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The rapid development of vehicular network and autonomous driving technologies provides opportunities

to significantly improve transportation safety and efficiency. One promising application is centralized intel-

ligent intersection management, where an intersection manager accepts requests from approaching vehicles

(via vehicle-to-infrastructure communication messages) and schedules the order for those vehicles to safely

crossing the intersection. However, communication delays and packet losses may occur due to the unreli-

able nature of wireless communication or malicious security attacks (e.g., jamming and flooding), and could

cause deadlocks and unsafe situations. In our previous work, we considered these issues and proposed a

delay-tolerant intersection management protocol for intersections with a single lane in each direction. In

this work, we address key challenges in efficiency and deadlock when there are multiple lanes from each

direction, and propose a delay-tolerant protocol for general multi-lane intersection management. We prove

that this protocol is deadlock free, safe, and satisfies the liveness property. Furthermore, we extend the traffic

simulation suite SUMO with communication modules, implement our protocol in the extended simulator,

and quantitatively analyze its performance with the consideration of communication delays. Finally, we also

model systems that use smart traffic lights with various back-pressure scheduling methods in SUMO, includ-

ing the basic back-pressure control, the capacity-aware back-pressure control, and the adaptive max-pressure

control. We then compare our delay-tolerant intelligent intersection protocol with smart traffic lights that use

the three back-pressure scheduling methods, in the case of a network of interconnected intersections. Sim-

ulation results demonstrate that our approach significant outperforms the smart traffic lights under normal

operation (i.e., when the communication delay is not too large).
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1 INTRODUCTION

Intersectionmanagement is one of themost important and challenging problems in transportation,
as it plays a critical role in both traffic safety and efficiency [10, 23]. Traditionally, an intersection
is controlled by either traffic lights with a pre-defined schedule or by stop signs. It is difficult for
such systems to adapt to real-time traffic [10]. To make the traffic lights “smarter,” several works
try to adapt traffic signals to real-time situations by estimating traffic conditions [18, 22, 25] or
gathering congestion information (e.g., queue length) from neighboring intersections [15, 16, 27,
28, 30, 32]. However, these smart traffic light systems still face performance bottlenecks, as the
scheduling is not fine grained to vehicle level and it is difficult to adjust the scheduling period
under different traffic patterns.
With the development of autonomous driving and vehicular communication technologies, in-

telligent intersections leveraging vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munications have shown great promise. More specifically, in an intelligent intersection based on
vehicular network communication, traffic lights are replaced with wireless messages exchanged
among vehicles and infrastructures. Based on these messages, vehicles can take wiser actions to
improve traffic safety and efficiency. Such systems can be either centralized or distributed. In a
centralized system, an intersection manager accepts requests from vehicles and decides the order
for them to cross the intersection [5, 6, 12, 19, 20, 35]. In a distributed system, vehicles negotiate
among themselves to decide the crossing order [3, 4, 24].
The previous works on vehicular network based intelligent intersections assume perfect com-

munication among vehicles and infrastructures, and do not explicitly address communication de-
lays. However, significant packet delays and losses could happen in a vehicular network under
dense traffic [9, 13, 31]. The packet delay can be as long as several hundreds of milliseconds in
the worst case [31]. Furthermore, the issues could be even more severe when the network is un-
der malicious jamming or flooding attacks [8, 34]. In these cases, the previous works that do not
consider communication delays or losses may lead to system deadlock or unsafe situations.
Therefore, we believe that it is essential to consider communication delays and losses in de-

signing vehicular network based intelligent intersections, and to ensure that the system design
satisfies the following properties:

• Deadlock free: The system should not have any deadlocks, even when there are communi-
cation delays or packet losses.

• Liveness: Every vehicle that sends requests should eventually cross the intersection, as long
as the communication delays can be bounded (taking into consideration resendingmessages
after packet losses), and the intersectionmanager will try to schedule vehicles from any lane
eventually (i.e., no starving in scheduling policy).

• Safety: Vehicles with conflicting routes (i.e., routes that may cross each other within the
intersection) may never enter the intersection at the same time.1

1It should be noted that the vehicles are assumed to have autonomous driving capabilities and may detect or even avoid in-

coming collisions in most cases. Nevertheless, conflicting routes could still lead to unsafe situations given the limitations of

autonomous driving and are likely to cause deadlocks even without accidents. Furthermore, we also make this assumption

based on practical consideration of vehicle passengers’ mental acceptance.
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Fig. 1. Design, simulation, and verification of delay-tolerant multi-lane intelligent intersectionmanagement.

In our previous work [33], we proposed a delay-tolerant protocol for a four-way intersection
with a single lane in each direction. We verified its deadlock-free, liveness, and safety properties,
and analyzed its performance based on simulations.
In this article, we present a delay-tolerant intelligent intersection management protocol for gen-

eral multi-lane intersections, develop modeling, simulation, and verification techniques for ana-
lyzing the protocol’s properties and performance (Figure 1), and also implement a smart traffic
light system for comparison. More specifically, the main contributions of this article include the
following:

• We design a general delay-tolerant protocol for intelligent intersection management. The
protocol addresses key efficiency and deadlock challenges when there are multiple lanes
from each direction.

• We extend the widely used traffic simulation suite SUMO [1] with communications modules
and implement our protocol in the extended simulator. We analyze the protocol’s perfor-
mance for a single intersection and for a network of interconnected intersections, with the
consideration of communication delays.

• We verify the deadlock-free, liveness, and safety properties of our protocol.
• We also implement a smart traffic light system with back-pressure scheduling in SUMO,

and compare its performance with our vehicular network based protocol.

The rest of the article is organized as follows. In Section 2, we introduce background information,
including smart traffic lights with back-pressure scheduling and basic ideas of vehicular network
based intelligent intersections. In Section 3, we present our delay-tolerant protocol for general
multi-lane intersections. We first present the system model and review of our previously proposed
single-lane protocol, then we discuss the challenges in addressing multiple lanes, and finally we
present the details of our multi-lane protocol. In Section 4, we verify the deadlock-free, liveness,
and safety properties of our multi-lane protocol. In Section 5, we show the simulation results of
our protocol and compare them with smart traffic lights. We conclude the article in Section 6.

2 BACKGROUND

Traffic lights have long been used to control traffic and ensure safety. Traditional traffic lights
follow a pre-defined schedule that is sometimes optimized based on historic data [14]. However,
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Fig. 2. An example intersection.

Fig. 3. Typical traffic light phases for a four-way intersection.

the pre-defined schedule cannot adapt well to varying traffic flows [32] and may not perform well
under high traffic volumes and asymmetric traffic patterns. Recently, the concept of smart traffic
lights has been proposed to improve traffic management performance [15, 16, 27, 28, 30, 32].
However, smart traffic lights still face bottlenecks, as the scheduling is not fine grained to vehicle

level (microscopic traffic level) and it is not easy to adjust the scheduling period under different
traffic patterns. The development of vehicular communication and autonomous driving provides
a more fine-grained scheduling of the intersection and could achieve better performance. Both
centralized and distributed intersection management have been proposed in the literature [3, 4,
12, 19, 20, 24, 35].
Next, we will first briefly describe the intersection model to help us introduce smart traffic lights

(more details of the intersection model will be presented in Section 3 with our delay-tolerant pro-
tocol). We will then introduce the basic ideas of vehicular network based intelligent intersections.

2.1 Brief Intersection Model

In this article, we use the following definitions to represent an intersection (illustrated in Figure 2).
An intersection I = (W,P ) consists of a set of waysW = {ω1,ω2, . . . ,ω |W | } and a set of feasible
paths P = {π1,π2, . . . ,π |P | }. For a typical four-way intersection, the number of ways |W| equals
to 4. Each wayωi contains a set of lanes, denoted byLi = {λi1, λi2, . . . , λi |Li | }. Then a feasible path
πk is defined as an ordered pair of lanes (i.e., πk = (λi j , λi′j′ )). For each intersection, we can define
a conflict table indicating whether two feasible paths conflict with each other (i.e., the two paths
cross each other in the intersection). Taking the example in Figure 2, π1 and π9 do not conflict with
each other, whereas π3 and π12 conflict with each other.

2.2 Smart Traffic Lights

Smart traffic lights dynamically change phases based on current traffic condition (e.g., queue length
of each lane). The set of possible phases is denoted as ⊕ = {ϕ1,ϕ2, . . . ,ϕ | ⊕ | }. Typical phases for a
four-way intersection are depicted in Figure 3. The arrows in each phase denote the allowed paths
based on the traffic light configuration in that phase. For example, in phase ϕ1, only the traffic
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signals for northbound and southbound traffic are green (going straight and turning right). In
phase ϕ2, the left turn signals for eastbound and westbound traffic are green. At each time slot
(step), a smart traffic light system chooses a phase ϕi ∈ ⊕ that can best reduce congestion based
on current traffic conditions.2

Recent studies on smart traffic lights are mostly based on max-pressure and back-pressure con-
trol [15, 16, 27, 28, 30, 32]. In particular, back-pressure control is a greedy algorithm performed
at each intersection locally. The main idea is to measure pressure based on queue lengths, and to
release the pressures from high-pressure directions to low-pressure directions [16]. The hidden
assumption is that queue lengths can be estimated by loop detectors and cameras, and then sent
to the traffic light controller.
The basic back-pressure control, as introduced in other works [16, 27, 30], uses a linear pressure

function Pr (λi ) = Q (λi ), in which Pr (λi ) denotes the pressure on lane λi and Q (λi ) denotes the
queue length of lane λi . If we use πa,b = (λa , λb ) to denote a feasible path from upstream lane
λa to downstream lane λb , we can compute the pressure difference ΔPrπa,b as in Equation (1).
dπa,b ∈ {0, 1} is a binary variable indicating whether there are vehicles waiting at lane λa to leave
from lane λa for lane λb .

ΔPr (πa,b ) = dπa,bmax (Pr (λa ) − Pr (λb ), 0) (1)

The basic algorithm of back-pressure control for smart traffic lights is illustrated in Algorithm 1,
which is performed at every time slot (scheduling period). The algorithm first measures the pres-
sure based on the linear function as described earlier (lines 2 and 3), then computes the pressure
difference for each feasible path (lines 4 and 5). After that, the algorithm selects the phase ϕout that
can maximize the objective function, which is the weighted sum of the pressure release from all
feasible paths (lines 6 and 7). The weight μπa,b for each path is the maximum number of vehicles
that can go from lane λa to lane λb during the time slot. Take the example in Figure 2. In phase
ϕ1, no vehicle can move from lane λ31 to lane λ42 (left turn), and therefore the weight μπ31,42 is 0.
However, for path π31,12, a non-zero weight μπ31,12 denotes the maximum number of vehicles that
can go from lane λ31 to λ12 (going straight) during the time slot.

ALGORITHM 1: Back-pressure control for intersection I = {W,P}
Input: Queue lengths Q (λi ), ∀λi ∈ L
Output: Traffic light phase ϕout for current time slot

1 for time slot k do

2 for all lanes λi ∈ L do

3 Pr (λi ) ← Q (λi );

4 for all feasible paths πa,b = (λa, λb ) ∈ P do

5 ΔPr (πa,b ) ← dπa,bmax (Pr (λa ) − Pr (λb ), 0);

6 ϕout ← argmax
ϕi ∈⊕

∑
πa,b ∈P

μπa,b ΔPr (πa,b );

7 return Phase ϕout for time slot k ;

Some extensions of the basic back-pressure control have also been presented in the literature [16,
21, 32]. These extensions are mainly proposed to solve the problems caused by the capacity of the
road [16] and the turning rate estimation [21, 32]. Among variations, we consider the following
two algorithms:

2Note that the term phase is commonly used in the literature (e.g., [15, 16, 28, 30]). There is not necessarily an order among

phases—that is, any ϕi can be chosen at a time slot.
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• Capacity-aware back-pressure control: Observing the problems caused by assuming infinite
capacity in the basic back-pressure control, this method proposed in Gregoire et al. [16]
normalizes the pressure equation to guarantee work conservation and mitigate congestion
propagation. It can also improve the fairness for low-density traffic. The normalized pres-
sure from Gregoire et al. [16] is shown in Equation (2), where Q (λi ) denotes the actual
queue length of lane λi andCλi denotes the capacity of the lane. The parametersm andC∞
can be tuned to shape the pressure function. When traffic is sparse, the pressure function
is approximately a linear function, which guarantees fairness and stability. As the function
is convex, the slop of the pressure function grows with the increase of occupancy. The al-
gorithm remains the same as the basic back-pressure control except for the change of the
pressure function.

Pr (λi ) =min

������
�

1,

Q (λi )

C∞
+

(
2 − Q (λi )

C∞

) (
Q (λi )

Cλi

)m

1 +

(
Q (λi )

Cλi

)m−1
������
�

(2)

• Adaptive max-pressure control: This method is based on the series of works from Varaiya,
in which in early works [27–29], the demand to the network is modeled with a constant
average rate, the average turning ratio is pre-specified, and the vehicles are modeled as a
queuing network with store and forward features. Network calculous or stochastic methods
are used to analyze the models and guarantee stability and performance. In Lioris et al. [21],
to reduce the assumption on the knowledge of the turning ratio in the traffic network,
the authors further estimate the turning probabilities during the pressure calculation. The
equation for estimating the turning rate r (λl , λm ) is shown in (3), wherea(λl , λm ) represents
the number of vehicles arriving at lane λl with destination λm during period t . λk denotes
all possible destinations. With this turning rate estimation, the equation to calculate the
pressure difference (namely Equation (1)) will be updated as Equation (4), where Q (λa , λb )
denotes the number of vehicles queued at link λa and waiting to go to link λb , and O (λb )
denotes the set of the out links from λb . The main algorithm is similar to the basic back-
pressure control.

r (λl , λm ) =

∑
t a(λl , λm ) (t )∑

k

∑
t a(λl , λk ) (t )

(3)

ΔPr (πa,b ) = Q (λa , λb ) −
∑

λp ∈O (λb )
r (λb , λp )Q (λb , λp ) (4)

2.3 Vehicular Network Based Intelligent Intersection Management

As stated earlier, intelligent intersection management based on vehicular network communication
can be classified into two major categories: centralized management and distributed management.
In centralizedmanagement, an intersectionmanager schedules the order for vehicles to cross the

intersection [3, 12, 17, 19, 20, 24, 35]. Inmany of those approaches (e.g., [12, 17, 19]), the intersection
is discretized to small grids. Even when two vehicles have conflicting routes, they may be allowed
to both enter the intersection, as long as they do not share the same grid at the same time. The
authors in Dresner and Stone [12] propose a protocol to address both autonomous and regular
vehicles throughV2I communication and virtual traffic lights. InHausknecht et al. [17], the authors
further optimize their approach for multiple intersections. The work in Jin et al. [19] focuses more
on the fuel consumption and emission using a similar fine-grained scheduling strategy based on
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grids. The work in Kowshik et al. [20] proves safety and liveness properties, without considering
communication delays. In Zhu and Ukkusuri [35], linear programming is used to model vehicles
as traffic flows and avoid conflicting routes by setting constraints.
The main idea for distributed intersection management is to require every vehicle broadcasting

enter, cross, and exit packets with the identification of its current grid [4–6]. The authors in Azimi
et al. [4–6] use wait-for graph and mathematical reasoning to prove their protocol is deadlock free.
In Naumann et al. [24], the authors use Petri net models to prove the system to be deadlock-free.
The authors in Ahmane et al. [3] also consider traffic smoothness.
These approaches in the literature do not explicitly address communication delays or losses.

However, as discussed in Section 1, significant packet delays and losses may occur in dense traf-
fic [9, 13, 31] or due to malicious jamming or flooding attacks [8, 34]. In such cases, these previous
approaches may lead to system deadlock or unsafe situations.
Next, we will introduce the design, verification, and simulation of our delay-tolerant intelligent

intersection management approach.

3 DELAY-TOLERANT INTELLIGENT INTERSECTION MANAGEMENT PROTOCOL

3.1 System Model

Our centralized intelligent intersection system includes four major components: intersection net-
work, intersection manager, vehicles, and communication messages exchanged between vehicles
and the intersection manager.

3.1.1 Intersection Network Model. A traffic network N contains a set of intersections I =
{I1,I2, . . . ,I|I | } and a set of connections between the intersections C = {CI1,I2 ,CI1,I3 , . . .}. An
intersection Ik = (Wk ,Pk ) consists of a set of waysWk = {ωk

1 ,ω
k
2 , . . . ,ω

k
|W | } and a set of feasi-

ble paths Pk = {πk
1 ,π

k
2 , . . . ,π

k
|P | }, as described in Section 2. Each way ωk

i contains a set of lanes,

denoted as Lk
i = {λki1, λki2, . . . , λki |Li | }. A feasible path πl is defined as an ordered pair of lanes as

πl = (λi j , λi′j′ ). Each connectionCIi ,Ij is a set containing ordered pairs of lanes, with the first ele-
ment denoting the lane from the source intersection and the second element denoting the lane to
the destination intersection. For example, in Figure 4, the connection between I1 and I2 is repre-
sented by CI1,I2 = {(λ222, λ141), (λ142, λ221)}.

3.1.2 IntersectionManager Model. In this article, we assume that every intersection is equipped
with an intersection manager to schedule the crossing of vehicles. The manager for intersection
Ii contains the following components:

• A buffer Ii .inbox[] to store the messages from vehicles within the range of intersection
Ii , including Request and Cancel messages (more details about the messages are described
later).

• A buffer Ii .conf irmed[] to store the vehicles to which theConf irm message had been sent
from the intersection manager.

• A scheduler to process the messages sent from vehicles and decides their order of crossing.
• A conflict table that stores the feasible paths of intersectionIi andwhether the paths conflict

with each other. An example of the conflict table for intersection I2 in Figure 4 is shown in
Table 1.

• Additional sensors (e.g., cameras, loop detectors) that can help the intersection detect
whether the vehicles have entered or left the intersection.

3.1.3 Vehicle Model. The vehicles in this work are assumed to be autonomous. A vehicle con-
sists of the following properties:
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Fig. 4. An example intersection network.

Table 1. Conflict Table for I2

Paths πλ211,λ
2
22

πλ211,λ
2
32

. . .

πλ211,λ
2
22

N N . . .

πλ211,λ
2
32

N N . . .

πλ211,λ
2
42

N N . . .

πλ221,λ
2
32

Y Y . . .

πλ221,λ
2
42

Y Y . . .

πλ221,λ
2
12

N N . . .

. . . . . . . . . . . .

• Vehicle dynamics information, including acceleration, deceleration, length, and maximum
speed, among others.

• Vehicle moving models, including the car-following model and lane-changing model,
among others. The details of these models are beyond the scope of this article and do not af-
fect the correctness of our protocol. In our simulation-based performance study, we directly
use the models provided by SUMO.

• Transportation information, including
—Departure lane: The lane into which the vehicle will enter the transportation network
(the term might be a bit counter-intuitive—we directly borrow it from SUMO, same as
the following two terms).

—Departure position: The position of the lane to which the vehicle will enter the network.
—Departure speed: The initial speed the vehicle has when entering the network.
—Route: The route for a vehicle is defined as an ordered sequence of feasible paths (i.e.,
Vi .route = {π1,π2,π3, . . .}). A valid route is defined as follows.

Definition 3.1. A route is valid if for all adjacent pairs of feasible paths in the route (i.e.,∀πa
i ,π

b
i+1

of intersections Ia and Ib , respectively), the pair (πa
i .second,π

b
i+1. f irst ) is in the defined connec-

tion between Ia and Ib (i.e., (πa
i .second,π

b
i+1. f irst ) ∈ CIa,Ib ).3

3.1.4 Messages. We define three types of messages between the intersection manager and the
vehicles, similarly as in our previous work [33]:

• Request: A request message is sent by a vehicle to acquire permission for entering the inter-
section. It contains requestID, roundID, sender, sending time, current road, destination road,
isFront, and estimated arriving time (texp ). In particular, isFront denotes whether the vehicle
is the front vehicle in its lane (i.e., no other vehicle between it and the intersection). This
information is assumed to be detected by sensors. The estimated arriving time is used by the
intersection manager to schedule the time window for each vehicle to enter the intersec-
tion and can be calculated based on vehicle location, speed, and acceleration information
(all collected from sensors). The roundID is used to distinguish different rounds of crossing,
as the vehicle may cross the intersection several times and each round should use a unique
ID.

• Confirm: A confirm message is sent by the intersection manager to give permission to
a vehicle for entering the intersection. It contains confirmID, roundID, sending time, and

3It should be noted that this definition can be relaxed if the lane-changing function exists.
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arriving time window ([TL,TH ]). If the vehicle enters the intersection during the arriving
time window, it is guaranteed to be safe according to our protocol. A vehicle cannot enter
the intersection if no Confirm is received. If the vehicle cannot enter the intersection within
the time window, it must not enter the intersection. Instead, the vehicle can send a Cancel
message as discussed later.

• Cancel: A cancel message can be sent by a vehicle to notify the intersection manager that
a previous Confirm is “canceled” and the vehicle will not enter the intersection. The Cancel
message can be used for improving performance and is optional. Once receiving the Cancel
message, the intersection manager can schedule other vehicles immediately and does not
have to wait for the vehicle to cross the intersection. Without receiving the Cancelmessage,
the intersection manager will wait for the corresponding timing window [TL,TH ] to expire,
before scheduling another vehicle (note that the intersection manager knows whether the
vehicle has entered the intersection through sensors). The fields in the Cancel message in-
clude cancelID, corresponding confirmID, and sending time.

3.2 Single-Lane Delay-Tolerant Protocol

The protocol for a single-lane intersection was introduced in our previous work [33]. In that pro-
tocol, we define three types of timeouts: (1) timeout for message transmission (i.e., a message
becomes invalid after the defined amount of time), (2) timeout for resending (i.e., the amount of
time a vehicle has to wait before resending Request if Confirm is not received), and (3) timeout
for wait (i.e., the amount of time the intersection manager has to wait for a currently scheduled
vehicle before scheduling other vehicles). The protocol makes the following assumptions:

• There is an intersection manager at the intersection. It receives Requests and Cancels from
vehicles within its communication range, decides the order for those vehicles to cross the
intersection, and then sends corresponding Confirms.

• All vehicles and the intersection manager are connected through a vehicular network.
• Eachmessage has a living period and becomes invalid after that. This is the same asmessage

timeout and is removed in the general multi-lane protocol described later.
• A Confirmmessage should correspond to the latest Requestmessage that a vehicle has sent.

If the vehicle has later sent a newer Request, it will not take the Confirm corresponding to
the old Request. This is removed in the general multi-lane protocol.

• All vehicles are equipped with basic safety functions, such as collision avoidance, as the
bottom line for safety concerns.

The intersection manager contains a buffer Ii .inbox[] to store the Request and Cancel from the
vehicles within the range of intersection Ii . As our protocol is mostly based on first come first
served (FCFS) scheduling, the intersection manager considers the Request messages sent from the
front vehicles from different directions (at most one front vehicle from each direction in a single-
lane intersection) and chooses the one with the earliest estimated arriving time texp . If its route
does not conflict with the currently confirmed vehicles, the intersectionmanager will sendConfirm
to that vehicle. Once the Comfirm is sent, the intersection will be reserved for the vehicle until it
enters the intersection or will wait for a timeout before sending Confirm to other vehicles.
In Zheng et al. [33], the vehicle model and the intersection manager model are captured in state

machines. Then the liveness and safety properties of the intersection are verified by converting
those state machines to timed automata and using the UPPAAL verification tool [2]. Please refer
to Zheng et al. [33] for more details of the single-lane delay-tolerant protocol.
Next, we will discuss the challenges in addressing multiple lanes from each direction and then

introduce our multi-lane delay-tolerant protocol.
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Fig. 5. Examples of multi-lane intersections.

3.3 Challenges in Addressing Multiple Lanes

To help explain the challenges and solutions in multi-lane intersections, we assume that an inter-
section has dedicated lanes for left turns, right turns, and going straight, as shown in Figure 5(a).
We use the same assumption in our simulations for measuring system performance, but our proto-
col guarantees safety, liveness, and deadlock-free properties for the more general model defined in
Section 3.1.We also assume that a vehicle goes to the dedicated lane corresponding to its path auto-
matically. For a traffic network with multiple intersections, as shown in Figure 5(b), the connection
of adjacent intersections is to connect the corresponding lanes together—that is, connecting left
lane with left lane, middle lane with middle lane, and right lane with right lane.

3.3.1 Direct Extension of the Single-Lane Protocol. In the single-lane protocol, only the front
vehicles are allowed to send Requests and receive Confirms. Furthermore, the intersection man-
ager can send only one Confirm at a time, which may lead to significant loss of performance for
vehicles that have lined up and can enter the intersection together. Such restrictions are especially
problematic when we consider multi-lane intersections with more vehicles from each direction.
To address this and enable sending confirmations to multiple vehicles, a direct extension of the
single-lane protocol to multiple-lane intersections can be as follows:

• Vehicles: A vehicle sends a Request once it enters the communication range of the intersec-
tion.

• Intersection manager:
—Different from the single-lane protocol, the intersectionmanager now periodically checks
traffic conditions and in each controlling period decides a set of vehicles with non-
conflicting routes that can be sent Confirms simultaneously.

—The intersection manager may simultaneously confirm multiple vehicles aligned in a
queue from the same lane and send consecutive time windows ([TL,TH ]) to those vehi-
cles according to their locations. For example, if three vehicles (V1,V2 andV3) are aligned
in a queue, and V1 is the front vehicle with estimated arriving time texp = 10.0, the time
window for V1, V2, and V3 can be [10.0, 13.0), [13.0, 16.0), and [16.0, 19.0), respectively.

However, when considering communication delays or losses, the direct extension may lead to
inefficient scenarios and possible deadlocks, as shown in Sections 3.3.2 and 3.3.3, respectively.
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3.3.2 Efficiency Problems in Direct Extension. In earlier direct extension, when simultaneously
sending Confirms to multiple vehicles in a queue (from the same lane), the intersection manager
needs to assign consecutive time windows to those vehicles based on their locations. To do this,
one idea is to first ask each vehicle to include its location in the Request message. Then when
sending Confirms, the intersection manager can try to estimate the current location of each ve-
hicle based on its location at the request time and the time tag (i.e., sending time) of the Request
message. However, an accurate estimation of vehicle physical locations is difficult, given that the
intersection manager does not know the detailed vehicle dynamics. Even the estimation of relative
locations (i.e., ordering) of vehicles could be difficult since the vehicles may not send the Requests
at the same time. Even when the vehicles do send the Requests simultaneously, some of those re-
quest messages could be significantly delayed or lost, in which case the intersection manager may
miss sending Confirms to some of the vehicles in the queue. For instance, assume that vehicles A,
B, and C are in a queue (A is ahead of B, and B is ahead of C), and the Requests from A and C are
received by the intersection manager, whereas the Request from B is significantly delayed or lost.
Then the intersection manager only sends Confirms to A and C, with consecutive time windows.
A may be able to enter the intersection, whereas C cannot move because B is still waiting ahead of
it. In this case, the system has to wait until C’s time window expires and reschedule vehicles—an
inefficient scenario with significant performance loss.
Another idea is for the intersection manager to leverage the estimated arriving time in Requests

to determine vehicle locations (or at least their ordering) and assign consecutive time windows.
However, except for the front vehicle in a lane, it is often difficult for a vehicle to estimate its
arriving time, as its arrival at the intersection depends on when the vehicles in front of it can pass
through the intersection. Furthermore, even when vehicles can somehow accurately estimate their
arriving time, their Request messages may still be significantly delayed or lost, in which case the
intersection manager may miss sending Confirms to some of the vehicles in a queue and cause
performance loss, similarly as explained earlier with the example.
In fact, there will be a loss of performance whenever the intersection manager confirms the

vehicles that are not at the front of a queue while not confirming the front vehicle. If this keeps
happening (e.g., due to design bugs in the manager), the system may even be deadlocked.
In the direct extension, the assumption that each message has a living period may also cause

problems, particularly for Request messages. The original intention to introduce a message living
period is to prevent the intersection manager from using old messages that contain outdated infor-
mation. However, throwing out outdated messages makes it difficult for the intersection manager
to determine all vehicles in the queue. For example, in Figure 6, vehicles A, B, and C are waiting
before the intersection. We assume that the message living period is 1.5. At time 0, vehicle B sends
Request R2 to the intersection manager. The manager may be scheduling other vehicles from other
directions and therefore put R2 in the incoming inbox. At time 1, vehicle A and vehicle C send
Requests R1 and R3 to the intersection manager, respectively. At time 2, vehicles from other direc-
tions have passed through the intersection, and themanager decides to schedule the queue starting
from A. However, at this moment, R2 had already become invalid (since the message living period
is 1.5) and been thrown out. The intersection manager therefore only sends Confirms to A and C.
Although A will pass the intersection now, C cannot move because B is still waiting. In this case,
the system has to wait until C’s window expires and re-schedule, and thus cause performance loss.
In some cases, the message living period may also lead to deadlocks, as explained in Section 3.3.3.

3.3.3 Possible Deadlocks in Direct Extension. In the direct extension, a controlling period is
defined for the intersection manager to collect Requests during each period and send Confirms to
a set of vehicles with non-conflicting routes. When considering such a period together with the
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Fig. 6. Problem of the living period of messages.

Fig. 7. Deadlock example: sending a new Request message before receiving a valid Confirm message.

resending timeout of vehicles, as well as the assumption that a Confirm message should only be
taken by a vehicle if it corresponds to the latest Request from that vehicle, the direct extension may
cause deadlocks, as shown later.
The first scenario is shown in Figure 7. In this example, there is only one vehicle. The controlling

period of the intersection manager is 1, and the resending timeout for the vehicle is also 1. The
message delay is 0.1.We assume that the vehicle had already sent a Request Req0 to the intersection
manager before time k − 1, but the manager was scheduling other vehicles. At time k , the manager
sends a Confirm Con0 to the vehicle. However, due to message delay, the vehicle does not know
that a Confirm is sent, while the resending timeout has been reached. So the vehicle sends another
Request Req1 at time k . At time k + 0.1, Req1 arrives at the intersection manager and is stored
in the inbox. Meanwhile, the Confirm message Con0 arrives at the vehicle. However, it does not
correspond to the latest Requestmessage Req1 and thus is treated as invalid. Then at time k + 1, the
vehicle sends another Request Req2 to the intersection manager, while the intersection manager
checks the inbox and sends another Confirm Con1 to the vehicle. This process will keep repeating,
and the system is deadlocked. More generally, such deadlock occurs when a vehicle sends a new
Request before receiving a validConfirm from the last Request, which could happen in the following
instances:

• The round trip communication time is greater than the resending timeout of the vehicle, or
• The timewindow length in theConfirm [TL,TH ] is smaller than themessage delaymsдDelay

(i.e., TH −TL < msдDelay).

Another type of deadlock occurs due to the usage of the message living period. For instance,
vehicle A could already be in the front of a queue and sends a Request. The intersection manager
might be scheduling vehicles from other directions and put the Request in the inbox. Then when
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Fig. 8. Modified protocol that removes the message living period and sends a single time window to all

confirmed vehicles in a queue from the same lane.

the intersection manager is ready to schedule vehicles from A’s lane, that Request might have
already expired. If this keeps happening, the system will get into a deadlock situation.

3.4 Multi-Lane Delay-Tolerant Protocol

In the design of our multi-lane delay-tolerant protocol, we first address the preceding efficiency
and deadlock challenges from the direct extension.

3.4.1 Solution to Efficiency Problems. The solution lies in a few aspects. First, there is in fact
no need to figure out the ordering of vehicles in a queue. Instead, the vehicles can themselves
maintain the order to enter the intersection, as they are assumed to have autonomous driving
capabilities (with features like adaptive cruise control and collision avoidance). Therefore, instead
of assigning multiple consecutive time windows to vehicles in a queue, the intersection manager
assigns a single time window that is estimated as long enough for all confirmed vehicles in a queue
to enter the intersection one by one. If later vehicles cannot enter the intersection when the single
time windows expires, they will stop and resend Requests.
Second, as shown in Sections 3.3.2 and 3.3.3, the message living period (i.e., timeout) should not

be used for Request messages. In fact, we remove the usage of timeout for all messages, as it is
not essential for Confirms and Cancels to begin with, especially with the usage of time windows in
Confirms. To avoid using outdated information, the intersection manager only needs to update the
Request from the same vehicle—that is, it stores every Request in its inbox until the corresponding
Confirm is sent. A Request will not expire due to timeout and can only be overwritten by a new
one from the same vehicle.
We use the example in Figure 6 to illustrate the modified protocol, as shown in Figure 8. In this

case, all Requests are stored in the inbox, including R2 from vehicle B at time 0, R1 from vehicle A
at time 1, and R3 from vehicle C at time 1. None of these messages will expire due to timeout. At
time 2, based on all three Requests, the intersection manager assigns a single time window of 9 time
units (i.e., [2, 11]) to all three vehicles. The vehicles will then proceed to enter the intersections in
order.
Finally, it is required that non-front vehicles can only be confirmed together with the front vehi-

cle in the same lane, to prevent the performance loss or even deadlock as discussed in Section 3.3.2.

3.4.2 Solution to Deadlock Problems. In Figure 7, even though the time window in the Confirm
is still valid, it is not taken by the vehicle because the Confirm does not correspond to the latest
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Request. This requirement, however, is not necessary and is the main reason for the deadlock.
In the modified protocol, we allow a vehicle to take a Confirm message as long as its estimated
arriving time is within the time window in the Confirm. Such modification will avoid the deadlock
in Figure 7, although there is a side effect where one more possible Request could be left in the
inbox.
More specifically, using the same example in Figure 7, we assume that the vehicle had already

sent a Request Req0 to the intersectionmanager before timek − 1, while the vehicle was scheduling
other vehicles. At time k, the manager sends a Confirm Con0 to the vehicle, and we assume that
the time window in Con0 is set as [k,k + 1]. At time k + 0.1, the Confirm Con0 received by the
vehicle now is within the time window [k,k + 1] and therefore is valid. However, at time k , the
vehicle had sent another Request Req1, and this Request is received by the intersection manager
at time k + 0.1. As the vehicle had already received a Confirm, Request Req1 becomes a redundant
message. We will show that this one more Request is harmless in any case. If the Request comes
within the timewindow of Con0, the intersectionmanager knows that it had already sent aConfirm
to the vehicle and thus it will simply delete the new Request. If the Request comes beyond the time
window, the intersection manager cannot tell whether the vehicle comes to the intersection again
or is the redundant message caused by delay. In this case, the intersection manager will send a
corresponding Confirm to the vehicle again. If the vehicle had already left the intersection, the
vehicle will not take this latest Confirm. If the vehicle is in fact coming to the intersection again,
it will not take the latest Confirm as well (the round ID is different).

3.4.3 Multi-Lane Protocol. Based on the preceding solutions to the efficiency and deadlock chal-
lenges, we propose our multi-lane delay-tolerant protocol. We first summarize the changes we
made to the original single-lane protocol:

• Vehicles:
—A vehicle sends Request once it enters the communication range of the intersection.
—Once a vehicle receives a Confirmmessage, it can proceed as long as its estimated arriving
time is within the time window in Confirm. The Confirm does not have to correspond to
the latest Request the vehicle sent, but the roundID should be the same.

• Intersection manager:
—Following a controlling period, the manager periodically checks traffic conditions and
decides a set of vehicles with non-conflicting routes to send Confirms.

—The manager stores every Request in its inbox until a corresponding Confirm is sent. A
new Request from the same vehicle overwrites the old one.

—Non-front vehicles are only confirmed with the front vehicle in the same lane.
—The manager confirms multiple vehicles aligned in a queue by sending a single time
window ([TL,TH ]) to them. Note that not all vehicles in that lane have to be confirmed,
but the front vehicle has to be.

• Timeouts:
—Instead of the three timeouts in the single-lane protocol, we now only set a resending
timeout for vehicles, denoted as trout . A vehicle will resend Request if Confirm is not re-
ceived after trout . We remove the message timeout (i.e., living period). We also remove the
timeout for the intersection manager to wait for the currently scheduled vehicle. Instead,
TH in the time window denotes the longest time the intersection manager will wait.

Now we describe the details of our multi-lane delay-tolerant protocol.

Vehicle protocol. The pseudocode of the vehicle protocol is shown in Algorithm 2. Similar to the
case in our single-lane protocol [33], vehicle behavior is captured by a state machine. The initial
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state of a vehicle is ApproachingNotConfirmed. The behavior of the state is defined in the run()
procedure—that is, the vehicle keeps its speed and follows front vehicles if there is any (lines 3
and 4).
The procedure next() is used to determine the next state according to the situations at the current

timestep. In this procedure, the estimated arriving time to the intersection texp is calculated based
on the vehicle location, speed, and acceleration (line 6). The vehicle will send Request4 with a
period equal to the resendingTimeout until it receives Confirm (lines 7 and 8). Once it receives
Confirm, it will move to the ApproachingConfirmed state and check the time window in that state
(lines 9 and 10). However, if no Confirm is received and the distance to the intersection (or the
last vehicle waiting at the intersection) is less than a safe distance (disToIntersection ≤ safeValue),
the vehicle is required to decelerate and stop before the intersection waiting line, which is the
behavior of the state DecelerationNotConfirmed (lines 12 and 13). Otherwise, the vehicle stays in
the same state ApproachingNotConfirmed (lines 14 and 15).
For the state DecelerationNotConfirmed, its behavior is to decelerate and guarantee full stop

before the intersection if there is no confirmation, which is defined in its run() procedure (lines
17 and 18). Its next() procedure is similar to that of the state ApproachingNotConfirmed, where the
vehicle will periodically send Request until it receives Confirm (lines 20 through 26). In this state,
if the vehicle has already arrived at the intersection, the field texp will be replaced with the actual
arrival time (line 22).
In the ApproachingConfirmed state, the vehicle has received a Confirm from the intersection

manager with a time window [TL,TH ] to enter the intersection. The behavior of this state is to
keep its speed and follow possible front vehicles (line 29). If the vehicle cannot arrive at the inter-
section within the time window or the destination lane is full (line 32), it needs to stop before the
waiting line. If its distance is less than the safe value, it should enter the DecelerationNotConfirmed

state, which guarantees that the vehicle can stop before the waiting line or the last waiting vehicle
(lines 34 and 35). If the vehicle is still far from the intersection, it should enter ApproachingNot-
Confirmed (lines 36 and 37). For both cases, the vehicle could send Cancel to improve efficiency
(line 33).
Finally, if the vehicle arrives at the intersection within the time window, it will switch to the

state EnteringIntersection. In the EnteringIntersection state, the vehicle will turn to the destination
road (lines 42 and 43). Once it arrives in the range of the next intersection, it re-enters the Ap-

proachingNotConfirmed state (lines 48 and 49).

Intersection manager protocol. The pseudocode for the intersection manager is shown in Algo-
rithm 3. Just as we described in Section 3.1.2, the intersection manager maintains a buffer inbox[]
for storing the Requests and a buffer confirmed[] for storing the vehicles currently being sent Con-
firms. Lines 1 through 7 show how the intersection manager stores the received Requests in the
inbox[] and maintain the inbox[] buffer. Once a Request is received, if the vehicle that sends the
Request is already in the confirmed[] buffer, the intersection manager will simply delete the mes-
sage (lines 2 and 3), as we have sent Confirm to the vehicle that might be already on the way. If
the vehicle that sends the Request has sent a Request before that is stored in the inbox[], the in-
tersection will update the Request with the latest estimated arriving time (lines 4 and 5). For other
situations, the Request will be stored in the inbox (lines 6 and 7). Lines 8 through 14 show how
the confirmed[] buffer is maintained. For each vehicle in the confirmed[] inbox, the intersection
manager will first check whether it has entered the intersection (line 9). If it has not entered the
intersection while a Cancel is received or the time window expires, the intersection manager will

4For all fields inside the Request, please refer to Section 3.1.4.
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ALGORITHM 2: Vehicle
Input: currentTime

1 Switch State do

2 case ApproachingNotConfirmed do

3 Procedure run()
4 keep speed, follow front vehicles if any;

5 Procedure next(currentTimeStep)
6 calculate texp ;

7 if currentTime is at resendingTimeout and within the communication range then

8 send Request with texp ;

9 if receive Confirm then

10 return ApproachingConfirmed;

11 else

12 if disToIntersection ≤ safeValue then

13 return DecelerationNotConfirmed;

14 else

15 return ApproachingNotConfirmed;

16 case DecelerationNotConfirmed do

17 Procedure run()
18 decelerate, follow front vehicles and stops before the waiting line or the last waiting vehicle;

19 Procedure next(currentTime)
20 calculate texp ;

21 if currentTime is at resending timeout and within the communication range then

22 send Request with texp or actual arrive time if arrived;

23 if receive Confirm then

24 return ApproachingConfirmed;

25 else

26 return ApproachingNotConfirmed;

27 case ApproachingConfirmed do

28 Procedure run()
29 keep speed and follow front vehicles if any;

30 Procedure next(currentTime)
31 calculate texp ;

32 if currentTime ≥ TH or texp ≤ TL or destination lane full then

33 send Cancel;

34 if disToIntersection ≤ safeValue then

35 return DecelerationNotConfirmed;

36 else

37 return ApproachingNotConfirmed;

38 else if arriveTime within [TL, TH ] then

39 return EnteringIntersection;

40 else

41 return ApproachingConfirmed;

42 case EnteringIntersection

43 Procedure run()
44 turn to destination lane;
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45

46

47 Procedure next()
48 if enters the range of next manager then

49 return ApproachingNotConfirmed;

50 else

51 return EnteringIntersection;

directly remove the corresponding vehicle from the confirmed[] buffer (lines 10 and 11). If it has
entered the intersection, the intersection manager will keep the vehicle in the confirmed[] buffer
until it leaves the intersection (line 12). Therefore, if we revisit lines 2 and 3, the new Request will
be stored if the corresponding vehicle is removed from the confirmed[] buffer.
Lines 15 through 25 illustrate the procedure in each controlling period. If the inbox[] is not

empty (lines 16 and 17), the intersection manager will first check the Requests from the front ve-
hicles. Since our policy is mostly based on FCFS, the Request with the earliest estimated arriving
time (it becomes the actual arrive time if the vehicle has arrived at the intersection) is the candi-
date for scheduling. The reason for considering the front vehicle with the earliest arrival time is
to guarantee liveness, which is proved in Section 4.2. The vehicle sending this Request is denoted
as Vc as in line 18. Then the intersection manager checks the routes between Vc and the vehicles
in the confirmed[] buffer. If conflict is detected, the intersection manager will skip this round of
scheduling (lines 19 and 20). If no conflict is detected, the intersection manager will send Confirm
to Vc and the vehicles aligned behind it with the same destination lane as Vc

5 (line 22). This is
done by calling the subroutine confirmQueueStartWith(). Meanwhile, the intersection manager
will check for another front vehicle that does not have conflicting routes with the vehicles in the
confirmed[] buffer. If found, the intersection manager will also send Confirm to this vehicle and
all vehicles lined up with the same destination lane (lines 23 through 25).
The subroutine for sending Confirms to a front vehicle and all vehicles behind it with the same

destination lane is shown in Algorithm 4, named confirmQueueStartWith(). The input to this sub-
routine is a front vehicle Vf . The buffer vehiclesToConfirm[] is used to store all vehicles that will
receive Confirms during this round of scheduling. In line 1, the front vehicleVf is appended to the
vehiclesToConfirm[] buffer. From line 2 to line 3, the algorithm searches all vehicles behindVf and
appends the vehicle with the same destination lane into vehiclesToConfirm[]. As described in Sec-
tion 3.4.3, the time window is for all vehicles in the buffer vehiclesToConfirm[] and is sent to every
vehicle. Lines 6 through Line 10 are used for calculating the timewindow [TL,TH ] for all vehicles in
vehiclesToConfirm[]. The lower boundTL is set as the current time, and therefore the intersection
is reserved for the vehicle.6 The upper bound TH depends on the situation. If the estimated arriv-
ing time of Vf is less than currentTime, the front vehicle may have already arrived. In that case,
the upper bound should start with the current time, plus the bound on maximum communication
delay and the traveling time for all vehicles in the set vehiclesToConfirm[]. As shown in line 8, the

5As described in Section 3.3, we assume that the intersection has dedicated lanes for left turns, right turns, and going

straight. Therefore, the vehicles behind a front vehicle will all have the same destination lane as the front vehicle. Our

protocol will also work without this assumption but with a loss of performance.
6It is possible that after a vehicle is confirmed the intersection manager receives another request with an earlier estimated

arrival time (such a request probably got delayed by a bad communication condition). To mitigate (but not fully prevent)

such a scenario, the intersection manager can put constraints such as only confirming a vehicle’s request if its arrival time

is within a bound of the current time (which was in fact implemented in our simulator).
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ALGORITHM 3: Intersection Manager

Input: currentTime

1 if receive Request then

2 if Request.sender in confirmed[] then

3 continue;

4 else if Request.sender in inbox[] then

5 update Request;

6 else

7 Store Request

8 for all vehicle in confirmed[] do

9 if vehicle not enter intersection then

10 if receive Cancel or [TL, TH ] expires then

11 delete corresponding vehicle in confirmed[];

12 else

13 if vehicle leaves intersection then

14 delete corresponding vehicle in confirmed[];

15 if currentTime is at manager period then

16 if Inbox[].size() == 0 then

17 return;

18 Vc = front vehicle with earliest arriving time in Inbox[];

19 if Vc conflicts with vehicles in confirmed[] then

20 return;

21 else

22 confirmQueueStartWith(Vc );

23 for all Request in Inbox[] do

24 if Request.sender not conflict with confirmed[] and Request.sender is front then

25 confirmQueueStartWith(Request.sender);

ALGORITHM 4: confirmQueueStartWith(Vf )

Input: Vf : a front vehicle

1 vehiclesToConfirm[].append(Vf );

2 for all Request in Inbox[] do

3 if Request.sender.currentLane == Vf .currentLane then

4 if Request.sender.destinationLane == Vf .destinationLane then

5 vehiclesToConfirm[].append(Request.sender);

6 TL = currentTime;

7 if currentTime ≥ Vf .estArrTime then

8 TH = currentTime +msдDelayMAX + vehiclesToConfirm[].size() * timeGap;

9 else

10 TH = Vf .estArrTime +msдDelayMAX + vehiclesToConfirm[].size() * timeGap;

11 for all vehicle in vehiclesToConfirm[] do

12 send Confirm to vehicle with window [TL, TH ];

13 confirmed[].append(vehicle);

14 delete corresponding Request in inbox[];
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bound that we set for the maximum communication delay is denoted asmsдDelayMAX , and the
traveling time for all vehicles in vehiclesToConfirm[] is calculated as vehiclesToConfirm.size() *
timeGap, where timeGap is the estimated time for one vehicle to cross the intersection.7 If the
estimated arriving time of Vf is greater than the current time, the vehicle has not arrived yet. In
that case, the upper bound TH should start with its estimated arriving time Vf .estArrTime , plus

msдDelayMAX and the traveling time for all vehicles in the set vehiclesToConfirm[], as shown in
line 10. Finally, for every vehicle in vehiclesToConfirm[], the intersection manager sends Com-

firm to it with time window [TL,TH ]. Meanwhile, the corresponding Request is removed from the
inbox[], as shown in lines 11 through 14.

4 PROVING DEADLOCK-FREE, LIVENESS, AND SAFETY PROPERTIES

We verified the deadlock-free, liveness, and safety properties for the single-lane protocol in Zheng
et al. [33] by leveraging the UPPAAL model checking tool [2]. We could apply a similar approach
to our new multi-lane protocol for intersections that have only a single lane from each direction
(i.e., for the single-lane special case of the multi-lane protocol). For the general multi-lane case,
however, we have developed newmethods to prove these properties, as explained in the following.

4.1 Deadlock Free

Deadlocks are classified into two categories: resource deadlocks and communication dead-
locks [26]. Resource deadlocks can happen in a system where threads share resources. Communi-
cation deadlocks can happen if a thread A is waiting for a message from another thread B while
the other thread B is waiting for a message from thread A [7, 26].
We first consider resource deadlocks. In our problem, the intersection and the entrances to the

intersection can be viewed as resources, whereas the vehicles can be viewed as threads. The inter-
section cannot be shared by vehicles with conflicting routes, and the entrance to the intersection
can only be accessed by front vehicles. A deadlock on a resource can occur if and only if all of the
following four conditions are met simultaneously, known as the Coffman conditions [11]:

• Mutual exclusion: The resources involved must be unshareable. This is true for our case, as
the resource (intersection) cannot be shared by vehicles with conflicting routes.

• No preemption: The resource can only be released by the thread holding it. This is true for
our case, as the resource (intersection) cannot be released for other vehicles if the confirmed
vehicles are still inside the intersection.

• Hold and wait: A thread is currently holding at least one resource and requesting other re-
sources being held by other processes. This could happen in our case, as one non-front vehi-
cle might hold one resource (e.g., the intersection for time window [TL,TH ]) and requesting
for another resource (e.g., the entrance that is currently occupied by another (front) vehicle).

• Circular wait: A thread is waiting for a resource being held by another thread, whereas the
other thread in turn is waiting for the resource being held by the current thread.

The first three conditions could be met simultaneously. However, as shown in the following, we
prove that the fourth condition, circular wait, will never happen in our protocol.

Lemma 4.1. There is no circular wait between a front vehicle Vf and any vehicle Vw behind it.

Proof. To prove that there is no circular wait, we only have to prove that the front vehicle Vf
does not depend on vehicle Vw . According to the policy in Section 3.4.3, which is also shown in

7Accurate estimation of the traveling time can lead to better performance.
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lines 22 through 25 in Algorithm 3, the intersection manager will only send Confirm to a non-
front vehicle Vw if its front vehicle Vf is sent a Confirm together. There can be two situations:
(1) Vf .route conflicts with Vw .route , in which case the Confirm will only be sent to Vf and thus
Vf does not depend on Vw , and (2) Vf .route does not conflict with Vw .route , in which case even if
Vw gets the Confirm earlier, it cannot block Vf as the intersection is shareable for non-conflicting
vehicles. Therefore,Vf will not wait forVw in both cases, and thus there is no circular wait between
Vf and Vw . �

Lemma 4.2. There is no circular wait between any two front vehicles V i
f
and V j

f
.

Proof. We prove this by contradiction and assume that the lemma is false (i.e.,V i
f
andV j

f
wait

for each other). V i
f
waiting for V j

f
indicates that V j

f
is in the confirmed[] buffer and V i

f
.route con-

flicts with V j

f
.route . Meanwhile, V j

f
waiting for V i

f
indicates that V i

f
is in the confirmed[] buffer

andV i
f
.route conflicts withV j

f
.route . Thus,V i

f
andV j

f
are both in the confirmed[] buffer with con-

flicting routes. However, this is contradictory to the policy that only vehicles with non-conflicting
routes can be put into the confirmed[] buffer (shown in lines 19 and 20 of Algorithm 3). Therefore,

there is no circular wait between any two front vehicles V i
f
and V j

f
. �

Theorem 4.3. There is no circular wait between any two vehicles Vi and Vj .

Proof. We prove this based on two different situations:

• If Vi and Vj are on the same lane:
—If one of the vehicles is a front vehicle, according to Lemma 4.1, there is no circular wait.
—If both are non-front vehicles and both are confirmed, they have to be confirmed with
the front vehicle. Thus, they have the same routes and there is no circular wait.

• If Vi and Vj are on different lanes:
—We prove this by contradiction. Assume thatVi andVj wait for each other.Vi waiting for
Vj indicates that either (1) the front vehicle inVi ’s lane, denoted asV

i
f
, waits forVj , or (2)Vi

directly waits for Vj . In both cases, Vj is in the confirmed[] buffer and Vj .route conflicts
with Vi .route . Similarly, Vj waiting for Vi indicates that either (1) the front vehicle in

Vj ’s lane, denoted as V j

f
, waits for Vi , or (2) Vj directly waits for Vi . In both cases, Vi is

in the confirmed[] buffer and Vj .route conflicts with Vi .route . Any one of those cases is
contradictory to the policy that only vehicles with non-conflicting routes can be put into
the confirmed[] buffer (lines 19 and 20 in Algorithm 3). Therefore, there is no circular
wait for vehicles on different lanes either. �

According to Theorem 4.3, there is no circular wait, and therefore there is no resource deadlock.
The following theorem shows that there is no communication deadlock, as long as there is a bound
msдDelayMAX on the maximum communication delay and such bound is known. We assume that
msдDelayMAX has taken into account possible message losses and resends (i.e., a message could
be lost and re-sent, but it will eventually reach its receiver withinmsдDelayMAX ).

Theorem 4.4. There is no circular wait between the intersectionmanager and any vehicleVi during
communication if the communication delay is bounded by a known boundmsдDelayMAX .

Proof. In our protocol, once vehicle Vi sends a Request to the intersection manager, it will
wait until it receives a Confirm. First, as the communication delay is bounded, a Request from
the vehicle will eventually reach the intersection manager (taking into account of message losses
and resends), and a Confirm from the manager will eventually reach the vehicle. Furthermore, the
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intersection manager does not need a reply from the vehicle indicating whether it receives the
Confirm. Instead, no matter whether the message is delivered or not, the intersection manager will
release the intersection after the time window [TL,TH ] expires. This means that even a blocked
intersection manager will automatically release after the time window expires. Therefore, there is
no circular wait in communication. �

4.2 Liveness

The liveness property specifies that any vehicle that sends Requests will eventually cross the in-
tersection as long as the communication delay is bounded and the intersection manager will try
to schedule vehicles from any lane eventually (i.e., no starving in scheduling policy).

Theorem 4.5. Any vehicleVi that sends Requests will eventually cross the intersection if the com-

munication delay is bounded by an known boundmsдDelayMAX and the intersection manager will

try to schedule vehicles from any lane eventually.

Proof. First, assume that Vi is a front vehicle. A Request from Vi will eventually reach the
intersection manager (taking into account message losses and resends). The intersection manager
will eventually try to schedule vehicle Vi (based on the order of arrival time), and send a Confirm
with the time windowTH −TL ≥ msдDelayMAX andTL as the current time. This time windowwill
be valid when Vi receives the Confirm and then Vi can enter the intersection.
Since a front vehicle can enter the intersection eventually, if a vehicle is not a front vehicle, it

will eventually become one and enter the intersection as well. �

4.3 Safety

Safety is naturally guaranteed in our protocol. According to Algorithm 3, all vehicles in the con-
firmed[] buffer will not have conflicting routes. Therefore, no vehicles with conflicting routes may
enter the intersection at the same time.

5 SIMULATION RESULTS

We use simulation results to demonstrate the effectiveness of our multi-lane delay-tolerant proto-
col in improving traffic efficiency. The simulations are conducted with (1) the widely used traffic
simulation suite SUMO [1] to control the vehicle movement through TraCI APIs, (2) our extension
of SUMO to model messages and communication delays, and (3) implementation of our protocol
in the extended simulator as well as the smart traffic light system for comparison.

5.1 Simulator Implementation and Experiment Setup

In extending SUMO,we definemessage class, channel class, intersectionmanager class, and vehicle
class. The message class defines three types of messages and their fields. The channel class defines
communication interfaces for sending and receiving messages, and can also add delay to messages
based on certain distribution. The intersection manager class defines its behavior according to
Algorithm 3, and the sending and receiving of messages are done by calling the communication
interfaces provided by the channel class. The vehicle class models the vehicle behavior according
to Algorithm 2. The vehicle physical movement is controlled by calling TraCI APIs provided by
SUMO. At each timestep, information such as current speed, acceleration, and location can be
collected through TraCI APIs, and the vehicle class can use such information to adjust vehicle
speed and acceleration. The extended SUMO simulator is shown in the upper right of Figure 1.
In our simulations, we mainly consider a network of interconnected intersections. The model

for each intersection is shown in Figure 5(a). It has four ways (ω1, ω2, ω3, and ω4), and each
direction consists of three lanes for left turns, going straight, and right turns. The feasible
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paths for the system are as follows: π1 = (λ11, λ46), π2 = (λ12, λ35), π3 = (λ13, λ24), π4 = (λ21, λ16),
π5 = (λ22, λ45), π6 = (λ23, λ34), π7 = (λ31, λ26), π8 = (λ32, λ15), π9 = (λ33, λ44), π10 = (λ41, λ36), π11 =
(λ42, λ25), π12 = (λ43, λ14). The length of each lane is 100 m. The network of intersections is shown
in Figure 5(b). The network consists of nine intersections: I = IA,IB , . . . ,II . Each intersection
has the same setup as the single intersection shown in Figure 5(a). The connection of adjacent
intersections is to connect the corresponding lanes together (i.e., connecting left lane with left
lane, middle lane with middle lane, and right lane with right lane). There are 12 entrances for the
intersection network: ω1

A, ω
1
D , ω

1
G , ω

2
G , ω

2
H , ω

2
I , ω

3
C
, ω3

F
, ω3

I
, ω4

A, ω
4
B , ω

4
C .

In simulations, the length of a vehicle is set as 5 m. A vehicle has maximum acceleration of
0.8 m/s2, deceleration of 4.5 m/s2, and speed limit of 10 m/s. The routes of the vehicles are ran-
domly generated, with the probability ratio for left turns, going straight, and right turns set as
0.25:0.5:0.25. The arriving time of the vehicles follows Poisson distribution in which the arriving
rate represents how many vehicles will arrive per second on average. In our experiment, the ar-
riving rate ranges from 0.1 vehicle/s to 0.5 vehicle/s, and a vehicle can only arrive at one of the
entrances of the intersections. We use the ratio of the flow from north-south directions and the
flow from west-east directions to represent traffic patterns. For example, traffic pattern “flow 0.5 :
0.1” denotes that the average traffic flow from north-south directions is 0.5 vehicle/s and the aver-
age traffic flow from west-east directions is 0.1 vehicle/s at each entrance. The performance of the
traffic network is measured by the average traveling time of all vehicles during simulation.

5.2 Comparison between Our Delay-Tolerant Intelligent Intersection Management

and Smart Traffic Lights

In this section, we compare our multi-lane delay-tolerant intelligent intersection design with a
smart traffic light system that uses the basic back-pressure control, the capacity-aware back-
pressure control, and the adaptive max-pressure control, respectively, as described in Section 2.2.
We consider the cases of a network of nine interconnected intersections. For comparison, we as-
sume that our protocol works under normal conditions where the communication delay is negli-
gible. For simplicity, we set the communication delay in our protocol as 0 (our protocol can also
tolerate bounded delays with degradation of performance, as shown in the next section). We ran-
domly generate traffic traces, and use the same traces in our system and in smart traffic lights
with the three different algorithms. The total number of vehicles generated for the network of
nine intersections is 1,200. For the capacity-aware back-pressure control, the parameters are set
according to Gregoire et al. [16]—that is,m is set to 2.0,C∞ is set to 200, and Cλi (capacity of each
lane) is set to 15.
For a smart traffic light system with back-pressure scheduling, we explore its scheduling period

from 5 to 55 seconds. The system adjusts its phase each period. We set the minimum period as
5 seconds to leave enough time for one vehicle to cross the intersection. Before switching phases,
we also change the green lights to yellow for 3 seconds for safety purposes.
Our intersection manager also periodically processes data with a controlling period, although

at a much finer granularity than the scheduling period of smart traffic lights. We explore its con-
trolling period from 0.1 to 2 seconds, which is from the simulation precision to the largest mean
of communication delay in this experiment.
The simulation results for a network of nine interconnect intersections (as in Figure 5(b)) are

shown in Figure 9. In these experiments, every intersection uses the same scheduling period in
the smart traffic light system and uses the same controlling period in our intelligent intersection
system. The performance of the smart traffic lights highly depends on the scheduling period under
different traffic patterns, whereas the performance of the intersection manager does not change
much with respect to the controlling period.
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Fig. 9. Comparison between smart traffic lights and our intelligent intersection design in the case of nine

interconnected intersections with multiple lanes.

Table 2. Best Average Traveling Time for Smart Traffic Lights and for Our Intelligent Intersection Design

in the Case of Nine Interconnected Intersections

Smart Traffic Light
Basic Capacity-aware Adaptive

Traffic Pattern Back Pressure Back Pressure Max Pressure Our Intelligent Intersection
0.1 : 0.1 73.125 73.927 70.954 61.354
0.3 : 0.1 122.287 122.190 122.054 91.224
0.5 : 0.1 152.068 150.755 155.021 121.688
0.5 : 0.5 160.584 160.235 162.664 145.884

If we assume that the smart traffic lights can always adjust the scheduling period to achieve the
best performance, we can compare the performance of our approach with the best performance
of the three smart traffic light approaches in Table 2. We can see that our intelligent intersection
significantly outperforms the smart traffic lights in all tested traffic patterns.
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Fig. 10. Performance of our multi-lane delay-tolerant protocol under varying communication delays.

5.3 Performance of Our Intelligent Intersection Design under Communication Delays

In this section, we further study the performance of our delay-tolerant protocol under varying
communication delays. We set the delays to follow Gaussian distribution with the mean ranging
from 0 to 2.0 seconds. The relationship between the mean and the deviation of the communication
delays can be complicated. According to Yao et al. [31], the deviation can be 1.5 times the mean
for the IEEE 802.11p standard. For simplicity, we model the standard deviation equal to the mean.

The same delay distribution for every intersection. In this experiment, the delays at all intersec-
tions follow the same Gaussian distribution with the same mean and standard deviation. To deal
with the delays, we set the bound onmaximum communication delaymsдDelayMAX as 4.1 seconds
and the resending timeout of a vehicle trout as 8.0 seconds. If in simulation a randomly generated

delay exceedsmsдDelayMAX , it will be set asmsдDelayMAX ; if it is smaller than 0, it will be set
as 0. In this experiment, 300 vehicles are randomly generated for the single-intersection case, and
a total of 1,200 vehicles are generated for the nine-intersection case. For every vehicle, we set its
ratio for left turns, going straight, and right turns as 0.25:0.5:0.25.
The simulation results are shown in Figure 10. The x-axis denotes the mean of the communica-

tion delays, and the y-axis denotes the performance defined as the average traveling time. There
is no deadlock or collision observed in all simulations, as we have already proved in Section 4.
In Figure 10(a) and (b), the average traveling time increases (i.e., the performance decreases) as

the delay increases. For the same level of communication delay, the denser traffic (larger flow) will
result in worse performance in general. For example, under the same communication delay, the
dense traffic pattern “flow 0.5 : 0.5” has longer average traveling time than sparse traffic “flow 0.1
: 0.1.” The bar on each point in the figure is the error bar, denoting the deviation of the average
traveling time for all simulation samples. The deviation is very small for sparse traffic, and it
increases when the traffic becomes dense and unbalanced.
Finally, we can see that the performance does not decrease much when the communication de-

lay is within 0.5 second, which is the case in normal conditions (even with very dense traffic).
This shows that our intelligent intersection design should outperform smart traffic lights in nor-
mal conditions (especially for a network of intersections). If the communication delay exceeds 0.5
second, it is very likely that the network is under malicious attacks. We conducted some initial
studies on such security vulnerabilities, and the results are shown in the following.

Only one intersection (among the nine intersections) has communication delay. In this experiment,
we use the nine-intersection model to study which intersections may have the most significant
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Fig. 11. Performance of a nine-intersection system when one intersection is delayed (being attacked).

impact on system performance when its communication delay is large (possibly due to malicious
attacks). During each simulation, we set a communication delay with a mean of 4.0 seconds and
a standard deviation of 1.0 second for only one of the intersections (the other intersections are
assumed to have no communication delay). The delay boundmsдDelayMAX is set as 5.1 seconds,
and the resending timeout trout is set as 8 seconds. The simulation results are shown in Figure 11.
The x-axis denotes the nine intersections, as labeled in Figure 5(b). The y-axis denotes the average
traveling time as performance. The bars with different colors denote different traffic patterns. We
can see that the significance of certain intersections can be different under different traffic patterns.
For sparse traffic, there is not much difference no matter which intersection is delayed (being
attacked). However, for denser traffic, delaying some intersections can cause a more significant
increase in average traveling time.

6 CONCLUSION

We present a delay-tolerant intelligent intersection management protocol for general multi-lane
intersections. We prove that the protocol satisfies the deadlock-free, liveness, and safety prop-
erties. We implement the protocol in an extension of the SUMO simulator and compare it with
smart traffic lights that use back-pressure scheduling. The simulation results demonstrate that our
intelligent intersection design significantly outperforms the smart traffic lights for a network of
intersections.
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