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A memristor1 has been proposed as an artificial synapse for 
emerging neuromorphic computing applications2,3. To train a 
neural network in memristor arrays, changes in weight values 
in the form of device conductance should be distinct and uni-
form3. An electrochemical metallization (ECM) memory4,5, typ-
ically based on silicon (Si), has demonstrated a good analogue 
switching capability6,7 owing to the high mobility of metal ions 
in the Si switching medium8. However, the large stochasticity 
of the ion movement results in switching variability. Here we 
demonstrate a Si memristor with alloyed conduction channels 
that shows a stable and controllable device operation, which 
enables the large-scale implementation of crossbar arrays. 
The conduction channel is formed by conventional silver (Ag) 
as a primary mobile metal alloyed with silicidable copper 
(Cu) that stabilizes switching. In an optimal alloying ratio, Cu 
effectively regulates the Ag movement, which contributes to 
a substantial improvement in the spatial/temporal switching 
uniformity, a stable data retention over a large conductance 
range and a substantially enhanced programmed symmetry in 
analogue conductance states. This alloyed memristor allows 
the fabrication of large-scale crossbar arrays that feature a 
high device yield and accurate analogue programming capa-
bility. Thus, our discovery of an alloyed memristor is a key 
step paving the way beyond von Neumann computing.

To operate large-scale memristor arrays, the device properties 
should meet a variety of requirements. Metal-oxide-based memris-
tors recently demonstrated promising functionalities and applica-
tions in large-scale arrays, such as for signal processing and image 
classification tasks9–13. However, in most of these demonstrations, 
an additional transistor was required to serially connect to each 
memristor, which serves as the selecting device, and to regulate 
the analogue switching properties12,14,15. Although a good analogue 
weight update can be modulated by the gate voltage of the selecting 
transistor12, the addition of a transistor not only limits the scalability 
and stackability of the memristors, but also substantially increases 
the design complexity and peripheral overheads. Without a tran-
sistor, the performance of the memristor array becomes more vul-
nerable to high switching variations and loses grasp of fine-grained 
conductance tunability16. However, ECM memory17,18 also demon-
strates good analogue switching properties towards a more linear 

and/or symmetric weight update even without transistors6, in which 
Ag is typically employed as an active metal owing to its high mobil-
ity5,19. However, such mobility causes variation in the weight and 
reduces long-term reliability, particularly in low conductance states 
because of weakly formed conduction channels20. Even though fine 
analogue states can be modulated from these devices, they cannot 
be preserved for computing applications. Therefore, a new mem-
ristor that can provide good analogue tunability while maintaining 
good stability in every level of conductance is still highly desired.

Here we introduce an ultimate weight control technique that can 
substantially improve switching uniformity while retaining multiple 
tunable weights in the memristors across a wide range of conduc-
tance levels. We applied a metallurgical strategy in designing ECM 
devices in which we tailored the conduction channels formed in a 
switching medium. We alloyed binary metals by carefully consider-
ing the thermodynamic stability of mixing of metal–metal as well 
as metal–switching medium. We chose Si as the switching medium 
as its interactions with various metals are well understood. We 
discovered that conduction channels formed by Ag alloyed with 
Cu in a Si medium tremendously enhanced the memristive per-
formance and demonstrated several unique properties compared 
with those of existing memristors, which include: (1) a uniform 
gradual switching, (2) reliable retention at multilevel conductance 
states and (3) enhanced symmetry and/or linearity of analogue con-
ductance updates. With these performances, we fabricated 32 × 32 
transistor-less alloyed memristor crossbar arrays, achieved a 100% 
yield and demonstrated reliable operation and programming. The 
substantially enhanced data retention also enabled us to perform 
inference tasks, and thus pave the way for efficient analogue com-
puting with transistor-less memristor arrays.

We first attempted to understand the switching behaviours of our 
Si ECM memory that depend on the active metals. A device layer 
includes a 6-nm-thick amorphous Si (a-Si) film on a p-type Si sub-
strate (0.01 Ω cm) with various active metals, which included Ag, Cu, 
Ni, Cr and Ti (see Methods for details about the device fabrication). 
Among the active electrodes, depending on their reactivity with Si, 
a noticeable difference in their resistive switching performances was 
observed under a d.c. operation mode, as shown in Fig. 1a. Ag devices 
exhibited a reversible resistive switching—the device conductance 
increased under a positive biased condition (that is, set) and vice 
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versa under a negative bias condition (that is, reset). However, irre-
versible conductance changes were observed for Cu, Ni, Ti and Cr 
devices after the forming process. These metal-dependent switching 
behaviours are relevant to previous studies on Si ECM memory21–24 
and can be elucidated by analysing their phase diagram with Si 
(Supplementary Fig. 1). As shown in the phase diagram, Ag is ther-
modynamically unstable in the Si, which implies that it can be elec-
trochemically mobile and results in a resistive switching behaviour. 
However, Cu, Ni, Ti and Cr interact strongly with Si, which promotes 
the formation of a thermodynamically stable interface between the 
conduction channel and Si (related with silicides), which can cause 
irreversible switching. Although the thermodynamic instability of 
Ag to Si allows resistive switching, it also causes a large switching 
variation as well as poor data retention. The set voltage and on/off 
ratio of the corresponding 100 d.c. switching of the Ag device exhibit 
16.4 and 97.6% temporal variations, respectively (Supplementary 
Fig. 2a,b). This device also exhibits a high spatial variation for dif-
ferent fabrication batches (Supplementary Fig. 2c,d). In addition, 
conductance levels of the device decay substantially in every con-
ductance level, as shown in Fig. 1b.

Enhancing the interactivity of active metals to the switching 
medium may alleviate issues in non-uniform switching and short 
data retention. However, selecting active metals that are strongly 
reactive to the switching medium induces electrochemically irre-
versible conduction channels. These conflicting results motivated 
us to design binary Ag alloys with silicidable metals to obtain resis-
tive switching with an enhanced uniformity and data retention. 
Thus, we considered the following design rules. First, the silicidable 
metals also must be thermodynamically stable to Ag to enhance the 
stability of Ag in Si. Second, the diffusivity of the silicidable met-
als, relevant to drift mobility of metal cations25, must be similar or 
higher than that of Ag so that they can migrate into Si simultane-
ously or prior to Ag migration to form the backbones of Ag con-
duction channels. Third, the amount of the silicidable metals must 
be low enough to preserve dominant Ag switching characteristics. 
To search for the best alloying elements, we referred to the phase 

diagrams of silicidable metals with Ag (Supplementary Fig. 3) and 
metal diffusivity in Si (Supplementary Fig. 4). We decided to use 
Cu as the complementary alloying element for the following rea-
sons: (1) Cu diffusivity is higher than that of Ag (ref. 26), which thus 
allows backbone formation (Supplementary Fig. 4), and (2) Cu is 
partially miscible with Ag, whereas Ni and Cr are fully immiscible, 
and this stabilizes Ag in Si as a bridge (Supplementary Fig. 3). To 
verify our hypothesis about the Ag–Cu alloying conduction chan-
nel formation, we performed a density functional theory calcula-
tion of the interfacial energy between Si and Ag–Cu to evaluate 
the conduction channel stability and performed a kinetic Monte 
Carlo simulation to estimate the switching dynamics based on the 
Ag–Cu alloy (Supplementary Note 1, Supplementary Figs. 5–7 and 
Supplementary Video 1). These simulation results suggest that 
alloying Ag with Cu stabilizes the conductance channel, but Ag 
can still diffuse in and out on set and reset. The optimal Ag–Cu 
ratio was determined through an evaluation of the d.c. switch-
ing performance according to various Ag–Cu mixing ratios by a 
nominal thickness control of Ag and Cu during evaporation (see 
Fig. 1c and Extended Data Figs. 1–3 for more details). As shown 
in Fig. 1d, a noticeable enhancement in d.c. switching uniformity 
was achieved for Ag–Cu devices compared with pure Ag devices 
(Fig. 1a). The dramatic change in the set voltage temporal varia-
tion from 16.4 to 3.3% with an enhanced spatial uniformity was 
statistically measured (Fig. 1e and Supplementary Fig. 8), although 
the forming voltage was nearly unchanged (Supplementary Fig. 9). 
More importantly, a substantial improvement in the data retention 
was recorded from the low to high conductance states for Ag–Cu 
devices, as shown in Fig. 1f (see Supplementary Fig. 10 for details 
of the retention properties with elevated temperatures and longer 
evaluation times). Furthermore, uniform switching properties with 
a stable data retention were weakly dependent on the ambient mois-
ture level (Supplementary Fig. 11), which has substantially affected 
switching characteristics27,28. Note that alloying Ag with silicidable 
metals does not always guarantee an improved memristive perfor-
mance as it must follow the above-listed rules. For examples, Ag–Ti 
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Fig. 1 | The d.c. switching performance of a Si memristor with a Ag–Cu alloy. a, Typical current–voltage curves of Ag (left) and silicidable metals (Cu, Ni, Ti 
and Cr) (right) after the forming process. b, Retention properties of Ag devices (read at 0.5 V) with multiconductance levels. c, Effect of the Ag–Cu thickness 
ratio on alloying during the formation on the d.c. switching uniformity—normalized on/off uniformity during 100 cycles. d, Uniform switching of the Ag–Cu 
device during 100 cycles. The nominal thicknesses of Ag and Cu are 2 and 1 nm, respectively. e, Histogram for the set voltage distribution of the Ag device 
(black) and the Ag–Cu device (red) shown in a and d. f, Improved retention properties of Ag–Cu devices (read at 0.5 V) with various compliance currents.
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devices only satisfy the rule of having miscibility with Ag but has a 
lower diffusivity than Ag in Si (Supplementary Fig. 4). Its low dif-
fusivity may not allow backbone formation before Ag has migrated, 
although Ti forms stable compounds with Si. Thus, as shown in Fig. 
2a, Ag–Ti devices show a non-uniform d.c. switching behaviour and 
poor data retention, similar to Ag devices. However, Ag–Cr and Ag–
Ni devices have a higher diffusivity than Ag (Supplementary Fig. 
4), but are not miscible with Ag. Thus, Ag–Cr and Ag–Ni show an 
improved d.c. switching uniformity compared to Ag devices owing 
to the backbone formation (Fig. 2b,c). However, a long-term stabil-
ity of the conductance levels was not found with the Ag–Cr and 
Ag–Ni devices owing to their immiscibility with Ag. Throughout 
these design rules, we discovered that a Ag–Cu alloying is desirable 
to drive a uniform switching and stable multilevel data retention of 
a Si memristor.

The much-improved multilevel switching performance can be of 
great benefit to analogue switching properties of our memristors. 
The analogue switching properties of the Ag–Cu alloy and pure Ag 
devices were evaluated by applying 50 repetitions of 50 ns of positive 
voltage pulses for potentiation followed by 50 repetitions of 50 ns of 
negative voltage pulses for depression. As shown in Fig. 3a,b, the 
conductance update in the Ag–Cu alloy devices is more gradual 
and linear compared with those in the Ag devices. To quantify such 
behaviour, we obtained temporal and spatial statistic values of the 
asymmetric non-linearity factor (ANL) for the Ag–Cu alloy and 
Ag devices (see Methods for a detailed experimental set-up for the 
analogue measurement). As shown in Fig. 3c, the average ANL of 

Ag–Cu alloy devices was 0.30 (s.d. = 0.06), whereas that of Ag is 0.59 
(s.d. = 0.14). We speculate that such a non-linear and asymmetric 
analogue update with a sudden drop of the conductance in Ag 
devices originates from a thermodynamically unfavourable accom-
modation of Ag into Si, which causes a stochastic dissolution of the 
conduction channel. However, the stabilized interaction of conduc-
tion channels to Si by alloying leads to a more reliable and less abrupt 
conductance update. In addition, Ag–Cu devices exhibit a uniform 
analogue switching compared with that of Ag devices, as shown in 
Fig. 3c, which shows the normalized probability density of ANL 
and conductance (G) contrast, deduced from Supplementary Fig. 
12. As presented in Fig. 3d, the improvement of conductance update 
in Ag–Cu alloy devices was tested for endurance through 3,000 
pulse repetitions of 50 levels up-and-down sweep. Supplementary 
Fig. 13 shows the result of an extended endurance test of the Ag–
Cu alloyed device. To characterize the nanosecond switching, the 
change in conductance as a function of pulse amplitude and dura-
tion was measured (Supplementary Fig. 14). We also tested 512 lev-
els of conductance (Supplementary Fig. 15). The improved linear 
and symmetric analogue conductance update with resolvable con-
ductance levels can substantially promote the programmability of 
a memristor in storing and training neural networks in large-scale 
array implementations, even without transistors.

To demonstrate the computing capability of our alloyed ECM 
memristors, 32 × 32 transistor-less arrays of Ag–Cu devices were 
fabricated as shown in Fig. 4a–c. The fabrication process was 
designed to optimize the use of Si bottom electrodes (Methods, 
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Supplementary Note 2 and Extended Data Fig. 4). To study the 
alloying effects in the crossbar arrays, we also fabricated arrays with 
Ag and Ag–Ni devices. All the electrical operations of the array, 
which included electroforming, programming and inferences, were 
performed using a customized measurement system (Methods). 
The conductance ranges chosen for the programming were between 
0 and 15 μS (Supplementary Fig. 16), in which ranges a poor reten-
tion can be detected. To demonstrate the weight storing capability, a 
256-level greyscale image was programmed into the Ag–Cu, Ag and 
Ag–Ni arrays, as shown in Fig. 4d. All the arrays showed a 100% 
device yield and the visualized evolution of weight values clearly 
showed that the Ag–Cu alloy array maintained the programmed 
image owing to the significantly improved data retention. However, 
the contrast and integrity of the images programmed in the Ag–
Ni and Ag arrays degraded drastically, almost losing all the stored 
information. These results demonstrate the effectiveness of the 
alloy strategy in enhancing the long-term stability of ECM mem-
ristors. As a result, array operations at lower conductance ranges 
become possible, which can help reduce the programming power 
(Supplementary Note 3 and Supplementary Fig. 17) and mitigate 
the sneak path and line resistance issues (Supplementary Note 4 and 
Supplementary Figs. 18–21).

To verify the functional operation of Ag–Cu transistor-less 
arrays, we programmed convolutional kernels into them and per-
formed image processing tasks. During the convolutional process, 
a kernel (with a small matrix of weights) was applied to each pixel 
and its local neighbours of an image and produces output pixels 
from the weighted sum operation between the kernel weights and 
the input pixel values. Owing to the improved data retention pro-
vided by the Ag–Cu memristor, faithful image processing based 
on convolutional kernels were demonstrated, as shown in Fig. 4e. 

Four image kernels (sharpen, box blur, vertical and horizontal edge 
detection) were programmed into four columns of the array and 
processed in parallel (Methods and Extended Data Fig. 5). Two 
memristors in the same output column were used as a differential 
pair to implement negative weights and received either positive- or 
negative-valued input pixels (1 × 18 pixels in total for each input 
vector). The successful image processing using the Ag–Cu memris-
tor arrays confirms the effectiveness of our alloy method for com-
puting applications. To host more-complex tasks, large array sizes 
may be required. Scaling up the array dimension can also provide a 
quadratic increase in the parallelism of multiply-accumulate opera-
tions. However, further scaling of the array dimension requires 
optimization of the array design (Supplementary Note 4) to reduce 
line resistances and overcome more severe sneak-path issues in 
large-scale arrays (for example, integrating selector devices). The 
analogue tuning accuracy should also be carefully evaluated because 
the programming voltage may be disturbed by different weight pat-
terns and increasing line resistances in large arrays.

In the mission to find the ideal device for neuromorphic com-
puting, we propose that alloying the conduction channels in ECM 
devices will fundamentally solve the ‘tunability–stability dilemma’ 
between robust weight tuning and long-term stability. The effec-
tive engineering of interactivity and migration of alloying elements 
in conducting channels offers a great degree of freedom to tailor 
the electrical performance of the devices. This enabled us to build 
large-scale transistor-less crossbar arrays that demonstrated faithful 
operations in storing and inferencing neural network weights. We 
believe our alloy design rule for reliable memristor performances 
can be expanded to other material systems to optimize the conduc-
tion channels and switching dynamics for a better performance in 
neuromorphic computing applications.
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Methods
Trench-type Si memristor fabrication. A 6-nm-thick intrinsic a-Si film 
was deposited on a p-type (100)-oriented Si wafer (0.01 Ω cm, boron doping 
concentration of ~1019 cm−3) by plasma-enhanced chemical vapour deposition 
(PECVD) at 200 °C and a PECVD SiO2/SiNx isolation layer (120 nm/20 nm) was 
formed at 300 °C. After through-hole patterning in the isolation layer (25–
800 µm2), 20-nm-thick active metals were deposited into the hole to form contact 
with the a-Si and a Cr/Au layer (20 nm/100 nm) was formed for the passivation 
of the active metals. An Au/p-Si ohmic contact was formed as a counter electrode 
of the ECM memory. Cr (refs. 29,30) and SiNx (refs. 31–33) were selected to suppress 
moisture penetration into the Si switching medium, and thereby enhance the 
device reliability against ambient changes.

Ag alloy deposition. Step-by-step evaporation was conducted for the Ag alloy 
deposition. After Ag evaporation, the alloying metal was evaporated (Extended 
Data Figs. 1 and 2). The Ag alloying ratio in the switching medium was modulated 
by the nominal thickness of the metals measured by a quartz crystal microbalance.

Si memristor crossbar array fabrication. A 150-mm (100)-oriented 
silicon-on-insulator wafer was used as a substrate. After the initial wafer 
cleaning, a stack of a 500-nm-thick heavily doped p-type Si layer (0.001 Ω cm) 
and a 200-nm-thick p-type Si layer (0.01 Ω cm) was homoepitaxially grown on 
a silicon-on-insulator wafer at 940 °C by ultrahigh vacuum chemical vapour 
deposition, followed by the deposition of a 6-nm-thick intrinsic a-Si thin film 
using PECVD. Photolithography and dry etching were used to pattern and isolate 
the Si bitlines from each other. Additional Cr/Au layers (1 nm/100 nm) were 
patterned and deposited on the top of the bitlines using photolithography and 
electron-beam evaporation to reduce the wire resistance and serve as input/output 
pads for measurement, as shown in Extended Data Fig. 4. An SiO2/SiNx layer 
(120 nm/20 nm) was then deposited by PECVD to cover the entire wafer as the 
passivation layer to the bitlines. After that, the active device area and input/output 
contact pads for the bitlines were patterned by photolithography etch through the 
combination of reactive ion etching and wet etching based on a buffered oxide 
solution to selectively remove the capping layer. The Ag alloy layer (20 nm) and 
Cr/Au capping layer (20 nm/50 nm) were deposited to cover the active area as 
the active top electrodes to the memristor. The fabrication was concluded by the 
patterning and deposition of the wordline by the tilted sputtering of Au.

Device d.c. measurements. Quasi-static d.c. current–voltage measurements and 
room-temperature state-retention measurements were executed with a B1500A 
semiconductor device parameter analyser with a B1517A high-resolution source 
measure unit. Si memristors were tested with bidirectional current–voltage sweep 
measurements with a compliance current during the forming and set process.

Ultrafast pulse measurement. To perform an ultrafast (nanoscale) analogue 
switching measurement, an oscilloscope (DSOX3024T, Keysight), pulse generator unit 
(PGU 33600A, Keysight) and transimpedance amplifier (DHPCA-100, Edmund 59–
179) were used. A sequence of programming pulses for potentiation and depression in 
weight update was applied with identical amplitude but opposite polarity. Read pulses 
were sent to our memristive devices after each programming pulse to monitor the 
change in conductance. A current from the read pulse was integrated and averaged 
for 1 ms to secure the stabilized conductance values. To avoid wave reflections in the 
radio-frequency regime, the impedance value of the oscilloscope was set to 50 Ω and 
the load impedance of the pulse generator unit was set to infinite.

Array measurement. A customized board-level peripheral system with a 
parallel accessing and programming capability was used to perform the array 
measurement. The detail of the system is given in a previous publication34. The 
memristor arrays were accessed through a 32 × 32 probe card connected to the 
peripheral system. A 1/2 voltage biasing scheme was employed for the selective 
programming and to mitigate the sneak-path issues (selected rows were biased 
at 1/2 of the operating voltage, and selected columns were biased at −1/2 of the 
operating voltages, whereas all the unselected rows and columns were grounded). 
In the meantime, the ground scheme (all column outputs were virtually grounded 
by the transimpedance amplifiers) was used for inference to suppress the sneak 
current during computing. The detailed analysis of array operations in our passive 
Ag–Cu memristor array is given in Supplementary Note 4. The fabricated array 
requires an initial electroforming process for each device. The forming process 
was done in series by applying a train of ramping voltage pulses to the device until 
its conductance exceeded the 1 µS threshold. The formed device was subsequently 
reset to its off state after forming. The forming voltages (chosen between 4 and 8 V) 
were small enough to not encounter problems of unselected devices being set at 1/2 
voltages. After electroforming, every device in the array was cycled between 5 and 
20 μS at least 5 times before applications.

Image programming and retention test. Greyscale images were programmed 
into different alloy arrays using a closed-loop algorithm. The 256-scale pixel values 

were linearly mapped to conductance values between the maximum and minimum 
conductance defined for each task. The conductance tuning of pixels and devices 
were done in parallel inside each column for fast programming. The retention test 
was carried out by repeatedly monitoring the device conductance at an interval 
of 10 s. Both the raw conductance value and the reconstructed image based on 
256-scale pixel values were used to compare between different alloy memristors. 
The greyscale pixel values were reversely and linearly mapped back from the 
conductance values.

Convolutional kernel operation. Four convolutional kernels were selected as 
a proof-of-concept demonstration of Ag–Cu alloy memristor arrays for reliable 
inference applications. Each kernel had 3 × 3 pixels and two memristors were used 
to represent both positive and negative weight values. The 3 × 3 × 2 memristors 
were mapped into a 18 × 1 vector and programmed into one column of the array. 
The 3 × 3 input pixels were applied accordingly to the input rows, with both 
positive- and negative-valued pixel amplitude for the differential memristor pair. 
After programming the kernels, 3 × 3 input matrices from a 310 × 194 pixel image 
were fed to the array in series for iterative convolutional kernel operations. The 
column outputs from each cycle were converted into voltage amplitude through a 
transimpedance amplifier, read out by analog-to-digital converters and recorded as 
one pixel in the filtered images.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Process flow of depositing Ag-Cu films for active metals. We have design step-by-step metal deposition process to drive Ag-Cu 
together into switching medium on the stage of forming. We first deposited ultrathin Ag islands on switching medium, where the thickness of Ag islands 
determines the opening area of Si (step1). Next, we deposited ultrathin Cu on top of Ag islands-deposited Si where Cu islands make the direct contact 
with the switching medium (step2). Last, we encapsulated Ag-Cu islands with 15 nm thick Ag film (step3). The amount of Cu involved in switching is 
determined by ‘Ag-Cu thickness ratio’. The thicker Ag film is deposited, The less Cu is contributing to the switching. The Ag-Cu alloying conduction 
channels are formed in the switching medium during forming process.
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Extended Data Fig. 2 | Ag-Cu alloy formation. Scanning electron microscopy (SEM) images and energy dispersive X-ray (EDX) mapping of Ag-Cu alloying 
film on amorphous Si surface. Scale bars: 400 µm. When the total thickness was 2 ~ 4 nm, discontinuous metal films were formed and the metal clusters 
were uniformly distributed. A merging of metal clusters was observed at 7-nm-thick Ag with 2-nm-thick Cu film Source data.
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Extended Data Fig. 3 | Ag-Cu alloying ratio effect on DC switching uniformity and retention. Normalized on/off uniformity with respect to nominal 
thickness of (i) Ag and (ii) Cu layers. 15-nm-thick additional Ag layer was applied after the step-by-step evaporation. At each alloying condition, 
best-performed-device during 100 cycles at compliance current of 5 mA was selected for this mapping. Furthermore, DC switching curves with temporal 
on/off conductance variations and room temperature retention results are included. When Cu was evaporated even for 1 nm in advance to Ag, devices 
showed irreversible breakdown behavior that is similar results with pure Cu devices (20-nm-thick Cu layer). As Ag thickness increased under fixed Cu 
thickness (1 nm), switching performance dynamically modulated and Ag (2 nm)/Cu (1 nm) layers drove optimized switching performance: highly uniform 
switching with stable retention behavior at multi-level states. As Ag-Cu ratio was deviated from 2 nm-1nm, non-uniform switching with poor retention was 
observed (7 nm-1 nm) or on/off degradation occurred, although stable data retention was obtained (2 nm-2 nm). These results strongly suggest that Cu 
additives into Ag active electrode significantly affect the switching performance, even though the amount of Cu is too small to form continuous film on Si 
surface. Furthermore, the role of Cu can be summarized as follows. (1) Cu enhances stability of Ag-based conduction channel, but decreases maximum 
on/off ratio due to residual Cu elements bound to Si switching medium (called backbone of the conduction channel). (2) Excess Cu in Ag active electrode 
deteriorates on/off window with increasing cycle number. However, optimized Ag-Cu ratio can drive uniform switching with relatively stable data retention 
Source data.
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Extended Data Fig. 4 | Crossbar layout for alloy arrays with metal capping. Metal capping for p+ Si bottom electrodes is preferred to reduce the line 
resistance in large array implementations. A new process was developed to make alloy array with gold capping layer. (a) formation of isolated a-Si/p+ Si 
line patterns on SOI wafer by photolithography and dry etching. The protrusions on the line patterns are active device areas. (b) capping Au on top of the 
p+ line patterns to reduce line resistance. The active areas remain intact. (c) passivation of the bottom electrodes while exposing the active areas. (d) 
patterning the top electrodes to finish device arrays.
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Extended Data Fig. 5 | Demonstration of the stability of Ag-Cu alloy memristor array for inference. (a) four convolutional kernels shown in (b) were 
programmed into four columns of the 32 × 32 array for parallel kernel operation. Two memristors are used as differential pair to represent both positive 
and negative weights.
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