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An outstanding challenge for quantum information processing using bosonic systems is Gaussian errors
such as excitation loss and added thermal noise errors. Thus, bosonic quantum error correction is essential.
Most bosonic quantum error correction schemes encode a finite-dimensional logical qubit or qudit into
noisy bosonic oscillator modes. In this case, however, the infinite-dimensional bosonic nature of the
physical system is lost at the error-corrected logical level. On the other hand, there are several proposals for
encoding an oscillator mode into many noisy oscillator modes. However, these oscillator-into-oscillators
encoding schemes are in the class of Gaussian quantum error correction. Therefore, these codes cannot
correct practically relevant Gaussian errors due to the established no-go theorems that state that Gaussian
errors cannot be corrected by using only Gaussian resources. Here, we circumvent these no-go results and
show that it is possible to correct Gaussian errors by using Gottesman-Kitaev-Preskill (GKP) states as non-
Gaussian resources. In particular, we propose a non-Gaussian oscillator-into-oscillators code, namely the
GKP two-mode squeezing code, and demonstrate that it can quadratically suppress additive Gaussian noise
errors in both the position and momentum quadratures except for a small sublogarithmic correction.
Furthermore, we demonstrate that our GKP two-mode squeezing code is near optimal in the weak noise
limit by proving via quantum information theoretic tools that quadratic noise suppression is optimal when
we use two physical oscillator modes. Lastly, we show that our non-Gaussian oscillator encoding scheme
can also be used to correct excitation loss and thermal noise errors, which are dominant error sources in

many realistic bosonic systems.
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Introduction.—Continuous variable (CV) bosonic quan-
tum systems are ubiquitous in various quantum computing
and communication architectures [1,2] and provide unique
advantages to, e.g., quantum simulation of bosonic systems
such as boson sampling [3—6] and simulation of vibrational
quantum dynamics of molecules [7—10]. However, realistic
imperfections such as excitation losses and added thermal
noise are major challenges for realizing large-scale and
fault-tolerant CV quantum information processing.

Quantum error correction (QEC) is essential for scalable
and fault-tolerant quantum information processing [11].
Recently, there have been significant advances in using
bosonic systems to realize QEC in a more hardware-
efficient manner [12]. In many bosonic QEC schemes
proposed so far, a finite-dimensional quantum system (e.g.,
a qubit) is encoded into an oscillator [13—18] or into many
oscillators [19-28]. For example, the four-component cat
code [15] encodes a logical qubit into an oscillator using cat
states with an even number of excitations, i.e., |[0;) o
|a) + | —a) and |1;)  |ia) + | — ia). Thanks to the inher-
ent hardware efficiency, various qubit-into-an-oscillator
bosonic QEC schemes have been realized experimentally
[29-37]. However, such schemes are not tailored to CV
information processing tasks since the error-corrected
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systems are described by discrete variables such as Pauli
operators.

On the other hand, an error correction scheme where an
infinite-dimensional oscillator mode is encoded into many
noisy oscillators can still be tailored to various CV quantum
information processing tasks. So far, there have been
several proposals for encoding an oscillator into many
oscillators [38-45]. For example, in the case of the
three-mode Gaussian-repetition code [38,39], an infinite-
dimensional oscillator mode is encoded into three oscil-
lators by repeatedly appending the position eigenstates:
14, = q) =131 = 9)14> = 9)|45 = q). Note that in this
case, the logical Hilbert space is infinite dimensional
because g can be any real number.

However, none of the previously proposed oscillator-
into-oscillators codes can correct Gaussian errors. This is
because they are Gaussian quantum error correction
schemes and the established no-go theorems state that
Gaussian errors cannot be corrected by using only Gaussian
operations [26,46,47]. Since Gaussian errors include exci-
tation losses, thermal noise, and additive Gaussian noise
errors that are ubiquitous in many realistic bosonic systems,
these no-go results set a hard limit on the practical utility of
the proposed Gaussian oscillator encoding schemes.
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Moreover, since the quantum capacity [48] of Gaussian
channels is finite [49-55], one may be tempted to deduce
that useful infinite-dimensional oscillator encoding against
Gaussian errors is not possible.

In this Letter, we demonstrate that useful oscillator
encoding is nevertheless possible despite the Gaussian no-
go results and the finite quantum capacity. That is, we
circumvent the established Gaussian no-go results by using
the Gottesman-Kitaev-Preskill (GKP) states [14] as a non-
Gaussian resource. We also show that nontrivial QEC gain
(larger than unity) with oscillator encoding is compatible
with the finiteness of Gaussian quantum channel capacity.

GKP states as non-Gaussian resources.—Examples of
non-Gaussian resources [56,57] include the single-photon
Fock state and photon-number-resolving measurements
[3,58], Kerr nonlinearities [59], cubic phase state and gate
[14], SNAP gate [60], Schrodinger cat states [13], and GKP
states [14,61]. Among these non-Gaussian resources, we
focus on the GKP states.

The canonical GKP state (or the grid state) [14,62] is
defined as the unique (up to an overall phase) simultaneous
eigenstate of the two commuting displacement operators
S‘q = exp[iv/27g] and S, = exp[—i\/2zp] with unit eigen-
values. Explicitly, the canonical GKP state is given by

D lg=V2an) <> |p=+2mn) (1)

nez nez

|GKP)

and thus has definite values of both the position and the
momentum operators modulo /27, i.e., § = p =0 mod
V2z. That is, we circumvent the Heisenberg uncertainty
principle (i.e., ¢ and p cannot be measured simultaneously)
by measuring the quadrature operators modulo v/27z. Note
that the effects of such compromise are negligible if the
quantities of interest are much smaller than \/2x, which
will be the case below for our purposes [see Eq. (11)].
In Fig. 1(a), we plot the Wigner function of the canonical
GKP state with an average photon number 71 = 5 [63]. Note
that negative peaks in the Wigner function indicate that the

@ |GKP) ;
. oz mody/27 (1 q'+4q
ses - ’ |GKP
po L
- ) 7 o W) .p mody/27
FIG. 1. (a) An approximate GKP state with an average photon

number 77 = 5. (b) Measurement of the position or momentum
operator modulo /2z. The controlled @ and & symbols,
respectively, represent the SUM and the inverse-SUM gates
where SUM;_; = exp[—ig;ps]. The final measurement in the
bottom mode is the homodyne measurement of the position or the
momentum quadrature operator.

GKP state is a non-Gaussian state. We also remark that the
ability to prepare the canonical GKP state (combined with
Gaussian operations) allows us to measure the quadrature
operators modulo V27 [see Ref. [14] and also Fig. 1(b)],
which is needed in our oscillator encoding scheme intro-
duced below [see Fig. 2(b)].
GKP  two-mode  squeezing  code—Let |y) =
f dqw(q)|g; = q) be an arbitrary bosonic state (or data)
that we want to encode into two bosonic modes. We define
the encoded state of the GKP two-mode squeezing code as
follows:
W) = TS,2(G) ) ® [GKP). 2)

Here, |GKP) is the canomcal GKP state in the second mode
and TS;,(G) = exp[g(a ay—a,a,)] is the two-mode
squeezing operation acting on modes 1 and 2 with a gain
G = cosh?(g) > 1 [hence the name of the code; see
Fig. 2(a)]. We refer to the first mode as the data mode
and the second mode as the ancilla mode. In the Heisenberg
picture, the two-mode squeezing operation TS, ,(G) trans-
forms the quadrature operator X = (§y, p1, s, Po)7 into

= (g}, P\, @5, P5)T = S1s(G)x, where the 4 x 4 sym-
plectlc matrix Sts(G) associated with TS; ,(G) is given by
(see, e.g., Ref. [2])

VGI VG -=1Z
vVG—-1zZ VGI |

Here, I = diag(1,1) and Z = diag(1,—1). Note that the
gain G can be chosen at will to optimize the performance of
the error correction scheme.

For the noise model, we consider the independent and
identically distributed additive Gaussian noise errors, i.e.,
NW[s] ® N?)[s], mainly due to their experimental rel-
evance (see also [69]). In the Heisenberg picture, N'“[q]

adds Gaussian random noise gSj" and gﬁ,’” to the quadrature
operators of the kth mode. Thus, the quadrature operator &
is further transformed via the additive Gaussian noise error
into £ =2 +& where &= [e) &) &P DT s the
quadrature noise vector following & ~;q N'(0,0°%) [see
Fig. 2(a)].

The decoding procedure [shown in Fig. 2(b)] starts with
an application of the inverse of the encoding circuit
[TS,,(G)]?. Then, the quadrature operator is transformed
into 2" = [S15(G)]7'%" = & +2z, where z= [S15(G)] 1€
is the reshaped quadrature noise vector, which is given by

STS(G) = (3)
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FIG. 2.

(a) Encoding circuit of the GKP two-mode squeezing code subject to independent and identically distributed additive Gaussian

noise errors. (b) Decoding circuit of the GKP two-mode squeezing code. Note that the circuits for the measurements of the position and
the momentum operators modulo v/2z (at the end of the decoding) are defined in Fig. 1(b).

The role of the two-mode squeezing operations in the
encoding and the decoding circuits is clear by now: they
transform uncorrelated additive noise € into correlated

additive noise z. This means that after noise reshaping, we
(1)

can extract useful information about the data noise z; * and
zg,l) by measuring only the ancilla noise zg,z) and zg).

Importantly, the encoded logical information in the data
mode is not revealed through this process because the data
mode need not be measured. Note also that we need to
measure both the position and momentum noise in the
ancilla mode. This is precisely the reason why the simulta-
neous quadrature measurement (modulo V27) in Fig. 1(b)
is needed at the end of the decoding circuit [71].

Based on the outcomes of the simultaneous measurement
of the ancilla quadrature noise modulo \/ﬂ we estimate
that 25]2> and z,’ are given by the smallest displacements
that are compatible with the modular measurement out-
comes, i.e.,

D =Rl wd B =R )

where R((z) =z —n*(z)s and n*(z) = argmin,cz|z — ns|
[72]. We then further estimate that the data quadrature

. 1 1
noise ZE,) and z§,> are

31 _ 2 GG-1)_p

e PRSI
L) _2V/G(G—1)
Zp - ZG_I Zp ? (6)

which are obtained by taking into account the correlation in
the reshaped noise z and using a maximum likelihood
estimation method as detailed in the Supplemental
Material [64].

The decoding operation is simply to remove the estimated
noise in the data mode by applying the counterd1splacement
operations exp[ip;,] and exp[—ig, 2] to the data mode
[see Fig. 2(b)]. As a result, we are left with the following
logical position and momentum quadrature noise:

égout) _ Zgl) B ZE]I) and fgjouo _ Zg) _ Z;l), (7)

whose variances (¢,)* = (6,)? = (6,)* are given by

2

o 4GG-1), ,
2G_1+;7(2G_1)2 27n% X q,(c). (8)

(UL)2 =

n 2) \2r
Here, ¢,(0) = f((n Jrll/z)\/— dzp[vV2G —16|(z),  where
plol(z) = (1/V2r6?) exp|—(z%>/206%)] is the probability

density function of the Gaussian normal distribution
N(0,6%). See the Supplemental Material [64] for the
derivation of Eq. (8).
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required single-mode squeezing in the unit of decibel 20 log;, 4*, where A* = vVG* + vG* — 1. The black dotted line, the green dashed
line, and the grey dotted line in (a) represent the breakeven point 6, = &, the asymptotic expression 67 = (26°//7)\/log, [7*/? /26"]
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and the lower bound on ¢/, in Eq. (12), respectively. Also, the yellow dashed line in (b) represents G* = (/867)(log, [7%/?/26*])™! + 1.

Recall that we can freely choose the gain G to optimize
the performance of the GKP two-mode squeezing code.
Here, we choose G such that the standard deviation of the
output logical quadrature noise ¢; is minimized. In Fig. 3,
we plot the minimum standard deviation of the output
logical quadrature noise o7 and the optimal gain G* that
achieves o7 as a function of the input noise standard
deviation o. These optimal values are obtained via a brute-
force numerical optimization.

From the numerical optimization, we find that for
o > 0. = 0.558, the optimal gain G* is trivially given by
G* =1 and thus the GKP two-mode squeezing code
cannot reduce the noise standard deviation: 6; = o. On
the other hand, if the input noise is small enough, i.e.,
o < o, = 0.558, the optimal gain G* is strictly larger than
1, and the minimum standard deviation of the output
quadrature noise o; can be made smaller than the input
noise standard deviation ¢: 6] < 6. Moreover in the 6 < 1
regime, we analytically find that the optimal gain G* is
asymptotically given by

3/2 —1 1
G Lol i 1 T - 9
T8\ (27]) T2 ®)
and the optimal output standard deviation o7 is given by

Lol 262

=22 foe [5] (10)

log, {g .
See the Supplemental Material [64] for a detailed deriva-
tion. As shown in Fig. 3, these asymptotic expressions
agree well with the exact numerical results in the small
o regime. Note that the standard deviations (STDs) of the
ancilla noise are given by

STD[z{] = STD[] = /2G = 1)o = o(1)  (11)

and thus are much smaller than the spacing of the GKP state
/27 at the optimal gain G*. Moreover, Eq. (10) implies
that the output standard deviation o] decreases quadrati-
cally in ¢ (i.e., 6} o 6?) except for a small sublogarithmic
correction. We remark that the quadratic suppression is the
best one can hope for when using two physical oscillator
modes. That is, o, is fundamentally lower bounded by

o’ o’

6> — >

Vel-) Ve

due to the finite quantum capacity of A[o] (see the
Supplemental Material [64] for the proof). Thus, our
GKP two-mode squeezing code is asymptotically near
optimal in the weak noise limit up to an overall constant
factor [see Fig. 3(a) for an illustration].

Excitation loss and thermal noise errors.—EXcitation
loss errors with external thermal noise are described by
Gaussian thermal-loss channels that can be converted via a
quantum-limited amplification to an additive Gaussian
noise channel [12,54]. For instance, the bosonic pure-loss
channel with loss probability y € [0, 1] can be converted
to an additive Gaussian noise channel NV[o] with 6 = /7.
Hence, the GKP two-mode squeezing code can also
handle the excitation loss errors because we can simply
convert the loss errors into the additive noise errors
and then apply the same decoding scheme presented
above [73].

Assuming the amplification decoding, the critical value
of the standard deviation ¢. = 0.558 corresponds to the
critical loss probability y. = (6,)?> = 0.311 in the case of
pure excitation loss. Thus, the GKP two-mode squeezing
code helps when the loss probability is below 31.1%. For
example, for 1% loss probability (i.e., y =0.01 and

(12)
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o = ,/r =0.1), the optimal two-mode squeezing gain is
given by G* =4.806, which requires 20log;yA* =
12.35 dB single-mode squeezing operations. In this case,
the output noise standard deviation is given by o7 = 0.036,
equivalent to the loss probability 0.13%. This corresponds
to a QEC “gain” for the protocol of 1/0.13 ~ 7.7 in terms of
the loss probability and 0.1/0.036 ~2.8 in terms of
displacement noise.

Experimental realizations and potential applications.—
Our oscillator encoding scheme requires Gaussian oper-
ations and GKP states. While Gaussian resources are
readily available in many realistic bosonic systems, prepar-
ing a canonical GKP state is not strictly possible because it
would require infinite squeezing. Recently, however, there
have been many proposals for preparing an approximate
GKP state in various experimental platforms [14,74-86].
Notably, approximate GKP states have been realized in
both trapped ion [33-35] and circuit QED [37] systems.
Thus, our GKP two-mode squeezing code can in principle
be realized in the state-of-the-art quantum computing
platforms.

Imperfections in realistic GKP states such as finite
squeezing will add additional quadrature noise to the
system. Indeed, we show in the Supplemental Material
[64] that a nontrivial QEC gain ¢?/(c})* > 1 can be
achieved only when the supplied GKP states have a
squeezing larger than the critical value 11.0 dB. On the
other hand, the squeezing of the experimentally realized
GKP states ranges from 5.5 to 9.5 dB [34,37]. In this
regard, we stress that our oscillator encoding scheme is
compatible with nondeterministic GKP state preparation
schemes since the GKP states can be prepared off-line and
then supplied to the error correction circuit in the middle of
the decoding procedure (in a similar fashion to the standard
magic state injection protocol [87]). Thus, in near-term
experiments, it will be more advantageous to use post-
selection to achieve sufficiently high GKP squeezing at the
expense of success probability [88].

Our work paves the way toward robust CV quantum
information processing via oscillator encoding schemes that
can correct experimentally relevant Gaussian errors.
As an example, we discuss in the longer version of the
paper [89] how to perform logical beam splitter operations,
which are needed, e.g., for error-corrected boson sampling.
Also, a recent follow-up work [90] has theoretically dem-
onstrated that the GKP two-mode squeezing code proposed
in this Letter can be used to enhance the robustness of CV
distributed sensing protocols. Moreover, we also expect that
our oscillator encoding scheme can be useful for overcoming
loss errors in transduction protocols [91,92].
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