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Abstract

Background

Cyanobacteria maintain extensive repertoires of regulatory genes that are vital for
adaptation to environmental stress. Some cyanobacterial genomes have been noted to
encode diversity-generating retroelements (DGRs), which promote protein
hypervariation through localized retrohoming and codon rewriting in target genes. Past
research has shown DGRs to mainly diversify proteins involved in cell-cell attachment or
viral-host attachment within viral, bacterial, and archaeal lineages. However, these
elements may be critical in driving variation for proteins involved in other core cellular

processes.

Results

Members of 31 cyanobacterial genera encode at least one DGR, and together, their
retroelements form a monophyletic clade of closely-related reverse transcriptases. This
class of retroelements diversifies target proteins with unique domain architectures:
modular ligand-binding domains often paired with a second domain that is linked to
signal response or regulation. Comparative analysis indicates recent intragenomic
duplication of DGR targets as paralogs, but also apparent intergenomic exchange of DGR
components. The prevalence of DGRs and the paralogs of their targets is

disproportionately high among colonial and filamentous strains of cyanobacteria.

Conclusion

We find that colonial and filamentous cyanobacteria have recruited DGRs to optimize a
ligand-binding module for apparent function in signal response or regulation. These

represent a unique class of hypervariable proteins, which might offer cyanobacteria a
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form of plasticity to adapt to environmental stress. This analysis supports the hypothesis
that DGR-driven mutation modulates signaling and regulatory networks in
cyanobacteria, suggestive of a new framework for the utility of localized genetic

hypervariation.

Background

Cyanobacteria are a remarkably diverse lineage, in terms of metabolisms, morphologies,
and habitat distribution. Perhaps most notably, this phylum contains the only prokaryotic
organisms known to have evolved the capability for oxygenic photosynthesis; this trait
was later acquired by eukaryotes through endosymbiosis with cyanobacteria, resulting in
the formation of chloroplasts [1, 2], and driving the modern biosphere. Cyanobacteria
have evolved an array of morphologies, including complex multicellular forms [3-6].
Representatives are typically classified into five subsections [7, 8]. Species of subsections
I and IT consist of single coccoid cells. Subsections III-V represent multicellular species
that form filaments of varying complexity. Members of subsection III form reversibly-
differentiable filaments of vegetative cells. Among subsections IV and V, cells can carry
out terminal cellular differentiation in response to environmental stimuli, forming spore-
like cells that are resistant to desiccation (akinetes), micro-oxic cells specialized for N»
fixation (heterocysts), and motile filaments (hormogonia) [9]. This morphological and

metabolic complexity has allowed cyanobacteria to inhabit diverse environments.

Certain members of the cyanobacterial phylum possess an extensive capacity to adapt to
various environmental pressures through tightly-controlled regulation of complex

cellular programs for signal response. This is exemplified by abilities for metabolic
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switching (i.e. CO-/N- fixation), maintaining photoreceptors of various wavelength
sensitivities for binary programs of circadian rhythm, and forming specialized cells which
can sometimes be terminally differentiated and lead to multicellularity [9, 10]. To regulate
these complex programs, cyanobacteria have an extensive repertoire of genes governing
signal transduction including proteases, kinases, and nucleases. Notably, paralogs of
these regulatory proteins are more abundant among the more complex species of
cyanobacteria (i.e. those belonging to subsections III-V) [11—15]. However, the
mechanisms to diversify and adapt specific functionality in these duplicated genes remain
largely unexplored. One mechanism may involve diversity-generating retroelements

(DGRs), known to accelerate the evolution of the proteins they target.

Diversity-generating retroelements (DGRs) have been noted within the genomes of
several genera of cyanobacteria [16—18]. In experimentally investigated bacterial and
viral systems, DGRs drive site-specific hypermutation of a subset of codons in target genes
[19, 20], while metagenomic and metatranscriptomic evidence also points to functional
DGRs in archaea [21]. These retroelements utilize a uniquely targeted form of
retrotransposition. To this end, DGRs insert variants into a flexible coding scaffold, while
avoiding non-specific variation in conserved portions of a gene [22]. The essential
features of a DGR are most often found within a single genomic locus spanning ~ 5 — 10
kbp (Fig. 1a), though the synteny and organization of DGR components can vary [17].
Diversification is mechanistically carried out by a reverse transcriptase (RT), which acts
upon a non-coding RNA transcribed from the template repeat (TR) region in the locus
[23]. This region is nearly identical to a variable region (VR) that typically resides in a

nearby gene, which encodes a DGR-variable protein (VP). The TR-RNA intermediate is
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reverse transcribed into cDNA wherein A - N mutation is highly favored by the error-
prone RT. This ¢cDNA then replaces VR, whose sequence commonly corresponds to
flexible residues in ligand binding structural domains belonging to the C-type lectin or

immunoglobulin-like protein families [19].

The first DGR variable protein was characterized from the bacteriophage, BPP-1. In these
phage, DGRs diversify tail fiber tip proteins that recognize and bind to Bordetella host
receptors [16, 24]. Other cellular DGRs have been characterized in bacterial pathogens,
including Legionella pneumophila [20] and Treponema denticola [25], where DGRs
target genes that encode for cellular surface proteins, presumably involved in cell-cell
attachment. The conserved function of cell-cell or viral-cell attachment in these target
genes lends to a perspective of DGRs for broad use in host recognition for symbiosis or
infection. Moreover, several genera of cyanobacteria were identified in recent genomic
and metagenomic surveys of DGRs [17, 26]. The essential components of DGRs can be
found across most lineages of prokaryotic life [17, 21, 26—29], suggesting broad utility of

this form of localized mutation.

Whereas previously characterized DGR target proteins appear to share a functional role
in extracellular attachment to ligands displayed on foreign cells, these retroelements
could potentially diversify other cellular proteins with entirely distinct functions. The
intermediate RNA, which presents a template for DGR mutagenesis, has been shown to
be highly expressed in lab isolates of Trichodesmium erythraeum IMS101 [18] and in
Nodularia spumigena CCY9414 under light and oxidative stress [30, 31]. Here, a

systematic analysis of DGRs and their variable proteins in cyanobacterial genomes leads
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to a new perspective on the utility of diversification and optimization of modular protein

domains in paralogs that appear linked to signaling and transcriptional control.

Results and Discussion

A Conserved Subclass of Retroelements in Cyanobacteria

Our analysis identified 58 DGRs that include 90 target genes (i.e. encoding VPs) in 52
genomes of cyanobacteria spanning 31 different genera. These include filamentous,
colonial, and symbiotic organisms (Fig. 1b and Additional file 1: Table S1). Sequence
clustering of the 58 DGRs was performed with RT amino acid sequences (at 95% identity)
to generate a non-redundant subset of 49 distinct RT genes for phylogenetic analysis,
while the full set of 58 were also examined further. All DGRs were identified by presence
of diagnostic and essential components: an RT gene; one or more VP genes with VR
regions; and a TR region. Our initial RT search was conducted with the UniprotKB coding
sequence database, which is in turn linked to complete and draft genomes in
EMBL/GenBank/DDBJ databases. The resulting 52 cyanobacterial genomes represent all
sequences where complete DGR cassettes were positively identified. Among the 52
genomes analyzed, four contain duplicate DGR cassettes, based on clustering, while one
contains two unique DGR-RTs. Moreover, several individual DGRs have multiple target
genes, and some VP genes have VRs with homology to other genes dispersed throughout

the genome (paralogs) (Fig. 1¢).

To evaluate the diversity of cyanobacteria-encoded DGRs, we first compared these
representatives to a recently developed, global metagenomic DGR dataset [26].

Cyanobacterial DGR-RTs were clustered (i.e. at > 50% AAI) with sequences in the global
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metagenomic dataset, then linked to a corresponding DGR clade and target protein
cluster. All DGRs from our dataset were closely related to DGR Clade-5. The global dataset
RTs in DGR Clade-5 are affiliated with target proteins in protein cluster 1 (i.e. PC_00001),
which primarily contains cellular proteins that appear to be membrane-bound [26]. Given
that the cyanobacterial DGRs appear to cluster tightly together, we next sought to analyze

phylogenetic relationships within this set.

Phylogenetic analysis of cyanobacterial DGR-RTs revealed a monophyletic clade, unique
from all other bacterial DGR-RTs (Fig. 2). The cyanobacterial DGR-RT clade comprises
sequences that span nearly all major cyanobacterial genera within morphological
subclasses I, III, IV, and V (Fig. 3a). None of the DGR-containing genomes correspond to
genera within subclass II. Strikingly, cyanobacterial reverse transcriptases within the
monophyletic cyanobacterial DGR clade share an average global sequence identity of 67%
(minimum 55%; amino acid sequence). Whereas members of this DGR-RT subgroup do
not appear to be shared with other bacteria or archaea, their phylogenetic relationships
suggest a complex evolutionary history punctuated by horizontal exchange within the
cyanobacterial phylum (Fig. 3b). Although none of the cyanobacterial DGRs could be
definitively assigned to prophage elements, they were identified on plasmids of Anabaena
sp. 90 (CP003287) and Fischerella sp. NIES-4106 (AP018301), which may indicate a
vehicle for retroelement transfer between closely related populations. Among members
of this RT clade, each corresponding DGR-VP contains a ligand-binding C-type lectin-like

domain (CLec) with additional functional domains described in detail below.
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Intragenomic Dispersal of Conserved Domains with Local Hypervariable
Regions
DGR variable proteins often contain multiple distinct structural domains [17, 21, 22]. To
investigate the specific functions of cyanobacterial DGR-targeted proteins (i.e. containing
the VR scaffold), we first separately analyzed the ligand-binding CLec domains in all
DGR-VPs. This approach identified a conserved module (i.e. a putative C-terminal
domain) with a localized region of hypervariable residues found in each of the 52
cyanobacterial VP representatives (Additional file 1: Table S1). The entire set of VR-
containing modules share sequence homology with 50.5% average identity and,
moreover, all of these protein sequences were clustered together with >30% pairwise
amino acid identity. Structural prediction of the representative C-terminal domain
sequence (i.e. obtained from clustering) determined that each module most closely
resembles the C-type Lectin domain, which is represented by the CLec-like superfamily
(InterPro: IPR016187). In each of these proteins, the DGR variable region (VR) occurs
within the C-terminal region of the otherwise conserved CLec-like domain. A search for
similar proteins in the Uniprot database identified sequences from an array of other
genomes among which 92% belong to cyanobacterial phyla (Additional file 2: Table S2).
The similarity between CLec domains found in diverse DGRs may underlie a conserved
utility for diversifying this module across different cyanobacterial taxa. The CLec-like
superfamily has been linked to a variety of molecular processes in cells and viruses
spanning the tree of life, with a common functional role in ligand binding generally
predicted for this fold [32—34]. Thus, the modular and dispersed nature of a highly
conserved CLec subclass may further point to multifaceted functional significance in

cyanobacteria.
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We next sought to address whether hypervariable CLec modules might arise from gene
duplication and intragenomic dispersal, resulting in recognizable sets of paralogs in
cyanobacterial genomes. This search was limited to 21 high-quality genomes of the 52-
genome total, such that draft genomes composed of >50 scaffolds were removed from the
analysis. This approach uncovered 21 genomes that have multiple genes encoding CLec
domain-containing proteins, with varying degrees of VR/TR homology (Fig. 4 and
Additional file 3: Table S3). These paralogs occur both within DGR loci and dispersed
throughout the genome and most often consist of either a single CLec domain or the C-
terminal CLec grafted to an N-terminal putative serine kinase domain. Taken together,
the multi-genome set of 219 cyanobacterial orthologs across 21 genomes-share average
pairwise identity of 50.5% within their CLec domains. The complete set of 219 orthologs
comprises 121 genes that appear to be DGR-diversified based on VR/TR homology,
including 45 VP genes encoded within a DGR. The additional 76 remote targets were
associated with their respective genome’s DGR(s) using a threshold of TR identity greater
than 50%; these matches were exclusively found near the 3’ terminus of CLec-encoding
genes. The proximity to 3’-termini suggests that conserved, cis-acting features - such as
DNA cruciforms or initiation of mutagenic homing sites required for cDNA integration

[35] - may play a role in activating remote targets.

The genome of Nostoc sp. PCC 7120 (formerly Anabaena), contains two DGRs (RT
accessions: Alr3497, All5014) and several dispersed VP paralogs (Fig. 4), providing the
opportunity to examine the evolutionary history of these genes in an extensively-studied
model organism. Within this genome, we identified three highly similar VP homologs (>

60% amino acid identity) in dispersed loci, wherein these genes may have proliferated by
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duplication and transposition from a common ancestral gene. Notably, one of these
paralogs (all3226) contains remnant TR-VR homology, despite an absence of proximal
RT genes or pseudogenes. Taken together, this suggests a capacity for intragenomic
dispersal of DGR-targeted variable proteins, and perhaps removal of diversification
components once an optimal variant is selected. In addition to its tractability, the
common constellation of DGR VPs that occurs in PCC 7120, as observed in other
cyanobacteria, make this species an ideal representative for further analysis of the
physiological, ecological and evolutionary ramifications of DGR VP functionality and

modularity in cyanobacteria.

To assess whether transposable elements were found in proximity to DGRs, we analyzed
neighborhoods surrounding each hypervariable protein, including remote VPs with
respect to a DGR-RT (i.e. > 5 kbp upstream/downstream). This search uncovered
transposase genes belonging to various families in DGR-proximal loci which may be
responsible for VP dispersal throughout the genome (Additional file 4: Table S4 and
Additional file 5: Table Ss). Within the subset of 21 high-quality genomes,
Trichodesmium erythraeum IMS101 has the greatest number of proximal transposase
genes, spanning six different insertion sequence (IS) families. The most widely-
distributed transposases were those belonging to the IS200/IS605 family, found nearby
9 VPs from 6 distinct species. Transposases belonging to this family employ a single-
stranded DNA intermediate for a “peel-and-paste” mechanism of transposition [36, 37].
The genome of Anabaena sp. Strain 90 contains remnants of a putative degraded DGR
cassette — containing only the RT with no other detectable features — and notably, the RT

gene is flanked by proximal transposase genes. This provides a potential mechanism for
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select components of the DGR to be mobilized within the genome. DGR recruitment to
one gene from another would allow favorably diversified genes to become conserved while
targeting hypervariation elsewhere in the genome. Selective pressures can then influence
the recruitment of DGRs to genes wherein hypervariation for ligand-binding residues
offers selective advantages. Through this mechanism of transposition, cyanobacterial
DGRs may provide a newly-diversified, modular, ligand binding domain to signaling

genes.

Function of Multidomain Variable Proteins

In part, functional diversity of DGR variable proteins is found in their multidomain
complexity. We examined cyanobacterial VPs and their paralogs, which consist of N-
terminal domains that are grafted to the C-terminal CLec domain (Fig. 4, Fig. 5). Toward
assessing cellular localization, transmembrane and/or signal peptide regions were
predicted for 4 DGR-associated VPs and 9 remote VPs, spanning 11 of the 21 high-quality
genome set (Additional file 3: Table S3). Most cyanobacterial DGR VPs are predicted to

be cytosolic, however evidence exists for TM localization and secretion as well.

The most common functional domain of DGR-internal target protein (VPs) in
cyanobacteria have similarity to the protein kinase superfamily (Additional file 1: Table
S1). Multidomain DGR-external VPs and paralogs of DGR VPs are also most-often
predicted to be kinases (Fig. 4). The VP and VP paralog kinase proteins are further
predicted to be serine/threonine kinases (STKs) based on the following factors: 1)
identification of Hanks and Hunter-type Motifs I through IX [38] (Additional file 6:
Figure S1); 2) common NCBI CDS annotations of “serine/threonine protein kinase CDS”;

or 3) identification of an STK in previous literature [14]. STKs are mostly associated with
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eukaryotic signal transduction pathways. In prokaryotes, two-component regulation
controls most phosphorylation pathways with a receptor histidine kinase paired with
various response regulators phosphorylated on aspartic acid residues. These kinases often
control the expression of certain genes [39]. However, Hanks-type STKs have been found
in an array of prokaryotic organisms where their genomic abundance is often correlated
with genome size, physiological and ecophysiological complexity, and ability to tolerate
complex environments [14, 38, 40]. These STKs are implicated in the regulation of
various aspects of bacterial physiology through post-translational modification of
proteins, which may themselves be components of phosphorelay and transcriptional
regulatory pathways [40—43]. Serine/threonine protein kinases were first associated with
the pknA gene of Nostoc sp. PCC7120, which is involved in growth and differentiation
[14], and in other bacteria their activity regulates processes such as cell growth,
segregation, virulence, metabolism, stress adaptation, and cell wall/envelope biogenesis
[40]. Ser/Thr kinases in cyanobacteria are usually associated with three different
processes: developmental regulation, stress response, and pathogenicity [14]. Slight
changes, not in function but in the strength of substrate recognition to a variety of
phosphorylation targets, may contribute to the ability to finely tune networks of signal

transduction.

Compared to histidine kinases of two-component systems, which exhibit strong substrate
discrimination, STKs have relaxed substrate specificities. This has been linked to a lack of
co-evolution between the kinase and its cognate target [44, 45]. Accelerated evolution of
the substrate-binding domain of these kinases may have resulted in the further expansion

of this class of proteins in the Cyanobacteria phylum, contributing to a wide range of



268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Page 13

adaptability to external stimuli and challenging environments. We hypothesize that the
VR-containing CLec domain could be autoinhibitory, and activation of kinase activity
would occur upon binding a small molecule or protein ligand. In this case, DGR-mediated
diversity could allow rapid recognition of various ligands for activating phosphorylation
cascades. Alternatively, the CLec domain could function in ligand recognition (i.e.
determining what protein(s) are phosphorylated). In this case CLec variants could have
different substrate specificities. Segregation of phosphorylation targets between
paralogous kinases has been shown to play a strong selective pressure in their evolution
[46]. In turn, DGR-driven hypervariation of binding components in signaling proteins
may offer additional selective advantages in cyanobacteria through preventing cross-talk,

which is characteristic of this of kinase class.

We also identified orthocaspase-like peptidase domains in VP N-termini, which are also
common among their paralogs (Fig. 4). Caspase proteins are proteases involved in the
initiation of programmed cell death in metazoans [47]. The peptidase domains that we
identified in many VPs and their paralogs were predicted as orthocaspases, which are the
prokaryotic homologs of eukaryotic caspase-type proteases [48]. While these protein
types are homologous to metazoan caspases, current evidence supports a broader role in
cell homeostasis during normal cellular conditions, programs of cellular differentiation,
or ageing as well as potential apoptosis [49, 13, 50]. Previous studies have found
orthocaspases to be enriched in morphologically complex filamentous cyanobacteria of
subsections III-V (e.g. Trichodesmium erythraeum IMS 101, Anabaena spp., and Nostoc
spp.) as well as various strains of the unicellular toxin-producing species, Microcystis

aeruginosa. Conversely, orthocaspases are entirely absent from unicellular genera



291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Page 14

Synechococcus, Prochlorococcus, Cyanobium, and Cyanothece and are
underrepresented in the genomes of cyanobacteria belonging to subsections I-II. This
suggests their utility in enabling the complex signal response and regulatory programs
that exist in cyanobacteria capable of cellular differentiation, toxin production, and

diazotrophy [13].

In addition to the serine/threonine kinase and orthocaspases-like peptidase domains, we
identified less-common features including repeat motifs, toll/interleukin receptor (TIR)-
like, GAF-like, GUN4-like, and CHAT-like domains. Repeat motifs may have a role in
protein-protein interactions (e.g., TPR, WD40 repeat, ARM repeat, and VWA-CoxE) [51—

54], while the other domains have been linked to intracellular signal transduction [55—

59] (Fig. 5).

A common feature for nearly all of the N-terminal domains, including the prevalent
protein kinase-containing paralogs, is their potential to serve a functional role in signal
transduction in response to external stimuli (e.g. light, nutrient deprivation, and general
stress response) [9]. A previous study found that genes encoding complex multidomain
proteins involved in signal transduction are highly enriched in the filamentous
cyanobacterium Anabaena sp. PCC 7120 when compared to the genomes of unicellular
Synechocystis sp. PCC 6803 and Pseudomonas aeruginosa [60]. Moreover, regulatory
proteins involved in signal transduction could lend to the complex regulation necessary
for the physiology of filamentous cyanobacteria. These physiologies include a capacity for
cell-differentiation, producing heterocysts during nitrogen deprivation and akinetes

under environmental stress, as well as programmed apoptosis [49, 61]. The presence of
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DGRs in cyanobacteria follows this trend in the abundance of specialized signal
transduction proteins — being seemingly enriched in filamentous nitrogen-fixing taxa and
absent from genomes of unicellular taxa, Synechococcus spp. and Prochlorococcus spp.,

though they are present in other unicellular species.

DGR-programmed variation of the ligand-binding domain of receptor-binding proteins
in Bordetella bacteriophage has been shown to increase the capacity of these proteins to
recognize a vast array of molecules. Moreover, diversification of oligomeric structures
appeared to confer an amplification of binding affinity, or avidity [19, 62]. Specifically,
the existence of 12 DGR-variable target protein trimers in each bacteriophage virion was
shown to increase the binding strengths of these proteins to their ligand, pertactin, by
relaxing the requirement for optimal binding between the ligand and any single
monomer. This multivalent binding was also shown to lead to more distinction in binding
events, contributing to enhanced selectivity [19]. These two properties of avidity through
multivalency are hypothesized to be characteristic of other DGR systems as a means to
provide ligand-recognition flexibility to evolve under constrained conditions, while
maintaining selectivity. We hypothesize that, in cyanobacteria, DGR-programmed
variation might have a role in providing multimeric avidity in terms of ligand binding for
signal response. In the case of autoinhibitory variable proteins attached to a kinase, rather
than providing flexibility in host-receptor binding, as in Bordetella bacteriophage,
increased avidity may hold a kinetic advantage for substrate binding, whereby flexible
activation accelerates signal transduction and regulation. More generally, the available
genomic evidence is consistent with a phenomenon of targeted diversification acting to

tune cyanobacterial regulatory networks.
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Conclusions

The DGR-enabled diversification of proteins involved in host attachment should lead to
selective advantages, as this offers an offensive countermeasure to variation by the host
cell. By genomic inference, other DGR-containing prokaryotes seem to have adopted DGR
function to mechanisms of virulence, and other cell-cell or phage/cell binding
interactions. By contrast, our findings suggest a selective use of DGRs for purposes of
isolated hyper-diversification of a small pocket in the C-terminal binding domains of
multidomain proteins broadly involved in signal transduction within cyanobacteria. This
class of DGR-target proteins is thus-far unique to the cyanobacterial phylum.
Diversification of the binding site of these proteins, paired with natural selection over
iterations of diversity generation and the ability to segregate resulting beneficial mutants
via transposition, may contribute to the complexity and adaptability of cellular regulation
amongst cyanobacterial taxa. In developing a better grasp on the functional significance
of DGR hypervariation, it is clear that the phenomenon adds new layers of complexity in

the expansion of bacterial protein networks.
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403  Figure 1. Schematic overview of a DGR and their prevalence in
404 cyanobacterial genomes.
405 a Three primary steps in the process of mutagenic homing are shown: 1) conserved
406  template region (TR) in the DGR cassette is transcribed into intermediate, non-coding
407  RNA, which is the substrate for DGR reverse transcriptase (DGR-RT). 2) Template-
408  primed reverse transcription of TR-RNA is highly error-prone at adenines, which thus
409 incorporates random nucleotides at specific positions in the resulting cDNA. 3) The new
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416 > 2 DGR-containing genomes annotated. ¢ DGR feature occurrence normalized to
417  genome number.
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Figure 3. Phylogenetic reconstruction for DGR-containing cyanobacteria
and DGR-RT phylogeny.

a Phylogeny for concatenated ribosomal protein alignments, including all DGR-
containing species. Filled boxes (left) indicate DGR-RT containing species and the
corresponding RT clade. RT clades 1 to 3 were defined based on basal branch support. b
DGR-RT phylogeny with cyanobacterial physiological subsections highlighted in color.
Circles indicate branch support values (hollow >50%; filled >70%).
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436  same domain architecture in Trichodesmium erythraeum IMS101 are indicated below
437  the representative protein (e.g. x2). Note: only a representative subset of DGR-
438  containing genomes is shown (15 of 52 genomes).
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439  Figure 5. Representative DGR-internal variable protein (VP) domain

440 architectures.

441  Representative domain architectures for DGR-internal variable proteins. Protein

442  domains are colored according to pHMMR domain assignment. Variable regions are
443  shown in deep purple. Additional features, including predicted signal peptides and
444  transmembrane helices, are also indicated. An example species is shown to left of each
445 VP architecture.
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Methods

DGR Identification and Annotation

First, we identified all cyanobacterial genomes containing a DGR-RT-like coding
sequence by comparing a consensus sequence for previously-identified cyanobacterial
DGR-RT sequences against protein databases using pHMMER. All matches were linked
to corresponding genome or nucleotide sequences, which were then downloaded from
NCBI. A set of potential DGR candidates was first developed using a workflow with
Python and Geneious Prime v 2019.2.3 (Biomatters) as previously described [21]. Briefly,
RT genes were manually inspected for core NTP-binding site motifs, before searching for
near-repeats in a 10-kbp proximal region (i.e., RT +/- 5-kbp). Repeats in this region were
then aligned and inspected for: i) random mismatches in one sequence (VR), which
predominantly occur in 1t and 274 codon positions of an ORF, and ii) >80% of
mismatches correspond to adenines in the non-coding near-repeat sequence (TR). Next,
retroelements were further analyzed using myDGR [63] which is especially effective at
identifying putative trans-acting accessory DGR components, and separately, remote VP

and VP homolog genes.

The entire DGR dataset contains several RT and VP sequences that are near-identical, but
shared by distinct genomes (Additional file 1: Table S1). To generate a representative
subset of these redundant DGRs, we used CD-HIT [64] to cluster RT amino acid
sequences using the following settings: 0.9 global alignment; 95% identity threshold. For
comparison with the global metagenomic DGR dataset developed by Roux et al. [18], we
conducted pairwise alignments with RT sequences using blastp [65] and identified similar

representatives at > 50% amino acid identity.
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Genes, homologous to VPs within the DGR cassette, were inspected by aligning amino
acid sequences for the CLec domain of each putative remote VP to the DGR-VP within the
same organism using Clustal Omega. Genes with CLec domains having a putative VR with
>50% nucleotide identity to a DGR-VP were designated as remote VPs, while those with
<50% were designated as VP homologs. DGR and remote VP neighborhood regions were
defined as regions 10kb upstream and downstream from the DGR cassette, remote VP, or

VP homolog.

Neighborhood Analyses

In order to identify potential transposons, we first examined existing genomic
annotations in the neighborhood (i.e. +/- 10 kbp) of each VP and Remote VP for the
following features: transposase, integrase, mobile element. Next, we conducted a
transposon search using ISFinder [66] using expanded VP loci (60 kbp) that contain one

or more annotations associated with mobile elements.

Phylogenetic Analyses

To construct a phylogenetic tree of cyanobacteria, we used a set of 16 ribosomal proteins
often used for phylogenomic analysis (RpL2, 3, 4, 5, 6, 14, 15, 16, 18, 22, and 24, and RpS3,
8, 10, 17,19 [67]. Each ribosomal protein was identified using HMMER [68] and hidden
Markov models from the Pfam [69] database (accessed September 2018). Each individual
marker gene was aligned using MUSCLE [70], trimmed using TrimAL [71], manually
assessed to remove end gaps and ambiguously aligned regions and concatenated. A
maximum likelihood tree was constructed using RAXML v. 8.2.9 [72] with the

PROTCATLG model.
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To reconstruct RT phylogeny, putative DGR-RT coding sequences were identified, as
described above, then translated. Sequences were de-replicated and non-redundant
candidates were chosen using CD-Hit [64] with a global alignment threshold of 99%
identity. All DGR-RT sequences and a set of Group-II intron RT sequences from Bacteria,
Archaea, plastids, and mitochondria were aligned with a hidden markov model of the
reverse transcriptase protein family (PFo0078) using HMMalign [68]. A phylogenetic
tree of DGR-RTSs was constructed using FastTree2 [73] with the WAG substitution matrix,
and the CAT approximation to optimize branch lengths. The cyanobacterial DGR-RT
representatives were extracted from the complete alignment, realigned using Clustal

Omega [74] and used to construct an unrooted phylogenetic tree.

Protein Function Analysis

VP domain architecture was annotated using InterProScan, pHMMER, and HMMScan
tools. CD-HIT analysis was performed on CLec domains for all VPs using the following
settings: 0.3 global alignment; 30% identity threshold. Amino acid sequences for the CLec
domain of all VPs were aligned using Clustal Omega. The C-terminal sequence of all DGR-
VP CLecs was extracted based on the InterProScan feature positions, then further aligned
using Clustal Omega and a consensus sequence was picked at 75% sequence similarity
(Additional File 6: Figure S1). This consensus sequence was used to further identify
homologous domains. Using hmmscan, 1,579 hits were returned using an E-value cutoff

of 10-4° to generate Table S2 (Additional file 2: Table S2).

Supplementary Information

Additional File 1: Table S1. RT/Species Table.
Summary of all DGR-RTs found in cyanobacterial genomes with taxonomic and known
physiological information noted. Domain annotations for all DGR-internal VPs and
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Remote VPs identified as having VR/TR homology are also summarized. See table S6 for
information regarding taxonomic affiliations.

Additional File 2: Table S2. Taxonomy of C-Type Lectin-Like HMM Hits.
The consensus sequence of cyanobacterial C-type lectin-like predicted domains was
generated via alignment of DGR-associated C-termini (up to 200 amino acids) and

confirmed with pHMM scan. The taxonomy is summarized for those genomes that

contain orthologs.

Additional File 3: Table S3. Clec Variable Protein Paralogs.
A subset of 21 high quality genomes were chosen to assess the presence of DGR-VP
paralogs. This is a summary of VP paralogs identified and their domains.

Additional File 4: Table S4. DGR-Proximal Transposable Elements.
All transposable elements found in proximity to DGRs are listed, including transposase
family and mechanisms of integration.

Additional File 5: Table S5. Genes within DGR Neighborhoods.
Genes found proximal to cyanobacterial DGR cassettes are annotated with predicted
function and counts for each annotated function displayed.

Additional File 6: Figure S1. Hanks-type Kinase Motif Characterization in
VPs.

Alignment of known “Hanks and Hunter-type” (S/T) kinase domains to the kinase
domains of all DGR-VPs, Remote VPs, and VP Paralogs from this dataset. Motifs I-XI
highlighted in blue. The top eight sequences denoted “STKII” are known Type II S/T
kinases from Zhang et al. 2007 [14].

Additional File 7: Table S6. Updated Cyanobacterial Taxonomy.
Taxonomic assignment for each cyanobacterial genome was generated using relative
evolutionary divergence and average nucleotide identity with the Genome Taxonomy
Database Toolkit (GTDB-TK) [75] based on the Genome Taxonomy Database (GTDB)
[76].
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