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Abstract—For many embedded systems, such as automotive
electronic systems, security has become a pressing challenge.
Limited resources and tight timing constraints often make it
difficult to apply even lightweight authentication and intrusion
detection schemes, especially when retrofitting existing designs.
Moreover, traditional hard deadline assumption is insufficient to
describe control tasks that have certain degrees of robustness
and can tolerate some deadline misses while satisfying functional
properties such as stability. In this work, we explore feasible
weakly-hard constraints on control tasks, and then leverage
the scheduling flexibility from those allowed misses to enhance
system’s capability for accommodating security monitoring tasks.
We develop a co-design approach that 1) sets feasible weakly-
hard constraints on control tasks based on quantitative analysis,
ensuring the satisfaction of control stability and performance
requirements; and 2) optimizes the allocation, priority, and
period assignment of security monitoring tasks, improving system
security while meeting timing constraints (including the weakly-
hard constraints on control tasks). Experimental results on an in-
dustrial case study and a set of synthetic examples demonstrated
the significant potential of leveraging weakly-hard constraints
to improve security and the effectiveness of our approach in
exploring the design space to fully realize such potential.

I. INTRODUCTION

Security challenges in automotive systems: Security has
become a pressing issue for automotive electronic systems.
Researchers have demonstrated that malicious attackers can
successfully compromise a variety of local and remote inter-
faces in vehicles, and then carry out attacks on safety-critical
components via in-vehicle communication networks such as
the Controller Area Networks (CAN) buses [1], [2], [3].

As one important element to address automotive secu-
rity challenges, various approaches have been proposed to
harden in-vehicle communications, via authentication mech-
anisms [4], [5], [6] or intrusion detection techniques [7], [8],
[9], [10]. For instance, in [8], an anomaly-based intrusion
detection technique is proposed to analyze the local clocks of
Electronic Control Units (ECUs) for identifying abnormal be-
havior. In [7], a detection technique is proposed to constantly
monitor in-vehicle communication (e.g., CAN messages) and
detect malicious attacks that alter the message streams.

However, due to limited resources and tight timing con-
straints, it is often challenging or even prohibitive to apply
these intrusion detection or authentication techniques. The ad-
dition of these security mechanisms may prolong the execution
of other functions (e.g., by preempting the existing control
tasks), and cause them to violate their execution deadlines.

Studies in [6], [11], [12], [8] showed that it is difficult to
apply even lightweight authentication methods in current in-
vehicle networks such as CAN, and adding intrusion detection
techniques will also require careful timing analysis and may
not be feasible under hard timing constraints [7], [13].

Control with deadline misses and weakly-hard constraints:
Many system functions such as some control tasks, however,
have certain degrees of robustness and can tolerate some dead-
line misses while still satisfy functional properties and perfor-
mance requirements, as long as those misses are bounded and
dependably controlled. Recent works have studied the impact
of deadline misses on control performance and stability [14],
[15], [16], [17], [18]. For instance, in [15], the authors present
an analytical bound of deadline miss ratio that can ensure
the stability of a distributed embedded controller. In [16],
the worst-case control performance for an LQR controller is
analyzed under deadline misses. In [14], the authors provide
a general framework to capture the control performance with
respect to a specific sequence of deadline miss pattern.
Weakly-hard constraints are thus proposed to capture the
timing requirements for tasks that allow deadline misses. A
common form is the (k, N) constraint, which specifies that
among any N consecutive task executions, at most k instances
can miss their deadlines [19], [20]. These constraints more
precisely reflect the timing requirements for many system
functions, and provide more scheduling slack by allowing
deadline misses with safety guarantees [21], [22]. In the lit-
erature, methods were developed for leveraging the additional
slack to improve schedulability [19], [23], [24], [25]. In [19],
weakly-hard constraints are formally defined and algorithms
are proposed for scheduling periodic tasks under such con-
straints. In [25], schedulability analysis for periodic tasks is
improved with unknown task activation offsets. In [23], a
general non-periodic task model is defined and a typical worst-
case analysis (TWCA) algorithm is introduced for analyzing
sporadic overloads. TWCA for weakly-hard schedulability
analysis on the general model is formally presented in [24],
and extended for systems with task dependencies in [26].
There are also related works that leverage weakly-hard con-
straints for better energy-driven scheduling, such as [27], [28].

Our codesign approach in leveraging weakly-hard con-
straints to enhance security: In this work, we leverage
the scheduling flexibility/slack from the control tasks that



allow deadline misses to improve the security of automotive
systems, i.e., to better accommodate security monitoring tasks
while meeting the stability and performance requirements of
control tasks. We develop a codesign approach that holistically
addresses control and security, bridging the two aspects via the
exploration of weakly-hard constraints on control tasks and
the design of security monitoring tasks (the general codesign
methodology has been applied to hard real-time systems in
our prior work [29], [30], [31]). More specifically, in this
work we model the control tasks running on ECUs as switched
systems and derive the control stability and performance under
various deadline miss patterns within a hyper-period. We then
consider deploying security monitoring tasks on the ECUs
and let them monitor CAN messages for anomaly detection.
We developed an algorithm to explore the allocation, priority,
and period assignment of these security monitoring tasks, with
control analysis and schedulabiltiy analysis, to improve system
security while ensuring that 1) for control tasks that allow
deadline misses, their stability and performance requirements
are met based on the analysis of the deadline miss patterns,
2) for other tasks including the security monitoring tasks,
their deadlines are always met, and 3) constraints on security
monitoring are met.

Our approach could free up resources for incorporating
security monitoring mechanisms into existing automotive sys-
tem designs. This is critical in automotive domain, as there
are often significant reuse of legacy E/E architectures and
constant needs of updating existing systems or system de-
signs for fixing bugs and providing new functionality (e.g.,
security features) [32], [33], [34]. While this work focuses
on automotive systems, our approach could be modified to
address other resource-constrained systems that have similar
characteristics and allow weakly-hard constraints. To the best
of our knowledge, this work is the first to leverage weakly-
hard constraints for control tasks to harden system security.
The main technical contribution of this work includes:

e We presented a control analysis method for linear time-
invariant control systems, to verify the stability and measure
the control performance under different deadline miss pat-
terns. We also formulated the addition of security monitor-
ing tasks for intrusion detection, and defined a correspond-
ing security objective function and other related constraints.

e We formulated a constrained multi-objective optimization
problem to determine the configuration of security monitor-
ing tasks for improving system security and control perfor-
mance. The two objectives are typically conflicting and the
problem is non-linear and non-convex. Thus, we developed
a meta-heuristic approach (i.e., simulated annealing) for
exploring the design space and obtaining the pseudo Pareto-
optimal configurations for security monitoring tasks.

e We conducted experiments on an industrial case study and
a set of synthetic examples. The experiments demonstrated
that 1) compared with hard deadlines, weakly-hard con-
straints can significantly improve system’s ability to ac-
commodate security monitoring tasks, and 2) our codesign

approach is effective for exploring the design space and
fully leveraging the potential of weakly-hard constraints.

In the following, Section II describes our system model.
Section III introduces our problem analysis and formulation.
Section IV presents our algorithm for exploring the design
of security monitoring tasks, with control and schedulability
analysis. Section V presents the experimental results.

II. SYSTEM MODELING

We consider a system that consists of multiple homogeneous
single-core ECUs connected with a CAN bus, and let £ =
{e1,ea,..., ey, } denote the set of ECUs. As shown in Fig. 1,
different types of tasks may run on the ECUs (similarly as
assumed in [7]), including: a) security monitoring tasks that
monitor the CAN messages for intrusion detection, b) control
tasks that implement controller functions, and ¢) tasks that
implement other functionalities.

Physical
plant

Attack

D Other tasks

[[] Security monitoring tasks ] Control tasks

Fig. 1. System model.

We let T = {7, 72,...,7} denote the set of all the
tasks in the system. We consider that all tasks are periodic,
and tasks running on the same ECU are scheduled based on
preemptive static-priority based policy. Each task 7; can be
represented by a tuple {c.,,d.,,tr,,pr, }, Where c., is the
worst-case execution time (WCET), d, is the deadline, ¢,
is the task period, and p,, is the task priority. We assume
that some of the control tasks may allow deadline misses in a
bounded and controlled manner, and their timing requirements
can be captured by weakly-hard constraints as introduced later.
For the rest of the tasks, including security monitoring tasks,
other tasks, and control tasks that do not allow deadline misses,
we assume hard timing constraints, i.e., their deadlines should
always be met'. Let M = {my,ma,...,my,,,} denote the
set of CAN bus messages. Each message m; has a period ¢,,,,.
In this work, we assume that the configuration of CAN bus
messages is given by the system designers and is schedulable.
An example of the system model is explained in Appendix A.

'In principle, other tasks (e.g., those for sensing, computation and com-
munication), security monitoring tasks, and CAN messages may also allow
deadline misses and be defined with weakly-hard constraints. Those scenarios
are beyond the scope of this paper, and will be addressed in future work.



Next, we introduce our models for the security monitoring
tasks and control tasks in more details.

A. Security Monitoring Tasks

As stated above, we consider security monitoring tasks
that monitor CAN messages and implement certain anomaly-
based intrusion detection mechanism, such as those in [10],
[35], [36], [7], [8]. Our model is relatively general, and
does not restrict the monitoring tasks to a specific intrusion
detection mechanism. We assume that on an ECU with security
monitoring tasks, a local buffer will store the messages being
monitored and other relevant information, e.g., the timestamps
of the message transmissions. At each activation of a security
monitoring task, it retrieves the messages it monitors and
other corresponding information, and checks any possible
anomalies. Note that as messages are periodically transmitted,
the security monitoring tasks in fact monitor message streams.

An ECU may have multiple security monitoring tasks
that scrutinize different CAN messages. We let T'S; =
{Tmonitor,i,1s - - - » Tmonitor,i,| TS, } denote the set of monitor-
ing tasks on ECU e;, where operator |e| denotes the cardinality
of a set. The set of all the security monitoring tasks in the
system is denoted as T = (J;, T'S;. Each security moni-
toring task Tionitor,,; 18 captured with a period ¢r,. . .,0.:
a deadline equal to its period, a worst-case execution time
Crmonitori,;» a0d @ priority p- ... .. As stated before, the
security monitoring tasks are scheduled together with control
tasks and other tasks based on static priorities.

The task Tyonitor,i,; can monitor a set of messages that
have the same period, denoted by M, . ..., - We use tm;
to denote the period of these messages. Since a security mon-
itoring task would typically inspect each monitored message
and perform some computation based on it, it is conceivable
that the WCET of such a task Ty,onitor,i,; Will be polynomial
in | M, |. In this work, we simply consider

monitor,i,j
= Kuwcet X |M‘Fmonitor,i,j |7 (1

where K.+ is considered as a given parameter that depends
on the monitoring functionality. In our experiments, we relate
the computation time of security monitoring tasks to a prior
study in the literature [37], [7], where it shows monitoring 15
message streams will consume about 5% of the ECU resource.
Therefore, we assume that —XFwcet — will take 51—0? =0.33%

Crmonitor,i,j

Tmonitor,i,j

of ECU utilization in experiments.

B. Controller Model and Control Tasks

In this work, we study linear time-invariant (LTI) systems
for which the dynamics of the physical plant can be modeled
as @(t) = Axz(t) + Bu(t), y(t) = Cz(t). Here, A, B and
C' are system matrices, and x(t), u(t) and y(¢) are vectors
representing the system state, control input and system output
at time ¢, respectively. We consider that the system state is
read periodically by sensing devices at discrete time instants
{tx}, where the sampling period is a constant and is given
by h = tgy1 — tr. The system state z[k] (i.e., z(¢x)) read
at time tj is used to compute the control input u[k] which

is then applied to the plant by the actuator. As the controller
is implemented on an embedded platform, computation and
communication can take non-negligible time which may result
in a sensing-to-actuation delay. We assume that the sensing-to-
actuation delay is bounded by a deadline D and D < h (we
will discuss later how this deadline may be evaluated). We
further assume that the system adopts the Logical Execution
Time (LET) paradigm [38], where the control input is updated
at the sensing-to-actuation deadlines. The LET implementation
provides fixed closed-loop delay (when deadline is met) and
thus facilitates more predictable control, and has been adopted
in the literature [18], [14]. In our case, the actuator applies the
control input {u[k]} at time instants {¢; + D}.
Corresponding to the sampling period h and the sensing-

to-actuation delay D, we can write the equivalent delayed
discrete-time system model (Chapter 2 in [39]) as

z[k + 1] = Aqzx[k] + Baoulk] + Baulk — 1], y[k] = Cz[k], (2)

h—D h
where Byg= [ e4%-Bdsand By; = [ e?*- Bds.
0 h=D
_ | =l
For an augmented state vector z[k] ulk—1]|" we

reformulate (2) as
Z[k + 1] = Aaugz[k] + Baugu[k]a y[k] = Caugz[k]y (3)

As B
o o , Caug = [C 0]

B Bu.ug = J:Biiﬁ
with 0 and I denoting zero matrix and identity matrix respec-
tively of suitable dimensions [40]. We consider the feedback
control law to be u[k] = —Kz[k] with the feedback gain K
calculated using pole-placement technique [41].

where Agug =

Controller implementation: We consider that the control law
is implemented using a software control task 7. running on an
ECU. As shown in Fig. 1, each controlled plant is connected
locally to the sensing and actuation units, and we assume that
the sensing and actuation delays are bounded by ds and d,,
respectively?. Thus, to realize the sensing-to-actuation delay
D, the deadline of the control task d., is restricted by d,, =
D —d, — d,. Now, during execution, if a job of the control
task 7. meets the deadline d,, the control input will be applied
with the delay D (following the LET paradigm as discussed
before); if a job of 7. violates the deadline d._, the job will
be killed and the control input will be zero.

A similar control strategy is used in [15], with the assump-
tion that the sensing-to-actuation delay is exactly equal to one
sampling period. In [14], the control input is held when a job
is killed, assuming that the maximum consecutive deadline
misses is upper-bounded and the magnitude of a disturbance
is known. In our work, these assumptions are relaxed. Next
in Section III-A, we introduce a control performance metric
to measure the ability of the system to quickly reject a
disturbance, and thereafter, show how to evaluate the impact
of deadline misses on stability and control performance.

2In the cases where sensing and actuation units are distributed and commu-
nicated to control tasks via CAN messages, timing analysis on the messages
should be conducted to bound the worst-case sensing and actuation delays.



III. PROBLEM ANALYSIS AND FORMULATION

In our work, we consider adding security monitoring tasks
to an existing system design, and thus assume the allocation,
priority, and period of control tasks and other tasks are given.
We focus on exploring the allocation, priority, and period of
security monitoring tasks, to improve system security while
ensuring that various constraints are met. To achieve this,
we developed a holistic formulation to model and analyze
the control stability and performance under deadline misses,
the constraints related to security monitoring tasks, a security
objective function for measuring system’s intrusion detection
capability, and the schedulability constraints for all tasks
(under weakly-hard or hard deadlines), as introduced below.

A. Stability and Control Performance

Asymptotic stability: A discrete-time system is asymptot-
ically stable if all the closed-loop poles lie inside a unit
circle (Chapter 3 in [39]). From the augmented state-space
model (3) and the control law, we have the following closed
loop dynamics:

2k +1] = (Agug — BaugK)2[k] = Aaz[k]. @

The system, described in (4), is asymptotically stable, if and
only if all eigenvalues of A satisfy [A;| <1 [39].

Control performance metric: In this work, we consider
stabilization control, i.e., the controller must quickly bring
the system back to the equilibrium state after a disturbance.
Without loss of generality, we assume that the equilibrium
state is at the origin of the state-space. Let us consider that
a disturbance arriving at time ¢; brings the system to a state
z[k]. The magnitude of the disturbance is measured by the
deviation of the system from the equilibrium state, i.e., ||z[£]]|.
The system state at time tgy, is z[k + r]. Assuming no
further disturbance injection, the residual disturbance .J, after
r sampling intervals is given by J,. = H’]Z‘}Zﬁﬂ“. We quantify
the ability of a controller to reject disturbances using a metric
H where H is the number of sampling intervals needed to
bring the residual disturbance J,. to less than or equal to a
certain threshold J;p,, i.e.,

Jr < Jin, Vr = H. ®)

The lower the value of H is, the quicker the disturbance is
rejected and the better the control performance is. With no
overlapping disturbances, we can write z[k + r] = AL z[k],
and therefore, J, < ||A7||. As J, depends on z[k], which is
a variable and not known in advance, we will use this upper
bound to evaluate the performance of a controller. We consider
that the controller must satisfy a certain minimum performance
requirement, denoted as H", such that H < H".

Deadline hit/miss pattern: For the problem under study,
given the set of control and monitoring tasks for the target
architecture and the task configuration, we can obtain a pattern
of deadline hits/misses for each task using schedulability
analysis (as introduced later in Section IV-A). The periodicity
of the deadline hit/miss sequence is determined by the hyper-
period of all the tasks mapped on the same ECU, i.e., the

least common multiple of these tasks’ periods. Here, a binary
variable ¢, is used to denote the state of the n-th job of a

task in a hyper-period, i.e., o, = 1 when the deadline is
met (hit) while o, = 0 when the deadline is missed. Let
II = (0109 -0on---) denote a periodic deadline hit/miss

pattern for a control task, where, there are N sampling
instants within a hyper-period. For such an infinitely repeating
pattern of deadline hits/misses, there exist a maximum of N
distinct control sequences for a given disturbance. For an
example pattern II = (10111011--.), disturbance arriving
at the first, second, third and fourth sampling instants will
result in four different control sequences. This is because
the sequence of deadline hits/misses starting from the instant
where the disturbance is injected is different in each of the
cases, i.e., IIy = (10111011---), Il = (01110111---),
II3 = (11101110---) and Iy = (11011101 ---). We denote
such a sequence starting from the n-th sampling instant in a
hyper-period as I1,, = (0,041 - ONO1L* " Op10n " ).

Switched system model: According to the control model dis-
cussed in Section II-B, u[k] = 0 when ¢,,04(k,n)4+1 = 0 and
ulk] = —Kz[k] when 0,,0q,8)+1 = 1, where mod(k, N)
gives the remainder when £k is divided by N. The closed-loop
system can then be modeled as a switched system depending
on the deadline hit/miss pattern. Based on (2), (3) and the
adopted control model, the switched system is composed of
a maximum of four subsystems. Here we do not assume
any restriction on the number of consecutive deadline misses
(contrary to [14]). These subsystems can be modeled as:

e When 0,046,841 = 0 and opqk—1,8+1 = 0, (2)
becomes x[k+1] = Agz[k] and u[k] = 0. Correspondingly,
the augmented state-space model in (3) becomes

A; O
ot = [ o] 09 = el
o With o 0qk,n)+1 = 1 and opoqe—1,8)41 = 0, (2)

becomes x[k+1] = Agx[k]+ Baoulk] and u[k] = —Kz[k].
Thus, the augmented state-space model in (3) becomes

Skt 1) = ([f(‘)d g} _ {vao} K)z[k:} — A2 [k).

e For 0,04k, n)+1 = 0 and 00q(k—1,8)+1 = 1, (2) becomes
zlk + 1] = Agqz[k] + Bgiulk — 1] and u[k] = 0. The
augmented state-space model in (3), therefore, becomes

Ag Bga

v [

] Z[k] = Aloz[k]

e In case, 0ok, N)+1 = 1 and opoqe—1,8)+1 = 1, the
plant dynamics evolve as in (2). The augmented state-space
model is, thus, as given in (3). The state-transition matrix
Ajqq can be written as A1 = Agyug — Baug K.

Stability and performance constraints: For a deadline
hit/miss pattern II, we need to evaluate the stability and
performance of the control loop for all possible sequences
of hits/misses, i.e., {II;,IIs,--- ,IIx}. Given a sequence
II,, of deadline hits/misses, the evolution of the system
from z[k] (where k is the n-th sampling instant in a hyper-



period consisting of N samples, i.e., n = mod(k,N) + 1)
would be governed by the sequence of closed-loop matrices

(Ao voms Aononins s Aowors Aorons s Aon son 1s77)-
Therefore, the system evolves as follows:
zlk + 1] = A, 2[k], where,
Ann = AUmod(k—l.NH»lUvnod(k,NH»l7 (6)
Anﬂ“ = Aamod(k+7'72,N)+lo'7nod(k+7-71,N)+1 : An,”"—l'

Such a switched system is asymptotically stable if the eigen-
values of A, n lie inside a unit circle. Thus, the stability
constraint for a control loop experiencing a deadline hit/miss
according to II is given by

Vi<n< N7 VAL € eig(An,N)a |Al| <1, (7N

where eig(Ay n) is the set of eigenvalues of A, n.

When the disturbance is observed at the k-th instant and
n = mod(k, N) + 1, the residual disturbance J.(n) after r
time samples can be written as J.(n) = “H[kﬁ'r i < || 4nr|l-
Now the control performance as measured by H(n) for the
sequence II,, is J,.(n) < ||An,|| < Jw,Vr > H(n) and the
worst-case performance H* for a given periodic sequence II
must satisfy a given requirement H™ and is given by

* T
H* = 12%XNH<TL) < H". (8)
If (8) is not satisfied then I is not an acceptable sequence.

Control performance objective: During the design space ex-
ploration, we consider control performance as an optimization
objective, and address it together with security. We let Hf_lfs
denote the control performance when no deadline miss occurs
(for normalization purpose), and let H7. be computed as in (8).
We define the system-level control performance P as follows:

P= Z 771 des’ (9)

€T
where 7); are the weights and 7¢ is the set of control tasks.

B. Security Constraints and Objective

Security monitoring constraints: We consider the following
requirements when adding security monitoring tasks:

e Coverage: A pre-defined set of critical CAN messages,
denoted by M.,;, may be given. Each message in M,,;
should be covered by at least one security monitoring task.

e Redundancy: A CAN message may be required to be
monitored by multiple tasks on different ECUs to avoid
a single point of failure.

We can formalize the above requirements for message m; as

Ne
E Qg5 = M,
j=1

where binary variable a; ; = 1 if m; is monitored by a security
task on ECU e;. Parameter f; is defined as the redundancy
level for m; (u; > 1), representing how many tasks on
different ECUs are required to monitor m;.

Moreover, we may set constraints on the period of se-
curity monitoring tasks. Intuitively, setting a smaller period

Vm; € Mey, (10)

(higher frequency) for a security monitoring task Tp,onitor,i,;
may provide better intrusion detection capability (as further
discussed below in security objective), but also incur higher
computational overhead. To balance the detection efficacy and
overhead, we set a period constraint as

des mar
T;‘)j S tmonztor R T

(1)

where Tzd;"” is the desired monitoring perlod that provides
ideal detection efficacy, while 777" is the maximum period
that can still provide meaningful detection capability. Similar
constraints were used in the literature [13], [42], with ngs and
T7"%* assumed as given by the designers. In our experiments,

d{” is set to ¢m;,j, the period of monitored messages. 777;**
is set as an integer multiple of tm; ;, i.e., TZ’Z‘” = Kpaztm ;.

Security objective: To define a system-level security objec-
tive function, we first measure the efficacy of each security
monitoring task Tionitor,s,; t0 detect the potential anomaly
of a message my € M., ..,.. - We assume the anomaly
detection mechanism is already given and only focus on its
timing aspect, and we define a worst-case detection delay
metric Dy .. .. to measure the maximum time it takes
for the monitoring task to detect the message anomaly.
Consider a security attack occurs and leads to abnormal
behavior for my; at time ¢. In the worst case, this could
happen right after the s-th job instance of the monitoring
task Tyonitor,i,; had just been activated, and we have to wait
until the (s + 1)-th job of the monitoring task to be activated
and complete its execution for detection. Thus, the worst-case
detection delay D, ... .. should include the monitoring
task’s activation period and worst-case response time® |, i.e.,

Tmonitor,i,j  ~Tmonitor,i,j + rT?’nO?’LitOT,i,j'

Since a message mj may be monitored by multiple secu-
rity monitoring tasks, we can further define the worst-case
detection delay for message my as the maximum time for the
anomaly of my, to be detected by any one of its monitoring
tasks, i.e., D, = min{D |me € Mr, o ivoris )

For normalization, we define the desired detection delay

Tmonitor,i,j

des __ : des
as Dmk - mln{DTmomtm i |m’f € MTnLon'it(n i g} where
des _ des : des
Tmonitor,i,j 7174’] + Clmonitor,i.j* That 18, D‘Fmrmum i,j

corresponds to the scenario where task Tronitor,s,j 15 a551gned
with the desired period and highest priority. With this, we
define a system-level security objective as

> e

mpEMer; Mk

S:

(12)

where wy, are the weighting factors.

C. Schedulability Constraints

As stated in Section II, some control tasks in the system
may be bounded by weakly-hard constraints, while the rest of
the tasks are bounded by hard deadlines. For a control task ;
with weakly-hard constraints, we denote its timing requirement

3Here we assume the security monitoring task is able to detect the anomaly
in its first activation. This may not be the case in complex scenarios, but as our
work is agnostic to the specific anomaly detection functionality, we believe
this is a reasonable first-degree approximation.



as ¢; = {(k},N}), ..., (k" ,N/")} (similar to [14]), where
(k!, N/) means for any N] consecutive activations of task 7;,
at most kf deadline misses are allowed. Task 7; satisfies its
weakly-hard constraint, i.e., is schedulable, if

dmm;i(N7) <kl, Vj,1<j<n,, (13)

where dmml-(Nij ) denotes the worst-case number of deadline
misses of 7; in Ni] consecutive activations. In Section 1V,
we present our event-based simulation method for analyzing
the schedule within a hyper-period and checking the deadline
misses (i.e., dmm,;(N})) for tasks.

For a task 7; with hard timing constrains, we can calculate
its worst-case response time 7, using the busy window
analysis in [23]. The task is schedulable if

rr < dy. (14)

D. Overall Formulation

Our codesign approach optimizes a joint objective function
that combines the security objective in (12) and the control
performance objective in (9), as

J =aS + [P, (15)
where « and [ are parameters for trading off the two
objectives. The overall constrained optimization formulation
with constraints on control stability, performance, security
monitoring, and schedulability is:

minimize J
subject to Equations (7), (8), (10), (11), (13),(14).
IV. OPTIMIZATION ALGORITHM FOR CODESIGN

The optimization problem formulated above in Section III-D
is non-convex and complex to solve. In particular, the sta-
bility and performance for each control task depend on its
deadline miss pattern, which needs to be obtained through
schedulability analysis under weakly-hard constraints. Such
analysis (e.g., for evaluating dmm;(N;) in Equation (13)) can
hardly be captured with closed-form equations and addressed
by existing solvers. The exploration of the feasible weakly-
hard constraints under both control and schedulability analysis
further increases the complexity. Thus, we developed a meta-
heuristic algorithm to solve the problem. The algorithm first
uses a heuristic method based on bin packing for generating
an initial configuration of the security monitoring tasks, and
then carries out a simulated annealing (SA) process to explore
the system configuration space via random permutation of
the allocation, priority, and period of the security monitoring
tasks. During the SA process, for each system configuration,
the algorithm calls routines for schedulability analysis, control
analysis, and evaluation of security constraints and objective.
This provides the feasibility of various constraints and the
overall objective value (Equation (15)). The algorithm then
decides whether to accept or reject the randomly generated
configuration, and continues the SA process until it ends.

Next, we will introduce our schedulability analysis method,
the initial solution generation, and the overall algorithm. The
control analysis and security evaluation follow Section III.

A. Schedulability Analysis

An important element of our algorithm is the schedulability
analysis under weakly-hard constraints (Algorithm 1), which
analyzes the scheduling feasibility and the control task dead-
line miss patterns for a given system configuration. As stated
before, we assume that a task will be killed the moment it
misses its deadline (similar strategy as discussed in [14]).
The analysis includes two steps. First, a worst-case response
time (WCRT) analysis based on busy window analysis [23] is
performed to check whether there are any deadline misses (line
1 to 3). If there is not any, the system is already schedulable.
Otherwise, an event-based simulation (line 4 to 27) calculates
the deadline miss pattern for each task within the hyper-period.
One round of such simulation can derive the deadline miss
patterns for all tasks*.

The event-based simulation simulates the execution order of
each task by recording the time-stamp of each event, including
job release, completion, etc. 0;; = (sg,;,co,;) is the j-th job
of task 7;, where sy, = j-t,, is the release time of the job and
cg,; is the remaining computation time of the job. Miss[i[j] =
true if 7;’s j-th job 8;; misses its deadline. event_queue and
job_queue are two job priority queues for unreleased jobs
and for released but unfinished jobs, respectively. After the
event-based simulation, function VerifyW HConstraint()
verifies weakly-hard constraints by counting the number of
deadline misses within any consecutive N; activations. The
system schedulability and deadline miss pattern Miss will be
returned at the end of the algorithm. A detailed description of
Algorithm 1 can be found in Appendix B.

B. Initial Solution Generation

Given the system profile of a set of control tasks and
other tasks allocated and scheduled on ECUs (and messages
transmitted on a CAN bus), the first step in our algorithm
is to generate an initial solution for the simulated annealing
process. We use a bin packing based method for this step.
For each critical CAN message m; to be monitored, we
iteratively find p; ECUs with the lowest utilization and add
corresponding security monitoring tasks, where p; is the given
redundancy level. After security tasks are added to monitor all
the critical CAN messages (while satisfying their coverage and
redundancy requirements), we check the system schedulability
with CheckSched(). If the system is unschedulable, we
will identify all the security tasks with deadline misses and
increase their periods. The initialization result may still be
unschedulable at the end, which will be further addressed in
the simulated annealing process. A detailed description for the
initialization and the pseudo code can be found in Appendix C.

C. Overall Algorithm

Algorithm 2 shows our overall optimization algorithm.
First, an initial solution is generated as introduced above

4The computational complexity of the event-based simulation depends
on the total number of events within a hyper-period. In our preliminary
experiments of 25 tasks, with periods ranging from 50 to 1000 ms, our event-
based simulation approach is 20 times faster than the analysis method in [19].



Algorithm 1: CheckSched(): Schedulability Analysis

1: WCRT Analysis(T)

2. if V1, €T, rr, <d,, then
3: return true

4: for task ; € T do

5. event_queue.push(f;o)
6: 0;; = event_queue.pop(),
7

8

9

cur_time = 50,
. event_queue.push(0;(;41))
: while cur_time < HyperPeriod do

while 54, < cur_time do

10: job_queue.push(8;;)

11: 0;; = event_queue.pop()

12: event_queue.push(0;(j41))

13:  if job_gueue is empty then

14: cur_time = S0,

15:  else

16: Ok = job_queue.pop(), next = sq,;

17: response = cur_time + cyp,,

18: if sg,, + d;, < next or response < next then
19: if response < sg,, + d,, then

20: Miss[k][l] = false

21: cur_time = response

22: else

23: Misslk][l] = true

24: cur_time = max(sg,, + d,, cur_time)
25: else

26: co,, = Co,, — (next — cur_time)

27: job_queue.push(0y;), cur_time = next

28: schedulability = VerifyW HConstraint(Miss)
29: return Miss, schedulability

(line 1). Then, a simulated annealing process is conducted to
explore the design space. During each step of the simulated
annealing, the current system configuration S, is randomly
changed to generate a new configuration S,,.,, in the function
RandomM ove() (line 7). The random move could be chang-
ing the allocation of a security monitoring task to another
ECU, swapping the priorities between a security monitoring
task and a control task or an other task on the same ECU, or
changing the period of a security monitoring task.

Once a new configuration is presented, the algorithm calls
the schedulability analysis routine CheckSched() (Algo-
rithm 1) to evaluate the schedulability and obtain control task
deadline miss patterns. With the derived miss patterns, the
algorithm calls a routine ComputeCtri() to evaluate control
stability and performance, as introduced in Section III-A. It
also calls a routine ComputeSec() to evaluate security objec-
tive and constraints, as defined in Section III-B. The overall
objective value is then computed as defined in Equation (15)
(line 11). If the new configuration fails to satisfy the schedu-
lability, security constraints or control stability, a penalty will
be added to the overall objective value based on the degree
of constraint violations in the function ComputePenalty()
(line 13). We accept the new configuration if the new objective
Nnew 18 better than previous solution; otherwise, the acceptance

Algorithm 2: Our Optimization Algorithm

1: Sy = Initialization()

2: Sbest = Scur = Snew = SO

30 Mbest = Neur = Nnew = OompU'tGObj(SO)
4: while T' > T* do

5 k=1

6 while k£ < iter_max do

7: Snew = RandomM ove(Sey;)

8 miss, is_sched = CheckSched(Spew)

9: ctrl_obj,is_stable = ComputeCtrl(miss)

10: sec_obj, sec_feasible = ComputeSec(Spew)

11: Nnew = Q% sec_obj + B * ctrl_obj

12: if is_sched A is_stable N sec_feasible == false
then

13: Nnew = NMnew + ComputePenalty(Spew)

14: if Npew < Mewr then

15: Seur = Snew7 Neur = TMnew

16: if is_sched N is_stable N sec_feasible == true

then

17: Shest = min(Scurv Sbest)

18: Tlhest = min(ncur; 7]best)

19: else if AccepProb(nnew — Newr, T) > rand() then

20: Seur = Sneun Nleur = Nnew

21: k=k+1

22: T =T % cooling_factor
23: MergeMonitoringTasks()
24: return  Spest, Mpest

probability is calculated based on current temperature and the
objective difference.

After the simulated annealing process completes, we merge
the security monitoring tasks that have the same period and are
on the same ECU in the function MergeM onitoringT asks()
(line 23). This will not affect the objective function or con-
straints in our current formulation, however could help reduce
the switching overhead in practice.

V. EXPERIMENTAL RESULTS

We evaluate our weakly-hard based codesign method with
an industrial case study and a set of synthetic examples. In
these experiments, we derive the controllers based on the
example LTI systems from [15], [43], [44], [45].

A. Industrial Case Study

We first conduct experiments on an industrial subsystem of
an experiment vehicle (derived from the one in literature [46]).
The experiment vehicle supports data collection from 360°
sensors and sending control signals to actuators, such as brake,
throttle, steering, etc. There are in total 41 tasks with given
periods and WCETs, distributed on 9 ECUs. 83 messages are
transmitted through a CAN bus. The periods of tasks and
messages range from 10 to 100 ms. The desired period of each
security monitoring task is set to be the period of the corre-
sponding critical messages it monitors while 777" = 4><T{fjs.
Weakly-hard vs. Hard: We first compare the security objec-
tive value between our weakly-hard based approach and the



traditional system with only hard deadlines. Table I shows the
results of the two cases when different number of messages
are deemed as critical and need to be monitored. The weakly-
hard results are obtained by running our algorithm (Algo-
rithm 2) with the objective function in Equation (15) only
including security (i.e., 5 = 0). The hard deadline results are
obtained by running our algorithm with only security objective
and hard deadlines. As we can see, allowing weakly-hard
constraints (while ensuring control stability and performance
requirements) can significantly improve the system’s capability
to accommodate security monitoring tasks. Note that when the
number of monitored message is 50 or 60, only hard deadlines
cannot yield feasible solution (i.e., some messages cannot be
monitored with meaningful efficacy).
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Fig. 2. Tradeoff between control and security for industrial example.

COMPARISON ON SECURITY BETWEEN ALLOWING WEAKLY-HARD

CONSTRAINTS AND ONLY HARD DEADLINES FOR INDUSTRIAL EXAMPLE.

3.00

2.75

2.50

2.25

-- Initial utilization 0.6

-+ Initial utilization 0.8

Initial utilization 0.7

Initial utilization 0.9

# of critical messages 20 30 40 50 60
security metric (weakly-hard) | 1.42 | 1.85 | 2.22 | 2.66 | 2.85
security metric (hard) 1.70 | 238 | 293 | na. n.a.

Trading off control performance and security: Leverag-
ing weakly-hard constraints to improve security is at the
expense of degraded control performance. We conduct ex-
periments to quantitatively evaluate such tradeoff. Fig. 2
shows the pseudo Pareto front between control performance
metric (Equation (9)) and security metric (Equation (12)) when
different weights of o and S are chosen in the overall objective
function (Equation (15)) during our optimization. 50 critical
messages are selected to be monitored with a redundancy
level of 2. The tradeoff trend is very clear and the results
demonstrate the effectiveness of our codesign approach in
addressing the two objectives via weakly-hard constraints.

Moreover, two boundary points are also shown in Fig. 2.
The red asterisk point at bottom-right corresponds to a system
configuration without any deadline miss, i.e., lower bound for
control performance in our model. However, it cannot satisfy
the security monitoring constraints as defined in (11). The red
cross point at top-left corresponds to a system configuration
with all security monitoring tasks having the desired period,
i.e., lower bound for security metric. However, it violates the
control stability constraints as there are too many deadline
misses. These two points demonstrate the necessity to address
control and security in a codesign approach.

B. Synthetic Examples

We also conduct experiments with a set of synthetic ex-
amples of 30 tasks on 4 ECUs. The examples have varying
initial system utilization before adding monitoring tasks (from
0.6 to 0.9 on each ECU). 21 CAN messages are selected to
be monitored, with a redundancy level of 2. The allocation for
the control and other tasks is decided based on a bin packing
approach and their priorities are based on rate monotonic
policy. Each point in Fig. 3 is the average result of 20 synthetic
examples. The figure clearly demonstrates the capability of our
codesign method to trade off control performance and security

Control performance metric
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Ho .
1750 114 .
!
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Security metric

Fig. 3. Tradeoff between control performance and security for synthetic
examples under different initial utilizations.

(by selecting different weights for the two objectives in our
optimization), similar to the industrial example. Furthermore,
we can observe that under relatively low utilization, it is
easier to improve security (i.e., shortening periods of security
monitoring tasks) without substantial impact on control per-
formance, while under higher utilization, such action will have
more significant impact on control. This trend is reasonable,
and the quantitative results could facilitate design decisions
under different utilizations.

VI. CONCLUSION

We presented a codesign approach to leverage weakly-hard
constraints for improving system security while considering
control performance and stability. Our approach explores the
allocation, priority, and period assignment of security monitor-
ing tasks to optimize a joint objective function of security and
control performance, while meeting requirements on control
stability, schedulability, and security. Experimental results
demonstrate the significant potential of leveraging weakly-
hard constraints and the effectiveness of our approach to fully
realize such potential.
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APPENDIX
A. Example of the System Model

As an example of our system model, in Fig. 1, two control
tasks 75 and 7¢ are allocated to ECU1 and ECU3, respectively.
A security monitoring task 77 is deployed on ECU4. 7y, 7o,
73 and 74 are tasks implementing other functions. Assuming
an intruder gains access to the system and takes control of
ECU2, it may spoof a benign message stream m, and send
its spoofed message stream m at a higher frequency in order
to suppress the original message m. Security monitoring task
77 can leverage specific knowledge of the system to detect
the abnormal message stream m and inform system about the
intrusion, as discussed in [7].

B. Event-based Simulation for Schedulability Analysis

This section presents a more detailed description of our
schedulability analysis method under weakly-hard constraints,
as introduced before in Section I'V-A.

In Algorithm 1, we denote the j-th invocation of task 7; as
job 0;;, which can be represented by a tuple (sy,,, co,;). Here,
se,; = J - tr, is the release time of the job, and cy,; is the
remaining computation time of the job, which is initially set
as cg,; = cr,. For jobs of task 7;, their deadline miss patterns
are recorded in an array Miss[i], where Miss[i][j] = true
if 7;’s j-th job 6;; misses its deadline. During the simulation,
event_queue and job_queue are two job priority queues to
store the unreleased jobs and released but unfinished jobs,
respectively. While event_queue is sorted by the job release
time sg,;, job_queue is sorted by the task priority.

At current time point cur_time, any jobs that can be
released are popped from the event_queue and pushed into
the job_queue, and the highest priority job in the job_queue
is scheduled to run. Here, 60y, is the scheduled job at cur_time
and 6;; is the next job to release. Then, the simulation moves
to the next time point (the scheduled job’s deadline sg,, +d-,,
the scheduled job’s response time response, or the next job’s
release time next = s6,;)- In this work, we assume that if
a job misses its deadline, it will be killed and no further
computation is needed. If the scheduled job has not finished
(or been killed) at time next, it will update its remaining
execution time cp,; and be pushed back to the job_queue.
Every time a job 6y, finishes (or gets killed), the simulation
records whether it misses its deadline in Miss[k][l]. After the
simulation completes, the function Veri fyW HConstraint()
counts the maximum deadline misses of any consecutive N
activations (i.e., dmm;(N})) to verify whether tasks with
weakly-hard constraints meet those constraints. The return
value schedulability indicates the overall schedulability, and
Miss represents the deadline miss patterns.

C. Initial Solution Generation

This section presents a more detailed description of our
initial solution generation method, as introduced before in
Section IV-B.

The pseudo code for our initial system generation method
is shown in Algorithm 3. For each CAN message m;, we

iteratively find p; ECUs and add security tasks on those
ECUs to monitor this message (line 1 to 7). Here pu; is
the redundancy level requirement for m;, i.e., m; has to be
monitored by p; security tasks on different ECUSs, as defined in
Section III-B. More specifically, in each iteration, we find the
ECU e; currently with the lowest utilization, add a security
monitoring task on e; for m;, and then remove e; from &.
Function AddM onitoringTask() also updates the utilization
of e; and sets the initial period of the new security task the
same as m,;’s period.

After security tasks are added to monitor all the critical
CAN messages (while satisfying their coverage and redun-
dancy requirements), we check the system schedulability with
CheckSched(). If the system is not schedulable (very likely
in practice), we will identify all the security tasks that have
deadline misses and scale their periods by an integer factor
s, until the system becomes schedulable or s reaches K45
(line 8 to 10).

Algorithm 3: Initialization(): Initial Solution Genera-
tion

1: for each message m; in M.,; do
2 k=p;, E={e1,e2,...,en}
3:  while £ > 0 do

4 Choose ECU e; with the lowest utilization among &
5: e, =1L, k=k—1
6
7
8
9

AddMonitoringTask(m;, e;)
remove e; from &
: for s + 2 to K., do
if CheckSched() == false then
10: Scale the periods of deadline-missed security tasks
by s
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