
elimination of the PDE solves, throughout the optimization iterations, via computation of a
composite reduced order basis using algorithm 2. In table 2, we study the accuracy and dimen-
sion of the joint basis for different numbers of clusters and choices of i, which control the
accuracy of the reduced models.

Our clustering algorithm sorts the uncertain model parameters into bins based on a distance
measure (23) that requires choosing a suitable initial concentration m. Since contaminants in
groundwater typically originate from a few localized sources, we choose the initial concen-
tration m, in the definition of the distance measure (23), to be the sum of three radial basis
functions with varying centers, spreads and magnitudes. From table 2, we note that for 100
samples of the irreducible uncertainty &, clustering is not needed as the resulting dimension of
Qand (A) in (21) is rather small. For smaller choices of j, such as 1 = 107, or larger numbers
of samples, clustering becomes more important to reduce memory usage and compute time.

We find that the joint basis obtained using 1 cluster and p = 0.002 is sufficient for our
purposes, both for approximation of the OEDUU objective ¢y in (17) and approximation of

F; for each forward operator sample. Thus, this choice of parameters is used henceforth.
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Table 2. Comparison of ROMs obtained using algorithm 2 with 1 = 0.002, 0.0001 and
different numbers of clusters. Using N = 100 sample velocity fields and initial times,

¢n(W) in objective (17) is computed for w = [1,. .., 1], i.e., the design which includes
s

all sensor locations. The relative error in column four is computed as w, where
on(W

the true value ¢>§g(w) was approximated using a reduced basis computed using algorithm

2 with ¢t = 107°. The third column shows how many basis vectors k were needed in the
algorithm to obtain the desired accuracy as described by line 6 in algorithm 2.
p Number basis vectors Error
1 Cluster  0.002 410 6.876 x 107*
0.0001 985 2.335 x 107°

4 Clusters  0.002 283,267,271,279 8.348 x 10~*
0.0001  667,751,710,731  7.943 x 10~°

To obtain sparse and binary optimal designs, we solve a sequence of minimization problems
of the form (17). Following the sparsification approach outlined in section 3.3, we use penalty
functions of the form (8) with = 0.1 and (i) = (%)l, i=1,2,3,.... For our problem setup,
the weights converge to binary values in approximately 20 iterations of the sparsification proce-
dure. In our computations, we use the Broyden—Fletcher—Goldfarb—Shannon (BFGS) method
available in python’s scipy library. We supply this minimization algorithm with the objective
function and its gradient as described in section 4.

8.2. Solving the OEDUU problem

Here, we demonstrate that solving the OEDUU problem with our proposed approach is effec-
tive in producing designs for which the expected value of the posterior uncertainty (5) is
small. In particular, we numerically verify that the SAA (11) is a reasonable approximation.
This is done by solving the OEDUU problem with N = 100 SAA samples, and comparing
the expected value of the objective obtained using the optimal experimental designs under
uncertainty, which we will refer to as uncertainty-aware designs, with that obtained with
deterministic designs. By deterministic designs we mean optimal designs obtained using a
single sample from the irreducible uncertainty (velocity field and initial time); this amounts to
minimizing (17) with N = 1.

The results are shown in figure 6. To obtain designs with different numbers of sensors,
(17) was solved for different regularization parameters -, which indirectly controls the spar-
sity of the optimal designs. To approximate the expectation shown on the y-axis, we use a
Monte Carlo approximation of the expectation of the trace update E [tr (K(&, w))] with 100
samples from the irreducible uncertainty that are drawn independently from the SAA sam-
ples used to compute the uncertainty-aware designs. Additionally, to avoid bias due to the
model reduction, we use more accurate reduced models, specifically we use algorithm 2 with
uw=10"%

If the sampling as well as the model reduction errors are small enough, we would expect
that the uncertainty-aware designs reduce the expected trace more than deterministic designs.
As can be seen in figure 6, this is the case most of the time, i.e., we find good binary minimizers
of the objective (5). Only very few deterministic designs are superior to the uncertainty-aware
designs, which is likely due to sampling error.
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Figure 6. Trace reduction ¢y in objective (16) for deterministic OED (light blue dots)
and OEDUU (red diamonds). The irreducible uncertainty for the uncertainty-aware
designs is approximated using 100 samples from the irreducible uncertainty (velocity
field and initial times). The deterministic designs are computed for 20 samples from the
irreducible uncertainty. The x-axis shows the number of sensors for each design. The
expectation in the objective, which is shown on the y-axis, is approximated using 100
samples that are chosen independently from the samples used to compute the designs.

8.3. Quality of the computed optimal designs

Ultimately, our goal is to choose the sensors for data collection which will allow us to learn
the most about the initial concentration for a fixed velocity field and initial time 7. Here
we demonstrate numerically that the designs computed via OEDUU perform better (produce
more informative data) on average than deterministic designs computed for realizations of the
irreducible model uncertainty.

Here, we study the effectiveness of the same uncertainty-aware designs used above not in
expectation, but for 100 individual realizations &; of the irreducible uncertainty, which again
differ from the SAA samples used to compute the uncertainty-aware designs. Results are shown
in figure 7, where now we show percentiles for the trace updates for individual &;.

We observe that the designs obtained using OEDUU tend to have a smaller mean in the
update trace than the designs obtained using individual &;, particularly when we only use few
sensors. Additionally, the 25th—75th and 2nd—98th percentiles show that poorly performing
designs are less likely when one accounts for the uncertainty in the design computation. This
is again, particularly the case for designs with small numbers of sensors. We believe that the
reason for diminishing benefit of computing designs under uncertainty for larger number of
sensors is that at each sensor location, five measurements in time are used. Thus, most infor-
mation about the initial condition that can be recovered is already available from a rather small
number of sensors and thus different designs play a less important role. Here, the diffusion con-
tained in the governing PDE plays an important role as well, as it limits the resolution of the
initial condition reconstruction that can be obtained from observations. This is also reflected
by the decreasing gain of using more than five sensors.

The benefit of computing uncertainty-aware designs is greater for inverse problems where
less information can be gained at each sensor location. This can be seen in figure 8. To obtain
these results, we use the same inverse problem and ROM setup as described in sections 6—8.1
but restrict the times at which we can measure data to 7; = 12, 15, effectively reducing the
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Figure 7. Comparing the mean for the trace in the deterministic objective, ¢y with N = 1
in (16), using deterministic designs and designs taking into account the uncertainty. The
uncertainty-aware designs and the deterministic designs are the same as used in figure 6.
Each design is used to evaluate the deterministic objective for 100 realizations of the
irreducible uncertainty. The sample mean is plotted as a solid line and the shaded regions
depict the 25th—75th and 2nd-98th percentile envelopes (for both the mean and the
envelopes, red is used for uncertainty-aware designs and blue for deterministic designs).
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—— Deterministic OED mean

2 3 4 5 6 7 8 9 10
Number of sensors

Figure 8. Same as figure 7, but with only two time observations at 7; = 12, 15 (rather
than five). In this regime with less observations, the uncertainty-aware design outper-
forms deterministic designs more significantly also for larger numbers of sensors.

amount of information gathered at sensors and increasing the importance of careful sensor
placement. Comparing figures 7 and 8, we can see that for ‘harder’ inverse problems, i.e., those
with less-informative data, the difference between uncertainty-aware designs and deterministic
designs is more significant.

9. Discussion and conclusions

We have developed a mathematical formulation and numerical scheme for computing A-
optimal experimental designs for infinite-dimensional Bayesian linear inverse problems
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governed by PDEs with irreducible model uncertainty. The proposed measurement space
approach replaces trace estimation in an infinite-dimensional (high-dimensional upon dis-
cretization space) with trace estimation in the (finite-dimensional) measurement space. The
computation of a joint reduced basis capturing the action of the forward operators for different
random samples allows efficient computation of optimal designs. Numerical experiments for
the inversion of initial concentration of a contaminant in groundwater indicate that, on aver-
age, designs that take the model uncertainty into account are superior to those that do not. This
superiority is less pronounced as more sensors are being used.

We have used a Monte Carlo approach for dealing with uncertainty, which can require many
samples for adequate resolution. A possible extension of our work is to consider alternate
approaches for approximating the uncertainty, e.g., Taylor expansions of the uncertainty or
stochastic approximation (SA). In the latter, the samples for the irreducible uncertainty are
not chosen a priori, but are varied during the optimization. This avoids potential bias of the
design towards the chosen samples but leads to several additional challenges in the optimiza-
tion. Another important research question is the generalization of our approach to nonlinear
inverse problems. One possibility is to follow the framework in [4], which is based on Gaus-
sian approximations at the MAP point. Clearly, nonlinear problems under uncertainty become
computationally rather expensive.

One aspect of OED under model uncertainty that is not explored in the present work is
that of dealing with reducible sources of model uncertainty, i.e., additional uncertainties that
could be reduced through observational data. However, the focus might be on estimation of
primary parameters of interest and not on estimation of this (secondary) reducible uncertainty.
Hence, the design should be chosen to focus mainly on the primary parameter and only on the
secondary parameters to the extent that it aids inference of the primary parameters.
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