986 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

RoPE: An Architecture for Adaptive Data-Driven
Routing Prediction at the Edge

Alessio Sacco

Abstract—The demand of low latency applications has fostered
interest in edge computing, a recent paradigm in which data is
processed locally, at the edge of the network. The challenge of
delivering services with low-latency and high bandwidth require-
ments has seen the flourishing of Software-Defined Networking
(SDN) solutions that utilize ad-hoc data-driven statistical learning
solutions to dynamically steer edge computing resources. In this
paper, we propose RoPE, an architecture that adapts the routing
strategy of the underlying edge network based on future available
bandwidth. The bandwidth prediction method is a policy that we
adjust dynamically based on the required time-to-solution and
on the available data. An SDN controller keeps track of past link
loads and takes a new route if the current path is predicted to
be congested. We tested RoPE on different use case applications
comparing different well-known prediction policies. Our evalua-
tion results demonstrate that our adaptive solution outperforms
other ad-hoc routing solutions and edge-based applications, in
turn, benefit from adaptive routing, as long as the prediction is
accurate and easy to obtain.

Index Terms—SDN,
machine learning.

edge computing, adaptive routing,

I. INTRODUCTION

DGE computing, combined with network softwariza-

tion has been a petri dish for new business models
and applications, promising simultaneously low-latency and
high-bandwidth reliable telecommunications. This paradigm
has moved computation closer to the network traffic source,
reducing delays with respect to standard cloud computing
applications [1]-[4].

Delivering such promises is, however, a challenge, espe-
cially when the underlying infrastructure is unstable and
applications impose tight constraints. Solutions for real-time
communications have been proposed when the application is
bound to video streaming [5]-[9]. Many of them are based
on sound design and target bit rate adaptation. Aside from
ignoring other end-to-end performance improvement tech-
niques such as traffic compression, these solutions perform
poorly within edge computing use cases, where the underlying
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network needs also to be optimized, in response to offloading
requests [10]-[12].

Other solutions, e.g., [13] seek help from network traces
to forecast future demands. Most of these solutions, however,
train their learning system on specific datasets, without the
ability to adapt. While complicated machine learning tech-
niques such as transfer learning exist [14], such techniques
could be applied to overcome the dataset-tailored limitation.
In this paper, we take a more humble approach and we show its
effectiveness. In particular, we introduce RoPE,! a Software-
Defined Networking (SDN)-based architecture whose goal is
to select the best (physical or virtual) route by applying
the most appropriate bandwidth prediction algorithm, chosen
adaptively, on the basis of the amount of data collected and
the response time deadline. RoPE leverages the availability of
multiple paths and relies on the idea that the bottleneck for
delay-sensitive applications is at the edge [15], [16].

Our design is based on the observation that, in recent years,
the field of prediction has achieved excellent results when
enough data are available. When insufficient data are avail-
able instead, other classes of prediction algorithms may be a
better fit. In this context, many forecast-based or data-driven
solutions have been proposed [14]. The question we propose
to answer instead in this paper is: which bandwidth prediction
algorithm works best, based on the variance of our network
measurements and on application constraints?

To address this question, we prototype and evaluate RoPE
with both numerical, event-driven simulations, and with scal-
ability tests over the large-scale GENI testbed. In particular,
we make the following contributions.

Our contribution: We design and implement a novel
architecture that integrates QoE estimation and bandwidth
prediction directly into an edge-based application. The
prediction phase is used for selecting the best routes on the
basis of global traffic condition information gathered from an
SDN controller. Hence, we defined a new strategy for the
route selection while the prediction continues during system
operation, with consequent possible traffic re-routing.

To adapt to different edge-based applications and evaluate
its performance, we define a new cost function that embraces
the most common evaluation parameters. The collection of our
results evaluating three separate uses cases are a mixture of
expected and surprising results.

The structure of the paper is as follows. Section II summa-
rizes the related work. Section III introduces in which use

IROPE stands for Routing Prediction at the Edge.
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cases the solution can be used, while Section IV presents
the system in which the routing algorithm is applied, as well
as the framework and the overall procedure. In Section V a
brief explanation about prediction algorithms is provided and
Section VI shows the quality and the differences among these
algorithms. Finally, Section VII demonstrates the benefits of
this new approach and Section VIII concludes the paper.

II. RELATED WORK

Our approach is based on the prediction of traffic conditions
to modify routing for edge-based applications. In this section,
we analyze the literature related to the main components of the
solution: (i) the recent prediction algorithms for networking,
and (ii) the existing routing solutions that rely on machine
learning methods to improve traditional strategies.

A. Network Traffic Prediction

The prediction of traffic conditions is crucial in network
operations and management for today’s increasingly complex
and diverse networks. It entails forecasting future traffic and
traditionally it has been addressed via Time Series (TS) algo-
rithms. The main goal in TS is to construct a regression
model capable of drawing an accurate correlation between
future traffic volume and previously observed traffic volumes.
Existing TS models can be broadly decomposed into statis-
tical analysis models and supervised ML models. Statistical
analysis models are typically built upon the generalized
Autoregressive Integrated Moving Average (ARIMA) method,
while the majority of learning for traffic prediction is achieved
via supervised Neural Networks (NNs). However, with the
rapid growth of networks and the increasing complexity of
network traffic, traditional statistical models are seemingly
compromised, giving rise to more advanced ML models [14].
More recently, efforts have been made to reduce overhead or
improve accuracy in traffic prediction by employing features
from flows, other than traffic volume. Prior work focused on
NNs and showed how this approach outperforms TS [17].
However, the use of NNs implies an offline training phase
and a huge quantity of training data, that is unfeasible for
some applications [18]. In our scenario we don’t have such a
quantity, therefore we focus on lighter approaches, that enable
an online training phase. These models are then compared
against Machine Learning methods where the training is per-
formed offline. Furthermore, for edge-based applications, there
are no databases available online as for traffic traces provided
by ISPs or inter and intra DCs [19].

For this reason, in our work we focus on other ML algo-
rithms that also do not necessitate a long training phase.
Many techniques have been developed to measure path prop-
erties as summarized by CAIDA [20]. In particular, several
studies [21]-[23] focused on the measurement of the avail-
able bandwidth, needed for data collection in our predictor. By
available bandwidth, we mean the minimum unused capacity
on a given end-to-end path. These measurements are usually
collected with probe packets. In this work, we do not actively
probe but we rely on packets sent from switches to the con-
troller. In this way packets used for the collection of network

statistics do not affect the user data, since the communication
with the controller is separated from the data plane [24], [25].

Finally, machine learning techniques have been widely
applied to network measurement. For example, there are appli-
cations in the network intrusion detection field (e.g., [26]) and
for round-trip time prediction [27]. In contrast to NNs-based
algorithms, Support Vector Machine (SVM) has low compu-
tational overhead and is more robust to parameter variations,
e.g., time scale, number of samples. However, this approach
is usually applied to classification rather than regression.
Bermolen and Rossi [28] applied SVR (the regression variant
of SVM) for link load forecasting. Furthermore, He ef al. [29]
extensively studied history-based predictors using three differ-
ent time series forecasts. Other approaches for TCP throughput
prediction employ “bandwidth probes”, small TCP file trans-
fers, e.g., 64kB, to collect the measures [30], [31].

B. Adaptive Routing and Traffic Engineering

Even though much work has been conducted to improve
the quality of prediction over network traffic, only a few
solutions exploited these results to develop new routing
strategies [32], [33].

Instead, other prediction-driven routing approaches have
been based on Reinforcement Learning (RL), with the aim of
coping and scaling to complex and dynamic network topolo-
gies [34], [35]. Even though RL would be a viable solution,
we used a time-series approach as it offers the possibility of
predicting a specific parameter. Such a parameter can then in
turn be used to assess if a given traffic flow fits a physical
path. If the flow does not fit the path, a better route is chosen
looking at other available paths.

The same problem can be clearly addressed by means
of traffic engineering solutions, e.g., [36]-[38]. In particu-
lar, COYOTE [38] aims to minimize link over-utilization by
engineering the traffic generated with optimal traffic splitting
ratios. Given the limited knowledge of traffic demands, this
method strategically advertises fake links and nodes to adjust
the splitting ratios resulting from the traditional ECMP mech-
anism. We share with this solution the idea of adapting the
routing to address a link utilization problem; however, our
focus is to better support for edge-based applications without
reserving resources for tasks that could be rarely executed.

III. MOTIVATING APPLICATIONS

Edge-based applications have evolved in the last decade
because of a considerable demand [39]. Many applications
have strict requirements to satisfy, e.g., very low latency and
high throughput. In the following subsections, we analyze
three applications that we consider as use cases for our study.

A. Very Latency-Sensitive Applications: Tactile Internet

The Tactile Internet is the evolution of the mobile Internet
and enables real-time control of the Internet of Things (IoT).
It adds a new dimension to human-to-machine interaction by
enabling tactile and sensations, and at the same time revo-
lutionizes the interaction of machines. The Tactile Internet
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enables haptic interaction with visual feedback. The term hap-
tic relates to the sense of touch, in particular, the perception
and manipulation of objects using touch. The visual feed-
back will encompass not just audiovisual interaction, but also
robotic systems that can be controlled in real-time as well as
actuating robots, i.e., those that can activate a motion.

Nowadays, data rates increased in the orders of magni-
tude, as well as the data capacity [40], but there is another
frontier to be considered: the reduction in the end-to-end
latency of interaction has not dropped below the require-
ment for telephony. Long-term evolution (LTE) achieves a
typical end-to-end latency close to 100ms [41], exceeding
the order of 1-ms requirement needed to enable Tactile
Internet applications [40]. At the same time, fifth generation
(5G) mobile communications systems underpin this emerging
Internet at the wireless edge [42]. A recent trend is the use of
Mobile Edge Computing (MEC) as a solution to reduce the
delay and provide a way for offloading computation from the
cellular network [43]. However, the latency reduction is still an
open problem due to an intrinsic lack of the available infras-
tructures. The SDN paradigm is shown to be helpful for these
applications [44], but real support for very low latency com-
munications is an urgent need to enable the still unexpressed
haptic applications.

B. Telepathology at the Edge

The field of medical pathology is concerned with the
causal study of disease, whether caused by pathogens or non-
infectious physiological disorders. A significant part of the
job of pathologists is characterized by visualizing histologi-
cal images via a multi-lens microscope. Often they analyze
histological images on a glass slide when the patient is still
under a tumor removal surgery. In such situations, a quick and
correct pathology assessment is crucial as it defines vital next
steps for the surgeon team and the right follow-up treatment
for the patient. In the vast majority of non-trivial pathology
cases, to minimize the time to response to the surgeon team
and the probability of incorrect assessments, pathologists ask
for second opinions to nearby experts (if available) by phys-
ically carrying privacy protected glass specimens. When not
enough local experts are available, a telepathology system can
be used to transmit high-resolution images of specimens to
remote doctors.

Telepathology solutions can be used not only to connect
rare experts with patients, but also for the rapid diagnosis of
standard cases in locations that have patients without having
schools of medicine. Telepathology is often enclosed in the
telemedicine field, but it differs both in the subject and the aim
of such practice. This difference leads to different requirements
that the underlying network has to guarantee [45].

In particular, current telepathology solutions are limited by
the technology, the scale, and the (best-effort) performance of
the underlying telecommunication media on which they rely
on, i.e., the Internet or, at best, a virtual private network for
in-hospital offline, i.e., non-real-time, consultations.

A Telepathology or more generally, a Telemedicine session
transmits delay and bandwidth sensitive data to be processed

and shared with a remote medical doctor. For this reason, a
proper edge computing system can be implemented to partially
or fully offload processes at the edge of the network [2].

C. Disaster-Response

Providing technologies in response to a natural or man-made
disaster is challenging, as the assumptions typically made for
traditional infrastructure may fail given the damage made by
the disaster. Additionally, mobile applications that serve the
needs of disaster incident response generate large datasets
and demand large computational resources. These datasets are
usually collected in real-time at the disaster scene using dif-
ferent IoT devices. Examples of such devices are wearable
heads-up devices, Unmanned Aerial Vehicles equipped with
sensors, cameras, or smartphones [46], [47]. For example, such
devices might be used for real-time video conferencing with
the incident commander featuring face recognition of disas-
ter victims [48], or to detect children in an attempt to reunite
them with their guardians [49], whereas virtual beacons can
be mainly used to track their location.

To enable immediate feedback to first responders, crucial
for survivors rescue, [oT devices today could benefit from the
mobile edge computing paradigm [50]. In particular, one of
the most important mechanisms in edge computing is cyber
foraging: processes from mobile resources delegate computa-
tions or code to execute to servers within the edge computing
infrastructure [51]. A particular case of cyber foraging is also
known as offloading, where the cyber foraging mechanism is
orchestrated by mobile devices.

To cope with the potential loss of infrastructure in a dis-
aster scene, an edge network needs to be operational for
transferring media-rich visual information from the disaster
scene as quickly as possible to the edge cloud gateway. Such
(visual) data can be used, e.g., within a medical application
context to transfer high-definition video streams generated by
paramedics’ wearable heads-up display devices from the dis-
aster triage scene to a dashboard located at the edge cloud,
or by a first responder for a live remote medical consulta-
tion. The incident response and resource allocation decision
making, e.g., ambulance routing to the scene or medical sup-
ply replenishment tracking requires significant computational
resources that can be augmented on demand by a core cloud
cluster.

For such scenarios to be operational, traffic needs to be
handled dynamically and with low-latency constraints. Hence
routing is a crucial infrastructure management orchestration
mechanism. Although geographic routing-based approaches
are generally suitable for these applications; there is a lack
of providing sustainable high-speed data delivery to the edge
cloud gateway [52].

IV. ROPE ARCHITECTURE AND SYSTEM DESIGN

In this section, we describe the design of our ROuting
Prediction at the Edge architecture, or RoPE. We begin with
an overview of the principles, and we detail each component
of the architecture in the subsequent subsections.
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Fig. 1. Architecture and main RoPE’s functionalities.

A. RoPE Overview

Our proposal is to use bandwidth prediction on links to
drive routing operations so that the best available path is
selected. Given a large number of available prediction algo-
rithms and the differences in requirements to satisfy each
application, we also introduce a cost function that captures
the policy programmability of the proper algorithm for each
specific context. The design goal of such policy knobs is to
extract the invariances in the routing prediction mechanism.
Network management application programmers then may tune
this utility based on their needs and constraints.

Our architecture implementation includes a Ryu SDN con-
troller that collects data from the switches and communicates
them to the RoPE agent (Figure 1) running on it. This com-
ponent allows the necessary information sharing between the
controller and RoPE. In RoPE, the most important component
is responsible for predicting on the basis of the data received
and prior information. The data-driven engine selects the best
path combining user requirements and the future available
bandwidth on a link. To select the best path, knowledge about
the topology of the network is necessary, and this information
is obtained and transmitted by the controller. The routing pro-
cess combines the output of the prediction with the topology
information and changes the flow rules of the switches to select
the path consistently among all the devices.

ROPE saves the collected data as recent history, which is
in turn used by the prediction algorithms. Notice that not
all the algorithms need online training (see Section V). For
some algorithms, the training phase must be performed offline
because it requires a long time, as illustrated in Section VII-A.
For these algorithms, the SDN Controller can make use of the
saved model to predict the next bandwidth value. In essence,
the prediction might be based on models saved and past values,
as shown in Figure 1. The selection of all the parameters is
based on the data analysis performed beforehand and described
in the following sections.

B. Measurements Collection

Each managed switch is connected to the Ryu controller,
which periodically collects information on their state. In par-
ticular, we collect network state statistics of ports (incoming
or outgoing packets), flows, and the switch connectivity status.

Algorithm 1 Prediction-Based Routing
1: Let t be the epoch, and r the prediction period
2: Let A and B be the target source and destination
3: P <« all the paths between A and B
4: Pg < the best s paths in P
5: U <« best path
6: for every epoch t do
7 Monitor the path in Py

8: if r has elapsed since last prediction then

9: FLg < future predicted load on the s paths in P;
10: FLy; + future predicted load on U

11: if FLy > Threshold then

12: U < P[min(FLy)].

13: close;

Since paths do not change very frequently, it is unnecessary
to acquire statistics from switches with very high granular-
ity. In our implementation, we use a collection period of
5-seconds, as in [5]. In Section VII-D we motivate in details
this parameter choice with our analysis. In the rest of the paper,
we refer to such interval as an epoch.

Data acquired are grouped per switch ID and in chronolog-
ical order. This is implemented on the controller by logging
the received information in a file for every switch. Each row
in this file corresponds to an observation per epoch and is
formatted as follow:

[timestamp, bandwidth, bytes, packets, packets_port],

where timestamp denotes the time at which the record is
obtained, bandwidth is the measured bandwidth, bytes refers
to the number of bytes sent and received by the switch, pack-
ets expresses the total number of packets sent and received
by the switch, and, lastly packets_port indicates the amount
of packets sent and received in the selected port. Note how
the timestamp is essential to apply TS analysis, while it is
not used by ML algorithms. RoPE uses the statistics collected
to fit the model. With a period r of 20 s (selected to avoid
network instability, see Section VII-D) we predict the future
available bandwidth and decide when to steer the route.

Overall Procedure: The objective of the algorithm is to
optimize the available bandwidth between the source A and
the destination B, which affects the application transmission
time. In the telemedicine example described before, A is the
Plugin connected to the microscope, while B is the edge server.
The controller detects the best s paths for the pair (A, B) and
stores them into the set P;. The parameter s is used to avoid
looking for all the paths if this number is significant. Every
epoch, the controller obtains the statistics and saves them for
the prediction, which occurs every period r. In this phase, we
estimate the future value for the paths in P, and the path
whose prediction is the minimum, i.e., “argmin”, is set as the
default one.

C. Cost Function

ROPE predicts the bandwidth on links and selects the best
path on the basis of this value. However, different applications
have different requirements in terms of throughput, latency,
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jitter, and different prediction algorithms may have different
effects on these parameters.

To evaluate the fitness of such an algorithm to the use case,
we define a cost function Cx (D) that takes into account the
above aspects of communication. While the metric is inspired
by similar studies [53] in our case we are not limited to video
streaming scenarios. The cost function Cg 7(D) of a sent file
which requires D bytes, I packets and K time intervals, is
made up of the following terms:

1) Average Throughput: the average throughput per time

interval k: % Zszl T}, where T}, denotes the through-
put at interval k
2) Average latency: the average latency per packet i:
% Zle L;, where L; is the latency for packet i
3) Average jitter: the average jitter between two consecu-
tive packets: ﬁ S L — Liy| = I T S,
where J; indicates the jitter for packet i
4) Average jitter variation: the average difference of
jitter among two consecutive jitter measurements
[ 5 Z —3|Ji — Ji—1| = ﬁZ{:Z,, AJ; where AJ;
refers to the jitter variation for packet i
Notice that, besides the standard performance metrics of
throughput, latency, and jitter, it is worth also considering the
jitter variation since for interactive systems, such as Tactile
and Telepathology, this element affects the user experience,
as demonstrated in [54], [55]. Users and application pro-
grammers may have different preferences on which of the
four components is more important, so we define a tunable
objective function as a weighted sum of the aforementioned
components:

Ck (D) =

+ALZJ +71 ZAJ (1)

Here a, p, A,y are non-negative weighting parameters corre-
sponding to average throughput, average latency, average jitter
and average jitter variation respectively. A relatively small o
indicates that the user is not particularly concerned about a
very high bitrate; the large v is, the more effort is made to
achieve smoother changes of video quality. A large u, rela-
tively to the other parameters, indicates that a user is deeply
concerned about low latency communication.

In summary, this definition of Cg 7(D) is quite general as
it allows us to model varying user preferences on different
contributing factors. The goal of our routing strategy is to
minimize (1) in order to guarantee the optimal user experience.
In fact, a higher throughput, along with lower values of latency
and jitter, leads to a lower value for the function. Therefore,
we need to select the proper prediction method in order to
obtain the best routing strategy that minimizes (1).

V. PREDICTION ALGORITHMS ANALYSIS

The task of bandwidth prediction can be formulated as a
regression problem, i.e., predicting a real-valued number based
on single or multiple real-valued input features. For the sake

of clarity we classify the applied algorithms in 2 categories,
(i) Time-Series (TS) algorithms, (ii) Machine Learning (ML)
algorithms. The following subsections reflect this classifica-
tion and each one describes in-depth the structure of our
algorithms.

The idea is to predict the bandwidth, in such a way the
controller can check whether the desired application fits the
network load. For instance, if the application is sending a video
streaming of 300kb/s and the predicted available bandwidth of
the current path is 500kb/s, this means the path complies with
the requirements. If the available bandwidth is 200kb/s, the
controller enforces a new path.

A. Time-Series Models

These solutions are based on traditional regression algo-
rithms that predict the future values using the history and the
evolution of such value in the past. The history used is made up
of past values associated with the timestamp. The presence of
the tuple <timestamp, value> leads to the name Time-Series.

Simple Exponential Smoothing: Simple Exponential
Smoothing (SES) is a good choice for data with no clear trend
or seasonality. Let y; be the bandwidth on a link at time 7. We
compute a k-steps ahead prediction. Formally, we forecast the
value of the bandwidth at time ¢ + k, 3,4, where k is also
called horizon.

ik = ay +a(l —a)y—1 +a(l —a)y—2+..., )

where « is the smoothing parameter for 0 < a < 1. If «
is large (close to 1), more weight is given to more recent
observations. The quantity v represents the predicted value
and is used to decide whether or not a congestion will occur.

Holt-Winters: The prediction is composed of three submod-
els that fit a time series: an average value, a slope (or trend)
over time and a cyclical repeating pattern (seasonality) [56].
These three aspects of the time series behavior are expressed as
three types of exponential smoothing. The model requires sev-
eral parameters: one for each smoothing («, 3, 7v), the length
of a prediction season, and the number of periods in a season.
Here below we report how the Holt-Winters seasonal method
includes the forecast equation and three smoothing equations:
one for the level L, one for the trend by and one for the sea-
sonal component denoted by S¢, with smoothing parameters
«, B and ~v:

level Ly = ays — St—s) + (1 — @) (Ly—1 + by—1),
trend by = B(Lt — LLi—1) + (1 — B)by—1,
seasonal St = y(yt — Lt) + (1 — ) St—s,

forecast yi i = Lt 4 kbs + Sp4p—s,

where s is the length of the seasonal cycle, for 0 < a < 1,0
<f<land 0 <~y < 1.

ARIMA: ARIMA is a class of models typically used for
analyzing and forecasting time series (e.g., financial market
data). A standard notation for this method is ARIMA (p,d,q),
where the parameters account for seasonality, trend, and noise
in datasets. In particular, p captures the auto-regressive com-
ponent, i.e., the number of lag observations included in the
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model, also called the “lag order”; d captures the integrated
part of the model, it is the number of times that the raw obser-
vations are differenced, also called the degree of differencing;
q captures the moving average part of the model and repre-
sents the size of the moving average window, also called the
order of moving average. The ARIMA overall model is given
by the following equation:

p q
(1 - Zozi[ﬂ) (1— L)%y = (1 + ZeiLi>€t7 3)
i—1 i=1

where L is the lag operator — the number of past samples
considered during the prediction — and «; are the parameters
of the autoregressive part of the model; the #; are the param-
eters of the moving average while €; are error terms. Such
error terms €; are generally assumed to be independent and
identically distributed (i.i.d.) variables sampled from a normal
distribution with zero mean, which is what we did.

SARIMA: To deal with seasonal effects, we make use of
the seasonal ARIMA (SARIMA), which is denoted as ARIMA
(», d, q) (P, D, Q)s. Here, (p, d, g) are the non-seasonal parame-
ters described above, while (P, D, Q) follow the same definition
but correspond to the seasonal components of the time series.
The term s is the periodicity of the model (4 for quarterly
periods, 12 for yearly periods, etc.).

The Ryu controller is in charge of collecting all bandwidth
values and save them in a time series Y = {yt, yt—1,...}
The sequence is then used to fit the model and find the afore-
mentioned parameters. Once the model is built, it is used to
forecast the y; 4 value, which is then used to avoid congested
paths in a telepathology session.

B. Machine Learning Algorithms

Machine Learning has received great attention in recent
years, due to the ease of use and the wide range of appli-
cations that can benefits. In this section we define a model for
the most popular algorithms, providing a brief explanation of
the advantages and disadvantages of applying for each of them.
In our model the set of features used is represented by [times-
tamp, bandwidth, bytes, packets, packets_port], however, for
ML methods only a subset is considered:

1) A Packets: the number of packets received and trans-

mitted by the switch in the time interval;

2) A Bytes: the number of bytes received and transmitted
by the switch in the time interval;

3) A Packets port: the number of packets received and
transmitted by the switch on a certain port in the time
interval.

Our problem lies in the Regression procedure since the
aim is to predict a continuous value, as opposed to other
well-known problems such as classification and clustering.
A real number is more effective than a class value as in
the Classification problem because it can be used to check
if a streaming video will be delayed or not, as described in
Section VII. By computing the available bandwidth on a path,
we are able to verify whether the bit-rate of communication
fits the path or not, and in case move to another path. Hence,
the output variable is the bandwidth of the links connected to

the switch. The predicted value is the same as the TS models,
while in ML models the input set is based on more features
than just the past bandwidth.

Linear: The simplest machine learning model is to build a
linear regression model, where there is a linear relationship
between the dependent (y) variable and the set of independent
(x) variables.

Polynomial: Polynomial regression is a special case of lin-
ear regression. But in this case, higher order powers (2nd, 3rd
or higher) of an independent variable are included.

Support Vector Regression: Support Vector Machines
(SVMs) are supervised learning models [57], that aim to ana-
lyze data and recognize patterns, used for classification tasks.
Support Vector Regression (SVR), is the regression version of
the popular SVM and a state-of-the-art machine learning tool
for multivariate regression.

Gradient Boosting Regression: Gradient boosting is a
machine learning technique used both for regression and clas-
sification problems. Like other boosting methods, it builds the
model in a stage-wise fashion, and it generalizes them by
allowing optimization of an arbitrary differentiable loss func-
tion. The intuition behind the gradient boosting algorithm is
to repetitively leverage the patterns in residuals and strengthen
a model with weak predictions and improve it. Once a stage
that do not have any pattern that could be modeled is reached,
residuals modeling can be stopped (otherwise it might lead to
overfitting). In other words, for Gradient Boosting Regression
(GBR) a regression tree is fit on the negative gradient of the
given loss function.

Partial Least Squares Regression: Partial least squares
regression (PLSR) is a statistical method similar to other
regressors; instead of finding hyperplanes of maximum vari-
ance between the dependent and independent variables, it finds
a linear regression model by projecting the predicted vari-
ables and the input variables to a new space [58]. PLSR is
used to find the fundamental relations between the two matri-
ces X and Y, i.e.,, a latent variable approach to model the
covariance structures in these two spaces. PLSR is particu-
larly suited when there is multicollinearity among X values.
Conversely, standard regression will fail in these cases (unless
it is regularized).

Decision Tree Regression: A decision tree has a flow-chart-
like structure, where each internal (non-leaf) node denotes a
test on an attribute. Each branch represents the outcome of a
test, and each leaf node holds a class label. The topmost node
in a tree is the root node. The general approach of deriving
predictions from a few simple if-then conditions can be applied
to regression problems as well. Unlike linear models, Decision
Tree Regression (DTR) is able to capture non-linear interaction
between the features and the output value [59].

Random Forest Regression: The random forest model for
regression (RFR) is a type of additive model that predicts by
combining decisions from a sequence of base models. More
formally this class of models can be written as:

9(z) = fo(z) + fi(z) + fo(z) + ...,

where the final model g is the sum of simple base models f;.
Here, each base classifier f; is a simple decision tree. This
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broad technique of using multiple models to obtain better
predictive performance is also known as model ensembling.
In RFR, all the base models are constructed independently
using a different subsample of the data.

As a matter of fact, classical and ML methods are not that
different from each other but distinguished by whether the
models are more simple and interpretable or more complex
and flexible. Hence, classical statistical algorithms tend to be
much quicker and easier-to-use.

VI. PREDICTION ALGORITHMS EVALUATION

The algorithms presented in this section aim at predicting
the future available bandwidth on a single path. The path con-
sists of a certain number of link, the assumption is that the
SDN controller knows the topology of the network. Nowadays
many SDN controllers, e.g., Onos, Ryu, OpenDayLight, can
obtain a logical view of the network topology. In our testbed
Ryu is chosen as SDN controller technology due to its usability
and a lighter approach as a python framework for SDN appli-
cation development: thus, a faster response on flow installation
was expected, as confirmed in previous work [60]. In addition,
since it is developed in Python, it has many predictors and
machine learning libraries readily available.

This section exposes the logic of the methods and the
errors in the prediction. Collected data are split into three sets:
Training set, Validation set, and Test Set. Training Set is used
to decide the parameters of the algorithm and Validation Set
to compare the performance of a single family of algorithms
with different settings. Finally, we use the Test Set to asses
the quality of implemented algorithms.

In this section, the algorithms are compared on the basis of
the accuracy of predicting. Even though ML algorithms rely
on features to predict, while TS algorithms on history, we
can compare the quality using standard error measures. We
compute the Mean Absolute Percentage Error (MAPE) which
is given by:

; “4)

Yyt — Yt
Yt

n
MAPE = 1 Z 100 x
n
t=1

where y; and 7 are the real and the predicted observations.
Furthermore, for each model we compute the Root Mean
Square Error (RMSE) and the Maximum Prediction Error
(MAXE) to obtain information about the mean and the max-
imum error of the prediction. A direct comparison of the
benefits for the user by applying each of these algorithms is
performed in Section VII, where we compute the cost func-
tion defined (Eq. (1)). In this section, a comparison among the
algorithms on the basis of the standard errors is shown.

A. Data Set

The data used in this section are collected via the Mininet
network emulator. In particular, a communication between a
device and a server occurs in the emulated environment to
reproduce the critical traffic in the edge network. This is a
video streaming application, where a live video is sent via ffm-
peg [61] from a client to a server at the edge. To realistically

TABLE I
ADF TEST TO EVALUATE THE STATIONARITY OF A TIME SERIES

Test p- 1% Critical 5% Critical ~ 10% Critical
Statistics ~ Value Value Value Value
Z(t) -6.771 0.001 -3.433 -2.863 -2.567

represent the emulated loads over physical links, we set our
parameters using real publicly available Internet traces [62].

We collected a dataset made of more than 50,000 histori-
cal samples. We then split it into training (80%), validation
(10%) and test (10%) set, and the error is computed on the
test only. The bottom line, however, is that we cannot know
for sure which approach results in the best QoE and so it
becomes necessary to compare model performance and exten-
sively study methods properties. The framework choose which
model to use in light of these findings.

B. Pre-Processing of Collected Data

The first thing to analyze is the stationarity of the time
series. For classical forecasting methods, we want to clear
trend and seasonality in the time series, by modeling these
components and removing them from observations. When
using ML algorithms, the stationarity test is another source of
information. Hence, it can be used to select and engineer the
feature in a suitable way that copes with the non-stationarity
of the data.

We performed the Augmented Dickey-Fuller (ADF) test to
check and confirm evidence that the time series is stationary
or non-stationary. The null hypothesis of such a test is that
the time series can be represented by a unit root, that it is
not stationary. The alternate hypothesis is that the time series
is stationary. We use the p-value from the test to establish
whether the series is stationary. A p-value below a threshold
(such as 5% or 1%) suggests we reject the null hypothesis and
the series is stationary, meaning it does not have some time
structure.

Table I shows test statistic value of —6. The more negative
this statistic, the more likely we are to reject the null hypoth-
esis. This value is less than the value of —3.433 at 1%. This
suggests that we can reject the null hypothesis with a signifi-
cance level of less than 1%. A p-value < 0.05 leads to rejecting
the null hypothesis (HO) and the data is stationary; vice versa
the data is non-stationary. The autocorrelation analysis is use-
ful to understand how many lags consider in the model. If the
data show low correlation or no correlation, then can be hard
to predict the target values through a time series problem.

We can confer the stationarity of our data set according to
our p-value. This confirms that the data do not have a trend
or seasonal effects, and can be easier to model. TS meth-
ods assume or require the time series to be stationary to be
effective, and results in the next corroborate quality of TS
models.

C. Algorithms Analysis

We implemented the algorithms exposed in the previous
section (Section V) and assess the performance for each one
of them. A good predictor should at least outperform a simple
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TABLE 11
TIME-SERIES RESULTS WHEN THE FUNCTION IS FITTED
FOR EACH NEW OBSERVATION

Algorithm MAPE RMSE MAXE
SES 3.12 36.45 678.69
Holt-Winters 2.87 33.17 110.41
ARIMA 2.67 30.73 597.05
SARIMA 3.70 42.83 626.22
LS 3.69 43.39 937.84

algorithm in which the next value is a replica of the Last
Sample (LS). This is not considered as a statistical algorithm
due to the simplicity of the method, but it is a recommended
baseline to compare the quality of the implemented method.

We investigate the error of the prediction of the mentioned
algorithms. The results show that the error of the best TS
algorithm (Holt) is comparable to the best of ML algorithms
(GBR), as shown in Figure 2.

Observation 1: Often simple models (e.g., those looking at
recent epochs) are enough to achieve very low bandwidth
prediction errors.

Next, we compare the most popular algorithms in the
Machine Learning field, where all experiments are per-
formed using Python implementations of the presented algo-
rithms [63]. In addition, regarding the forecasting horizon,
every model has been designed for forecasting with this
horizon, since the most common usage scenario is the one-
step-ahead prediction.

We define the parameters grid for each method to be
searched. At the end of the process, the algorithm is
tuned using the optimal set of parameters returned by this
optimization process. For RFR, we define the number of esti-
mators = [10, 50, 70, 100, 200] and random state = [0, 1, 2,
None]. The same set of random states is used for DTR as well.

TABLE III
HYPERPARAMETERS SET IN OUR METHODS

Method \ Hyperparameters

Linear -

SVR cost=1.0, kernel=rbf, epsilon=0.1

Polynomial degree=4

GBR n_estimators=500, max_depth=4, learning_rate=0.01
PLSR n_components=1

DTR random_state = 1

RFR n_estimators=70, random_state=2

TABLE IV
COMPARISON OF ERROR FOR ML ALGORITHMS

Predictor MAPE RMSE MAXE
LINEAR 2.70 31.15 599.55
POLYNOMIAL 2.66 30.96 590.51
SVR 2.65 30.54 585.61
GBR 2.66 30.68 586.98
PLSR 3.14 37.40 885.59
DTR 3.36 41.16 539.34
RFR 291 33.50 580.91

Regarding PLSR, the number of components is set to 1, after a
study performed on [0, 1, 2, 5] set. For the Polynomial model,
the degree refers to the maximum exponents in the function,
and we evaluated all the numbers between 2 and 7. The SVR
algorithm has more parameters to be set, and we chose cost
between 0.7 and 1.0, and epsilon = [0.01, 0.1, 0.5, 1.0]. The
kernel value is a string, evaluated among = [rbf, poly, linear].
Finally,for GBR we set the n_estimators the same as for RFR,
and learning_rate = [0.01, 0.05, 0.1, 0.5] and max_depth =
[2, 3, 4, 5].

To choose the most suitable parameter combination for each
method, we perform an initial study of the performance on
a validation set. For each method, the parameter combina-
tion yielding the higher accuracy is chosen. The resulting
parameters for ML algorithms are summarized in Table III.

Furthermore, the same process is applied to all TS methods
with all parameter combinations defined in the parameter grids
to train the time series. In particular, to choose the parameters
for ARIMA and SARIMA, the ACF and PACF plots were
used to study the parameters (Figure 3). In particular, ACF is
used to determine g while PACF for p in the Equation (3).
The result obtained after the grid search was compared to the
statistical finding to assess the accuracy.

The Autocorrelation Function (ACF) is a measure of the cor-
relation between the time series with a lagged version of itself.
The Partial Autocorrelation Function (PACF) instead measures
the correlation between the time series with a lagged version
of itself but after eliminating the variations already explained
by the intervening comparisons. These can be used to deter-
mine the p and ¢ values as follows: p is the lag value where
the Partial Autocorrelation Function (PACF) chart crosses the
upper confidence interval for the first time [64], in our case
p = 1. g instead is the lag value at which the Autocorrelation
Function (ACF) chart crosses the upper confidence interval for
the first time, in this case ¢ = 1.

To choose the best methods to address the user specifica-
tion, the framework relies on the data shown in Table II and
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Fig. 5. Training time and error (MAPE) for different training set sizes.
Table IV. The tables summarize the main details about errors
and performance. MAPE is used to select the best algorithms,
while MAXE to compare the maximum error, useful to under-
stand the routing achievements in Section VII. Algorithms like
Holt-Winters and DTR do not have the lowest error (MAPE
and RMSE) but have a low MAXE. This means they are on
average correct and are not far off the real value, even though
the predicted value is not too close to the actual one. Routing
based on this class of algorithms can achieve excellent results
because they can reduce the number of false positive (wrong
peak), but it can be hard to detect a true positive (real peak).
In addition to tabular data, we present scatter plots to pro-
vide insight into how median and maximum error reflect into
predicted values. Fig. 4 compares the actual and predicted
bandwidth value using different prediction methods. A point
on the diagonal represents perfect prediction; the farther a
point is from the diagonal, the greater the error. We can see
that for GBR and SVR the points are limited in a closed area
near the diagonal. We can notice as there are two main groups
of algorithms: (i) algorithms whose prediction is stable and
close to a mean value, e.g., GBR, SVR, ARIMA, (ii) algo-
rithms whose prediction is more spread and farther from the
real one, e.g., DTR, SES, RFR. This is related to the standard
deviation of the error, it means that when the prediction is
wrong, the error could be too high leading to an inappropriate

conclusion. On the other hand, the prediction of the group is
always close to the real value, so even though the value is not
exact, the finding is likely more accurate.

Observation 2: In some use cases, it is recommended to
look for the minimum MAXE, rather than the minimum error,
i.e., MAPE.

Another aspect to be considered is the available time to
predict and to train, therefore we study the behavior of the
methods for different training set sizes. Figures 5a-b show the
training time for ML and TS algorithms respectively. As can
be noticed, excepted Holt-Winters, TS algorithms take less
time to train data. Furthermore, ML training time is not linear
w.r.t. to the size, but it is high for small and big sizes, and
low for the medium size.

At the same time, training time must be combined with
error in the prediction for a comprehensive analysis of the
algorithms. Figures 5c-d shows MAPE for both the TS and
ML models. Clearly the more trained data the lower error,
however, it is worth noting that for TS methods the error after
a minimum around the size of 1,000, tends to slightly increase.
This result suggests using a small training set for this class.
On the other hand, for ML algorithms a general decreasing in
the error holds.

These results confirm our hypothesis of training offline ML
algorithms on a large data set, and train the TS methods online

Authorized licensed use limited to: Saint Louis University. Downloaded on October 05,2020 at 03:34:25 UTC from IEEE Xplore. Restrictions apply.



SACCO et al.: RoPE: ARCHITECTURE FOR ADAPTIVE DATA-DRIVEN ROUTING PREDICTION AT EDGE 995

Cea(D)

4 5

Ses Holt Arima Sarima SVR Poly Linear GBR PLSR DTR RFR

(a) ()

Fig. 6. The cost function for the tested algorithms. RFR is the best for ML
algorithm, while Holt for TS methods.

Holt-Winters is trained online on a small data-set, with no
reduction in the error as proved in Figure 5d.

Observation 3: Simple methods can be trained online and
can address more recent history and more adequate behavior
but on a small training set. For more complex (and often more
accurate) model an offline training is recommended.

For this reason, in RoPE the ML models are trained off-
line and then used on-line for predicting. The classical model
does not need to be trained off-line, and it is better to use
more recent data to predict. In this case, there are two major
approaches: the sliding window and the expanding window. In
the sliding window approach, one uses a fixed size window
for training. On the other hand, the expanding window uses
more and more training data, while keeping the testing window
size fixed. This approach is particularly useful if there is a
limited amount of data to work with. Our choice regarding TS
is to marry the two methods: start with the expanding window
method and, when the window grows sufficiently large, switch
to the sliding window method.

VII. ROUTING EVALUATION

The goal, as mentioned, is to adapt the routing behavior
to better cope with the predicted links conditions. Firstly, we
need to enumerate the cost function weights used in Eq. (1) to
take into account specific requirements of different scenarios.
Considering in particular our three use cases, we can observe
how throughput is really crucial for a Telepathology session,
while it is not so relevant for a Disaster response. For Tactile
Internet instead, the latency is the predominant factor. For this
reason, for the Telepathology application we used (o = 106,
pw=>5x10"5 XA=10"3, v = 2 x 107Y), in the Disaster-
response use case we used (a = 106, w= 10_6, A= 10_5,
v = 10712), and to emulate Tactile Internet scenarios we used
(=103, p=10"% X =103, y = 10710)

In the rest of this section, we first evaluate the performance
of different prediction algorithms. Then, we compare our
approach with existing solutions, and we test the scalability of
our strategy and how it can satisfy specific application require-
ments. Finally, we also run sensitivity experiments by varying
some algorithm parameters. The topology we adopted con-
sists of 10 switches and 20 hosts and is inspired by the edge
network principles [65].

A. Automate the Choice of Predictor

As demonstrated, a prediction method can provide optimal
results in a number of cases, but might not work properly
in other situations. For this reason, we try to automatically
choose the algorithm to apply, in order to guarantee the best

I ML best
10 = TS best

Cr1(D)
Ci1(D)

T T
Tactile 20 40 60

Disaster Telepathology
Use Cases Density of network, (%)
(@) (b)

Fig. 7. (a) Comparison of different classes of algorithms for different
use cases and (b) algorithms performance among different topologies with
increasing connectivity.

possible performance. Choosing the right forecasting method
for a given use case is a function of many factors, starting
from how much historical data are available, and if exogenous
variables (e.g., weather, concerts) play a big role. Moreover,
we can consider business needs, whether or not the model
needs to be understandable. We imagine this is not always
necessary, but we may use a classical method to achieve this
requirement.

In the context of our Telepathology use case, the choice
of the predictors affects the routing performance (Figure 6).
In particular, the TS and ML methods are considered in
Figure 6a and Figure 6b, respectively. Our results show that
RFR achieves a cost of 5.93, the minimum for the MLs, and
Holt-Winters a cost of 5.51, the best for both classes. While
our results show that the online training phase has a lower
cost than the offline counterpart, this is valid for the consid-
ered use case but, in other circumstances, the training offline
may result as a valuable strategy.

Figure 7 demonstrates how the approach is general and
can handle different use cases and increasing sizes of the
network. In particular, Figure 7a shows the cost function
value for the three use cases, considering the best TS and
ML algorithms for each one. We can see how in a disaster
response network, a prediction made by TS algorithms
achieves a better transmission quality. This holds because in
this scenario fresh data (even if in a small quantity) are more
reliable than a huge dataset trained offline, as in ML methods.
Conversely, the offline training phase is desirable for tactile
Internet applications, where patterns can be discovered in
advance and exploited to predict future traffic. This means
that, according to user requirements, a class of methods can
be preferred to tackle the problem. RoPE is able to detect
which class of algorithms to apply and switch among them
according to user needs.

In order to generalize our findings, we deployed a more
random topology where links among switches and hosts are
randomly generated. The number of links between the switches
is a parameter in the generation phase and it affects the density
of the network. This value is changed to evaluate scalability
and test the performance of the framework. Results in the
Telepathology case are depicted in Figure 7b, for a different
number of links in the network.

On the basis of these findings, the choice of the predictor
comprises many factors: use case, expressed as preferences
by the user, seasonality of data, frequency in the adaptation of
routing, and, consequently, frequency of data collection. Our
framework can adequately choose which algorithm to apply,
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based on the user preferences, for an autonomous network
management system. In detail, the choice of the best predic-
tor first selects the class (ML or TS) by evaluating the user
needs. TS is used by default for its ability to be trained online
and providing an understandable model. Instead, in case the
application exhibits patterns that a schema can discover offline,
ML is preferred. For example, among the three use cases that
we evaluated, ML class provides the best results for Tactile
Internet, while TS for Telepathology and Disaster Response.
However, other cases can be considered as well. Thanks to
the generality of the approach, they can be studied by lever-
aging the general cost function in order to better identify the
proper class. The further comparison is distinct for the two
classes as follows. (i) For the TS methods: on one hand, if
marked seasonality is denoted, the system selects ARIMA for
the best MAPE (Table II). In fact, ARIMA provides a lower
MAPE compared to SARIMA and a comparable training time.
For both the algorithms we set the training window to 5,000
values, since MAPE achieves the minimum at this size for
the two methods (Figure 5d). On the other hand, if there
is no seasonality, we then investigate the value of r, and if
greater than the default value (20 s), we select Holt-Winters
with the training set size of 1,000 samples as default pre-
dictor. In such a way, we select the more accurate method
w.r.t SES, but we limit the training set to reduce the training
time to a reasonable value (Figure 5b) that can also achieve
the best MAPE for this method (Figure 5d). When r is lower
than the default, we set SES as the preferred option for its
lower training time (Figure 5b) in order to satisfy the more
frequent routing updates. (ii) For the ML methods: our system
sets SVR as the predefined predictor method for its lowest
MAPE (Figure 5c and Table IV). In this case, the size of
training data partially affects the accuracy, and, for this rea-
son, we use as much data as available, since SVR minimizes
the MAPE on almost any size of the training set.

Furthermore, the system allows the user to request for any
algorithm presented and evaluated in this paper. For example,
the user can choose an algorithm with a small MAXE, such
as DTR, since a considerable prediction error would lead to
erroneous routing selection, with a severe consequence on the
application. In this case, a conservative approach may appear
to be an effective strategy, and the predictor results to be less
precise but almost correct most of the time.

B. Routing Performance Improvement

In this experimental setup we evaluate the quality improve-
ment by comparing our solution against other currently
deployed algorithms (Figure 8).

In particular, we compare RoPE against the Equal-Cost-
Multi-Path (ECMP), Online Flow Size Prediction (OFSP) [32]
and against MetricMap [33]. ECMP, a well-known algorithm,
is used a the baseline. In OFSP, authors detect elephant flows
by means of the GPR algorithm; hence, the least congested
path to route such flows is selected while the ECMP pro-
tocol is used to route mice flows. MetricMap uses the Very
Fast Decision Tree (VFDT) online algorithm [66] to learn and
classify traffic. The routing protocol is atop MintRoute and
specified for Wireless Networks, but can be generalized.

First, we compare the achieved latency and throughput by
using the RFR prediction algorithm for RoPE in Figure 8a.
From this result, we can state that RoPE reduces the latency
while increasing the application throughput, with respect to
the other solutions. The result also points out the flaws of a
simple yet deployed approach ECMP, highlighting the benefits
brought by an adaptive routing combined with SDN.

Although throughput and latency can be considered as the
most major metrics to evaluate, we rely on the cost function
(Eq. (1)) for a more general evaluation. Figures 8b-c-d depict
the function value for the three exposed use cases. As can be
seen, RoPE significantly outperforms all the other methods.
The resulting routing policy reduced the latency while keep-
ing a stable jitter and high throughput among the three use
cases. We can state that our approach yields the best results
for the considered applications. We may observe how, while
OFSP optimizes the routing for elephant flow that is not long
in time, our approach can modify the path even in a second
phase, useful for long transmission. Similarly for MetricMap,
where online training does not lead to a significantly improved
quality.

Observation 4: Modifying the routing even when the com-
munication is ongoing can improve the application quality.

C. Real-Case Environment on GENI

To establish the practicality of our approach, we test its scal-
ability over the GENI testbed [67], which provides physical
machines and physical links for testing purposes. In par-
ticular, we deployed the three applications and the models
are re-trained over real-world data following the same pro-
cedure exposed in Section VI, but the emulated network of
Mininet is replaced with physical and virtual links. Based
on the previous findings, we select the optimal predictors for
each use case and the results are compared against the above
state-of-the-art algorithms, as detailed in Figure 9. A com-
parison between Fig. 8 and 9 shows that conclusions about
RoPE in Mininet hold in GENI as well, even though a higher
latency and throughput is obtained in real networks. The RoPE
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TABLE V
PERFORMANCE EVALUATION IN THE CONTEXT OF THE DISASTER
RESPONSE APPLICATION RUNNING ON THE GENI VIRTUAL
NETWORK TESTBED. EVEN IN THESE REAL SETTINGS
ROPE OUTPERFORMS RELATED SOLUTIONS

Solutions  Thr. [kbps] ~Lat. [us] Jit. [ms] A Jit. [ns] Cg (D)
RoPE 3929.7 10.48 0.83 9.53 10.58
OSFP 4107.1 12.07 1.00 7.22 12.16

MetricMap 4077.1 13.39 1.02 9.03 13.48
ECMP 3702.2 17.43 0.96 4.68 17.52

cost function is adequately smaller than the state-of-the-art.
Moreover, Table V provides details on each component of the
cost function for a Disaster Response scenario. As can be seen,
no algorithm outperforms the others in all the adopted met-
rics, but RoPE achieves excellent results in both the latency
and the jitter, which leads to an overall better outcome.

In addition to the evaluation by means of Eq. (1), we also
consider the requirements of the applications and we check
whether or not these are satisfied by RoPE. In Table VI we
compare the specific requirements against results achieved
by using RoPE on the GENI testbed. We can notice how
RoPE brings benefit even from a user perspective, fulfilling
the demands of the applications and enabling the deployment
of such services.

Tactile applications entail at least 1-ms latency to work
appropriately, hence we select an algorithm that best suits such
circumstances, with the help of the cost function. In particular,
by using SVR as a predictive algorithm, we can satisfy the
requirement and guarantee an adequate service.

Similarly, we select Holt-Winters for the Telepathology use
case, where we focus on the achieved bitrate and latency. We
deployed an application that sends the video captured by the
emulated microscope and sends it to a program responsible for
performing video processing [2]. The client sends the video at
a maximum bitrate through ffmpeg and we measure whether or
not the network can provide the adequate throughput. Besides,
we desire the latency to be lower than 100 ms to assure the

Epoch Length [s]
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5 .
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(a) Error vs Horizon for TS methods. (b) Error vs Epoch length for TS and ML algorithm. (c) Routing update interval and cost function.

TABLE VI
APPLICATION REQUIREMENTS AND THE SATISFIABILITY
ACHIEVED BY USING ROPE

Use Case | Measurement | Required Value | Obtained Value
Tactile Latency 1 ms 532.274 ps
Telepathology Video Bitrate 900 kbps 902.45 kbps
Latency 100 ms 22.76 ms
Disaster Jitter 1 ms 0.832 ms
App. Throughput 3 Mbps 3.929 Mbps

real-time control of the microscope. Holt-Winters was cho-
sen based on previous experiments, and it provides excellent
results, as proved in Table VI.

Finally, we select ARIMA for the Disaster Response
use case. In order to evaluate the feasibility of applica-
tions deployed during a disaster, we implemented a program
that continuously sends the recorded audio to a server that
processes it and provides useful information such as the
presence of humans and the corresponding location. The
requirements are selected so that Google libraries used to pro-
cess audios work best and to enable a fast response. The results
(Table VI) reveal that the use of RoPE ensures the application
to function properly.

D. Sensitivity Analysis

We also conduct a sensitivity analysis of the performance
of predictors with respect to key design parameters for the ref-
erence use case of the Telepathology application. (Figure 10).

Horizon: We run tests to study if it is possible to predict
more than one future value. The results of figure 10a demon-
strates that TS algorithms provide a low error even predicting
more than 1-step ahead. In this way, the algorithm can be used
to predict more than one single value, ensuring that the band-
width in the future will be under the threshold for a while.
In fact, the graph shows that the prediction error is generally
independent of the horizon.
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Epoch Length: The Epoch length refers to the time interval
in collecting data from the switches. We investigate how the
performance of the system changes w.r.t. the bandwidth mea-
surement granularity. Figure 10b shows that a even a not very
frequent collection leads to a low cost function, for this reason,
we set it to 5-sec.

Routing Update Interval: As discussed in Section VII, we
want routing to adapt to the network conditions, but without
introducing instability over the network. In Figure 10c we eval-
uate the cost function for different adaptation interval. We can
notice that 30 seconds provides the best quality in transmis-
sion. This value also guarantees adaptability without incurring
in too frequent changes.

VIII. CONCLUSION

This paper presents RoPE, a new solution to speed up the
transfer of critical data. Its main novelty resides in its traffic
engineering logic: it predicts the future load on links of a path
and then chooses the best one according to data computed.
This algorithm allows avoiding congested paths and reduces
delay in the transmission, providing a more effective way of
routing critical information with respect to other algorithms
existing in the literature. The results confirm the impossibility
of one prediction algorithm to fit all the use cases. Apparently,
Machine Learning provides excellent results, which reduces
the latency in critical communications. However, Time Series
can be used for their fast training phase and the straightforward
model. In fact, the results suggest that for Disaster response
applications TSs are more appropriate.

ROPE leverages SDN features, e.g., centralized controller
and the context-based control path, to collect information
about the traffic load on the links and takes a new road in
case of predicted congestion. Leveraging SDN switches pro-
grammability, the framework can quickly react to excessive
predicted load on links and adapts the routing to address the
congestion. This framework is intended to overcome well-
known problems related to edge-based applications, such as
latency and throughput requirements. Due to the diversity
of applications and data generated, RoPE addresses the user
needs by autonomously detecting the data properties, select-
ing the proper model and applying prediction values to the
routing.

Moreover, the paper presents a comprehensive analysis of
regression algorithms to evaluate the advantages and disad-
vantages of the class of methods and depicts the logic behind
the presented framework. Possible future work might focus on
investigating whether new models can be used in addition to
the ones implemented.
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