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Abstract 19 

Background 20 

Cyanobacteria maintain extensive repertoires of regulatory genes that are vital for 21 

adaptation to environmental stress. Some cyanobacterial genomes have been noted to 22 

encode diversity-generating retroelements (DGRs), which promote protein 23 

hypervariation through localized retrohoming and codon rewriting in target genes. Past 24 

research has shown DGRs to mainly diversify proteins involved in cell-cell attachment or 25 

viral-host attachment within viral, bacterial, and archaeal lineages. However, these 26 

elements may be critical in driving variation for proteins involved in other core cellular 27 

processes. 28 

Results 29 

Members of 31 cyanobacterial genera encode at least one DGR, and together, their 30 

retroelements form a monophyletic clade of closely-related reverse transcriptases. This 31 

class of retroelements diversifies target proteins with unique domain architectures: 32 

modular ligand-binding domains often paired with a second domain that is linked to 33 

signal response or regulation. Comparative analysis indicates recent intragenomic 34 

duplication of DGR targets as paralogs, but also apparent intergenomic exchange of DGR 35 

components. The prevalence of DGRs and the paralogs of their targets is 36 

disproportionately high among colonial and filamentous strains of cyanobacteria. 37 

Conclusion 38 

We find that colonial and filamentous cyanobacteria have recruited DGRs to optimize a 39 

ligand-binding module for apparent function in signal response or regulation. These 40 

represent a unique class of hypervariable proteins, which might offer cyanobacteria a 41 
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form of plasticity to adapt to environmental stress. This analysis supports the hypothesis 42 

that DGR-driven mutation modulates signaling and regulatory networks in 43 

cyanobacteria, suggestive of a new framework for the utility of localized genetic 44 

hypervariation. 45 

Background 46 

Cyanobacteria are a remarkably diverse lineage, in terms of metabolisms, morphologies, 47 

and habitat distribution. Perhaps most notably, this phylum contains the only prokaryotic 48 

organisms known to have evolved the capability for oxygenic photosynthesis; this trait 49 

was later acquired by eukaryotes through endosymbiosis with cyanobacteria, resulting in 50 

the formation of chloroplasts [1, 2], and driving the modern biosphere. Cyanobacteria 51 

have evolved an array of morphologies, including complex multicellular forms [3–6]. 52 

Representatives are typically classified into five subsections [7, 8]. Species of subsections 53 

I and II consist of single coccoid cells. Subsections III-V represent multicellular species 54 

that form filaments of varying complexity. Members of subsection III form reversibly-55 

differentiable filaments of vegetative cells. Among subsections IV and V, cells can carry 56 

out terminal cellular differentiation in response to environmental stimuli, forming spore-57 

like cells that are resistant to desiccation (akinetes), micro-oxic cells specialized for N2 58 

fixation (heterocysts), and motile filaments (hormogonia) [9]. This morphological and 59 

metabolic complexity has allowed cyanobacteria to inhabit diverse environments.  60 

Certain members of the cyanobacterial phylum possess an extensive capacity to adapt to 61 

various environmental pressures through tightly-controlled regulation of complex 62 

cellular programs for signal response. This is exemplified by abilities for metabolic 63 
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switching (i.e. CO2/N2 fixation), maintaining photoreceptors of various wavelength 64 

sensitivities for binary programs of circadian rhythm, and forming specialized cells which 65 

can sometimes be terminally differentiated and lead to multicellularity [9, 10]. To regulate 66 

these complex programs, cyanobacteria have an extensive repertoire of genes governing 67 

signal transduction including proteases, kinases, and nucleases. Notably, paralogs of 68 

these regulatory proteins are more abundant among the more complex species of 69 

cyanobacteria (i.e. those belonging to subsections III-V) [11–15]. However, the 70 

mechanisms to diversify and adapt specific functionality in these duplicated genes remain 71 

largely unexplored. One mechanism may involve diversity-generating retroelements 72 

(DGRs), known to accelerate the evolution of the proteins they target.  73 

Diversity-generating retroelements (DGRs) have been noted within the genomes of 74 

several genera of cyanobacteria [16–18]. In experimentally investigated bacterial and 75 

viral systems, DGRs drive site-specific hypermutation of a subset of codons in target genes 76 

[19, 20], while metagenomic and metatranscriptomic evidence also points to functional 77 

DGRs in archaea [21]. These retroelements utilize a uniquely targeted form of 78 

retrotransposition. To this end, DGRs insert variants into a flexible coding scaffold, while 79 

avoiding non-specific variation in conserved portions of a gene [22]. The essential 80 

features of a DGR are most often found within a single genomic locus spanning ~ 5 – 10 81 

kbp (Fig. 1a), though the synteny and organization of DGR components can vary [17]. 82 

Diversification is mechanistically carried out by a reverse transcriptase (RT), which acts 83 

upon a non-coding RNA transcribed from the template repeat (TR) region in the locus 84 

[23]. This region is nearly identical to a variable region (VR) that typically resides in a 85 

nearby gene, which encodes a DGR-variable protein (VP). The TR-RNA intermediate is 86 
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reverse transcribed into cDNA wherein A  N mutation is highly favored by the error-87 

prone RT. This cDNA then replaces VR, whose sequence commonly corresponds to 88 

flexible residues in ligand binding structural domains belonging to the C-type lectin or 89 

immunoglobulin-like protein families [19].  90 

The first DGR variable protein was characterized from the bacteriophage, BPP-1. In these 91 

phage, DGRs diversify tail fiber tip proteins that recognize and bind to Bordetella host 92 

receptors [16, 24]. Other cellular DGRs have been characterized in bacterial pathogens, 93 

including Legionella pneumophila [20] and Treponema denticola [25], where DGRs 94 

target genes that encode for cellular surface proteins, presumably involved in cell-cell 95 

attachment. The conserved function of cell-cell or viral-cell attachment in these target 96 

genes lends to a perspective of DGRs for broad use in host recognition for symbiosis or 97 

infection. Moreover, several genera of cyanobacteria were identified in recent genomic 98 

and metagenomic surveys of DGRs [17, 26]. The essential components of DGRs can be 99 

found across most lineages of prokaryotic life [17, 21, 26–29], suggesting broad utility of 100 

this form of localized mutation. 101 

Whereas previously characterized DGR target proteins appear to share a functional role 102 

in extracellular attachment to ligands displayed on foreign cells, these retroelements 103 

could potentially diversify other cellular proteins with entirely distinct functions. The 104 

intermediate RNA, which presents a template for DGR mutagenesis, has been shown to 105 

be highly expressed in lab isolates of Trichodesmium erythraeum IMS101 [18] and in 106 

Nodularia spumigena CCY9414 under light and oxidative stress [30, 31]. Here, a 107 

systematic analysis of DGRs and their variable proteins in cyanobacterial genomes leads 108 
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to a new perspective on the utility of diversification and optimization of modular protein 109 

domains in paralogs that appear linked to signaling and transcriptional control.  110 

Results and Discussion 111 

A Conserved Subclass of Retroelements in Cyanobacteria 112 

Our analysis identified 58 DGRs that include 90 target genes (i.e. encoding VPs) in 52 113 

genomes of cyanobacteria spanning 31 different genera. These include filamentous, 114 

colonial, and symbiotic organisms (Fig. 1b and Additional file 1: Table S1). Sequence 115 

clustering of the 58 DGRs was performed with RT amino acid sequences (at 95% identity) 116 

to generate a non-redundant subset of 49 distinct RT genes for phylogenetic analysis, 117 

while the full set of 58 were also examined further. All DGRs were identified by presence 118 

of diagnostic and essential components: an RT gene; one or more VP genes with VR 119 

regions; and a TR region. Our initial RT search was conducted with the UniprotKB coding 120 

sequence database, which is in turn linked to complete and draft genomes in 121 

EMBL/GenBank/DDBJ databases. The resulting 52 cyanobacterial genomes represent all 122 

sequences where complete DGR cassettes were positively identified. Among the 52 123 

genomes analyzed, four contain duplicate DGR cassettes, based on clustering, while one 124 

contains two unique DGR-RTs. Moreover, several individual DGRs have multiple target 125 

genes, and some VP genes have VRs with homology to other genes dispersed throughout 126 

the genome (paralogs) (Fig. 1c).  127 

To evaluate the diversity of cyanobacteria-encoded DGRs, we first compared these 128 

representatives to a recently developed, global metagenomic DGR dataset [26]. 129 

Cyanobacterial DGR-RTs were clustered (i.e. at ≥ 50% AAI) with sequences in the global 130 
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metagenomic dataset, then linked to a corresponding DGR clade and target protein 131 

cluster. All DGRs from our dataset were closely related to DGR Clade-5. The global dataset 132 

RTs in DGR Clade-5 are affiliated with target proteins in protein cluster 1 (i.e. PC_00001), 133 

which primarily contains cellular proteins that appear to be membrane-bound [26]. Given 134 

that the cyanobacterial DGRs appear to cluster tightly together, we next sought to analyze 135 

phylogenetic relationships within this set. 136 

Phylogenetic analysis of cyanobacterial DGR-RTs revealed a monophyletic clade, unique 137 

from all other bacterial DGR-RTs (Fig. 2). The cyanobacterial DGR-RT clade comprises 138 

sequences that span nearly all major cyanobacterial genera within morphological 139 

subclasses I, III, IV, and V (Fig. 3a). None of the DGR-containing genomes correspond to 140 

genera within subclass II. Strikingly, cyanobacterial reverse transcriptases within the 141 

monophyletic cyanobacterial DGR clade share an average global sequence identity of 67% 142 

(minimum 55%; amino acid sequence). Whereas members of this DGR-RT subgroup do 143 

not appear to be shared with other bacteria or archaea, their phylogenetic relationships 144 

suggest a complex evolutionary history punctuated by horizontal exchange within the 145 

cyanobacterial phylum (Fig. 3b). Although none of the cyanobacterial DGRs could be 146 

definitively assigned to prophage elements, they were identified on plasmids of Anabaena 147 

sp. 90 (CP003287) and Fischerella sp. NIES-4106 (AP018301), which may indicate a 148 

vehicle for retroelement transfer between closely related populations. Among members 149 

of this RT clade, each corresponding DGR-VP contains a ligand-binding C-type lectin-like 150 

domain (CLec) with additional functional domains described in detail below.  151 



Page 
 

8 

Intragenomic Dispersal of Conserved Domains with Local Hypervariable 152 

Regions 153 

DGR variable proteins often contain multiple distinct structural domains [17, 21, 22]. To 154 

investigate the specific functions of cyanobacterial DGR-targeted proteins (i.e. containing 155 

the VR scaffold), we first separately analyzed the ligand-binding CLec domains in all 156 

DGR-VPs. This approach identified a conserved module (i.e. a putative C-terminal 157 

domain) with a localized region of hypervariable residues found in each of the 52 158 

cyanobacterial VP representatives (Additional file 1: Table S1). The entire set of VR-159 

containing modules share sequence homology with 50.5% average identity and, 160 

moreover, all of these protein sequences were clustered together with >30% pairwise 161 

amino acid identity. Structural prediction of the representative C-terminal domain 162 

sequence (i.e. obtained from clustering) determined that each module most closely 163 

resembles the C-type Lectin domain, which is represented by the CLec-like superfamily 164 

(InterPro: IPR016187). In each of these proteins, the DGR variable region (VR) occurs 165 

within the C-terminal region of the otherwise conserved CLec-like domain. A search for 166 

similar proteins in the Uniprot database identified sequences from an array of other 167 

genomes among which 92% belong to cyanobacterial phyla (Additional file 2: Table S2). 168 

The similarity between CLec domains found in diverse DGRs may underlie a conserved 169 

utility for diversifying this module across different cyanobacterial taxa. The CLec-like 170 

superfamily has been linked to a variety of molecular processes in cells and viruses 171 

spanning the tree of life, with a common functional role in ligand binding generally 172 

predicted for this fold [32–34]. Thus, the modular and dispersed nature of a highly 173 

conserved CLec subclass may further point to multifaceted functional significance in 174 

cyanobacteria.  175 
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We next sought to address whether hypervariable CLec modules might arise from gene 176 

duplication and intragenomic dispersal, resulting in recognizable sets of paralogs in 177 

cyanobacterial genomes. This search was limited to 21 high-quality genomes of the 52-178 

genome total, such that draft genomes composed of >50 scaffolds were removed from the 179 

analysis. This approach uncovered 21 genomes that have multiple genes encoding CLec 180 

domain-containing proteins, with varying degrees of VR/TR homology (Fig. 4 and 181 

Additional file 3: Table S3). These paralogs occur both within DGR loci and dispersed 182 

throughout the genome and most often consist of either a single CLec domain or the C-183 

terminal CLec grafted to an N-terminal putative serine kinase domain. Taken together, 184 

the multi-genome set of 219 cyanobacterial orthologs across 21 genomes share average 185 

pairwise identity of 50.5% within their CLec domains. The complete set of 219 orthologs 186 

comprises 121 genes that appear to be DGR-diversified based on VR/TR homology, 187 

including 45 VP genes encoded within a DGR. The additional 76 remote targets were 188 

associated with their respective genome’s DGR(s) using a threshold of TR identity greater 189 

than 50%; these matches were exclusively found near the 3’ terminus of CLec-encoding 190 

genes. The proximity to 3’-termini suggests that conserved, cis-acting features - such as 191 

DNA cruciforms or initiation of mutagenic homing sites required for cDNA integration 192 

[35] - may play a role in activating remote targets.  193 

The genome of Nostoc sp. PCC 7120 (formerly Anabaena), contains two DGRs (RT 194 

accessions: Alr3497, All5014) and several dispersed VP paralogs (Fig. 4), providing the 195 

opportunity to examine the evolutionary history of these genes in an extensively-studied 196 

model organism. Within this genome, we identified three highly similar VP homologs (≥ 197 

60% amino acid identity) in dispersed loci, wherein these genes may have proliferated by 198 
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duplication and transposition from a common ancestral gene. Notably, one of these 199 

paralogs (all3226) contains remnant TR-VR homology, despite an absence of proximal 200 

RT genes or pseudogenes. Taken together, this suggests a capacity for intragenomic 201 

dispersal of DGR-targeted variable proteins, and perhaps removal of diversification 202 

components once an optimal variant is selected. In addition to its tractability, the 203 

common constellation of DGR VPs that occurs in PCC 7120, as observed in other 204 

cyanobacteria, make this species an ideal representative for further analysis of the 205 

physiological, ecological and evolutionary ramifications of DGR VP functionality and 206 

modularity in cyanobacteria. 207 

To assess whether transposable elements were found in proximity to DGRs, we analyzed 208 

neighborhoods surrounding each hypervariable protein, including remote VPs with 209 

respect to a DGR-RT (i.e. > 5 kbp upstream/downstream). This search uncovered 210 

transposase genes belonging to various families in DGR-proximal loci which may be 211 

responsible for VP dispersal throughout the genome (Additional file 4: Table S4 and 212 

Additional file 5: Table S5). Within the subset of 21 high-quality genomes, 213 

Trichodesmium erythraeum IMS101 has the greatest number of proximal transposase 214 

genes, spanning six different insertion sequence (IS) families. The most widely-215 

distributed transposases were those belonging to the IS200/IS605 family, found nearby 216 

9 VPs from 6 distinct species. Transposases belonging to this family employ a single-217 

stranded DNA intermediate for a “peel-and-paste” mechanism of transposition [36, 37]. 218 

The genome of Anabaena sp. Strain 90 contains remnants of a putative degraded DGR 219 

cassette – containing only the RT with no other detectable features – and notably, the RT 220 

gene is flanked by proximal transposase genes. This provides a potential mechanism for 221 
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select components of the DGR to be mobilized within the genome. DGR recruitment to 222 

one gene from another would allow favorably diversified genes to become conserved while 223 

targeting hypervariation elsewhere in the genome. Selective pressures can then influence 224 

the recruitment of DGRs to genes wherein hypervariation for ligand-binding residues 225 

offers selective advantages. Through this mechanism of transposition, cyanobacterial 226 

DGRs may provide a newly-diversified, modular, ligand binding domain to signaling 227 

genes. 228 

Function of Multidomain Variable Proteins 229 

In part, functional diversity of DGR variable proteins is found in their multidomain 230 

complexity. We examined cyanobacterial VPs and their paralogs, which consist of N-231 

terminal domains that are grafted to the C-terminal CLec domain (Fig. 4, Fig. 5). Toward 232 

assessing cellular localization, transmembrane and/or signal peptide regions were 233 

predicted for 4 DGR-associated VPs and 9 remote VPs, spanning 11 of the 21 high-quality 234 

genome set (Additional file 3: Table S3). Most cyanobacterial DGR VPs are predicted to 235 

be cytosolic, however evidence exists for TM localization and secretion as well.  236 

The most common functional domain of DGR-internal target protein (VPs) in 237 

cyanobacteria have similarity to the protein kinase superfamily (Additional file 1: Table 238 

S1). Multidomain DGR-external VPs and paralogs of DGR VPs are also most-often 239 

predicted to be kinases (Fig. 4). The VP and VP paralog kinase proteins are further 240 

predicted to be serine/threonine kinases (STKs) based on the following factors: 1) 241 

identification of Hanks and Hunter-type Motifs I through IX [38] (Additional file 6: 242 

Figure S1); 2) common NCBI CDS annotations of “serine/threonine protein kinase CDS”; 243 

or 3) identification of an STK in previous literature [14]. STKs are mostly associated with 244 
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eukaryotic signal transduction pathways. In prokaryotes, two-component regulation 245 

controls most phosphorylation pathways with a receptor histidine kinase paired with 246 

various response regulators phosphorylated on aspartic acid residues. These kinases often 247 

control the expression of certain genes [39]. However, Hanks-type STKs have been found 248 

in an array of prokaryotic organisms where their genomic abundance is often correlated 249 

with genome size, physiological and ecophysiological complexity, and ability to tolerate 250 

complex environments [14, 38, 40]. These STKs are implicated in the regulation of 251 

various aspects of bacterial physiology through post-translational modification of 252 

proteins, which may themselves be components of phosphorelay and transcriptional 253 

regulatory pathways [40–43]. Serine/threonine protein kinases were first associated with 254 

the pknA gene of Nostoc sp. PCC7120, which is involved in growth and differentiation 255 

[14], and in other bacteria their activity regulates processes such as cell growth, 256 

segregation, virulence, metabolism, stress adaptation, and cell wall/envelope biogenesis 257 

[40]. Ser/Thr kinases in cyanobacteria are usually associated with three different 258 

processes: developmental regulation, stress response, and pathogenicity [14]. Slight 259 

changes, not in function but in the strength of substrate recognition to a variety of 260 

phosphorylation targets, may contribute to the ability to finely tune networks of signal 261 

transduction.  262 

Compared to histidine kinases of two-component systems, which exhibit strong substrate 263 

discrimination, STKs have relaxed substrate specificities. This has been linked to a lack of 264 

co-evolution between the kinase and its cognate target [44, 45]. Accelerated evolution of 265 

the substrate-binding domain of these kinases may have resulted in the further expansion 266 

of this class of proteins in the Cyanobacteria phylum, contributing to a wide range of 267 
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adaptability to external stimuli and challenging environments. We hypothesize that the 268 

VR-containing CLec domain could be autoinhibitory, and activation of kinase activity 269 

would occur upon binding a small molecule or protein ligand.  In this case, DGR-mediated 270 

diversity could allow rapid recognition of various ligands for activating phosphorylation 271 

cascades. Alternatively, the CLec domain could function in ligand recognition (i.e. 272 

determining what protein(s) are phosphorylated).  In this case CLec variants could have 273 

different substrate specificities. Segregation of phosphorylation targets between 274 

paralogous kinases has been shown to play a strong selective pressure in their evolution 275 

[46]. In turn, DGR-driven hypervariation of binding components in signaling proteins 276 

may offer additional selective advantages in cyanobacteria through preventing cross-talk, 277 

which is characteristic of this of kinase class.  278 

We also identified orthocaspase-like peptidase domains in VP N-termini, which are also 279 

common among their paralogs (Fig. 4). Caspase proteins are proteases involved in the 280 

initiation of programmed cell death in metazoans [47]. The peptidase domains that we 281 

identified in many VPs and their paralogs were predicted as orthocaspases, which are the 282 

prokaryotic homologs of eukaryotic caspase-type proteases [48]. While these protein 283 

types are homologous to metazoan caspases, current evidence supports a broader role in 284 

cell homeostasis during normal cellular conditions, programs of cellular differentiation, 285 

or ageing as well as potential apoptosis [49, 13, 50]. Previous studies have found 286 

orthocaspases to be enriched in morphologically complex filamentous cyanobacteria of 287 

subsections III-V (e.g. Trichodesmium erythraeum IMS 101, Anabaena spp., and Nostoc 288 

spp.) as well as various strains of the unicellular toxin-producing species, Microcystis 289 

aeruginosa.  Conversely, orthocaspases are entirely absent from unicellular genera 290 
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Synechococcus, Prochlorococcus, Cyanobium, and Cyanothece and are 291 

underrepresented in the genomes of cyanobacteria belonging to subsections I-II. This 292 

suggests their utility in enabling the complex signal response and regulatory programs 293 

that exist in cyanobacteria capable of cellular differentiation, toxin production, and 294 

diazotrophy [13].  295 

In addition to the serine/threonine kinase and orthocaspases-like peptidase domains, we 296 

identified less-common features including repeat motifs, toll/interleukin receptor (TIR)-297 

like, GAF-like, GUN4-like, and CHAT-like domains.  Repeat motifs may have a role in 298 

protein-protein interactions (e.g., TPR, WD40 repeat, ARM repeat, and VWA-CoxE) [51–299 

54], while the other domains have been linked to intracellular signal transduction [55–300 

59] (Fig. 5).  301 

A common feature for nearly all of the N-terminal domains, including the prevalent 302 

protein kinase-containing paralogs, is their potential to serve a functional role in signal 303 

transduction in response to external stimuli (e.g. light, nutrient deprivation, and general 304 

stress response) [9]. A previous study found that genes encoding complex multidomain 305 

proteins involved in signal transduction are highly enriched in the filamentous 306 

cyanobacterium Anabaena sp. PCC 7120 when compared to the genomes of unicellular 307 

Synechocystis sp. PCC 6803 and Pseudomonas aeruginosa [60]. Moreover, regulatory 308 

proteins involved in signal transduction could lend to the complex regulation necessary 309 

for the physiology of filamentous cyanobacteria. These physiologies include a capacity for 310 

cell-differentiation, producing heterocysts during nitrogen deprivation and akinetes 311 

under environmental stress, as well as programmed apoptosis [49, 61]. The presence of 312 
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DGRs in cyanobacteria follows this trend in the abundance of specialized signal 313 

transduction proteins – being seemingly enriched in filamentous nitrogen-fixing taxa and 314 

absent from genomes of unicellular taxa, Synechococcus spp. and Prochlorococcus spp., 315 

though they are present in other unicellular species.  316 

DGR-programmed variation of the ligand-binding domain of receptor-binding proteins 317 

in Bordetella bacteriophage has been shown to increase the capacity of these proteins to 318 

recognize a vast array of molecules. Moreover, diversification of oligomeric structures 319 

appeared to confer an amplification of binding affinity, or avidity [19, 62]. Specifically, 320 

the existence of 12 DGR-variable target protein trimers in each bacteriophage virion was 321 

shown to increase the binding strengths of these proteins to their ligand, pertactin, by 322 

relaxing the requirement for optimal binding between the ligand and any single 323 

monomer. This multivalent binding was also shown to lead to more distinction in binding 324 

events, contributing to enhanced selectivity [19]. These two properties of avidity through 325 

multivalency are hypothesized to be characteristic of other DGR systems as a means to 326 

provide ligand-recognition flexibility to evolve under constrained conditions, while 327 

maintaining selectivity.  We hypothesize that, in cyanobacteria, DGR-programmed 328 

variation might have a role in providing multimeric avidity in terms of ligand binding for 329 

signal response. In the case of autoinhibitory variable proteins attached to a kinase, rather 330 

than providing flexibility in host-receptor binding, as in Bordetella bacteriophage, 331 

increased avidity may hold a kinetic advantage for substrate binding, whereby flexible 332 

activation accelerates signal transduction and regulation. More generally, the available 333 

genomic evidence is consistent with a phenomenon of targeted diversification acting to 334 

tune cyanobacterial regulatory networks.  335 
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Conclusions 336 

The DGR-enabled diversification of proteins involved in host attachment should lead to 337 

selective advantages, as this offers an offensive countermeasure to variation by the host 338 

cell. By genomic inference, other DGR-containing prokaryotes seem to have adopted DGR 339 

function to mechanisms of virulence, and other cell-cell or phage/cell binding 340 

interactions.  By contrast, our findings suggest a selective use of DGRs for purposes of 341 

isolated hyper-diversification of a small pocket in the C-terminal binding domains of 342 

multidomain proteins broadly involved in signal transduction within cyanobacteria. This 343 

class of DGR-target proteins is thus-far unique to the cyanobacterial phylum. 344 

Diversification of the binding site of these proteins, paired with natural selection over 345 

iterations of diversity generation and the ability to segregate resulting beneficial mutants 346 

via transposition, may contribute to the complexity and adaptability of cellular regulation 347 

amongst cyanobacterial taxa.  In developing a better grasp on the functional significance 348 

of DGR hypervariation, it is clear that the phenomenon adds new layers of complexity in 349 

the expansion of bacterial protein networks.   350 
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Figures 402 

Figure 1. Schematic overview of a DGR and their prevalence in 403 
cyanobacterial genomes.  404 

a Three primary steps in the process of mutagenic homing are shown: 1) conserved 405 

template region (TR) in the DGR cassette is transcribed into intermediate, non-coding 406 
RNA, which is the substrate for DGR reverse transcriptase (DGR-RT). 2) Template-407 

primed reverse transcription of TR-RNA is highly error-prone at adenines, which thus 408 

incorporates random nucleotides at specific positions in the resulting cDNA. 3) The new 409 
cDNA molecule is integrated into the variable region (VR) at a fixed locus, resulting in 410 

the replacement of a portion of the target gene (~100 – 200bp). Genomic surveys 411 
suggest that VRs occur almost exclusively near the 3’ terminus of a target gene.  412 

Additional “remote” VP genes (i.e. paralogs) may be found in non-DGR loci throughout 413 

the genome, which have detectable TR vs VR homology. b Summary of 52 cyanobacteria 414 
genomes known to have DGR components (in Fig. 1a) spanning 31 genera. Genera with 415 

 2 DGR-containing genomes annotated. c DGR feature occurrence normalized to 416 
genome number.   417 
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Figure 2. Broad RT phylogeny compared amongst all known DGR-418 

containing lineages. 419 
RT phylogeny compared amongst all known DGR-containing lineages with Group-II 420 

Introns as the outgroup (highlighted cyanobacterial clade expanded in Figure 3).   421 

Page 1 
 

 

 
 
 
 
 
 
 
 
 
 

0.3 
substitutions / site

 

Group-II Introns (outgroup)

 

Groundwater (CPR) Bacteria 
 

142

 

Archaea, Archaeal Viruses
 

46

 
Bacteria: mixed taxonomy

 
19

 

Gut Phage
 

4

 
Cyanobacteria & RT Relatives  

(expanded below)  

 
52

 

Proteobacteria, Bacteroides, 
Spirochaeta

 
20

 

Gut Phage
 

2

 

Firmicutes 
 

9

 
Proteobacteria 

 
21

 
16

 
19

 
12

 
8

 

Clostridia & Deltaproteobacteria  
(SO4 reducers)

 

Firmicutes and Phage

 

Clostridia and Bacili

 
Gamma, Delta, Alpha 

Proteobacteria

A) 

Fig 3. Broad RT Phylogeny Compared Amongst All Known DGR-Containing Lineages 

RT phylogeny compared amongst all known DGR-Containing Lineages with Group-II Introns 

as the outgroup. 



Page 
 

21 

Figure 3. Phylogenetic reconstruction for DGR-containing cyanobacteria 422 
and DGR-RT phylogeny. 423 

a Phylogeny for concatenated ribosomal protein alignments, including all DGR-424 
containing species. Filled boxes (left) indicate DGR-RT containing species and the 425 

corresponding RT clade. RT clades 1 to 3 were defined based on basal branch support. b 426 

DGR-RT phylogeny with cyanobacterial physiological subsections highlighted in color. 427 
Circles indicate branch support values (hollow >50%; filled >70%). 428 
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Figure 4. Distribution of CLec variable protein paralogs in cyanobacterial 429 

genomes. 430 

DGR-internal variable proteins and remote variable proteins are indicated by triangles 431 
and asterisks over corresponding representatives. The CLec paralogs of VPs and RVPs 432 

are also shown for each genome. The CLec domain found in all paralogs is indicated by 433 

either a red square (CLec only) or two grafted domains shown as adjacent rectangles (C-434 
terminal CLec in red; N-terminal domains in various colors). For clarity, paralogs of the 435 
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same domain architecture in Trichodesmium erythraeum IMS101 are indicated below 436 

the representative protein (e.g. x2). Note: only a representative subset of DGR-437 
containing genomes is shown (15 of 52 genomes).  438 
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Figure 5. Representative DGR-internal variable protein (VP) domain 439 

architectures. 440 
Representative domain architectures for DGR-internal variable proteins. Protein 441 

domains are colored according to pHMMR domain assignment. Variable regions are 442 

shown in deep purple. Additional features, including predicted signal peptides and 443 
transmembrane helices, are also indicated. An example species is shown to left of each 444 

VP architecture.   445 
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Methods 446 

DGR Identification and Annotation 447 

First, we identified all cyanobacterial genomes containing a DGR-RT-like coding 448 

sequence by comparing a consensus sequence for previously-identified cyanobacterial 449 

DGR-RT sequences against protein databases using pHMMER. All matches were linked 450 

to corresponding genome or nucleotide sequences, which were then downloaded from 451 

NCBI. A set of potential DGR candidates was first developed using a workflow with 452 

Python and Geneious Prime v 2019.2.3 (Biomatters) as previously described [21]. Briefly, 453 

RT genes were manually inspected for core NTP-binding site motifs, before searching for 454 

near-repeats in a 10-kbp proximal region (i.e., RT +/- 5-kbp). Repeats in this region were 455 

then aligned and inspected for: i) random mismatches in one sequence (VR), which 456 

predominantly occur in 1st and 2nd codon positions of an ORF, and ii) >80% of 457 

mismatches correspond to adenines in the non-coding near-repeat sequence (TR). Next, 458 

retroelements were further analyzed using myDGR [63] which is especially effective at 459 

identifying putative trans-acting accessory DGR components, and separately, remote VP 460 

and VP homolog genes.  461 

The entire DGR dataset contains several RT and VP sequences that are near-identical, but 462 

shared by distinct genomes (Additional file 1: Table S1). To generate a representative 463 

subset of these redundant DGRs, we used CD-HIT [64] to cluster RT amino acid 464 

sequences using the following settings: 0.9 global alignment; 95% identity threshold. For 465 

comparison with the global metagenomic DGR dataset developed by Roux et al. [18], we 466 

conducted pairwise alignments with RT sequences using blastp [65] and identified similar 467 

representatives at ≥ 50% amino acid identity.  468 
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Genes, homologous to VPs within the DGR cassette, were inspected by aligning amino 469 

acid sequences for the CLec domain of each putative remote VP to the DGR-VP within the 470 

same organism using Clustal Omega. Genes with CLec domains having a putative VR with 471 

≥50% nucleotide identity to a DGR-VP were designated as remote VPs, while those with 472 

<50% were designated as VP homologs. DGR and remote VP neighborhood regions were 473 

defined as regions 10kb upstream and downstream from the DGR cassette, remote VP, or 474 

VP homolog. 475 

Neighborhood Analyses 476 

In order to identify potential transposons, we first examined existing genomic 477 

annotations in the neighborhood (i.e. +/- 10 kbp) of each VP and Remote VP for the 478 

following features: transposase, integrase, mobile element. Next, we conducted a 479 

transposon search using ISFinder [66] using expanded VP loci (60 kbp) that contain one 480 

or more annotations associated with mobile elements.  481 

Phylogenetic Analyses 482 

To construct a phylogenetic tree of cyanobacteria, we used a set of 16 ribosomal proteins 483 

often used for phylogenomic analysis (RpL2, 3, 4, 5, 6, 14, 15, 16, 18, 22, and 24, and RpS3, 484 

8, 10, 17, 19 [67].  Each ribosomal protein was identified using HMMER [68] and hidden 485 

Markov models from the Pfam [69] database (accessed September 2018).  Each individual 486 

marker gene was aligned using MUSCLE [70], trimmed using TrimAL [71], manually 487 

assessed to remove end gaps and ambiguously aligned regions and concatenated.  A 488 

maximum likelihood tree was constructed using RAxML v. 8.2.9 [72] with the 489 

PROTCATLG model. 490 
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To reconstruct RT phylogeny, putative DGR-RT coding sequences were identified, as 491 

described above, then translated. Sequences were de-replicated and non-redundant 492 

candidates were chosen using CD-Hit [64] with a global alignment threshold of 99% 493 

identity. All DGR-RT sequences and a set of Group-II intron RT sequences from Bacteria, 494 

Archaea, plastids, and mitochondria were aligned with a hidden markov model of the 495 

reverse transcriptase protein family (PF00078) using HMMalign [68]. A phylogenetic 496 

tree of DGR-RTs was constructed using FastTree2 [73] with the WAG substitution matrix, 497 

and the CAT approximation to optimize branch lengths. The cyanobacterial DGR-RT 498 

representatives were extracted from the complete alignment, realigned using Clustal 499 

Omega [74] and used to construct an unrooted phylogenetic tree. 500 

Protein Function Analysis 501 

VP domain architecture was annotated using InterProScan, pHMMER, and HMMScan 502 

tools. CD-HIT analysis was performed on CLec domains for all VPs using the following 503 

settings: 0.3 global alignment; 30% identity threshold. Amino acid sequences for the CLec 504 

domain of all VPs were aligned using Clustal Omega. The C-terminal sequence of all DGR-505 

VP CLecs was extracted based on the InterProScan feature positions, then further aligned 506 

using Clustal Omega and a consensus sequence was picked at 75% sequence similarity 507 

(Additional File 6: Figure S1). This consensus sequence was used to further identify 508 

homologous domains. Using hmmscan, 1,579 hits were returned using an E-value cutoff 509 

of 10-40 to generate Table S2 (Additional file 2: Table S2).  510 

Supplementary Information 511 

Additional File 1: Table S1. RT/Species Table.  512 

Summary of all DGR-RTs found in cyanobacterial genomes with taxonomic and known 513 
physiological information noted. Domain annotations for all DGR-internal VPs and 514 
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Remote VPs identified as having VR/TR homology are also summarized. See table S6 for 515 

information regarding taxonomic affiliations.   516 

Additional File 2: Table S2. Taxonomy of C-Type Lectin-Like HMM Hits. 517 

The consensus sequence of cyanobacterial C-type lectin-like predicted domains was 518 
generated via alignment of DGR-associated C-termini (up to 200 amino acids) and 519 

confirmed with pHMM scan. The taxonomy is summarized for those genomes that 520 

contain orthologs. 521 

Additional File 3: Table S3. Clec Variable Protein Paralogs. 522 

A subset of 21 high quality genomes were chosen to assess the presence of DGR-VP 523 

paralogs. This is a summary of VP paralogs identified and their domains. 524 

Additional File 4: Table S4. DGR-Proximal Transposable Elements. 525 

All transposable elements found in proximity to DGRs are listed, including transposase 526 
family and mechanisms of integration. 527 

Additional File 5: Table S5. Genes within DGR Neighborhoods. 528 

Genes found proximal to cyanobacterial DGR cassettes are annotated with predicted 529 
function and counts for each annotated function displayed.  530 

Additional File 6: Figure S1. Hanks-type Kinase Motif Characterization in 531 

VPs. 532 
Alignment of known “Hanks and Hunter-type” (S/T) kinase domains to the kinase 533 

domains of all DGR-VPs, Remote VPs, and VP Paralogs from this dataset. Motifs I-XI 534 
highlighted in blue. The top eight sequences denoted “STKII” are known Type II S/T 535 

kinases from Zhang et al. 2007 [14].  536 

Additional File 7: Table S6. Updated Cyanobacterial Taxonomy.  537 
Taxonomic assignment for each cyanobacterial genome was generated using relative 538 

evolutionary divergence and average nucleotide identity with the Genome Taxonomy 539 

Database Toolkit (GTDB-Tk) [75] based on the Genome Taxonomy Database (GTDB) 540 
[76].  541 
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