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Abstract

We consider families of codes obtained by "lifting" a base
code C through operations such as k-XOR applied to "local
views" of codewords of C, according to a suitable k-uniform
hypergraph. The k-XOR operation yields the direct sum
encoding used in works of [Ta-Shma, STOC 2017] and [Dinur
and Kaufman, FOCS 2017].

We give a general framework for list decoding such
lifted codes, as long as the base code admits a unique de-
coding algorithm, and the hypergraph used for lifting satis-
fies certain expansion properties. We show that these proper-
ties are indeed satisfied by the collection of length k walks on
a sufficiently strong expanding graph, and by hypergraphs
corresponding to high-dimensional expanders. Instantiating
our framework, we obtain list decoding algorithms for direct
sum liftings corresponding to the above hypergraph fami-
lies. Using known connections between direct sum and direct
product, we also recover (and strengthen) the recent results
of Dinur et al. [SODA 2019] on list decoding for direct prod-
uct liftings.

Our framework relies on relaxations given by the Sum-
of-Squares (SOS) SDP hierarchy for solving various con-
straint satisfaction problems (CSPs). We view the problem
of recovering the closest codeword to a given (possibly cor-
rupted) word, as finding the optimal solution to an instance
of a CSP. Constraints in the instance correspond to edges
of the lifting hypergraph, and the solutions are restricted to
lie in the base code C. We show that recent algorithms for
(approximately) solving CSPs on certain expanding hyper-
graphs by some of the authors also yield a decoding algo-
rithm for such lifted codes.

We extend the framework to list decoding, by requiring
the SOS solution to minimize a convex proxy for negative
entropy. We show that this ensures a covering property for
the SOS solution, and the "condition and round" approach
used in several SOS algorithms can then be used to recover
the required list of codewords.
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1 Introduction

We consider the problem of list decoding binary codes
obtained by starting with a binary base code C and am-
plifying its distance by "lifting" C to a new code C’ us-
ing an expanding or pseudorandom structure. Exam-
ples of such constructions include direct products where
one "lifts" (say) C C IF5 to C' C (]Fg)”k with each po-
sition in y € C’ being a k-tuple of bits from k positions
in z € C. Another example is direct sum codes where
Cc'C ]ng and each position in y is the parity of a k-tuple
of bits in z € C. Of course, for many applications, it is
interesting to consider a small “pseudorandom” set of
k;(tuples, instead of considering the complete set of size
n~.

This kind of distance amplification is well known
in coding theory [ABN 92, IW97, GI01, TS17] and it
can draw on the vast repertoire of random and pseu-
dorandom expanding objects [HLWO06, Lub18]. Such
constructions are also known to have several applica-
tions to the theory of Probabilitically Checkable Proofs
(PCPs) [IKW09, DS14, DDG 15, Chalé, Aro02]. How-
ever, despite having several useful properties, it might
not always be clear how to decode the codes resulting
from such constructions, especially when constructed
using sparse pseudorandom structures. An impor-
tant example of this phenomenon is Ta-Shma’s explicit
construction of binary codes of arbitrarily large dis-
tance near the (non-constructive) Gilbert-Varshamov
bound [TS17]. Although the construction is explicit, ef-
ficient decoding is not known. Going beyond unique-
decoding algorithms, it is also useful to have efficient
list-decoding algorithms for complexity-theoretic ap-
plications [Sud00, Gur01, STV01, Tre04].

The question of list decoding such pseudoran-
dom constructions of direct-product codes was consid-
ered by Dinur et al. [DHK"19], extending a unique-
decoding result of Alon et al. [ABN792]. While Alon
et al. proved that the code is unique-decodable when
the lifting hypergraph (collection of k-tuples) is a good
"sampler", Dinur et al. showed that when the hyper-
graph has additional structure (which they called be-
ing a "double sampler") then the code is also list de-
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codable. They also posed the question of understand-
ing structural properties of the hypergraph that might
yield even unique decoding algorithms for the direct
sum based liftings.

We develop a generic framework to understand
properties of the hypergraphs under which the lifted
code C" admits efficient list decoding algorithms, as-
suming only efficient unique decoding algorithms for
the base code C. Formally, let X be a downward-closed
hypergraph (simplicial complex) defined by taking the
downward closure of a k-uniform hypergraph, and let
¢ : F5 — TF, be any boolean function. X(i) denotes
the collection of sets of size i in X and X(< d) the col-
lection of sets of size at most d. We consider the lift
C" = lift}  (C), where C C FXW and ¢’ € FXY, and
each bit of y € C’ is obtained by applying the func-
tion ¢ to the corresponding k bits of z € C. We study
properties of ¢ and X under which this lifting admits
an efficient list decoding algorithm.

We consider two properties of this lifting, robust-
ness and tensoriality, which we will be formally defined
later. We will show that these properties are sufficient
to yield decoding algorithms. The first property (ro-
bustness) essentially requires that for any two words

in ]Fé((l) at a moderate distance, the lifting amplifies the
distance between them. While the second property is
of a more technical nature and is inspired by the Sum-
of-Squares (SOS) SDP hierarchy used for our decoding
algorithms, it is implied by some simpler combinato-
rial properties. Roughly speaking, this combinatorial
property requires that the graph on (say) X(k/2) de-
fined by connecting s,t € X(k/2) if sNt = @ and
sUt € X(k), is a sufficiently good expander (and sim-
ilarly for graphs on X(k/4), X(k/8) and so on). This
property requires that the k-tuples can be (recursively)
split into disjoint pieces such that at each step the graph
obtained between the pairs of pieces is a good ex-
pander. We refer to this property as splittability.
Expanding Structures. = We instantiate the above
framework with two specific structures: the collection
of k-sized hyperedges of a high-dimensional expander
(HDX) and the collection of length k walks of an ex-
pander graph. HDXs are downward-closed hyper-
graphs satisfying certain expansion properties. We will
quantify this expansion using Dinur and Kaufman'’s
notion of a y-HDX [DK17].

HDXs were proved to be splittable by some of the
authors [AJT19]. For the expander walk instantiation,
we consider a slight variant where a walk of length k
is split into two halves, which are walks of length k/2
(thus we do not consider all k/2 size subsets of the
walk). The spectrum of the graphs obtained by this

splitting can easily be related to that of the underlying
expander graph. In both cases, we take the function
g to be k-XOR which corresponds to the direct sum
lifting. We also obtain results for direct product codes
via a simple (and standard) reduction to the direct sum
case.

Our Results. Now we provide a quantitative version
of our main result. For this, we split the main result
into two cases (due to their difference in parameters):
HDXs and length k walks on expander graphs. We start
with the former expanding object.

THEOREM 1.1. (HDX (INFORMAL)) Let By < 1/2 be
a constant and B € (0,Bg). Suppose X(< d) is a -
HDX on n vertices with v < (log(1/B))~C10s(1/B) and
d =0 ((log(1/p))*/ ).

For every linear code C1 C IF5 with relative distance >
1/2 — By, there exists a direct sum lifting Cy, C ]Fi((k) with

k = O (log(1/B)) and relative distance > 1/2 — ﬁQﬁo(l)
satisfying the following:

- [Efficient List Decoding] If § is (1/2 — p)-close to C,
then we can compute the list of all the codewords of Cy
that are (1/2 — B)-close to i in time np~ - f(n),
where f(n) is the running time of a unique decoding
algorithm for C;.

- [Rate] The rate ' . of Cy is 1. = r1 - |X(1)| / |X(K)]|,
where 1 is the rate of Cy.

A consequence of this result is a method of decod-
ing the direct product lifting on a HDX via a reduction
to the direct sum case.

COROLLARY 1.1. (HDX (INFORMAL)) Let gg < 1/2 be
a constant and ¢ > 0. Suppose X(< d) is a y-HDX
on n vertices with y < (log(1/¢))~0008(1/9) gnd d =
Q((log(1/¢))2/¢2).

For every linear code C; C IF} with relative distance
> 1/2 — ¢, there exists a direct product encoding C, C
(F5) X with ¢ = O(log(1/¢)) that can be efficiently list
decoded up to distance 1 — e.

REMARK 1.1. List decoding the direct product lifting was
first established by Dinur et al. in [DHK'19] using an
expanding object introduced by them, namely, double sam-
plers.  Since constructions of double samplers are only
known using HDXs, we can compare some parameters.
In our setting, we obtain d = O(log(1/¢)?/e?) and
v = (log(1/¢))~0008(1/) whereas in [DHK*19] d =
O(exp(1/¢)) and v = O(exp(—1/¢)).

TFor the rate computation, X (k) is viewed as a multi-set such that
each s € X(k) appears (approximately) o« Iy (s) times.

Copyright (© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



Given a graph G, we denote by W (k) the collec-
tion of all length k walks of G, which plays the role of
the local views X (k). If G is sufficiently expanding, we
have the following result.

THEOREM 1.2. (EXPANDER WALKS (INFORMAL)) Let
Bo < 1/2 be a constant and B € (0, o). Suppose G is a
d-regular «y-two-sided spectral expander graph on n vertices
with v < pOW),

For every linear code C; C IF} with relative distance
> 1/2 — Bo, there exists a direct sum encoding Cp C

IF;/VG(k) with k = O (log(1/B)) and relative distance >
1/2 — ﬁnﬁo(l) satisfying the following:

- [Efficient List Decodingl If i is (1/2 — p)-close to Cy,
then we can compute the list of all the codewords of Cy
that are (1/2 — B)-close to ij in time np - f(n),
where f(n) is the running time of a unique decoding
algorithm for Cy.

- [Rate] The rate ry. of Cy is 1. = r1/d*, where ry is the
rate of C.

The results in Theorem 1.1, Corollary 1.1, and The-
orem 1.2 can all be extended (using a simple techni-
cal argument) to nonlinear base codes C; with similar
parameters. We also note that applying Theorem 1.1
to explicit objects derived from Ramanujan com-
plexes [LSV05b, LSV05a] and applying Theorem 1.2 to
Ramanujan graphs [LPS88] yield explicit constructions
of codes with constant relative distance and rate, start-
ing from a base code with constant relative distance
and rate. With these constructions, the rate of the lifted

code satisfies ry > r1 - exp (—(log(l/ﬁ))o(bg(l/ﬂ))> in

the HDX case and 1, > ry - BOU8(1/A)) for expander
walks. The precise parameters of these applications are
given in the full version of this article.

Our techniques. We connect the question of decoding
lifted codes to finding good solutions for instances of
Constraint Satisfaction Problems (CSPs) which we then
solve using the Sum-of-Squares (SOS) hierarchy. Con-
sider the case of direct sum lifting, where for the lifting
y of a codeword z, each bit of i is an XOR of k bits from
z. If an adversary corrupts some bits of y to give f, then
finding the closest codeword to # corresponds to find-
ing z’ € C such that appropriate k-bit XORs of z agree
with as many bits of i as possible. The distance prop-
erties of the code ensure that the unique choice for z’
is z (if the corruption is small). Moreover, the distance
amplification (robustness) properties of the lifting can
be used to show that it suffices to find any z’ (not nec-
essarily in C) satisfying sufficiently many constraints.
We then use results by a subset of the authors [AJT19]

showing that splittability (or the tensorial nature) of the
hypergraphs used for lifting can be used to yield algo-
rithms for approximately solving the related CSPs. Of
course, the above argument does not rely on the lifting
being direct sum and works for any lifting function g.
For list decoding, we solve just a single SOS pro-
gram whose solution is rich enough to “cover” the list
of code words we intend to retrieve. In particular, the
solutions to the CSP are obtained by “conditioning" the
SDP solution on a small number of variables, and we
try to ensure that in the list decoding case, condition-
ing the SOS solution on different variables yields solu-
tions close to different elements of the list. To achieve
this covering property we consider a convex proxy ¥
for negative entropy measuring how concentrated (on
a few code words) the SOS solution is. Then we min-
imize ¥ while solving the SOS program. A similar
technique was also independently used by Karmalkar,
Klivans, and Kothari [KKK19] and Raghavendra and
Yau [RY19] in the context of learning regression. Un-
fortunately, this SOS cover comes with only some weak
guarantees which are, a priori, not sufficient for list
decoding. However, again using the robustness prop-
erty of the lifting, we are able to convert weak cover-
ing guarantees for the lifted code C’ to strong guaran-
tees for the base code C, and then appeal to the unique
decoding algorithm. We regard the interplay between
these two properties leading to the final list decoding
application as our main technical contribution. A more
thorough overview is given in Section 3 after introduc-
ing some objects and notation in Section 2. In Section 3,
we also give further details about the organization of
the document.
Related work. The closest result to ours is the list
decoding framework of Dinur et al. [DHK"19] for
the direct product encoding, where the lifted code
is not binary but rather over the alphabet F5. Our
framework instantiated for the direct sum encoding on
HDXs (cf. Theorem 1.1) captures and strengthens some
of their parameters in Corollary 1.1. While Dinur et
al. also obtain list decoding by solving an SDP for a
specific CSP (Unique Games), the reduction to CSPs
in their case uses the combinatorial nature of the in-
stances (double sampler) and is also specific to the di-
rect product encoding. They recover the list by iter-
atively solving many CSP instances, reducing the al-
phabet size by one each time. On the other hand, the
reduction to CSPs is somewhat generic in our frame-
work and the recovery of the list is facilitated by in-
cluding an entropic proxy in the convex relation. As
mentioned earlier, a similar entropic proxy was also
(independently) used by Karmalkar et al. [KKK19] and
Raghavendra and Yau [RY19] in the context of list de-
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coding for linear regression and mean estimation. Di-
rect products on expanders were also used as a build-
ing block by Guruswami and Indyk [GI03] who used
these to construct linear time list decodable codes over
large alphabets. They gave an algorithm for recovering
the list based on spectral partitioning techniques.

2 Preliminaries

2.1 Simplicial Complexes It will be convenient
to work with hypergraphs satisfying a certain
downward-closed property (which is straightforward
to obtain).

DEFINITION 2.1. A simplicial complex X with ground set
[n] is a downward-closed collection of subsets of [n], i.e., for
all sets s € X and t C s, we also have t € X. The sets in
X are referred to as faces of X. We use the notation X (i) for
the set of all faces of a simplicial complex X with cardinality
i and X(< d) for the set of all faces of cardinality at most
d. 2 By convention, we take X(0) := {@}.

A simplicial complex X (< d) is said to be a pure
simplicial complex if every face of X is contained in some face
of size d. Note that in a pure simplicial complex X (< d), the
top slice X (d) completely determines the complex.

Simplicial complexes are equipped with the fol-
lowing probability measures on their sets of faces.

DEFINITION 2.2. (MEASURES (I, ...,11;)) Let

X(< d) be a pure simplicial complex and let T1; be
an arbitrary probability measure on X(d). We define a
coupled array of random variables (s\9,...,s(1)) as fol-
lows: sample 5% ~ T, and (recursively) for each i € [d],
take 51 to be a uniformly random subset of s() of size
i — 1. The distributions I1;_4,...,I1 are then defined
to be the marginal distributions of the random variables
5@, ., s(0. We also define the joint distribution of
(s,...,5(1) as IT. Note that the choice of T1; determines
each other distribution I1; on X (i).

In order to work with the HDX and expander walk
instantiations in a unified manner, we will use also
use the notation X (k) to indicate the set of all length
k walks on a graph G. In this case, X(k) is a set of k-
tuples rather than subsets of size k. This distinction
will be largely irrelevant, but we will use W (k) when
referring specifically to walks rather than subsets. The
set of walks W (k) has a corresponding distribution I'Ty
as well.

2Note that it is more common to associate a geometric represen-

tation to simplicial complexes, with faces of cardinality i being re-
ferred to as faces of dimension i — 1 (and the collection being denoted
by X(i — 1) instead of X(i)). However, we prefer to index faces by
their cardinality to improve readability of related expressions.

2.2 Codes and Lifts

Codes We briefly recall some standard terminology
from coding theory. Let ¥ be a finite alphabet with
g € N symbols. We will be mostly concerned with
the case ¥, = TF,. Given z,z/ € X", recall that
the relative Hamming distance between z and z’ is
A(z,2) = |{i|z #z}|/n. Any set C C " gives
rise to a g-ary code. The distance of C is defined as
A(C) = min, 4, A(z,z") where z,z’ € C. We say that C
is a linear code ® if & = IF, and C is a linear subspace of
IF. The rate of C is logq(|C|)/n.

Instead of discussing the distance of a binary code,
it will often be more natural to phrase results in terms
of its bias.

DEFINITION 2.3. (BIAS) The bias of a word * z € F} is
bias(z) = |Eje[,(—1)%|. The bias of a code C is the
maximum bias of any codeword in C.

Lifts Starting from a code C; C Zf(l), we amplify its
distance by considering a lifting operation defined as
follows.

DEFINITION 2.4. (LIFTING FUNCTION) Let g : 2’{ —
Xy and X (k) be a collection of k-uniform hyperedges or walks

of length k on the set X(1). For z € Zi((l), we define
liftf((k) (z) = y such that ys = g(z|s) forall s € X(k),
where z| is the restriction of z to the indices in s.

The lifting of a code C1 C Zf(l) is

lifti(k) (Cy) = {lift‘g((k) (z) |z € C},

which we will also denote Cy. We will omit g and X (k) from
the notation for lifts when they are clear from context.

We will call liftings that amplify the distance of a
code robust.

DEFINITION 2.5. (ROBUST LIFTING) We  say  that
lifti(k) is (69, 6)-robust if for every z,z' € Zi((l) we have

A(z,2') > & = Alift(z), lift(z')) > 0.

For us the most important example of lifting is
when the function g is k-XOR and ¥; = X} = [y,
which has been extensively studied in connection with
codes and otherwise [TS17, STV01, GNW95, ABN 1 92].
In our language of liftings, k-XOR corresponds to the
direct sum lifting.

31n this case, 4 is required to be a prime power.
“Equivalently, the bias of z € {£1}" is bias(z) = Ejc(nzi )
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DEFINITION 2.6. (DIRECT SUM LIFTING) Let C; C IFj
be a base code on X(1) = [n]. The direct sum lifting of a
word z € IF5 on a collection X (k) is dsumyy)(z) = y such
that ys = Y ;e zi forall s € X(k).

We will be interested in cases where the direct sum
lifting reduces the bias of the base code; in [TS17],
structures with such a property are called parity sam-
plers, as they emulate the reduction in bias that occurs
by taking the parity of random samples.

DEFINITION 2.7. (PARITY SAMPLER) Let g: F§ — TF.
We say that lifti(k) is an (eg, €)-parity sampler if for all

z € ]Fg_((l) with bias(z) < eg, we have bias(lift(z)) < e.
2.3 Constraint Satisfaction Problems (CSPs) A k-
CSP instance J(H, P, w) with alphabet size g consists
of a k-uniform hypergraph H, a set of constraints

P={PaC[q]°:a€H}

and a non-negative weight function w € R on the
constraints satisfying Y ..y w(a) = 1.

We will think of the constraints as predicates that
are satisfied by an assignment ¢ if we have o], € Pg,
i.e., the restriction of ¢ on ais contained in P,. We write
SAT;(0) for the (weighted) fraction of the constraints
satisfied by the assignment ¢, i.e.,

Y w(a)-1[o]q € Py
acH

an~w

SAT;(0) =

We denote by OPT(J) the maximum of SAT5(c) over
all o € [q]V(H).

A particularly important class of k-CSPs for our
work will be k-XOR: here the input consists of a k-
uniform hypergraph H with weighting w, and a (right
hand side) vector r € ]Fg . The constraint for each
a € X(k) requires

Y o(i) =ra (mod 2).

ca
In this case we will use the notation J(H, r, w) to refer
to the k-XOR instance. When the weighting w is
implicitly clear, we will just omit it and write J(H, r).

Any k-uniform hypergraph H can be associated

with a pure simplicial complex in a canonical way by
just setting X5 = {b:3Ja € Hand a D b}; notice that
X5(k) = H. We will refer to this complex as the
constraint complex of the instance J. The probability
distribution Il on X5 will be derived from the weight
function w of the constraint:

I (a) =w(a) Vae X5(k)=H.

24 Sum-of-Squares Relaxations and t-local PSD
Ensembles The Sum-of-Squares (SOS) hierarchy gives
a sequence of increasingly tight semidefinite program-
ming relaxations for several optimization problems, in-
cluding CSPs. Since we will use relatively few facts
about the SOS hierarchy, already developed in the
analysis of Barak, Raghavendra and Steurer [BRS11],
we will adapt their notation of t-local distributions to
describe the relaxations. For a k-CSP instance J =
(H,P,w) on n variables, we consider the following
semidefinite relaxation given by t-levels of the SOS hi-
erarchy, with vectors v(g ) forall S C [n] with [S| < ¢,
and all « € [q]°. Here, for a1 € [q]>* and ap € [g]%,
wyoay € [q]*1Y%2 denotes the partial assignment ob-
tained by concatenating a1 and 5.

maximize E

2 Hv(u,a)HZ:| = SDP(j)

aEP,
<U(51f‘¥1)’v(52,l¥2)>

subject to =0
<v(51,m)’v(52,l¥2)> = <v(53,w3)’v(54,w4)>

Y ails,ns, # azlsins,
VS1USy; =S53U8Sy,
K] OQXp = X3 0y

Y llogapl> =1 Vi € [n]

jelal

1

Hv(zz;,@) I

For any set S with |S| < ¢, the vectors v(g ,) induce

a probability distribution g over [q]° such that the as-
signment « € [q]° appears with probability 05,0 1
Moreover, these distributions are consistent on inter-
sections i.e., for T C S C [n], we have HsiT = HT,
where 57 denotes the restriction of the distribution
us to the set T. We use these distributions to define
a collection of random variables Zj, ..., Z, taking val-
ues in [g], such that for any set S with |S| < ¢, the
collection of variables {Z;},_¢ have a joint distribution
s. Note that the entire collection (Z, ..., Z,) may not
have a joint distribution: this property is only true for
sub-collections of size t. We will refer to the collection
(Z4,...,Z,) as a t-local ensemble of random variables.

We also have that that for any T C [n] with
IT| < t—2, and any ¢ € [q]T, we can define a
(t —|T|)-local ensemble (Z1, ..., Z;) by “conditioning”
the local distributions on the event Zr = ¢, where
Zrt is shorthand for the collection {Z;};,. . For any S
with |S| < t — |T|, we define the distribution of Z§
as pg = psur/[{Zr = ¢}. Finally, the semidefinite
program also ensures that for any such conditioning,
the conditional covariance matrix

M(s,a1)(Sp02) = CoOV (1[2/51 =], 1[Zg, = 062])
is positive semidefinite, where |S1], |Sz2| < (t — |T])/2.
Here, for each pair Sq, S, the covariance is computed
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using the joint distribution p o . In this paper, we
. . 192

will only consider t-local ensembles such that for every

conditioning on a set of size at most t — 2, the condi-

tional covariance matrix is PSD. We will refer to these

as f-local PSD ensembles. We will also need a simple

corollary of the above definitions.

FACT 2.1. Let (Z1,...,Zy) be a t-local PSD ensemble, and
let X be any collection with X(1) = [n]. Then, for all
s < t/2, the collection {Za} e x(<s) is a (t/s)-local PSD
ensemble, where X(< s) = Ji_; X(i).

For random variables Zg in a t-local PSD ensemble, we
use the notation {Zg} to denote the distribution of Zg
(which exists when |S| < t). We also define Var[Zs] as

Zae[q]s Var[l [ZS = 0(]]

Pseudo-expectation Formulation An equivalent way
of expressing this local PSD ensemble is through the
use of a pseudo-expectation operator which is also a
language commonly used in the SOS literature (e.g.,
[BHK*16, BKS17]). The exposition of some of our
results is cleaner in this equivalent language. Each
variable Z; with i € [n] is modeled by a collection
of indicator local random variables ° {Z; ,} aclg) With
the intent that Z;, = 1 iff Z; = a. To ensure they
behave similarly to indicators we add the following
restrictions to the SOS formulation:

le,u =Z, Vi € [n],a € [q]
2 Zi,a =1 Vi € [}’Z}
a€[q]
Let R =R[Zy,..., Zy, ) be the ring of polynomials on

{Zis}icp)c)q)- We will write R=4 for the restriction of
R to polynomials of degree at most d. A feasible so-
lution at the 2¢-th level of the SOS hierarchy is a linear
operator E : R=% — R called the pseudo-expectation
operator. This operator satisfies the following problem
independent constraints: (i) E[1] = 1 (normalization)
and (ii) E[P?] > 0 for every P € R~! (non-negative on
Sum-of-Squares) °. It also satisfies the problem depen-
dent constraints

E {Z%u . P} =E(Z;, P] and

E|lY z,.] Q| =E[Q],

a€lq]

Note that {Zirﬂ}iE[il],ﬂE[
lation.
5From condition (ii), we can recover the PSD properties from the
local PSD ensemble definition.

g are formal variables in the SOS formu-

foreveryi € [n],a € [q], P € R=*2and Q € R=?"1.
Note that for any collection of local random variables
Z,..., Zl-j with j < 2t we have the joint distribution

]P(Zil =4ay,... ,Zl']. = Ll]) = IE {Zil,ﬂl v Zij,aj} .

Even though we may not have a global distribution
we can implement a form of pseudo-expectation con-
ditioning on a random variable Z; taking a given
value a € [q] as long as P[Z; =a] = E[Z;,] >
0. This can be done by considering the new op-
erator Bz _,: R<*72 — R defined as ]E|Zi:u[~] =
]E[le 2/ IE[ZZ2 o), which is a valid pseudo-expectation
operator at the (2t — 2)-th level. This conditioning can
be naturally generalized to a set of variables S C [n]
with |S| < t satisfying Zs = a for some a € [g]°.

Notation We make some systematic choices for our
parameters in order to syntactically stress their quali-
tative behavior.

- 1/2 — By is a lower bound on the distance of the
base code C;.

- 1/2 — B is a lower bound on the distance of the
lifted code Cy.

- u, 8,7 are parameters that can be made arbitrarily
small by increasing the SOS degree and/or the
quality of expansion.

- ¢,0 can be arbitrary error parameters.

- A > Ay > --- are the eigenvalues of a graph’s
adjacency matrix (in [—1, 1]).

- 01 > 0p > - - - are the singular values of a graph’s
adjacency matrix (in [0, 1]).

We also make some choices for words ?{nd local
variables to distinguish the ground space IF, W form

the lifted space lF;g(k).

-z,7,7", ...

1)

are words in the ground space lFi( .

- y,y,y",... are words in the lifted space IFg(k).

-Z:=1{Zy,...,2,} is a local PSD ensemble on the
ground set X(1).

-Y = {Ys; = (lift(Z)), | s € X(k)} is a local
ensemble on X (k).

3 Proof Strategy and Organization

As discussed earlier, we view the problem of finding
the closest codeword(s) as that of finding suitable solu-
tion(s) to an instance of a CSP (which is k-XOR in the
case of direct sum). We now discuss some of the tech-
nical ingredients required in the decoding procedure.
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Unique Decoding. Given C; = dsumy(C1)
with the lifting function as k-XOR, we can view the
problem of finding the closest codeword to a given 7
as that of finding the unique z € C; satisfying the max-
imum number of equations of the form ) ;c,z; = s
(mod 2), with one equation for each s € X(k). Us-
ing the results of [AJT19], it is indeed possible to find
z' € FF}} such that A(dsum(z’),7) < A(dsum(z),7) +«.
We then argue that z’ or its complement z/ must be
close to z € C; which can then be recovered by unique
decoding. Here, z is such that y = dsum(z) is the
unique codeword closest to 7.

If this is not the case, then z — z/ must have
bias bounded away from 1, which would imply by
robustness (parity sampling property of the hyper-
graph) that dsum(z — z’) has bias close to zero i.e.,
A(dsum(z),dsum(z’)) ~ 1/2. However, if A(7,Cy) <
1, then we must have

A(dsum(z),dsum(z’))

IN

A(dsum(z),7)
+ A(dsum(z'), )
< 2y +e,

which leads to a contradiction if 7 is significantly below
1/4 and ¢ is sufficiently small.

List Decoding. We start by describing an abstract
list decoding framework which only assumes two gen-
eral properties of a lifting hft‘%’( ) (i) it is distance am-
plifying (robust) and (ii) it is amenable to SOS rounding
(tensorial).

Suppose 7 € lFi((k) is a word promised to be
(1/2 — \/B)-close to a lifted code C; = lift(C;) where
Cy has distance at least 1/2 — § and C; has distance at
least 1/2 — By. By list decoding j, we mean finding a
list £ C Cj of all codewords (1/2 — /B)-close to 7.

Our framework for list decoding i/ consists of three
stages. In the first stage, we set up and solve a natu-
ral SOS program which we treat abstractly in this dis-
cussion. One issue with using a rounding algorithm
for this relaxation to do list decoding is that this nat-
ural SOS program may return a solution that is “con-
centrated”, e.g., a SOS solution corresponding to sin-
gle codeword in £. Such a solution will of course
not have enough information to recover the entire list.
To address this issue we now ask not only for fea-
sibility in our SOS program but also to minimize a
convex function ¥ measuring how concentrated the
SOS solution is. Specifically, if Z is the PSD ensem-
ble corresponding to the solution of the SOS program
and if Y is the lifted ensemble, then we minimize

\F = IEs,tEX(k) []E(Yth)z}.
The key property of the function ¥ is that if the

SOS solution “misses” any element in the list £ then
it is possible to decrease it. Since our solution is a
minimizer 7 of ¥, this is impossible. Therefore, our
solution does “cover” the list £. Even with this SOS
cover of £, the list decoding task is not complete. So far
we have not talked about rounding, which is necessary
to extract codewords out of the (fractional) solution.
For now, we will simply assume that rounding is viable
(this is handled by the second stage of the framework)
and resume the discussion.

Unfortunately, the covering guarantee is some-
what weak, namely, for y € £ we are only able to ob-

tain aword i’ € lF;g(k) with weak agreement |(y/,y)| >
2 - B. Converting a word y’ from the cover into an ac-
tual codeword y is the goal of the third and final stage
of the list decoding framework, dubbed Cover Purifi-
cation. At this point we resort to the robustness prop-
erties of the lifting and the fact that we actually have
“coupled” pairs (z,y = lift(z)) and (Z/,y’ = lift(z"))
for some z,z' € IFé((l). Due to this robustness (and
up to some minor technicalities) even a weak agree-
ment between y and ¥y’ in the lifted space translates
into a much stronger agreement between z and z’ in
the ground space. Provided the latter agreement is suf-
ficiently strong, z’ will lie in the unique decoding ball
centered at z in C;. In this case, we can uniquely re-
cover z and thus also y = lift(z). Furthermore, if C;
admits an efficient unique decoder, we can show that
this step in list decoding i can be done efficiently.
Now we go back to fill in the rounding step, which
constitutes the second stage of the framework, called
Cover Retrieval. We view the SOS solution as com-
posed of several “slices” from which the weak pairs
(z/,y") are to be extracted. Note that the framework
handles, in particular, k-XOR liftings where it provides
not just a single solution but a list of them. Hence,
some structural assumption about X (k) is necessary to
ensure SOS tractability. Recall that random k-XOR in-
stances are hard for SOS [Gri01, KMOW17]. For this
reason, we impose a sufficient tractability condition on
X (k) which we denote the two-step tensorial property.
This notion is a slight strengthening of a tensorial prop-
erty which was (implicitly) first investigated by Barak
et al. [BRS11] when k = 2 and later generalized for ar-
bitrary k > 2 in [AJT19]. Roughly speaking, if X (k) is
tensorial then the SOS local random variables in a typi-
cal slice of the solution behave approximately as prod-
uct variables from the perspective of the local views
s € X(k). A two-step tensorial structure is a tensorial
structure in which the local random variables between
pairs of local views s, t € X (k) are also close to product

7 Actually an approximate minimizer is enough in our application.
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variables, which is an extra property required to per-
form rounding in this framework. With the two-step
tensorial assumption, we are able to round the SOS so-
lution to obtain a list of pairs (z/,y’) weakly agreeing
with elements of the code list that will be refined dur-
ing cover purification.

Finding suitable hypergraphs. Fortunately, ob-
jects satisfying the necessary tensorial and robustness
assumptions do exist. HDXs were shown to be tenso-
rial in [AJT19], and here we strengthen this result to
two-step tensorial as well as prove that HDXs possess
the particular robustness property of parity sampling.
Walks on expander graphs are already known to be ro-
bust [TS17], and we use a modified version of the meth-
ods in [AJT19] to show they are also two-step tensorial.
For both HDXs and expander walks, we describe how
to use known constructions of these objects to get ex-
plicit direct sum encodings that can be decoded using
our abstract framework.

Reduction from direct product to direct sum. Fi-
nally, we describe how to use list decoding results for
direct sum codes to obtain results for direct product
codes. Given a direct product lifting C; with the hy-
pergraph X(k), if A(i,y) < 1—¢efory € C, then we
must have that

Pr [ys =7s] =

E m > e,
seX (k) Xtlys +7s)]| > ¢

E

seX(k) [Cs
Since x¢(ys) can be viewed as a direct sum lifting,
we get by grouping subsets t by size that there must
exist a size i such that the direct sum lifting at X(7)
has correlation at least ¢ with the word ' defined as
vy = xt(Js) for all t € X(i). We can then apply the list
decoding algorithm for direct sum codes on X(i). A
standard concentration argument can also be used to
control the size i to be approximately k/2.

Organization of Results In Section 4, we show how
the direct sum lifting on HDXs can be used to reduce
bias, establishing that HDXs are parity samplers. This
will give a very concrete running example of a lifting
that can be used in our framework. We remark in Sec-
tion 5 how this lifting can be used in the simpler regime
of unique decoding using a k-CSP algorithm on ex-
panding instances [AJT19]. The abstract list decoding
framework together with its concrete instantiation to
HDXs and expander walks are given in the full version
of this article.

4 Pseudorandom Hypergraphs and Robustness of
Direct Sum

The main robustness property we will consider is par-
ity sampling applied to the case of the direct sum lift-

ing. As this section focuses on this specific instance of a
lifting, here we will say that a collection X (k) is a parity
sampler if its associated direct sum lifting dsumyy, is
a parity sampler. Recall that for such a parity sampler,
the direct sum lifting brings the bias of a code close to
zero, which means it boosts the distance almost to 1/2.

41 Expander Walks and Parity Sampling A known
example of a parity sampler is the set X (k) of all walks
of length k in a sufficiently expanding graph, as shown
by Ta-Shma.

THEOREM 4.1. (PARITY SAMPLERS [TS17]) Suppose G
is a graph with second largest singular value at most A, and
let X (k) be the set of all walks of length k on G. Then X (k)

is an (eo, (o + 2A) %72 -parity sampler.

Our goal in this section is to prove a similar result
for high-dimensional expanders, where X (k) is the set
of k-sized faces. We begin with an overview of some
useful properties of HDXGs.

4.2 High-dimensional Expanders A high-
dimensional expander (HDX) is a particular kind
of simplicial complex satisfying an expansion re-
quirement. We recall the notion of high-dimensional
expansion considered in [DK17]. For a complex
X(<d)ands € X(i) for some i € [d], we denote by X,
the link complex

X; = {t\s|sCteX}.

When |s| < d — 2, we also associate a natural
weighted graph G(Xs) to a link X,, with vertex set
Xs(1) and edge set X;(2). The edge weights are taken
to be proportional to the measure I, on the complex
Xs, which is in turn proportional to the measure I 5
on X. The graph G(Xs) is referred to as the skeleton of
Xs.

Dinur and Kaufman [DK17] define high-
dimensional expansion in terms of spectral expansion
of the skeletons of the links.

DEFINITION 4.1. (y-HDX FROM [DK17]) A simplicial
complex X(< d) is said to be y-High Dimensional Expander
(v-HDX) if for every 0 < i < d — 2 and for every s € X(i),
the graph G(X. ) satisfies 02(G(Xs)) < 7.

We will need the following theorem relating < to
the spectral properties of the graph between two layers
of an HDX.

THEOREM 4.2. (ADAPTED FROM [DK17]) Let X bea -
HDX and let My 4 be the weighted bipartite containment
graph between X (1) and X (d), where each edge ({i},s) has
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weight (1/d)I1;(s). Then the second largest singular value
07 of My 4 satisfies

1
‘722 < p] +O(dy).

We will be defining codes using HDXs by asso-
ciating each face in some X (i) with a position in the
code. The distance between two codewords does not
take into account any weights on their entries, which
will be problematic when decoding since the distribu-
tions I1; are not necessarily uniform. To deal with this
issue, we will work with HDXs where the distributions
I1; satisty a property only slightly weaker than unifor-
mity.

DEFINITION 4.2. (FLATNESS (FROM [DHK"19])) We
say that a distribution I1 on a finite probability space () is
D-flat if there exits N such that each singleton w € ) has
probability in {1/N,...,D/N}.

Using the algebraically deep construction of
Ramanujan complexes by Lubotzky, Samuels and
Vishne [LSV05b, LSV05a], Dinur and Kaufman [DK17]
showed that sparse v-HDX do exist, with flat distri-
butions on their sets of faces. The following lemma
from [DHK ™ 19] is a refinement of [DK17].

LEMMA 4.1. (EXTRACTED FROM [DHK™19]) For ev-
ery v > 0and every d € IN there exists an explicit infinite
family of bounded degree d-sized complexes which are

v-HDXs. Furthermore, there exists a D < (1/7)°! O/7%)
such that X(@)]

X(d

~qg = D,

[ X(1)]

the distribution 11y is uniform, and the other distributions
Iy, ..., 11y are D-flat.

For a D-flat distribution I1;, we can duplicate each
face in X(7) at most D times to make IT; the same as a
uniform distribution on this multiset. We will always
perform such a duplication implicitly when defining
codes on X(i).

4.3 HDXs are Parity Samplers To prove that suffi-
ciently expanding HDXs are parity samplers, we es-
tablish some properties of the complete complex and
then explore the fact that HDXs are locally complete 8.
We first show that the expectation over k-sized edges
of a complete complex X on t vertices approximately
splits into a product of k expectations over X(1) pro-
vided t > k2.

8This a recurring theme in the study of HDXs [DK17].

CLAIM 4.1. (NEAR INDEPENDENCE) Suppose X is the
complete complex of dimension at least k with 11 uniform
over X (k) and T1y uniform over X(1) = [t]. For a function
f:X(1) =R, let

]E5~Hk [Hf(

i)] and = E;up, [f(D)].

ics
Then )
k
= 18] < 11
Proof. Let
E={(i,...,ix) € X(1)¥ | iy,..., i are distinct},
(5:' ]P [(l],,lk)¢g], and
11,...,lkNH1
n=Eq, iyexamelfi) - fl)]-
Then
=K im [f(n) < f(ix)]
=(1=0)-E, ieelf(ir) - fir)]
+0-B iexa )k\g[f(ll) - f(ix)]

=(1-6) - m+é-1,

where the last equality follows since 11 is uniform
and the product in the expectation is symmetric. As
i1,...,Ix are sampled independently from I1;, which is
uniform over X(1),

5—1_}1( )

so we have

2] )

]<k

(ZIIfIIw)-

= o] = o e =l <
a

We will derive parity sampling for HDXs from
their behavior as samplers. A sampler is a structure
in which the average of any function on a typical local
view is close to its overall average. More precisely, we
have the following definition.

DEFINITION 4.3. (SAMPLER) Let G = (U,V,E) be a
bipartite graph with a probability distribution g on the
edges E. Let Iy and 11y be the marginal distributions of I1p
on U and V, respectively. We say that G is an (1, d)-sampler
if for every function f: V — [0,1] with y = Ey1, f (v),

o, o f (0) =l 2 ) < 6.
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To relate parity sampling to spectral expansion,
we use the following fact establishing that samplers of
arbitrarily good parameters (77, §) can be obtained from
sufficiently expanding bipartite graphs. This result is
essentially a corollary of the expander mixing lemma.

FACT 4.1. (FROM DINUR ET AL. [DHK"19]) A
weighted bipartite graph with second singular value
oy isan (1,05 /%) sampler.

Using Claim 4.1, we show that the graph be-
tween X(1) and X (k) obtained from a HDX is a parity
sampler, with parameters determined by its sampling
properties.

CLAIM 4.2. (SAMPLER BIAS AMPLIFICATION) Let X(<
d) be a HDX such that the weighted bipartite graph M, 4
between X (1) = [n] and X (d) is an (1, §)-sampler. For any
1 <k <d, ifz € IF} has bias at most &g, then

2

bias(dsumy g (2)) < (co + )" + % +6.
Proof. By downward closure, the subcomplex X|; ob-
tained by restricting to edges contained within some
t € X(d) is a complete complex on the ground set t.
Since M 4 is an (1, )-sampler, the bias of z|¢ must be
within # of bias(z) on all but J fraction of the edges t.
Hence

Zjy etz

= ‘]EtNIIdlE{il,...,ik}ex|l(k)(—1)Zf1+"'+zik

Zip etz

< ’]EtNHd]E{il,...,ik}eXh(k) (-1 ikﬂ[bias(z‘(>§€0+ﬂ] ‘

+ P [bias(z|¢) > eg + 7]
t~I1y

(71)2,‘1+“'+Z,‘k + 6.

< E¢ort, Lipias(z| ) <eot1] ‘E{il,...,ik}exmk)

By Claim 4.1, the magnitude of the expectation of
(—1)% over the edges of size k in the complete complex

Xy is close to ‘lEiNX“(l)(—l)Zi ’, which is just the bias
of z|¢. Then

bias(dsumy ¢ (2)) < E x(d)Lpias(z|,) <eo-+] Pias(z[e)*
k2
+ 48
2

k
S(m+qﬁ+?;+&

concluding the proof. a
Now we can compute the parameters necessary for

a HDX to be an (g, €)-parity sampler for arbitrarily
small e.

LEMMA 4.2. (HDXS ARE PARITY SAMPLERS) Let 0 <
e<e<1,0<0<(1/g)—1,andk > log(1+9)£0(£/3).

If X(< d) is a v-HDX with d > max{3k?/¢,6/(0%¢3¢)}
and v = O (1/d?), then X (k) is an (eq, €)-parity sampler.

Proof. Suppose the graph M; ; between X (1) and X(d)
is an (7,6)-sampler. We will choose d and v so that
n = Beg and 6 = ¢/3. Using Fact 4.1 to obtain a sampler
with these parameters, we need the second singular
value 0, of M; 4 to be bounded as

oy < 650\/5

By the upper bound on ¢ from Theorem 4.2, it suffices
to have

1 %3¢

7 T0dy) = —~,

which is satisfied by taking d > 6/ (6%¢3¢) and v =
O (1/d2).

By Claim 4.2, X (k) is an (g, (9 + 7)F + k2/d + 6)-
parity sampler. The first term in the bias is (eg + 17)F =
(1 + 0)ep)¥, so we require (1+8)eg < 1 to amplify
the bias by making k large. To make this term smaller
than ¢/3, k must be at least log ; | g, (¢/3). We already
chose § = ¢/3, so ensuring d > 3k?/e gives us an
(g9, €)-parity sampler. 0

4.4 Rate of the Direct Sum Lifting By applying the
direct sum lifting on a HDX to a base code C; with
bias &g, parity sampling allows us to obtain a code
Cx = dsumyy)(C1) with arbitrarily small bias ¢ at the
cost of increasing the length of the codewords. The
following lemma gives a lower bound on the rate of
the lifted code Cy.

LEMMA 4.3. (RATE OF DIRECT SUM LIFTING FOR HDX)
Let eg € (0,1) and 6 € (0,(1/¢g) — 1) be constants, and
let Cy be an eg-biased binary linear code with relative
rate r1. For e € (0,¢o], suppose k, d, and vy satisfy the
hypotheses of Lemma 4.2, with k and d taking the smallest
values that satisfy the lemma. The relative rate ry of the code
Cx = dsumgy(C1) with bias e constructed on a HDX
with these parameters satisfies

e > .70((10g(1/€))4/(€272))'
If v = C/d? for some constant C, then this becomes
€2 > O((log(1/¢))'?/€%)

fe=m <<log<1/e>>4

Proof. Performing the lifting from C; to C; does not
change the dimension of the code, but it does increase
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the length of the codewords from n to |X(k)|, where
|X (k)| is the size of the multiset of edges of size k af-
ter each edge has been copied a number of times pro-
portional to its weight. Using the bound and flatness
guarantee from Lemma 4.1, we can compute

rmn r
7"k = 2 o/
X (k)| — D?

where D < (1/')/)0("12/72). Treating ¢y and 6 as
constants, the values of k and d necessary to satisfy
Lemma 4.2 are

k= log(; gy, (¢/3) = O(log(1/¢))

and

B 3k2 6 B (log(1/¢))?
dmax{ 92€0€}O<5>.

Putting this expression for d into the inequality for D
yields

D < (1/)0log(1/e))*/(e7%))

from which the bounds in the lemma statement follow.

O

From Lemma 4.3, we see that if C; has constant
rate, then C; has a rate constant with respect to n.
However, the dependence of the rate on the bias ¢ is
quite poor. This is especially striking in comparison
to the rate achievable using Ta-Shma’s expander walk
construction described in Section 4.1.

LEMMA 4.4. (RATE FOR WALKS [TS17]) Let gy € (0,1)
be a constant and Cy be an ey-biased binary linear code with
relative rate r1. Fix € € (0,&g]. Suppose G is a graph
with second largest singular value A = ¢go/2 and degree
d < 4/A% Letk = 2logy,, (¢) + 1 and X (k) be the set
of all walks of length k on G. Then the direct sum lifting
Cx = dsumyy(C1) has bias e and rate ri. > 1 - O,

Proof. From Theorem 4.1 with this choice of A and k,
the direct sum lifting Cy has bias e. For the rate, observe
that the lifting increases the length of the codewords
from n to the number of walks of length k on G, which
is nd*. Thus the rate of Cy is

rmn r

=k =

As d < 16/¢y, which is a constant, and k =
O(log(1/¢)), the rate satisfies r; > ry - £9(1). 0

5 Unique Decoding

In this section, we will show how the parity sampling
of dsumy;) and the ability to solve k-XOR instances
with X (k) as their constraint complex allow us to de-
code Cy = dsumyy(C1), where C; € FJ is a linear
code. With a more technical argument, we can also
handle non-linear codes and different kinds of lifting,
but for clarity of exposition we restrict our attention to
the preceding setting.

5.1 Unique Decoding on Parity Samplers Our ap-
proach to unique decoding for Cj is as follows. Sup-

X(k)

pose a received word § € IF, " is close to y* € C,
which is the direct sum lifting of some z* € C; on X(k).
We first find an approximate solution z € FF] to the k-
XOR instance J(X(k), j) with predicates

Y zi=7s (mod2)

i€s

for every s € X(k). Note that z being an approxi-
mate solution to J(X(k),7) is equivalent to its lifting
dsumy) (z) being close to 7. In Lemma 5.1, we show
that if dsumyy) is a sufficiently strong parity sampler,
either z or its complement z will be close to z*. Run-
ning the unique decoding algorithm for C; on z and z
will recover z*, from which we can obtain y* by apply-
ing the direct sum lifting.

LEMMA5.1. Let 0 < B <1/2and 0 < e < 1/4—B/2.
Suppose Cy is a linear code that is efficiently uniquely
decodable within radius 1/4 — ug for some yg > 0, and
Cx = dsumyy (C1) where dsumy ) isa (1/2 + 2po, 2B)-

parity sampler. Let §j € ]F? &) be a word that has distance

strictly less than (1/4 — B/2 — ¢€) from Cy, and let y* =
dsumy;y) (z*) € Cy be the word closest to .
Then, for any z € IF5 satisfying

_B
2

4

N

A(dsumy ) (z), 7) <

we have either
1 1

A(z%, )<f—y0 or A(z" z)<f—y0

In particular, either z or z can be efficiently decoded in Cq to
obtain z* € (;.

REMARK 5.1. Since dsumyyy isa (1/2 + 2po, 2B)-parity
sampler, the code Cy has distance A(Cy) > 1/2 — B. This
implies that z* € Cy is unique, since its direct sum lifting
y* is within distance A(Cy) /2 of §.

Proof. Lety = dsumyy(z). We have

Aly*y) <AW" 7))+ Ay, § )<f—ﬁ
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By linearity of dsumy), A(dsumy,(z* —z),0) <
1/2 — B, so bias(dsumy(z* —z)) > 2B. From the
(1/2+ 2pp, 2B)-parity sampling assumption, bias(z* —
z) > 1/2+ 2pp. Translating back to distance, either
A(z*,z) < 1/4 — pg or A(z*,z) > 3/4+ o, the latter
being equivalent to A(z*,z) < 1/4 — uo. 0

To complete the unique decoding algorithm, we
need only describe how a good enough approximate
solution z € FF} to a k-XOR instance J(X(k), #) allows
us to recover z* € C; provided 7 is sufficiently close to
Ck. We will rely on the following observation relating
satisfiability and distance.

REMARK 5.2.

SATZT(X(k),y") (Z) =1- A(dsumX(k) (Z),:l])
COROLLARY 5.1. Suppose Cy, X (k), z*, y* and §j are as in
the assumptions of Lemma 5.1. If z € IF} is such that

SAT5(x(k),7)(2) = OPT5(x(k),9

g) 8

then unique decoding either z or z gives z* € Cq. Further-
more, if such a z can be found efficiently, so can z*.

Proof. By the assumption on z, we have

1 — A(dsumy ) (z),§) =

implying A(dsumy ) (z),7) < A(y*,§) + ¢. Using the
assumption that 7 has distance strictly less than (1/4 —
B/2 —¢) from Cy, we get that A(dsumyy)(z),7) <
1/4 — B/2in which case we are under all the conditions
required in Lemma 5.1. a

5.2 Concrete Instantiations

High Dimensional Expanders If the collection X (k) is
part of a sufficiently expanding v-HDX, we can use the
following algorithm to approximately solve the k-XOR
instance.

THEOREM 5.1. ([AJT19]) Let J be an instance of MAX k-
CSP on n variables taking values over an alphabet of size
q, and let ¢ > 0. Let the simplicial complex X5 be a y-
HDX with v = £° (1/(kq)) k). Then there is an
algorithm based on (k/ e)OW) . gOW) levels of the Sum-of-
Squares hierarchy which produces an assignment satisfying
at least an (OPT — ¢€) fraction of the constraints.

If X is a HDX with the parameters to both satisfy
this theorem and be a (1/2 + 2,2pB) parity sampler,
we can achieve efficient unique decodability of C, =
dsumx(k) (Cl)

COROLLARY 5.2. Let X(< d) be a d-dimensional -

HDX satisfying the premises of Lemma 4.2 that would

quarantee that X (k) is a (1/2 4 2o, 2pB)-parity sampler,
2

namely, for some 0 < 6 < T — 1, we have k >

2
108 110 (14220 (26/3): 4 = max{ ¥, gzt |
and v = O(1/d?).
Then, assuming Ci is efficiently unique decodable
within radius 1/4 — po, one can uniquely decode C;, =
dsumx(k)(Cl) within distance 1/4 — B/2 — € in time

n(k/ £) 0200 2 where we have

e = (- (26)°%))o0,
Expander Walks In the full version of this article, we
show that the algorithmic results of [AJT19] can be
made to work when X (k) is the set of walks of length
k of a suitably strong expander. In particular, we have
the following.

THEOREM 5.2. Let G = (V, E) be a graph with 0»(G) =
A, and k a given parameter. Let J be a k-CSP instance
over an alphabet of size k whose constraint graph is the
set of walks in G of length k. Let ¢ > 0 be such that
A=0(/ (1 ).

kk7>

Then there exists an algorithm based on O(
levels of the Sum-of-Squares hierarchy which produces an
assignment satisfying at least an (OPT — €)-fraction of the
constraints.

Using this result, one can efficiently unique decode
Cx = dsumy;)(C1) when X(k) is the set of walks of
length k on an expander strong enough to achieve the
necessary parity sampling property.

COROLLARY 5.3. Let Cq be a code that is efficiently unique
decodable within radius 1/4 — g for some pg > 0. Let G
be a graph satisfying 0»(G) = A, with 1/2 + pg +2A < 1.
Letk > 2108y /514420 (2B) + 1, and define X (k) to be the
set of all walks in G of length at most k—mnote that dsumy)
isa (1/2+ 2, 2B)-parity sampler by Theorem 4.1.

The code Cy = dsumyy) (C1) can be efficiently decoded
within radius 1/4 — /2 — e in time no(24k'k7/€5), where we

have
=O(A-K>-25).

Here we are assuming that uniquely decoding C; within radius

1/4 — o takes time less than this.

Copyright (© 2020 by SIAM
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REMARK 5.3. In both Corollary 5.2 and Corollary 5.3,
when yo and B are constants, k can be constant, which
means we can decode Cy from a radius arbitrarily close to
1/4 — B/2 if we have strong enough guarantees on the
quality of the expansion of the high-dimensional expander
or the graph, respectively.

Notice, however, that the unique decodability radius of
the code Cy is potentially larger than 1/4 — B/2. Our choice
of (1/2 + 2ug,2p)-parity sampling is needed to ensure
that the approximate k-CSP solutions lie within the unique
decoding radius of C1. Since the bias of the code Cq will
generally be smaller than the parity sampling requirement
of 1/2 4 2uy, the bias of the code Cy will be smaller than
2pB. In this case, the maximum distance at which our unique
decoding algorithm works will be smaller than A(Cy) /2.
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