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Abstract

Causal effect identification is one of the most prominent and
well-understood problems in causal inference. Despite the
generality and power of the results developed so far, there are
still challenges in their applicability to practical settings, ar-
guably due to the finitude of the samples. Simply put, there is
a gap between causal effect identification and estimation. One
popular setting in which sample-efficient estimators from fi-
nite samples exist is when the celebrated back-door condition
holds. In this paper, we extend weighting-based methods de-
veloped for the back-door case to more general settings, and
develop novel machinery for estimating causal effects using
the weighting-based method as a building block. We derive
graphical criteria under which causal effects can be estimated
using this new machinery and demonstrate the effectiveness
of the proposed method through simulation studies.

1 Introduction

Computing the effects of interventions is one of the cen-
tral tasks in data-intensive sciences. This problem comes
in the literature under the rubric of causal effect identi-
fication (Pearl 2000, Def. 3.2.4), which asks whether the
causal distribution P(Y = y|do(X = x)) (for short,
P, (y)) can be uniquely identified from a combination of
substantive knowledge about the phenomenon under in-
vestigation, usually in the form of a causal graph G, and
the observational distribution P(V'), where V is the set of
observed variables. Causal identification has been exten-
sively studied based on the do-calculus (Pearl 1995). Build-
ing on this logic, a number of solutions were developed
for variants of this problem, including complete graphical
and algorithmic conditions (Tian 2002; Huang and Valtorta
2006; Shpitser and Pearl 2006; Bareinboim and Pearl 2012;
2016; Jaber, Zhang, and Bareinboim 2018; Lee, Correa, and
Bareinboim 2019).

Even though causal identification has been well-
understood and solved in principle, there are still outstand-
ing challenges to the application of these results in practice.
By and large, these results assume that the precise observa-
tional distribution, P(V), is available for use, while in re-
ality one has access to only a limited number of samples
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drawn from P(V). One setting where statistical estimators
for estimating P, (y) from finite samples have been system-
atically developed is when the well-known back-door (BD)
criterion holds (Pearl 2000, Ch. 3.3.1). That is, if a set of
variables Z (called covariates) satisfy the BD criterion rel-
ative to (X,Y") then the effect P, (y) can be identified by
covariate adjustment as P, (y) = Y. P(y|z,z)P(z), and
the corresponding mean as:

Ep, ) [Y] =Y _E[Y|z,2]P(2). (1)

Computing Eq. (1) naively — i.e., estimating E[Y |z, z] and
summing over all values Z = 2z is computationally and
statistically challenging whenever the set Z is high dimen-
sional. Regarding the former, summing over Z = z entails
an exponential computational burden in |Z|, the cardinality
of Z; regarding the latter, covering the support of E[Y|z, 2]
with some statistical significance is hardly realizable.

A series of robust and efficient statistical estimators for es-
timating the BD estimand (Eq. (1)) from finite samples have
been developed to circumvent these challenges with great
practical success, including the propensity score matching
(Rosenbaum and Rubin 1983), inverse-probability or stabi-
lized weighting (IPW, SW) (Horvitz and Thompson 1952;
Robins, Hernan, and Brumback 2000), doubly robust (Bang
and Robins 2005), target maximum likelihood estimator
(TMLE) (Van Der Laan and Rubin 2006), and outcome-
regression such as BART (Hill 2011), just to cite a few.
These techniques have been extended to BD-like estimands
for time-series, and has been called the g-formula by Robins
(1986). This formula holds whenever sequential exchange-
ability or the sequential back-door (SBD) condition holds
(Pearl and Robins 1995).

Despite all their power, these BD-like conditions only
cover a limited set of identifiable scenarios, while causal ef-
fects could be identifiable in many settings that are not in the
form of an adjustment, for which no general purpose esti-
mators have been developed. For instance, we discuss below
two practical examples where the causal effects are identifi-
able but not by BD-like adjustment.

Example 1: Surrogate endpoints The causal graph in
Fig. 1a illustrates a data-generating process of an experi-



mental study that leverages a surrogate endpoint X, a vari-
able intended to substitute for a clinical endpoint ¥ when
the clinical endpoint is hardly accessible. Suppose one is in-
terested in estimating the causal effect of X (e.g., CD4 cell
counts) on Y (e.g., Progression of HIV) to validate the CD4
cell counts as a surrogate endpoint (Hughes et al. 1998). W5
denotes the treatment for the CD4 cell counts and W is a
set of confounders affecting the treatment (e.g., a previous
disease history). The resultant estimand is given by P, (y) =

(Xw, P (z,ylwi,w) P (w1)) / (X, P (z|wy,ws) P (w1)),

which is clearly not BD. To the best of our knowledge,
no effective statistical estimator exists for this type of
estimands. O
Example 2: Causal mediators Consider the causal graph
in Fig. 1b, where X represents the level of body mass index
(BMI), Z, the level of multiple, possibly high-dimensional,
metabolites, and Y the occurrence of breast cancer (Derkach
et al. 2019). Suppose we observe Z; (e.g., age), Z (e.g., di-
ets) and Z3 (e.g., smoking), a set of confounding variables
affecting levels of BMI, metabolites and breast cancer. The
goal of the analysis is to assess the effect of BMI level on
breast cancer. The resultant estimand is given by P, (y) =
>, P(za]z,z®)P(z®) Y, P(yla’,z) P(2'|z®)) where
Z = (Z1,Z5,73,Zs) and Z©®) = (Zy, Z5, Z3), but no sta-
tistical estimator is readily available for this estimand.  [J

In general, many graphical and algorithmic conditions
have been developed for determining the identifiability of
a target causal effect P, (y) in a given causal graph. How-
ever, no general method exists in the literature for estimat-
ing P,(y) from finite samples whenever it is identifiable
(for example as given in Eq. (9)) but not in the form of
BD-like adjustment as in Eq. (D'. In short, we note that:
given a causal graph G, (i) Complete solutions have been
developed for identifying P, (y) from P(V'); (ii) There exist
a plethora of methods aiming to estimate the BD-like es-
timands from finite samples when G satisfies the BD/SBD
criteria, but the fact is the BD/SBD criteria only capture a
small fraction of the scenarios under which causal effects
are identifiable; (iii) No systematic treatment exists for es-
timating arbitrary causal effect estimands that are not BD-
like. In this paper, our goal is to start bridging this gap in the
literature between causal “identification” and causal “esti-
mation”. Specifically, we propose to extend weighting-based
methods developed for BD estimand (Robins, Hernan, and
Brumback 2000) to settings beyond the BD, and further use
the weighting-method as a building block to estimate com-
plex causal effect estimands. The contributions of the paper
are as follows:

1. We introduce a weighting operator as a building block
estimand that could be estimated efficiently using existing
statistical techniques developed for the BD estimand.

2. We introduce novel machinery for estimating complex
causal effects - composition of weighting operators.

3. We develop graphical criteria (mSBD, Surrogate, and
"Estimators for specific settings, including the SBD and front-

door, have been developed based on influence functions (IF)
(Fulcher et al. 2019).
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(a) Surrogate endpoints (b) Causal mediators

Figure 1: Causal graphs corresponding to Example 1 and 2.
Nodes representing the treatment and outcome are colored
in blue and red, respectively.

mSBD composition) that go beyond the BD, under which
a causal estimand can be expressed as a weighting operator
or their composition, and, therefore, lends itself to effective
estimators. Simulation studies demonstrate the effectiveness
of the proposed estimators.

The proofs are provided in Appendix D in suppl. material.

2 Preliminaries

We use the language of structural causal models (SCMs)
(Pearl 2000, pp. 204-207) as our basic semantical frame-
work. Each SCM M over a set of variables V has a causal
graph G associated to it. Solid-directed arrows encode func-
tional relationships between observed variables, and dashed-
bidirected arrows encode unobserved common causes (e.g.,
see Fig. 1a). Within the structural semantics, performing an
intervention, and setting X = x, is represented through the
do-operator, do(X = x), which encodes the operation of re-
placing the original equations of X by the constant x and
induces a submodel My and an experimental distribution
Py (v). Given a causal graph G over a set of variables V,
a causal effect Py (y) is said to be identifiable in G if Px(y)
is uniquely computable from P(v) in any SCM that induces
G. For a detailed discussion of SCMs, refer to (Pearl 2000).

Each variable will be represented with a capital letter
(X) and its realized value with the small letter (). We will
use bold letters (X) to denote sets of variables. Given an
ordered set of variables X = (Xi,---,X,), we denote
X® = (X, , X;),and X=F = (X5, -, Xp).

We wuse the typical graph-theoretic terminology
PA(C),Ch(C), De(C), An(C) to represent the union
of C and respectively the parents, children, descendants,
and ancestors of C. We use G, to denote the graph

resulting from deleting all incoming edges to C; and all
outgoing edges from Cz in G. (X L Y | Z)¢ denotes that
X is d-separated from Y given Z in G. E[f(Y)|x] denotes
the conditional expectation of f(Y) over P(Y]|x). We use

P (v) to denote the corresponding empirical distribution.

3 Effect Estimation by Weighting Operators

In this section, we start by formally defining a weighting
operator as a causal estimand that could be estimated using
existing statistical techniques and further used as building
blocks to construct more complex causal estimands. We then



present graphical conditions under which a causal estimand
can be expressed as a weighting operator.

3.1 Weighting Operator

Causal effect estimation by the BD adjustment is widely
used in practice in part due to the availability of efficient
estimators from finite samples. In particular, weighting-
based statistical estimators for estimating the BD estimand
in Eq. (1) have been developed, including the inverse-
probability weighting (IPW) and stabilized weighting (SW)
(Robins, Hernan, and Brumback 2000). To present weight-
ing techniques, we first define the notion of weighted distri-
bution as follows:

Definition 1 (Weighted distribution P" (v)). Given a dis-
tribution P (v) and a weight function W (v) > 0, a
weighted distribution P" (v) is given by
W(v) P (v)
W) P (V)
Weighting-based estimators for BD adjustment have been

developed based on the following reformulation of the ad-
justment equation:

Proposition 1. Let X, Y, Z C V. If the causal effect
Py (y) is identifiable by the BD adjustment, then Py (y) =

PYW (y|x) where W = P(x) and

P(x|z)’

PY (v) = b)

IEPx(y) [Y]

Remarkably, one can estimate W = Plz( ‘)) as the weight

of each individual sample, and treat the reweighted samples
as if they were drawn from the causal distribution P (y)
(Pearl 2000, Ch. 3.6.1). In other words, letting D, denote
samples drawn from P (x,y,z), and DY, ~ PV (x,y,z)
represent the reweighted Dops, Prop. 1 says DY plays
the role of samples drawn from the post-intervention dis-
tribution Py (y). Therefore, the expected causal effects may
be estimated by computing conditional expectation on the
reweighted samples. Such weighting-based estimators have
also been developed for estimating the g-formula (i.e., g-
estimation) (Robins 1986; Robins, Hernan, and Brumback
2000) whenever the SBD condition holds.

In this paper, we will extend the weighting techniques to
situations beyond the BD and the g-formula. Towards this
goal, we formally define a weighting operator as follows:

Definition 2 (Weighing operator B). Given a weight func-
tion W (v) > 0, a function h (Y), a set of variables X = x,
the weighting operator B [h (Y) | x; W) is defined by

= ]EPW (Y‘x) Z h

B[h(Y) | x; W] )P (ylx).

Note that i (Y) is an arbitrary function over Y, and B
is a function of X = x. We’ll describe in Sec. 5 an empir-
ical estimator of the weighting operator 5 from finite sam-
ples, which extends the existing statistical techniques devel-
oped for BD adjustment. Therefore, whenever a causal esti-
mand is expressed as a weighting operator, it will lend itself

to effective estimators. In particular, in the form of weight-
ing operator, the BD causal estimand in Prop. 1 is given by

Ep, (y) [Y] = B[Y | x; W], where W = PFES‘Z).

As alluded earlier, the BD-like conditions cover just a lim-
ited set of identifiable scenarios. In many settings, causal
effects are identifiable but not in the form of an adjust-
ment, and no effective estimators have been developed. In
the sequel, we go beyond the BD condition and propose new
graphical conditions under which a causal estimand can be
expressed as a weighting operator. In Sec. 4, we further show
that weighting operators can be used as building blocks to
construct more complex causal estimands.

3.2 Multi-outcome Sequential Back-door (mSBD)
Criterion and Weighting

One setting of practical interest where the causal estimand
can be expressed as a weighting operator is in the time-series
domain with a sequence of treatments X, ..., X, and cor-
responding covariates Z1, . . ., Z,. We highlight that the BD
criterion has been extended to the sequential BD (SBD) cri-
terion in the time-series domain (Pearl and Robins 1995),
where the outcome variable Y is assumed to be a singleton.
Here, we generalize the SBD criterion to accommodate the
situation when Y is a set of variables, for example, for when
the outcomes are longitudinal®.

Definition 3 (Multi-outcome sequential back-door (mSBD)
criterion). Given the pair of sets (X,Y), let X =
{X1, X2, -+ ,X,,} be topologically ordered as X; <
Xo < v < Xp.Let Yy = Y\ De(X)and Y; =
Y N (De(X;)\ De (XZi1)) for i = 1,2,--- ,n. Let
ND (X2%) be the set of nondescendants of X=*. Then
the sequence of variables Z = (Zi,Zs,- -+ ,Z,) are said
to be mSBD admissible relative to (X,Y) if it holds that

Z; C ND (X=%), and

(Yzi i Xi|Y(i*1),z(i)7x(i*1))
G

X, XZHT
Roughly speaking, Def. 3 requires that the past observa-
tions (X1, y (-1, Z(i)) satisfy the BD criterion relative
to each (X;, Y=?) pair as covariates. The mSBD criterion
reduces to the original SBD (Pearl and Robins 1995) when-
ever Y is a singleton. When the mSBD criterion holds in a
causal graph, the causal effect is identifiable as follows:

Theorem 1 (mSBD adjustment). If Z is mSBD admissible
relative to (X, Y), then Py (y) is identifiable and given by*

=S"TIP (yk|x<k>,z<k>,y<k—1>)

z k=0
XHP( |xG=D) z(jfn,y(jfl)), (4)

Note that treating Y in SBD criterion as a set would NOT get
the mSBD criterion.

3We note that the expressions in the form of Eq. (4) or similar
are often called the g-formula (Robins, Greenland, and Hu 1999).
The mSBD criterion provides a graphical condition under which
the causal effect is identifiable as the g-formula.



For example, the causal graph in Fig. 2a represents a
time-series setting with a sequence of treatments X1, Xo,
longitudinal outcomes Y7, Ys, and corresponding covari-
ates Z, Zy. The BD criterion is not applicable for iden-
tifying Py, 4, (y1,y2). However, (Z1,Z,) satisfies the
mSBD criterion relative to ((X7, X2), (Y1, Y2)). By Thm. 1
P, .5, (y1,y2) is identifiable and the expected causal effect
of {X1, X2} on Ys is given by

Eer,xg(yz) [)/2] = Z E [Y2|1'1,$2721,Z2,y1} P(y1|.fl?17z1)

Z1,%22,Y1

X P(z1)P(z2|z1,21,91) ()

Whenever the mSBD admissible Z is high-dimensional,
evaluating the causal effect is non-trivial in terms of com-
putation and sample efficiency. We address this challenge
by leveraging the weighting technique, as shown next.

Theorem 2. If Z is mSBD admissible relative to (X,Y),
then

En(y) [ (V)] = B[R (Y) | x W], where ©)
) ) P(x)
W= WmSBD(X7 y, Z) = HZ:l P (mk|x(k71)’ y(k*1)7 Z(k>) ’
O]

For example, in Fig. 2a, the expected causal effect of
{X1, X2} on Y5 can be written, and evaluated, as

Ep, ., Yol = BY2 | {z1, 22} W], ®)
P(:L‘hxg)
where W = .
P(z1]21) P(z2|71, 91, 21, 22)

By Thm. 2, once a set Z is mSBD-admissible, the expected
causal effect can be estimated using the empirical weighting
operator described in Sec. 5.

3.3 Surrogate Criterion and Weighting

We present another setting where the causal estimand can
be expressed as a weighting operator and can therefore be
estimated from finite samples using weighting techniques.

Definition 4 (Surrogate criterion). (R,Z) is said to
be surrogate admissible relative to (X,Y) if (1)
(YiLR\X)Gﬁ; 2) (YJJ_X|R)GXﬁ; and (3) Z is

mSBD admissible relative to (R, (X,Y)).

Theorem 3. If (R,Z) is surrogate admissible relative to
(X,Y), then*

Ep, ) [h(Y)]=B[h(Y)|xUr;Wysep(r,xUy,z)].

To demonstrate the application of the surrogate criterion,
we consider Example 1 with its corresponding causal graph
given in Fig. la, where we are interested in estimating the
causal effect of the surrogate endpoint X on the clinical
endpoint Y with W, being a set of confounders. It can be
derived (e.g. by do-calculus) that the causal effect P, (y) is
identifiable and given by

_ ZwlP(y7m|w17w2)P(w2)
>, P (@|wi,we) P (wg)

“Note the weight function Wisgp is defined in Eq. (7).

Py (y) ©))

71 Za
% & e A
X1 Yi Xo Yo X Z Y
(a) mSBD (b) Front-door

Figure 2: Example graphs

At the first glance, estimating such quotient estimand looks
daunting since the variance can be arbitrarily large. To the
best of our knowledge, no statistical estimator has been es-
tablished for the type of estimands like Eq. (9). Thm. 3 pro-
vides a solution. By Def. 4, (W5, W) is surrogate admissi-
ble relative to (X, Y"), and by Thm. 3 we have

P (w2)
P (wz]wn)

The surrogate criterion allows one to express a complex quo-
tient estimand in the form of a weighting operator, which al-
lows one to estimate through the method discussed in Sec. 5.

Ep, o [Y] =8 {Y ‘ {wg,z}; W = (10)

4 Causal Effects Estimation by the
Composition of Weighting Operators

So far, we have defined a weighting operator as a causal
estimand that could be estimated using existing statistical
techniques and presented graphical conditions (mSBD and
Surrogate criteria) under which a causal estimand can be ex-
pressed as a weighting operator. In this section, we introduce
novel machinery for causal effect estimation by formulating
the front-door estimand as a composition of BD weighting
operators. We then extend this idea to develop graphical con-
ditions under which causal effects can be estimated by the
composition of weighting operators.

4.1 Estimation of Front-door as a Composition of
BD Weighting Operators

A well-known setting where causal effects are identifiable
are characterized by what is known as the front-door crite-
rion (Pearl 1995), which states that if Z satisfies the front-
door criterion relative to (X, Y), then the causal effect of X
on Y is identifiable and is given by the formula

Pe(y)=>_ P(zlx) Y P(ylx,z)P(x). (1)

As an example, consider the causal graph in Fig. 2b, where
X represents the level of body mass index (BMI), Z the level
of multiple, possibly high-dimensional, metabolites, and Y’
the occurrence of breast cancer (Derkach et al. 2019). The
goal is to assess the effect of the level of BMI (X) on the
breast cancer (Y) in the presence of Z, often called causal
mediators. We have that Z satisfies the front-door criterion
relative to (X, Y"), and the expected causal effect is given by

Ep.y) [Y]1=>_ P(zlx)) E[Y[x,z]P(x). (12)



Computing Eq. (12) is non-trivial in terms of computation
and sample efficiency when Z is high-dimensional. In this
paper, we propose a novel method for estimating the front-
door estimand. We note something simple albeit powerful:
the front-door can be seen as a composition of BD adjust-
ments. To witness, note that:

Pe(y) =) Px(2) P(y),and  (13)
“ Bp=0 BD={X}
Ep.(y) [Y] =Ep, @) [Epr,) [Y]] (14)

where BD represents a BD admissible set, that is, both effects
in Eq. (13) can be identified by BD adjustments. In practice,
Ep, (y) [Y] can be estimated by first estimating Ep,_ () [Y],
and then estimating the expectation of the resultant quantity
over Py (z), both times using the BD weighting operator.
Therefore, we can compute Eq. (12) as a composition of BD
weighting operators. Using this example, we formally define
a composition of weighting operators as follows:

Definition 5 (Composition of weighting operators). Given
two weighting operators B1(x) = B[h, (Z) | x;W1] and
Ba(z) = Blhy (Y) | 2; W], the composition of B and B
is defined by

(Bl e} BQ) (X) =B [BQ(Z) | X Wl] . (]5)

The front-door estimand (Eq. (12)) can be computed in
terms of the composition operation as follows.

Proposition 2. If Z satisfies the front-door criterion relative
to (X,Y), then

Ep,(y) [Y] = (B1 0 Bs) (x), (16)

where B1(x) = B[h (Z) | x; W1, B2(z) = B[Y | z; Ws],
Wi =1, and Wy = P}zi‘z)){).

More generally, we propose using the composition of
weighting operators as a novel machinery to construct and
estimate complex causal estimands. The corresponding em-
pirical estimator of the composition of B operators will be
discussed in Sec. 5.

4.2 Causal Effect Estimation by Composition of
Weighting Operators

In this section, we study the conditions under which causal
effects may be identified by a composition of weighting op-
erators, in which the front-door is just a special case.

Definition 6 (Decomposability criterion). A set of variables
Z satisfies the decomposability criterion relative to (X,Y)
if (1) (Y 1L X|Z)Gﬁ; and (2) (Y 1L Z|X)

GKZ :

Theorem 4. If Z satisfies the decomposability criterion,
then

Px(y) =) Px(2) P (y), and

Ep,y) [W(Y)] =Ep (o) [Enp [R(Y)]. (D

The importance of this theorem lies in that if both causal
effects Py (z) and P, (y) can be computed using the weight-
ing operators, then Py (y) can be computed by the compo-
sition of weighting operators. In particular, we present a cri-
terion that delineates under what conditions a causal effect
can be pieced together through the composition of mSBD
weighting operators.

Definition 7 (mSBD composition criterion). Sets of vari-
ables (Z, W1, W) are said to satisfy the mSBD composi-
tion criterion relative to (X, Y) if: (1) Z satisfies the decom-
posability criterion relative to (X,Y); and (2) W1 is mSBD
admissible relative to (X, Z), and W is mSBD admissible
relative to (Z,Y).

Theorem 5 (mSBD composition). If (Z, W1, Wa) satisfy
the mSBD composition criterion relative to (X, Y ), then:

Ep.(y) [Y] = (B1 o Bz) (x), (18)

where Bi(x) = B[h(Z)|x;Wnssp(x,2,w1)] and
By(2z) = BY | z;Whssp(2,y, W2)].

To demonstrate the application of the mSBD composi-
tion criterion, consider the causal mediator scenario (Exam-
ple 2) with its corresponding causal graph given in Fig. 1b.
The set Z = (Z1,Za,Z3,Z4) satisfies the decomposabil-
ity condition relative to (X,Y’), and (Z, 0, X) satisfy the
mSBD composition criterion relative to (X, Y). Therefore,
the causal effect P, (y) can be expressed as P, (y) =
>, Pr (2) P, (y). We have that () satisfies the SBD condi-
tions relative to (X, (Z1, Zs, Z3, Z4)), which yields

P.(z) = P(z1, 22, 23)P(24]|21, 22, 23, 2), (19)
Ep, () [hz (Z)] = B[hs (Z) | x; W] = Bi(w), (20)

where W; = %. Further note that {X}

(.e. (0,0,0,X)) is SBD admissible relative to
((Z1, 25, Z3,Z4),Y ), which yields
Ep, ) Y] =BY | W] = Bs(2), 1)

where

P (z4]|21, 22, 23)
P (24|21, 22, 23, )

P (21, 22, 23, 24)

W, = -
Y P (21, 22, 23) P (24|21, 22, 23, X)

Finally, we obtain that the expected causal -effect
EP,T(y) [Y] = EP‘T,(z) [EPz(y) [YH is given by (Bl o 82) (117)

5 Weighting-based Empirical Estimators

We have introduced the weighting operator as a building
block estimand and their composition as a new tool for es-
timating causal effects. In this section, we present how to
estimate the weighting operator and their composition em-
pirically from finite samples. In other words, instead of hav-
ing access to the true distribution P(v), we only have an
i.i.d. data set Dops = {V ;) }/L; drawn from P(v).

5.1 Empirical Weighting Operators

We extend the weighting-based statistical estimation proce-
dures developed for the BD adjustment to the weighting op-
erator defined in Def. 2. One of the widely used methods



0.03- 0.100 10000
\ D=20
\ D=9 N 7
\ 0.075 o — D=15 7500
\ — D=8 <
0021\ \ — D=7 N S~ — D=12
w N ot g N ~—~<_— D=10
AR — D= 0.050 N 2 5000 !
SN ENNN S IO 25 ‘ o)
001f AU N~ M. TS=____ —cwo
& — cwo 0.025 Seo = Naive 2500 b
~_ ~—_ . -~ Naive o Ts=a_ 5
——————— — ....aifm.o.-u“a
0.00- 0.000
550 5000 7800 10000 T 20 o 750 o000 T34 5678 ST ASOTEZ0.
N D
(a) Front-door: low-dim (b) Front-door: high-dim (c) Dvs. Np

Figure 3: Experimental results for front-door (Fig. 2b) in which Z = (Z4,..
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for estimating the conditional expectation on the weighted
samples is the following weighted regression (also known
as weighted least square) estimator (Robins, Hernan, and
Brumback 2000):

Definition 8 (Empirical weighting operator g). Given
Dops = {V(i}L, ~ P(v), the empirical weighting op-
erator B L (Y) | x; W] (x) = g*(x) is estimated by the
weighted regression as follows:

N
9" = argmin ; W (V) (h(Ya) -5 (Xw))®, @2

where W (v) is the empirically estimated W (v), and R is
a class of regression functions (e.g., linear regressions).

For example, for the BD adjustment, we have W(V(i)) =

P (X(Z)) /P (X(z) |Z(1)) When estimating the weight W
from data, in practice, some parametric model will be as-
sumed for P (x|z), and parameters of the model will be
learned from data. When X = (X3,---, X,,), one can first
use the chain rule of the probability and then model each in-
dividual component of P (x|z) = [[}_, P (z4|z, x4~ V).
For example, when X is a singleton binary variable,
P (X = 1]z) is typically assumed to be a logistic regression
function as (1 + exp (g + @z, 21 + - + @z, 2;)) "L, and
the parameters « are learned from data. Then the trained
model is used to estimate the probability. More expressive
function classes than logistic regression can be applied to es-
timate the weights more accurately (Lee, Lessler, and Stuart
2010; Gruber et al. 2015), which may be appealing depend-
ing on the particular setting.

Equipped with the estimated weight, one can then esti-
mate the weighting operator by the weighted regression. One
can go beyond the standard linear regression class and em-
ploy flexible regression functions (Hill 2011; Wen, Hassan-

pour, and Greiner 2018). We note that B provides a consis-

tent estimator of 3 if the models for V) and R are correctly
specified, following the same argument as in (Robins, Her-
nan, and Brumback 2000).

Another commonly used method in back-door settings
is the Horvitz-Thompson (H-T) estimator (Horvitz and
Thompson 1952) as an IPW estimator. We use the weighted
regression estimator as the empirical estimator for weighting

operators because it has been shown that the H-T estimator
may have a higher variance than the weighted regression es-
timator (Robins, Hernan, and Brumback 2000).

5.2 Estimating Composition of Weighting
Operators

Given the empirical weighting operator defined in Def. §,
we simply define the empirical composition of weight-

ing operators as a chain of regressions. Given B; (x) =
Blhy (Z) | x;Wh] and By (z) = B [hy (Y) | z; Wa], we de-
fine (B o Bs)(x) = (gl o gg) (x), which is implemented
as B |:B\2 (z) ’ X; Wl}, the weighted regression for function
B, (z) onto X with weight Wr. Formally,

Definition 9 (Empirical composition of B). Let El (x) =
Blhy (Z) | x;Wh] and B (z) = Blhy (Y) | z;Ws]. The

empirical composition (B; o Bs)(x) is defined by

(B 0 Bs)(x) = (El ° z%) (x)= B [éz(z)

(23)

X; W1:| .

One question that naturally arises is about the consistency
of the empirical composition of weighting operators, which
is addressed by the following theorem.

Theorem 6 (Consistency of the composition). Let gl(x)
and By(z) be consistent estimators of B1(x) and Bz(z).
Let the function class Ry of By be a compact space. Then,

(gl o gg) (x) is a consistent estimator of (By o Bs) (x).

6 Simulation Studies
6.1 Simulation Setup

Given a causal graph, we will specify a SCM M from which
a dataset D,ps will be generated. To compute the target
p(x) = Ep ) [Y], we generate N;,,; = 107 number of
samples D;,,; from My, the model from do(X = x). We es-
timate 1(x) by computing the mean of Y in D;,,;, which is
treated as the ground truth.

Because there exists no general method in the literature
for estimating arbitrary identifiable causal effects that are not
in the form of BD-like adjustment, we compare the proposed
estimators with a naive procedure, as discussed next:
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Figure 4: MAAE plots for (a) mSBD, (b) Surrogate endpoints, and (c¢) Causal mediators. Plots are best viewed in color.

Naive procedure As an example, assume we want
to evaluate the expression in Eq. (5). We compute
each conditional probability such as P(za|z1,21,y1) as
N., a1,210,01 /Nay 21 5 Where Ny, is the number of examples
in which W = w. If N, ,, ,, = 0then P(22]x1,21,91) is
set to zero. B [Y|x1, 2o, 21, 22, 1] is computed as the mean
of Y in examples with values (z1, 2, 21, 22,¥1 ), and is set
to zero if no example has these values. The expected causal
effect is computed by summing over all the possible values
of Zl, Yl, ZQ.

Proposed procedure (named CWO - Composition of
Weighting Operators) We use the empirical estimators
described in Sec. 5. The conditional probabilities in the
weights are estimated by the logistic regression model (bi-
nary variables are used in the simulation studies).
Accuracy Measure Given a data set D5 with IV examples,
let fiewo(X) and finqi(x) be the estimated Ep_(,) [Y] using
the CWO and naive procedure respectively. We compute the
average absolute error AAE as |u(X) — fiewo(X)| averaged
over x and |p(x) — pnai(X)| averaged over x respectively.
For each sample size IV, we generate 100 data sets. We call
the median of the 100 AAEs the median average absolute
error or MAAE. A plot of MAAE vs. the sample size [V will
be called a MAAE plot.

6.2 Simulation Results

We test the proposed CWO against the naive approach in
several scenarios (we only compare with the naive method
due to the nonexistence of other general purpose methods
applicable in these cases). The detailed descriptions of the
corresponding SCMs are provided in Appendix E.

Front-door (Fig. 2b) We first test on the front-door graph
for estimating Ep, (,y [Y'] in Eq. (12). We set X to be binary,
Y continuous within [0, 1], and Z = (Z1,..., Zp) with Z;
all binary. Fig. 3a shows MAAE of CWO vs. naive for D €
{6,7,8,9}, and Fig. 3b the plots for D € {10,12,15,20}.
We observe that the naive approach works well when Z is
low dimensional (up to D = 8) and given many examples.
CWO may have bias due to the use of logistic regression
models. When Z is high-dimensional, CWO significantly
outperforms the naive approach. To get a better understand-
ing of the sample efficiency, for each given D, we gradu-
ally increase the sample size N = 500, 1000, 1500, .. ., and
find the corresponding MAAE, and stop to record the sample

size Np when the MAAE is within a predetermined thresh-
old. The threshold was set to 0.025 in these experiments.
Roughly, Np represents how many samples are needed for
the estimator to reach a predetermined accuracy. Fig. 3c
shows the curves of D vs. Np. We note that the number
of samples needed to reach a predetermined accuracy in-
creases very rapidly (exponentially in D) for the naive ap-
proach while CWO scales very well.
mSBD: (Fig. 2a) We test on estimating Ep,_ _ (,,) [Y2]
given in Eq. (5). We set X7, X5, Y7 to be binary, Y5 con-
tinuous within [0, 1], and Z; = (Z;1,...,Z;p) fori = 1,2,
where all Z;; are binary. Fig. 4a presents the MAAE plots
for D € {3,4,5,6,7}. We note that CWO provides more
robust estimates and significantly outperforms the naive pro-
cedure in high-dimensional settings.
Surrogate endpoints (Fig. 1a) We test on estimating
Ep,(y) [Y] (where the causal effect P, (y) is given in
Eq. (9)). The MAAE plots for D € {4,5,10,15,20} are
given in Fig. 4b. We observe that the CWO method signifi-
cantly outperforms the naive approach.
Causal mediators (Fig. 1b) We test on estimating
Ep, ) [Y]. Fig. 4c presents the MAAE plots for D ¢
{4, 5,10, 15,20}. Again, we note CWO significantly outper-
forms the naive procedure in high-dimensional settings.
These experimental results show that CWO significantly
outperforms its naive counterpart. In Appendix B, we pro-
vide a discussion on why CWO outperforms the naive pro-
cedure. To better understand to what extent the performance
gains over the naive procedure should be attributed to the
use of parametric assumptions, we also performed simula-
tions comparing CWO against the parametric plug-in esti-
mator given in Appendix C. Finally, we performed simula-
tions comparing CWO with the H-T estimator given in Ap-
pendix G.

7 Conclusions

The problem of determining whether a causal effect is iden-
tifiable from observed distribution given a causal graph is
well-understood, while there’s virtually no work on how, in
general, one can efficiently estimate, from finite samples, an
identifiable causal effect beyond BD-like settings. This pa-
per takes the first step in filling in the gap between identifi-
cation and estimation by developing novel machinery for es-
timating causal effects through the weighting operators and



their composition. We introduced graphical criteria for de-
termining when the new estimation methods are applicable.
These results offer new tools for data scientists to be able to
estimate effects that the usual methods (including Propen-
sity score, [IPW, BART) are not applicable given that the
causal estimand is not BD-like. This work opens new re-
search directions. On the one hand, many techniques have
been developed for and besides weighted regression for BD
estimation; can those techniques be applied and leveraged
to the composition of weighting operators? How model mis-
specification, which is well-studied through double robust
methods in the BD-case, should be addressed in this more
general case? On the other hand, can weighting operators
be further composed to identify effects beyond the decom-
posability criterion? Further, can the weighting operator be
combined in alternative ways to identify new effects?
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