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Abstract Measurements of elastic electron scattering data
within the past decade have highlighted two-photon exchange
contributions as a necessary ingredient in theoretical calcu-
lations to precisely evaluate hydrogen elastic scattering cross
sections. This correction can modify the cross section at the
few percent level. In contrast, dispersive effects can cause
significantly larger changes from the Born approximation.
The purpose of this experiment is to extract the carbon-12
elastic cross section around the first diffraction minimum,
where the Born term contributions to the cross section are
small to maximize the sensitivity to dispersive effects. The
analysis uses the LEDEX data from the high resolution Jef-
ferson Lab Hall A spectrometers to extract the cross sections
near the first diffraction minimum of 12C at beam energies
of 362 MeV and 685 MeV. The results are in very good
agreement with previous world data, although with less pre-
cision. The average deviation from a static nuclear charge
distribution expected from linear and quadratic fits indicate
a 30.6% contribution of dispersive effects to the cross section
at 1 GeV. The magnitude of the dispersive effects near the
first diffraction minimum of 12C has been confirmed to be
large with a strong energy dependence and could account for
a large fraction of the magnitude for the observed quenching
of the longitudinal nuclear response. These effects could also
be important for nuclei radii extracted from parity-violating
asymmetries measured near a diffraction minimum.

1 Introduction

During the 80s and 90s, higher order corrections to the first
Born approximation were extensively studied through dedi-
cated elastic and quasi-elastic scattering experiments using
unpolarized electron and positron beams (see [1–6] and ref-
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erences therein), following the seminal paper from [7]. These
effects scale as SHOB = VC/Ee where SHOB is the scaling
factor to account for higher order corrections to the Born
approximation, VC is the Coulomb potential of the target
nucleus and Ee is the incident energy of the lepton probe [6].
Incidentally, they are expected to be small in the medium
to intermediate energy regime, and have been neglected in
the analysis of GeV energy data: VC reaches a maximum
of about 26 MeV for 208Pb with a corresponding value of
SHOB = 0.52% for a 5 GeV beam.

In the 1st order approximation, the scattering cross sec-
tion is evaluated using plane wave functions for the incoming
and outgoing electrons. This approach is also known as the
plane wave Born approximation (PWBA) or simply the Born
approximation (Fig. 1). Coulomb corrections originate from
the Coulomb field of the target nucleus that causes an accel-
eration (deceleration) of the incoming (outgoing) electrons
and a Coulomb distortion of the plane waves: these effects are
treated within a distorted wave Born approximation (DWBA)
analysis for inelastic scattering or elastic/quasi-elastic scat-
tering on heavy nuclei [6]. Two other corrections are required
to properly evaluate the scattering cross section: radiative cor-
rections due to energy loss processes and dispersive effects
due to virtual excitations of the nucleus at the moment of the
interaction (Fig. 1).

Within the last decade, a renewed interest arose from a
discrepancy between unpolarized and polarized elastic scat-
tering data on the measurement of the proton form factor
ratio μGp

E/Gp
M which can be attributed to the contribution

of two-photon exchanges [8–15]. These effects have been
investigated with a series of dedicated experiments [16–19]
(also see reviews [20–22] and references therein), including
their impact on the measurement of form factors for nucleons
and light (A ≤ 3) nuclei. They include both Coulomb correc-
tions [6,23], excited intermediate states and treatment of the
off-shell nucleons through dispersion relations as a function
of the 4-momentum transfer.
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Fig. 1 High-order corrections to the one-photon exchange Born
approximation in electron/positron-nucleus scattering

Coulomb corrections have historically been labeled as
static corrections to the Born approximation as depicted
in Fig. 1. While these effects contribute to a few per-
cents [6,20,21,23], dynamic corrections known as dispersive
effects are emphasized in the diffraction minima, where the
first-order (Born approximation) cross section has a zero, and
can contribute up to 18% in the first diffraction minimum of
12C at 690 MeV [4,5].

The electromagnetic nuclear elastic cross section for elec-
trons can be expressed as:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

| F(q2) |2 (1)

where ( dσ
dΩ

)Mott is the Mott cross section corresponding to
the scattering on a point-like nuclear target, F(q2) represents
the form factor and q2 = −Q2 is the 4-momentum transfer.

Theoretical calculations for dispersive effects in elastic
electron scattering for p-shell, spin-0 targets such as 12C
were performed in the mid-70s by Friar and Rosen [24].
They used a harmonic oscillator model and only the lon-
gitudinal (Coulomb) component to calculate the scattering
amplitude within the PBWA approximation; the transverse
component was neglected. The matrix element in the center-
of-mass frame – considering only the contribution from the
dominant two photon exchange diagrams – can be written
as:

Mdisp =
∑
n �=0

∫
d3p

q2
1q

2
2

〈0|ρ(q2)|n〉〈n|ρ(q1)|0〉
p2 − p2

n − iε
a(pn) (2)

with:
⎧⎪⎨
⎪⎩

a(pn) = Ee pn[1 + cos θ ] + p · (pe + pe′)

pn = Ee − ωn − p2−E2
e

2Mp

p = pe − pe′

(3)

where: pe = (Ee, pe) and pe′ = (Ee′, pe′) the 4-momentum
of the incoming and outgoing electrons, respectively, and

q1,2 the 3-momenta of the two photons exchanged. θ is the
angle between the incoming and outgoing electrons. ρ(q1)

and ρ(q2) are the charge operators associated with the two
virtual photons, respectively, and using the notation of [24]
with êi (q) the charge distribution (operator in the isospin
space) of the ith nucleon, gives:

⎧⎨
⎩

ρ(q) = ∑A
i=1 êi (q)e

iq·x′
i

ê(q) = ∫
ê(x)eiq·xd3x

(4)

In their calculation, Friar and Rosen [24] also consid-
ered that all nuclear excitation states |n〉 have the same mean
excitation energy ω, allowing to apply the closure relation:∑ |n〉〈n| = 1. Including the elastic scattering and dispersion
corrections leads to:

Melast+disp = (αZ)F(q2) + (αZ)2G(q2) (5)

with G(q2) arising from two-photon exchange diagrams
(including cross-diagram, seagull …). Hence:

|Melast+disp|2 = (αZ)2[F(q2)
]2

+2(αZ)3[F(q2)Re{G(q2)}]
+(αZ)4[|Re{G(q2)}|2 + |Im{G(q2)}|2]

(6)

Therefore, the scattering amplitude is governed by F(q2)

and the real part of G(q2) outside the minima of diffraction
(where F(q2) �= 0). The imaginary part of G(q2) is most
important in the minima of diffraction where the term F(q2)

goes to zero.
Experimentally, in order to extract the magnitude of the

dispersive effects, the momentum transfer q is modified to
account for the Coulomb effects into an effective momen-
tum transfer qef f (we refer the reader to [6,23,25] for the
validity of this so-called effective momentum approxima-
tion). The latter is obtained by modifying the incident (Ee)

and scattered (Ee′) energies of the incoming and outgoing
electrons [6]:

q = 4EeEe′ sin2(θ/2) → qef f = 4Ee,e f f Ee′,e f f sin2(θ/2)

(7)

with Ee,e f f = Ee

(
1 − |VC |

Ee

)
and Ee′,e f f = Ee′

(
1 − |VC |

Ee

)
.

|VC | is the (magnitude of the) Coulomb potential of the target
nucleus.

The corresponding experimentally measured cross section
can then be compared to the theoretical cross section calcu-
lated using a static charge density [4]. This paper reports
on a recent analysis of these effects in the first diffraction
minimum of 12C at qef f ≈ 1.84 fm−1 performed in the
experimental Hall A at Jefferson Lab [26,27].
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2 The LEDEX experimental setup

The Low Energy Deuteron EXperiment (LEDEX) [26] was
performed in two phases: first in late 2006 with a beam energy
of 685 MeV and then in early 2007 with a beam energy of 362
MeV. They both used a 99.95 % pure 12C target with a density
of 2.26 g/cm3 and a thickness of 0.083 ± 0.001 g/cm2. The
combined momentum transfer range was 0.4–3.0 fm−1.

The two identical high-resolution spectrometers (HRS)
[28] in Hall A were designed for nuclear-structure studies
through the (e, e′ p) reaction. Each contains three quadrupoles
and a dipole magnet, all superconducting and cryogenically
cooled, arranged in a QQDQ configuration. While the first
quadrupoles focus the scattered particles, the dipole steers
the charged particles in a 45◦ upward angle, and the last
quadrupole allows one to achieve the desired horizontal posi-
tion and angular resolutions. The HRS detector systems are
located behind the latter to detect scattered electrons or
electro-produced/recoiled hadrons. Each contains a pair of
vertical drift chambers for tracking purpose [29], a set of scin-
tillator planes, a Čerenkov detector [30] and a two-layered
calorimeter for particle identification. During the LEDEX
experiment, both spectrometers were tuned to detect elasti-
cally scattered electrons. The electrons which do not interact
with the target are transported in a beam pipe and eventually
stopped in a beam dump located about 20 m downstream of
the target.

The position of the left HRS (with respect to the incident
beam direction) was changed according to the kinematic set-
tings while the right HRS was fixed at 24◦ for calibration
purposes. The study of the optics for each of the HRS spec-
trometers was performed with tungsten sieve plates that were
mounted in front of each spectrometer. These plates each
have a 7 by 7 pattern of holes. Two holes have a diameter of
4 mm while the remaining holes have a 2 mm diameter. The
larger holes are placed asymmetrically so that their orienta-
tion in the image at the focal plane can be identified without
any ambiguity. Further details on this experimental setup can
be found in [31].

For the elastic measurements, a 2 msr tungsten collima-
tor was mounted to the face of the spectrometers: it has a
3 × 6 cm2 rectangular hole at its center, nineteen 2 mm
diameter pin holes symmetrically placed around it and one
4 mm diameter pin hole in the bottom corner of the cen-
tral large opening as shown in Fig. 2. The physical loca-
tions of these holes were surveyed before the start of the
experiment. This redundant calibration check is performed
to eliminate any ambiguity in the scattering angle (Fig. 3):
the 2D distribution of the spectrometer angles Θ (horizontal)
and φ (vertical) shows an asymmetric trapezoid reflecting
the dependence of the cross section when going horizontally
from -0.03 mrad (lower scattering angle) to 0.03 mrad (larger
scattering angle).

Fig. 2 Photo of the tungsten (grey) 2 msr collimator with its outer sieve
holes that was used during the LEDEX experiment. The outer aluminum
frame mounted to the face of the HRS spectrometer with mounting bolts
located at A,B,C and D. The tungsten plate could be removed if full HRS
acceptance was desired without removing the outer aluminum frame.
Sieve photo courtesy of Jessie Butler

Fig. 3 The experimentally reconstructed scattering (Θ) and azimuthal
(φ) spectrometer angles with the tungsten collimator installed. The
2 msr opening is clearly visible. Due to the rapid decrease in the elastic
cross section, only the small scattering angle sieve holes are visible
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3 Data analysis

The differential elastic scattering cross-sections were mea-
sured using Eq. (8):

dσ

dΩ
= PS × Nnet

L × t × ΔΩ × Πiεi
× R (8)

where PS is the pre-scale factor, Nnet is the net counts (found
after applying necessary acceptance and particle identifica-
tion cuts), L is the luminosity of the run, t is the duration
of the run, ΔΩ is the solid angle, Πiεi is the running (elec-
tronics, computer and cuts) efficiencies and R is the radiative
corrections factor. The luminosity for fixed target is calcu-
lated from L = FedT l, with Fe the incident particle flux, dT
the density of the target, and l the target thickness.

Each gas Čerenkov detector within the HRS spectrome-
ters which allows for π−/e− discrimination has a measured
efficiency greater than 99.6% for our experiment [27]: a pion
with a momentum of at least 4.8 GeV/c is required to pro-
duce a Čerenkov light in this detector that is well above our
maximum available beam energy of 0.686 GeV.

Only certain events were identified as “good” events: they
consisted of events that have a single track, with one cluster
per plane and a number of hits between 3 and 6 in addition
to originating from the trigger level 3 (level 1) for the left
(right) arm good track cuts on the vertical drift chambers.
The tracking and triggering efficiencies were folded in the
analysis when calculating the cross section.

Some “good” events were observed outside the physical
acceptance of the spectrometer even within the calibrated
data sets. These events were excluded using the geometri-
cal cuts from the targets as well as the angular spectrometer
acceptances [27]. The cuts were chosen to limit the data away
from the edges of the acceptances where the distribution of
these parameters varies rapidly. A further study of the “white
spectrum” shows that the acceptance for both spectrometers
is ± 3.9%, which is lower than the expected value of ± 4.5%.
A tight cut of ± 3.9% was applied on the momentum accep-
tance during the yield calculations.

The radiative corrections factor, R, cannot be evaluated
experimentally: the MCEEP-Monte Carlo simulation code
for (e, e′ p) [32] was used for that purpose. In MCEEP, the
virtual photons are taken into account through a Schwinger
term [33], found by the Penner calculation. The elastic radia-
tive tail due to hard photons is approximated from the pre-
scription by Borie and Dreschel [34], and Templon et al. [35]
which is a corrected version of the original calculations from
Mo and Tsai [36]. MCEEP also accounts for the external radi-
ation sources such as straggling, external Bremsstrahlung,
energy losses from multiple collisions with the atomic elec-
trons etc. This simulation package was also used to calculate
the phase space factors [32]. Dead times (both electronic and

Table 1 Systematic uncertainties for the LEDEX experiment [27]

Quantity Normalization (%) Random (%)

Beam energy 0.03 –

Beam current 0.50 –

Solid angle 1.00 –

Target composition 0.05 –

Target thickness 0.60 –

Tracking efficiency – 1.00

Radiation correction 1.00 –

Background subtraction – 1.00

Fig. 4 The reconstructed excitation energy distributions at Ee =
362 MeV for θ = 12.5◦ (top) and θ = 61◦ (bottom) scattering angles

computer) were found to be negligible for this experiment,
and the tracking and triggering efficiencies found to be more
than 99%.

The maximum beam current achieved was 19.5 µA at
362 MeV and 23.4 µA at 685 MeV. Table 1 lists the primary
sources of systematic uncertainties for the LEDEX experi-
ment. Not listed is the uncertainty on the incident beam posi-
tion of ±200 µm. Around the diffraction minima, the statis-
tical uncertainty dominates translating to 7.70% (statistical)
and 3.50% (systematic) at 362 MeV and 4.24% (statistical)
and 2.40% (systematic) at 685 MeV. The situation is exactly
the opposite outside the diffraction minima [27].

Figures 4 and 5 show the reconstructed excitation energy
distributions at 362 MeV and 685 MeV incident beam ener-
gies, respectively. The high resolution of the HRS spectrom-
eters (0.05%) allows to clearly identify the first four excited
states of 12C for both energies: 4.44 MeV (2+), 7.65 MeV
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Fig. 5 The reconstructed excitation energy distributions at Ee =
685 MeV for θ = 17◦ (top) and θ = 30.5◦ (bottom) scattering angles

(0+), 9.64 MeV (3−) and 14.08 MeV (4+). This paper reports
on the analysis of the elastic peak data.

4 Results

Table 2 lists the kinematics of the LEDEX experiment inside
the first diffraction minimum of 12C that correspond to 4-
momentum transfers q of 1.85 fm−1 and 1.82 fm−1 (qef f
of 1.82 fm−1 and 1.81 fm−1) for (362 MeV, 61◦) and
(685 MeV, 30.5◦), respectively. The corresponding mea-
sured elastic cross sections are given in Table 3 and are
found to be: (3.26 ± 0.28) × 10−8 fm2/sr for 362 MeV
and (2.35 ± 0.11) × 10−7 fm2/sr for 685 MeV. They were
compared to static cross sections calculated from a Fourier–
Bessel (FB) parameterization extracted from the LEDEX
data that is found to be almost identical to the one from Offer-
mann et al. [4] and the agreement is within 0.1%. A forth-
coming paper on the Boron radius [27] discusses in more
details the validity of this parameterization.

The results of this analysis were also compared to the
world data (see Fig. 6. Note that σ FB

stat is replaced by σstat
to keep the text coherent throughout this document). From a
first order (solid line) and a second order (dashed line) poly-
nomial fits (see Table 4), extrapolations indicate deviations at
1 GeV of 28.9% and 32.2%, respectively (average of 30.6%).
One pseudo-data point from the average of the fit functions
is also shown at 1 GeV with a 3% error bar (which is a

Table 2 The four-momentum transfer (q) and effective four-
momentum transfer (qef f ) for the LEDEX experiment for each elastic
kinematic setting calculated using Eq. (7)

Ee(MeV ) θ (Deg.) Ee′ (MeV) q (fm−1) qef f (fm−1)

362 12.5 361.72 0.40 0.39

362 61.0 356.06 1.85 1.82

685 17.0 683.17 1.03 1.02

685 30.5 679.24 1.82 1.81

reasonable systematic error for an elastic peak cross section
measurement at Jefferson lab for this energy).

The theoretical prediction from Friar and Rosen [24] on
the size of dispersive effects in the first diffraction minimum
of 12C is shown in Fig. 7 for 374.5 MeV and 747.2 MeV
where the inclusion of dispersive corrections σstat+disp is
compared to the cross section σstat obtained from a static
charge distribution: the expected (constant) 2% predicted dis-
crepancy is clearly not reproducing the magnitude and energy
dependence behavior seen in the data.

5 Dispersive corrections and the nuclear matter

A very simplistic approach is now used to estimate the effects
of dispersive corrections with our linear and quadratic fits on
two specific observables: the nuclear charge density [38,39]
and the Coulomb Sum Rule [40].

Coulomb corrections stem from multi-photons exchange
between the incoming lepton probe and the target nucleus,
with 2γ being the dominant contribution from higher powers
of the Zα terms (with the electromagnetic coupling constant
α = 1/137). To accurately estimate these effects, one should
take into account the continuous change of the incident beam
energy while the particle is approaching the nucleus. In
practice, one assumes a constant Coulomb field to estimate
these effects and applies an effective global shift of the inci-
dent and outgoing beam energies as described in Sect. 1.
Note that one should use the averaged Coulomb potential
|VC | = ∫

ρ(r)|VC |(r)d3r/Z |e| instead of the potential at
the origin of the nucleus |VC (0)| [6].

The dispersive cross section σdisp = σstat+disp (for sim-
plicity) can be expressed as a function of the cross section
σstat :

σdisp = σstat [1 + δdisp(Ee)] (9)

with δdisp(Ee) the higher order correction to the Born
Approximation. Our convention throughout the text is to
label any quantity with the subscript disp, such as the cross
section σdisp, that has been directly obtained from exper-
imental measurements and is affected by the contribution
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Table 3 The measured cross sections from the LEDEX experiment in the first diffraction minimum of 12C along with the Fourier–Bessel (FB)
parameterization

Ee (MeV) σexp (fm2/sr) Δσstat (%) Δσsys(%) σ FB
stat (fm2/sr) σexp/σ

FB
stat − 1 (%)

362 3.26 × 10−8 7.70 3.50 3.12 × 10−8 4.49

685 2.35 × 10−7 4.24 2.40 1.93 × 10−7 21.76

Fig. 6 World data on the energy dependence of dispersive effects in
the first diffraction minimum of 12C. In the y-axis, σ FB

stat was replaced
by σstat to keep coherency in the text. The first minimum at qef f =
1.84 fm−1 moves slightly with beam energy as noted in [37] (this depen-
dency is out of the scope of this paper)

Table 4 Polynomial fit parameters on the world data set for dispersive
effects in the first minimum of 12C

Linear fit Quadratic fit

p0 −6.64 ± 1.13 −4.40 ± 4.04

p1(10−2 MeV−1) +3.55 ± 0.26 +2.36 ± 2.08

p2(10−5 MeV−2) +1.30 ± 2.25

χ2/nd f 2.092/6 1.758/5

from dispersive effects. Analogously, the subscript stat , such
as σstat , is attached to any quantity that could be obtained by
removing the contribution from dispersive effects, thus cor-
recting the experimental observation. In that sense σstat will
be the expected cross section from the Born approximation.
Equation (9) states that the observed experimental cross sec-
tions σdisp could be modeled by a small multiplicative per-
turbation added to the static σstat cross section.

Fig. 7 Calculations of Friar and Rosen [24] for dispersion corrections
to elastic electron scattering from 12C at 374.5 and 747.2 MeV in the
first diffraction minimum qef f = 1.84 fm−1

5.1 Effects on nuclear radii

In the Plane Wave Born Approximation, the nuclear charge
density distribution ρch(r) is the Fourier transform of the
nuclear form factor and for spherically symmetric charge
distributions the relation is [41]:

ρch(r) = 1

2π2

∫
Fch(q)

sin(qr)

qr
q2dq. (10)

ρch(r) can thus be extracted from the experimentally mea-
sured Fch(q2) and it is usually normalized to either 1 or the
total charge of the nucleus. We adopt the first convention in
this work:

4π

∫
ρch(r)r

2dr = 1. (11)

A model independent analysis can be done to extract the
nuclear charge density distributions using either a sum of
Gaussian (SOG) [42] or sum of Bessel (FB) [43] functions.
We will only focus on the latter and refer the readers to ref-
erence [41] for more details on the former.
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One can use the zero’th spherical Bessel function j0(r) =
sin(qr)/qr to expand the charge density as:

ρFB
ch (r) =

⎧⎨
⎩

∑
ν aν j0

(
νπr
Rcut

)
for r ≤ Rcut

0 for r > Rcut

(12)

with Rcut the cut-off radius chosen such as the charge distri-
bution is zero beyond that value (Rcut = 8 fm for 12C [4])
and the coefficients aν related to the form factor as aν =
q2
ν Fch(qν)/2πRcut , where qν = νπ/Rcut is obtained from

the νth zero of the Bessel function j0.
In this study we will ignore the contribution of the neu-

trons to the electric charge distribution of the nucleus.1 There-
fore, ρch(r) could be considered as resulting from folding the
distribution ρnuc(r) of the nucleons, protons in our approx-
imation, inside the nucleus with the finite extension of the
protons ρp(r) [43]. The Fourier transform of ρch(r) is then
given by the product of the transform of ρnuc(r) and ρp(r):

Fch(q) = Fnuc(q)Fp(q). (13)

The relationship between the corresponding radii is:

R2
ch = R2

nuc + R2
p (14)

with Rp = 0.8414(19) fm the proton radius [44]. The rms
〈r2

ch〉1/2 can then be obtained from the nuclear charge den-
sity distribution (ρch) which extends up to Rcut. Its general
expression is:

〈r2
ch〉 =

∫ Rcut

0
ρch(r)r

2d3r = 4π

∫ Rcut

0
ρch(r)r

4dr. (15)

Using the Bessel expansion of ρch from Eq. (12) leads to:

〈r2
ch〉 = 4π

∫ Rcut

0

∑
ν

aν j0

(
νπr

Rcut

)
r4dr. (16)

Evaluating the integral of the Bessel function gives:

∫ Rcut

0
j0

(
νπr

Rcut

)
r4dr = (−1)νR5

cut (6 − ν2π2)

ν4π4 . (17)

Substituting into Eq. (15):

〈r2
ch〉 = 4π

∑
ν

aν

(−1)νR5
cut(6 − ν2π2)

ν4π4 . (18)

1 Even though the neutron has a total electric charge of zero, its charge
density ρn(r) is not zero. Nevertheless, its contribution to the total
charge density of the nucleus is small.

Therefore, all the coefficients aν of the Fourier Bessel
expansion play a role in estimating the radius of the charge
density distribution, decreasing in importance as 1/ν2. If
the measured cross sections used to extract the value of the
form factor Fch(q) are indeed modified by the dispersive
corrections, then the change would propagate through the
fitted coefficients aν to the estimate of the charge radius
Rch ≡ 〈r2

ch〉1/2. The total change in Rch can be written as
(see Appendix A for details):

δRch =
N∑
i

∂Rch

∂yi
δyi =

N∑
i

( M∑
ν

∂Rch

∂aν

∂aν

∂yi

)
δyi , (19)

where δyi is the change in the ith value of the form factor yi =
F(qi ), in this case due to the dispersive effects. Estimating the
exact values of δyi is a complicated task beyond our scope
since the change in the cross section as shown in Eq. (9)
depends on the energy, but the momentum transfer q is a
function of both the energy and the angle θ . Therefore, for
the same fixed value of q we could have different pairs of
(E, θ) which will be impacted differently.

In order to simplify our discussion, we assume that we can
separate the total effect of the dispersive effects on the form
factor values as:

Fdisp(q) = F(q)stat

[
1 + 1

2
δ(Ee)S(q)

]
, (20)

with δdisp = δ(Ee)S(q) from Eq. (9) where δ(Ee) controls
the overall strength of the perturbation and S(q) controls the
impact this change would have on different q values. The
factor of 1/2 comes from assuming that δ(Ee) is small and
propagating the change from Eqs. (1) and (9): F ∝ √

σ

which implies δF/F ∝ (1/2) δσ/σ .
Since the variableq depends on both Ee and θ , a separation

such as Eq. (20) might not be completely accurate. As it can
be seen in the calculations of Friar and Rosen (Fig. 7), a
change in Ee clearly affects the overal shape of the dispersion
corrections as a function ofq. Nevertheless, Eq. (20) is simple
enough to allow providing an estimate for the impact of such
a change in inferred nuclear properties of the nucleus. In
particular, we can write the change in the charge radius as:

Rdisp
ch = Rstat

ch [1 + βδ(Ee)] , (21)

where β is a proportionality coefficient fixed once S(q) is
specified (for a given fixed strength δ(Ee), the change in the
radius will depend on the shape of S(q), which is encoded
in β). Table 5 shows the results (see the Appendix for a
detailed description) for three different test perturbations
S(q) plus an empirical one, when using the data without
dispersive corrections from Offermann [4] (Table X) for the
central values of the form factor. For the three test cases
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Table 5 The first column shows the perturbation form S(q) in addi-
tion to the empirical perturbation. In the first three cases a strength
of δ(Ee) = 0.3 was assumed. The second column shows the calcu-
lated new radius, Rstat

ch (the original radius is 2.4711 fm). The third and
fourth columns show the β coefficient and the percentage change in
Rch, namely δRch ≡ Rstat

ch − Rdisp
ch , respectively

S(q) Rstat
ch (fm) β δ Rch (%)

δ4 2.512 −0.055 1.65

δ5 2.480 −0.012 0.35

Gaussian 2.495 −0.032 0.98

Empirical 2.477 – 0.25

these values were modified assuming a constant high value of
δ(Ee) = 30%.

The forms for S(q) were divided into two categories: δ4

and δ5 represent up-shift of 1 (15% when multiplied by
1/2 δ(Ee)) on the value of F(qν) for ν = 4 and ν = 5,
respectively, while Gaussian represents a Gaussian up-shift
of amplitude 1 at its peak (once again 15% when multiplied
by 1/2 δ(Ee)), centered at the diffraction minimum q = 1.84
fm−1 and with a standard deviation of 0.25 fm−1. An overall
up-shift in the form factor was chosen based on the calcu-
lations shown on Fig. 7, which predict an up-shift in the
observed cross sections due to the dispersive effects, which
means σdisp ≥ σstat .

The empirical perturbation was obtained as δemp(qν) =
[F∗

disp(qν) − F∗
stat (qν)]/F∗

stat (qν), where F∗
disp(qν)

(F∗
stat (qν)) represents the form factor values obtained from

the second (third) column in Table X of [4]. Since no ampli-
tude δ(Ee) was involved in the empirical perturbation, the
value of β cannot be defined and we have:

Fdisp(qν) = F(qν)stat [1 + δemp(qν)]. (22)

Therefore, while the fits parameters from Table 4 imply
corrections expected to be around 30% on the cross section
at 1 GeV for 12C, the effect on the nuclear charge radius
from our test calculations is around a percent. A detailed
analysis of the impact of dispersive effects on nuclear radii
was performed by Offermann et al. [4]: the result is a net
relatively small effect of 0.28%, implying a renormalization
of the charge distribution to offset the change in the cross
section.

When using the empirical perturbation for the δyi in
Eq. (19) we obtain an effect of 0.25% in the radius, very
close to the actual 0.26% (reported as 0.28% when using
rounded values for the radii) in [4]. It seems that the strength
(30%) of the other three perturbations is too big to reproduce
the small change in the radius, which might indicate that the
effects on the available data of the dispersive corrections are

roughly at least a factor of five smaller outside the vicinity
of the difraction minimum.

The Coulomb field extracted from 〈r2〉1/2 should then also
be modified from

| VC | = | V stat
C | = K Z

〈r2〉1/2 ; K = 1/4πε0 (23)

to

| V disp
C | = | V stat

C | /[1 + βδ(Ee)]. (24)

As mentioned previously, Coulomb corrections are
expected to be comparatively small for GeV energies:
SHOB = 2.6% for a 1 GeV incident electron beam on a
208Pb target. In the remainder of this section, we will assume
that the energy dependent correction is solely rising from dis-
persive corrections and is embedded in the term δdisp(Ee).

In order to estimate the corrections for 208Pb, we scale the
carbon value using Coulomb fields from [6]:

– The scaling is first calculated from the super ratio:

Rscale = VC,208Pb = 18.5 MeV

VC,12C = 5.0 MeV

Z12C = 6

Z208Pb = 82
= 26.34%.

(25)

Thus giving a value for the dispersive corrections of
26.34% × 30% � 8% that is compatible with the ∼ 6%
effect observed by Breton et al. [3].

– The effect on the lead radius can then be obtained by
applying the above scaling to the value from Offermann
et al. [4]

0.28%Rscale = 0.07%. (26)

The reported experimental value of the charge radius of
lead is [45] Rch = 5.5012(13) fm which would imply
an upward shift to 5.5053(13) fm when taking the 0.07%
scaling into account.

The situation is far more complex for parity-violating
experiments [38,39,46] from which the measured asymme-
try is used to extract a neutron skin. These experiments typi-
cally occurred near diffractive minima to maximize their sen-
sitivity to the physics [47], where also dispersive corrections
contribute the most. Our estimation suggests the importance
of this correction for high precision determinations of the
radius and/or the neutron skin of heavy nuclei.

It is clear one should take dispersive effects into account;
however, to our knowledge, there is no known measurements
of dispersive effects using polarized beams and/or target.
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Therefore, measurements of the energy dependence for dis-
persive effects using polarized elastic scattering on various
nuclear targets (A > 1) should be performed to provide an
accurate information about the size of these effects in and
outside minima of diffraction.

5.2 Possible effects on the Coulomb sum rule

The Coulomb sum rule (CSR) [48] is defined as the integral
of the longitudinal response function RL(ω, |q|) extracted
from quasi-elastic electron scattering:

SL(|q|) =
∫ |q|

ω>0

RL(ω, |q|)
ZG2

Ep
(Q2) + NG2

En
(Q2)

dω (27)

where −Q2 = ω2 − q2 with ω the energy transfer and q the
three-momentum transfer. GEp,n (Q

2) is the proton (neutron)
form factor which reduces to the Sachs electric form factor
if the nucleon is not modified by the nuclear medium [49].
ω > 0 ensures that the integration is performed above the
elastic peak. In essence, CSR states that by integrating the
longitudinal strength over the full range of energy loss ω at
large enough momentum transfer q, one should get the total
charge (number of protons) of a nucleus.

The quenching of CSR has been found to be as much
as 30% [40] for medium and heavy nuclei. Using a quan-
tum field-theoretic quark-level approach which preserves the
symmetries of quantum chromodynamics, as well as exhibit-
ing dynamical chiral symmetry breaking and quark confine-
ment, the most recent calculation by Cloet et al. [50] con-
firmed the dramatic quenching of the Coulomb Sum Rule for
momentum transfers |q|�2.5 fm−1 that lies in changes to the
proton Dirac form factor induced by the nuclear medium.

As previously noted, the nuclear charge distribution ρch(r)
may be considered as a result from folding the distribution
ρnuc(r)of the nucleons in the nucleus with the finite extension
of the nucleons ρp(r) [43] as represented in Fig. 8.

Quasi-elastic electron scattering corresponds to a process
in which electrons elastically scattered off nucleons. The
nuclear response is affected by the fact that nucleons are
not free and carry a momentum distribution, the existence of
nucleon-nucleon interactions and interactions between the
incoming and outgoing probe and recoils. Therefore, not-
ing that RL probes ρnuc = ρprotons while elastic scatter-
ing experiments probe ρch(r), any measured shift of Fch(q)

results from a change in Fnuc or Fp, or both. Even when con-
sidering the contribution from two-photon exchanges that
are responsible for the measured deviation between unpolar-
ized and polarized electron scattering in the extraction of the
μGp

E/Gp
M ratio and also believed to be at the origin of the

proton form factor puzzle [14] (see the Introduction section),
the discrepancy observed cannot explain the 30% quenching

Fig. 8 Relationship between the charge, nucleons (protons) and the
single proton form factors along with their respective densities for 12C.
The protons density ρnucl specifies the spatial distribution of the 6 pro-
tons inside the 12C nucleus, treating them as point particles (blue circles
over the black background in the middle column). The charge form fac-
tor Fch , which relates to the charge distribution in the nucleus (left
column), is the result of folding the protons form factor Fnucl with the
single proton form factor Fp , which relates to the charge distribution
inside the proton (right column, the color circles represents the three
quarks)

of RL [20–22]. In the following, we assume that the con-
tribution from dispersive effects found in ρch(r) translates
entirely in a change in ρprotons and hence in the CSR.

From our naive model (with nuc = p or n):

Gdisp
Enuc

(Q2) = Gstat
Enuc

(Q2)

1 + βδ(Ee)
. (28)

Hence:

SdispL (|q|) = SstatL (|q|) × [1 + βδ(Ee)]. (29)

Using Fig. 6 for a 600 MeV incident beam on 12C, one
would expect a 15% correction in the minimum of diffraction,
which is a factor of 7.5 from the 2% prediction from Friar
and Rosen [24]. Above the minimum, their prediction indi-
cates an almost linear increase of the dispersion corrections
up to about 3.3 fm−1 where it reaches a maximum of about
3%. Assuming the same scaling, that is a 0.03 × 7.5 � 22%
predicted effect in the kinematic regime of the CSR data for
12C [51]. Therefore, dispersion corrections could have a sig-
nificant contribution on the CSR quenching if the experimen-
tally measured longitudinal response function RL(ω, |q|) is
corrected for these effects.

6 Conclusion

We have presented new results on the energy dependence for
dynamic dispersion corrections in elastic electron scattering
in the first diffraction minimum of 12C atq ≈ 1.84 fm−1 from
Jefferson Lab obtained at two different energies: 362 MeV
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and 685 MeV [26]. The results are in very good agree-
ment with previous world data on this topic and cannot be
explained with available theoretical calculations.

We presented a general theoretical framework that allows
to propagate the dispersive correction effects, treated as a
perturbation, to the coefficients of a Bessel function fit of
the form factor. We first benchmarked our calculation using
the experimental data on 12C from Offermann et al. [4]: we
investigated the impact of these corrections on the nuclear
charge density radius and obtained comparable results with
the ones reported by the authors. Using scaling arguments, we
then find this contribution to be around 0.07% for the recent
measurement of the nucleon radii from Pb [38,39,46]. While
we find this contribution to be relatively small, it will take
a detailed investigation and theory to understand how this
affects the parity-violating asymmetry. A subsequent study
on the observed quenching of the Coulomb Sum Rule [50]
indicates that the expected contribution seems to be larger.

Note that from the analysis presented here, nothing pre-
cludes dispersive effects for being zero or even having a dif-
ferent sign on some measured observables. Therefore, we
conclude it is important that a systematic study of the dis-
persion corrections inside and outside diffraction minima for
a large range of (light through heavy) nuclei be performed
using both unpolarized and polarized beams/targets to help
provide a more complete understanding of elastic (and inelas-
tic) electron/positron-nucleus scattering.
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AppendixA:Propagationof changes fromthe formfactor
to the charge radius

A.1: Formalism

We are interested in estimating how a change in the observed
cross section, or the deduced form factor values, could impact
the extracted radius Rch .

The charge radius is a function of the M parameters of
our model (15), in this case the M independent Bessel coef-
ficients aν , which in turn depend on the N experimentally
extracted form factor values yi . Therefore, through the coef-

ficients aν the charge radius is a function of the experimental
points and one can write a small change in Rch due to a given
small change in the observations (δy1, δy2, . . . , δyN ) as:

δRch =
N∑
i

∂Rch

∂yi
δyi =

N∑
i

(
M∑
ν

∂Rch

∂aν

∂aν

∂yi

)
δyi . (30)

For M independent coefficients aν , one has M + 1 Bessel
functions in our model due to the normalization constraint.
The aM+1 can be explicitly written by solving the constraint:

4π
∫

ρ(r)r2dr = 1,

∑M+1
ν (−1)ν+1 4πRcut

q2
ν

aν = 1,

aM+1 = (−1)M
(

1 − ∑M
ν (−1)ν+1 4πRcut

q2
ν

aν

)
(M+1)2π

4R3
cut

.

(31)

An alternative route would be to use Lagrange multipli-
ers when making calculations for the data fit, which would
allow to treat the M+1 coefficients independently. Following
Eq. (18), and taking into account the normalization condition,
the partial derivative of Rch with respect to a coefficient aν

is given by:

∂Rch

∂aν

= 1

2Rch
4π

(−1)νR5
cut (6 − ν2π2)

ν4π4 + ∂Rch

∂aM+1

∂aM+1

∂aν

.

(32)

The last term has to be included since Rch depends on the
M + 1 coefficients and aM+1 depends linearly on the rest of
the aν , making the calculation straightforward from Eq. (31).

Meanwhile, the change in the coefficient aν due to a
change in yi is a little more challenging to compute. To do so,
one must specify how exactly the coefficients where obtained
from the experimental data. An usual way is by minimizing
the sum of the squares of the residuals denoted by χ2:

χ2 ≡
N∑
i

[F(qi , a) − yi ]2

2Δy2
i

, (33)

where Δyi is the estimated error, or uncertainty, in the mea-
surement yi and a is the list of coefficients aν . The optimal
values of the parameters aopt is found by imposing the con-
dition of a minimum:

∂χ2

∂aν

∣∣∣
aopt

≡ Gν(a, y)
∣∣
aopt

= 0. (34)

Now, the key point is that one has M different Gν which
are functions of the parameters a and the observations yi , and
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they all equal zero when evaluated at the optimal parameters
aopt . If the value of one observation yi changes by a small
amount δyi , the minimum of χ2 will move in the parameter
space by a small amount. One can calculate this displacement
by noticing that all the parameter values aν would have to
change accordingly in order to keep the values of each Gν at
zero. Quantitatively this implies: ∂Gν

∂yi
δyi = −∑M

k
∂Gν

∂ak
δak

for ν ∈ (1, . . . , M), which can be put in a matrix equation:

∂G1

∂yi
δyi = −

(
∂G1

∂a1
δa1 + ∂G1

∂a2
δa2 · · · + ∂G1

∂aM
δaM

)

∂G2

∂yi
δyi = −

(
∂G2

∂a1
δa1 + ∂G2

∂a2
δa2 · · · + ∂G2

∂aM
δaM

)

...
...

∂GM

∂yi
δyi = −

(
∂GM

∂a1
δa1 + ∂GM

∂a2
δa2 · · · + ∂GM

∂aM
δaM

)

resulting in:

∂G
∂yi

δyi = −Hδa ⇒ δa = −
(
H−1

) ∂G
∂yi

δyi , (35)

Since G was already first derivatives of χ2 with respect to

the parameters, the expression obtained is H[ j,k] ≡ ∂2χ2

∂a j ∂ak
,

the Hessian matrix which contains second derivatives of χ2.
From this equation one can finally extract how each param-
eter aν changes when an observation yi changes:

∂aν

∂yi
= −

[(
H−1

) ∂G
∂yi

]
[ν]

= −
M∑
k

H−1
[ν,k]

∂Gk

∂yi
. (36)

From the set of changes in the observations, δyi , due to
the dispersive corrections, one has all the ingredients needed
to calculate the change in Rch from Eq. (30). In the following
discussion, we apply this framework to the data set presented
by Offermann et al. [4] under the convention that δRch =
Rstat

ch − Rdisp
ch , since we want to estimate the change in the

radius once the corrections for the dispersive effects have
been implemented.

A.2: Example: change in the nuclear radius of 12C

We use the work from [4] where the authors used 18 Bessel
functions to fit cross section experimental data from 12C. To
show our method, we use the values of their first 9 coefficients
aν ν ∈ {1, 9} from their Table X second column (without dis-
persion corrections) to generate 9 values yν of the form factor
according to the relation aν = F(qν)q2

ν /2πRcut at those 9
special qν values with Rcut = 8 fm. For the error associated
with each “observation” yν , we use the adapted error Δyν

Fig. 9 ∂aν/∂yi matrix for the data extracted from Offermann et al. [4]

from their reported percentage error in Δaν . For the remain-
ing 9 points ν ∈ {10, 18}, we center the observations yν at
zero and add an error band associated with the form factor of
the proton as the authors did following the recommendation
in [43]. Since the normalization condition must be respected,
only 17 from the 18 coefficients aν are independent. We iden-
tify therefore N = 18 and M = 17.

Figure 9 shows the matrix ∂aν/∂yi from Eq. (36) for the
18 observations yi and 17 + 1 coefficients aν . Even though
we are not treating a18 as an independent variable since we
solved the constraint explicitly, we can still calculate how
much its value changes when any one of the observations
yi changes. It can be seen that as ν increases, aν becomes
more dependent on yν and less sensitive to other values of
y. In principle, if the 18 coefficients were independent, each
aν will only be sensitive to their corresponding yν , but the
normalization constraint introduces mixing.

In the third column of Table 6 are the numerical values of
∂Rch/∂yi for the first 9 observations yi . Each one of these
numbers, when multiplied by a small change in their associ-
ated observation, will yield the corresponding small change
in Rch as in Eq. (30). The fourth column shows the percent-
age change needed in observation yi to create a 1% change in
the radius. Even though the values ∂Rch/∂yi are roughly the
same size for all the observations, this fourth column shows
that Rch is more sensitive to percentage changes in the first
observations.

As previously stated in the main discussion, we assume in
the calculation of δyi that we can separate the effects of the
dispersive corrections on the form factor values as (Eq. (20)):
Fdisp(q) = F(q)stat [1+ 1

2δ(Ee)S(q)] where δ(Ee) controls
the overall strength of the perturbation and S(q) controls the
impact this change would have on different q values. Table 5
in the main body shows the results for three different test
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Table 6 The first column shows the index number of the special
momentum transfer iπ/Rcut and the second column its form factor value
obtained from [4]. The third column shows the value of ∂Rch/∂yi . The
fourth column shows the percentage change needed in yi to generate an
equivalent change of 1% in the estimated charge radius

Location i yi ∂Rch/∂yi (fm) δRch = 1%

1 0.854 −9.214 0.3

2 0.526 −2.595 1.8

3 0.221 +4.782 2.3

4 0.049 −5.547 9.1

5 −0.0098 +5.901 43

6 −0.0151 −6.094 27

7 −0.00754 +6.210 53

8 −0.00235 −6.285 168

9 −0.00039 +6.337 994

Fig. 10 12C form factor expanded in the Bessel functions formalism
using Offermann [4] coefficients without dispersive corrections. The
circles in the q axis shows the special values of momentum transfer for
the first 9 (red) from experimental data and the second 9 (black) from
the extrapolation suggested in [43]. The dashed blue lines encloses the
region of the data excluded from the analysis in [4]. The inset plot shows
the three test forms for S(q) in addition to the empirical perturbation
obtained directly from the data by third degree spline interpolation. The
curves in the inset plot are the ones needed to obtain the corrected Fstat

ch

from the observed Fdisp
ch values

perturbations S(q),in addition to an empirical one obtained
from comparing columns 2 and 3 of Table X in [4], for the
central values of the form factor. For the test perturbations,
the central values of the form factor were modified assuming
a constant high value of δ(Ee) = 30%, so that our analysis
could serve as an upper bound.

The three test forms for S(q) consists of δ4, δ5 and Gaus-
sian. The first two represent an up-shift of 15% on the value
of F(qν) for ν = 4 and ν = 5 alone respectively, while the
Gaussian represents a Gaussian up-shift of amplitude 15% at
its peak, centered at the diffraction minimum q = 1.84 fm−1

and with a standard deviation of 0.25 fm−1. The functional
forms of the three S(q) are shown in the inset of Fig. 10 as
well as the empirical perturbation, while the outset plot shows

the Bessel expanded form factor and the special values of the
momentum transfer qν .

In all three test cases for S(q) the change on the radius did
not exceed 2%, which is still a substantial increase compared
to Offermann result [4] of a 0.28% increase. The empirical
perturbation showed a change of 0.25%, consistent with the
reported result [4]. This contrast suggests that our overall
strength δ(Ee) = 30% was too large and could imply that for
the data range in Offermann work [4] δ(Ee)S(q) � 30%, as
can be inferred by the small size of the empirical perturbation.

This empirical perturbation was only calculated at the spe-
cial values qν and interpolated using a third degree spline and
therefore, is not discarded that it’s strength can reach a peak of
30% in the excluded region around the diffraction minimum
1.6 < q < 1.95 fm −1. Indeed, the authors excluded this
data to perform their analysis and avoid as much as possible
the dispersive effects.
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