
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020 3957

Beyond the MDS Bound in
Distributed Cloud Storage

Jian Li, Tongtong Li , Senior Member, IEEE, and Jian Ren , Senior Member, IEEE

Abstract— Regenerating code is a class of distributed storage
codes that can optimally trade the bandwidth with the amount
of data stored per node to repair a failed node. There are
two extreme points in the optimal regenerating trade-off curve,
which correspond to minimum-storage regenerating (MSR)
and minimum-bandwidth regenerating (MBR). Recently, Reed-
Solomon (RS) code based regenerating codes (RS-RC) were
constructed under the product-matrix framework. It can also
achieve the maximum distance separable (MDS) property in
code regeneration and reconstruction. However, in case that
the network is hostile and the storage nodes could be com-
promised or packets be modified, the storage capacity and the
bandwidth required to regenerate or reconstruct the original
file can be significantly affected. In this paper, we propose
Hermitian code based regenerating codes (H-RC) by developing
constructions under the product-matrix framework for minimum
storage regenerating (H-MSR) and the minimum bandwidth
regenerating (H-MBR). We also propose data regeneration and
reconstruction algorithms for both H-MSR and H-MBR codes
under both error-free and hostile networks. We demonstrate
that the proposed algorithms can also successfully determine the
erroneous decodings in hostile networks. Theoretical evaluation
shows that our proposed H-RC can detect and correct more
errors in hostile networks well beyond the RS-RC with the same
code rate. Our analysis shows that the proposed H-RC have
lower computational complexity than the RS-RC for both code
regeneration and code reconstruction.

Index Terms— Regenerating code, Reed-Solomon code,
error-correction, Hermitian code.

I. INTRODUCTION

CLOUD storage is an on-demand network data storage
and access paradigm. To ensure accessibility of remotely

stored data at any time, a typical solution is to store data
across multiple servers or clouds, often in a replicated fashion.
However, data replication lacks flexibility in data recovery,
and requires costly secure data management when content
confidentiality is needed. Moreover, it is vulnerable to data
sabotage attacks.

Manuscript received December 21, 2017; revised May 25, 2019; accepted
May 4, 2020. Date of publication May 7, 2020; date of current version
June 18, 2020. This work was supported in part by NSF under Grant
CCF-1919154 and Grant ECCS-1923409. This article was presented in part
at the 2014 IEEE International Conference on Computer Communications.
(Corresponding author: Jian Ren.)

Jian Li was with the Department of ECE, Michigan State University, East
Lansing, MI 48824-1226 USA. He is now with the School of Electronic and
Information Engineering, Beijing Jiaotong University, Beijing 100044, China
(e-mail: lijian@bjtu.edu.cn).

Tongtong Li and Jian Ren are with the Department of ECE, Michigan State
University, East Lansing, MI 48824-1226 USA (e-mail: tongli@msu.edu;
renjian@msu.edu).

Communicated by A. G. Dimakis, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2020.2993038

Distributed storage is an alternative approach to data repli-
cation, which can achieve an elegant tradeoff between the
costly secure data management and the cheap storage media.
The main idea is that: instead of storing the entire data in
one server, the data to be stored is split into n components
and stored across up to n servers. The original data can be
recovered only when the required number of components,
say k, are collected. In this way, the stored data is infor-
mation theoretically secure for anyone who can access up
to k − 1 data components. When individual components are
stored distributively across multiple cloud storage servers, each
cloud storage server only needs to ensure data integrity and
availability services. The costly data encryption and secure
key management are no longer needed. Moreover, distributed
storage can also increase data availability while reducing
network congestion, leading to increased resiliency.

A. Related Work

When a storage node in the distributed storage network
that employs the conventional (n, k) RS code (such as
OceanStore [1] and Total Recall [2]) fails, the replacement
node first connects to k nodes and recovers the whole file,
then regenerates the symbols stored in the failed node. This
approach is a waste of bandwidth because the whole file has
to be downloaded to recover a fraction of it. To overcome
this drawback, Dimakis et al. [3] introduced the conception
of {n, k, d, α, β, B} regenerating code based on the network
coding. In the context of regenerating code, the replacement
node can regenerate the contents stored in a failed node by
downloading β help symbols from each of d helper nodes.
Therefore, the total bandwidth required to regenerate a failed
node is γ = dβ. γ could be far less than the whole file B.
A data collector (DC) can reconstruct the original file stored
in the network by downloading α symbols from each of
k storage nodes. In [3], the authors proved that there is a
trade-off between bandwidth γ and per node storage α. They
found two optimal points in the optimal tradeoff curve: min-
imum storage regeneration (MSR) and minimum bandwidth
regeneration (MBR) points. The existing work has largely
focused on the optimal regenerating codes design [4]–[8], and
implementation of the regenerating code.

The regenerating code can be divided into functional regen-
eration and exact regeneration. In the functional regener-
ation, the replacement node regenerates a new component
that can functionally replace a failed component instead of
being the same as the originally stored component. In [9],
the data regeneration was formulated as a multicast network

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

coding problem. The paper also constructed functional regen-
erating code. A random linear regenerating codes for dis-
tributed storage systems was implemented in [10]. It has
been proved that by allowing data exchange among the
replacement nodes, a better trade-off between repair bandwidth
γ and per node storage α can be achieved [11]. In [12],
the authors proposed a functional regenerating code with less
computational complexity through binary operations. In the
exact regeneration, the replacement node regenerates the exact
symbols of a failed node. In [13], the authors proposed to
reduce the regeneration bandwidth through algebraic align-
ment. A code structure for exact regeneration using inter-
ference alignment technique was provided in [14]. In [15],
RS code based MSR (RS-MSR) code and MBR (RS-MBR)
code were explicitly constructed. It was the first work that
allows independent selection of the node number n in the
network. It also presented optimal exact regeneration methods
for the MBR and MSR codes under the product-matrix frame-
work. In [16], repair performance of the RS codes was studied.
A code construction that could achieve performance better
than space-sharing between the minimum storage regenerating
codes and the minimum bandwidth regenerating codes was
proposed in [17].

However, none of these works considered code regeneration
under possible node corruption or adversarial manipulation
attacks in hostile networks. In fact, all these schemes will fail
in both regeneration and reconstruction if some storage nodes
could provide incorrect responses to the requests.

For general verification of the contents stored in distributed
storage, many schemes were proposed. In [18], the verification
cost for both the client read and write operations in workloads
with idle periods was analyzed. In [19], the authors proposed
to use erasure-coding and threshold cryptography to achieve
storage efficiency and resilience. To check data integrity of
the regenerating code in hostile networks, CRC code was
adopted in [20]. Unfortunately, the CRC checks can be easily
manipulated by the malicious nodes, resulting in failure of
regeneration and reconstruction. In [21], data integrity protec-
tion (DIP) was designed under a mobile Byzantine adversarial
model to enable a client to verify the integrity of outsourced
data against general or malicious corruptions in distributed
storage.

For corrupted node detection and correction in regener-
ating codes, the following studies were conducted. In [22],
the Byzantine fault tolerance of regenerating codes was stud-
ied. The amount of information that can be safely stored
against passive eavesdropping and active adversarial attacks
based on the regeneration structure was discussed in [23].
In [24], error resilience of the RS code based regenerating code
in the network with both errors and erasures was evaluated.
The paper provided the theoretical error correction capability.
In [25], the authors discussed the optimal trade-off between
the storage space and the repair bandwidth in presence of
two types of wiretapper. In [26], the authors revealed some
general properties of MSR codes and a generally applicable
upper bound on secrecy capacity with passive eavesdroppers in
the storage network. A secure MSR coding scheme that could

overcome the limitations of previous eavesdropper model was
proposed in [27]. The achievable trade-off regions between
the normalized storage capacity and repair bandwidth for the
secure exact-repair regenerating codes against an eavesdropper
were studied in [28].

Nevertheless, since regenerating codes in these works are
all an extension of the maximum distance separable (MDS)
code, the error correction capability is constrained by the
MDS bound. Moreover, none of the schemes presented is able
to determine whether the errors in network are successfully
corrected.

B. Our Contributions

In this paper, we develop Hermitian code based regenera-
tion codes (H-RC) under the product-matrix framework [15].
Compared with the existing RS code based regeneration codes
(RS-RC), the proposed H-RC can correct more errors and can
always determine whether the error correction is successful.
The performance breakthrough in error correction is achieved
through our discovery that the Hermitian code is composed
of the direct sum of multiple layers of RS codes [29], with
parameters of each layer determined by the Hermitian curve.
More specifically, the major contributions of this paper can be
summarized as follows:

1) We develop a novel construction of H-RC at the MSR
(H-MSR) and the MBR (H-MBR) points. The design
is based on our discovery that each Hermitian code
can be decomposed into multiple RS codes. There-
fore, we can construct the H-MSR and the H-MBR
codes by concurrent processing of multiple layers of
RS codes.

2) We propose data regeneration and reconstruction algo-
rithms for the H-MSR and the H-MBR codes in both
error-free and hostile networks. Our construction is fun-
damentally different from the general network communi-
cation based data reconstruction due in part by our focus
on the capability in regeneration and reconstruction of
the corrupted code components.

3) We design efficient algorithms that can achieve sig-
nificant performance improvement in error correction
over the RS-RC. More specifically, the error correc-
tion capability of the RS-RC is well beyond the MDS
bound due to the structure of the underlying Hermitian
code.

4) We provide theoretical proof that the proposed algo-
rithms can successfully detect erroneous decodings in
hostile networks.

C. Organization

The rest of this paper is organized as follows: The prelimi-
nary of this paper is presented in Section II. In Section III, our
proposed encoding of H-MSR code is described. In Section IV,
regeneration of the H-MSR code is discussed. Reconstruction
of the H-MSR code is analyzed in Section V. In Section VI,
our proposed encoding of the H-MBR code is described.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3959

TABLE I

q3 RATIONAL POINTS OF THE HERMITIAN CURVE

In Section VII, regeneration of the H-MBR code is dis-
cussed. Reconstruction of the H-MBR code is analyzed
in Section VIII. We conduct performance analysis in
Section IX. The paper is concluded in Section X.

II. PRELIMINARY AND ASSUMPTIONS

A. Regenerating Code

Regenerating code was first introduced in [3]. It is a
linear code over the finite field Fq with a set of parameters
{n, k, d, α, β, B}, where q is a prime number or some power
of a prime number. A file of size B is stored in n storage
nodes, each of which stores α symbols. A replacement node
can regenerate the contents of a failed node by downloading
β symbols from each of d randomly selected storage nodes.
So the total bandwidth needed to regenerate a failed node is
γ = dβ. The data collector (DC) can reconstruct the whole
file by downloading α symbols from each of k ≤ d randomly
selected storage nodes. In [3], the following theoretical bound
was derived:

B ≤
k−1∑

i=0

min{α, (d − i)β}. (1)

From equation (1), a trade-off between the regeneration band-
width γ and the storage requirement α was derived. There are
two special cases: the minimum storage regeneration (MSR)
point, where the storage parameter α is minimized:

(αMSR, γMSR) =

(
B

k
,

Bd

k(d − k + 1)

)
, (2)

and the minimum bandwidth regeneration (MBR) point, where
the regeneration bandwidth γ is minimized:

(αMBR, γMBR) =

(
2Bd

2kd − k2 + k
,

2Bd

2kd − k2 + k

)
. (3)

B. Regenerating Code Construction Under the
Product-Matrix Framework

In [15], the authors proposed the product-matrix framework
and constructed the RS-MSR and RS-MBR codes. Under the
product-matrix framework, data encoding, regeneration and
reconstruction are carried out in the form of matrices. Let V
be a data matrix with the size d ×α, Ψ be an n × d encoding
matrix, and W be the corresponding codeword matrix with
the size n × α. The encoding of the codeword matrix can be
written as W = ΨV . Then each row of the codeword matrix
Wi = ΨiV (0 ≤ i ≤ n − 1) is stored in one of the storage
nodes, where Ψi is the ith row of Ψ. For data regeneration,
the replacement node will request help symbols pi (0 ≤ i ≤
d−1) from d storage nodes, where pi = WiΦ

T
z , z is the failed

node and Φz is the vector comprised of the first α elements in
the encoding vector Ψz . Upon receiving all the requested help
symbols, the replacement node can regenerate the symbols in
the failed node. For data reconstruction, the data collecter will
request symbols Wi (0 ≤ i ≤ k−1) stored in k storage nodes
and reconstruct the original data.

At the MSR point, the RS-MSR code was constructed
for the parameters d = 2k − 2, α = k − 1, β = 1 and

B = α(α+1). The message matrix V is defined as V =

[
S
T

]
,

where S, T are symmetric matrices with the upper-triangular
part filled by data symbols. The encoding matrix Ψ is defined
as Ψ = [Φ, ΛΦ], where Φ is a Vandermonde matrix and
Λ is a diagonal matrix with all the elements λi (0 ≤ i ≤
n − 1) different from each other. To regenerate the symbols
stored in a failed node z, the replacement node collects d
help symbols from d helper nodes and obtains the following
vector: ΨrepairV ΦT

z , where Ψrepair =
[
ΨT

0 , ΨT
1 , . . . , ΨT

d−1

]T
is a d × d invertible matrix. Then the replacement node can
calculate the vector (V ΦT

z)T = ΦzV
T = Φz [S, T] and

regenerate the symbols through Wz = ΦzS +λzΦzT = ΨzV .
A data reconstruction algorithm to reconstuct the original file
is also proposed. The details of the data reconstruction can be
found in [15].

At the MBR point, the RS-MBR code was constructed for
the parameters α = d, β = 1 and B = k(2d − k + 1)/2.

The message matrix V is defined as V =

[
S T

T T 0

]
, where

S is a k × k symmetic matrix with the upper-triangular part
filled by data symbols, and T is a k × (d − k) matrix filled
by data symbols. The encoding matrix Ψ is a Vandermonde
matrix. To regenerate the symbols stored in a failed node
z, the replacement node collects d help symbols from d
helper nodes and obtains the following vector: ΨrepairV ΨT

z ,
where Ψrepair =

[
ΨT

0 , ΨT
1 , . . . , ΨT

d−1

]T
is a d × d invert-

ible matrix. Then the replacement node can calculate the
vector (V ΨT

z)T = ΨzV = Wz , which consists of the
exact symbols in the failed node z. For data reconstruction,
[15] also proposed an algorithm to reconstruct the original
data.

C. Hermitian Code

A Hermitian curve H(q) over Fq2 in affine coordinates is
defined by:

H(q) : yq + y = xq+1. (4)

There are q3 points that satisfy equation (4), denoted as
P0,0, . . . , P0,q−1, . . . , Pq2−1,0, . . . , Pq2−1,q−1 (See Table I),

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3960 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

where θ0, θ1, . . . , θq−1 are the q solutions to yq + y = 0 and
φ is a primitive element in Fq2 . Define

L(mQ) = {f0(x) + yf1(x) + · · · + yq−1fq−1(x) |
deg fl(x) < κ(l), l = 0, 1, . . . , q − 1}, (5)

where
κ(l) = max{t | tq + l(q + 1) ≤ m} + 1, (6)

m ≥ q2 − 1. A codeword of the Hermitian code [29] Hm is
defined as
(
((P0,0), . . . , ((P0,q−1), . . . , ((Pq2−1,0), . . . , ((Pq2−1,q−1)

)
,

(7)

where (∈ L(mQ). The dimension of the message can be
calculated as dim(Hm) =

∑q−1
l=0 (deg fl(x) + 1).

According to the decoding algorithm proposed in [29], Hm

could be viewed as the concatenation of q extended RS codes
(q2, κ(l)), l = 0, 1, . . . , q − 1. This inspires us to incorporate
q MSR codes into the H-MSR code construction. For more
information of the Hermitian code, please refer to [29].

D. Adversarial Model

In this paper, our adversarial model is similar as the one
adopted in [24]. We assume some network nodes may be cor-
rupted due to hardware failure or communication errors, and/or
be controlled by malicious users. As a result, upon request,
these nodes may provide incorrect responses to disrupt data
regeneration and reconstruction. These incorrect responses
are described as errors/erasures in [24]. We assume that the
malicious users can take full control of up to τ (τ ≤ n) storage
nodes and perform possible collusion attacks. Other than
information stored in the compromised nodes, the adversary is
unable to obtain the contents or the distribution of the encoding
vectors in other intact nodes.

We will refer the corrupted and the compromised symbols
as bogus symbols. We will also use corrupted nodes, malicious
nodes and compromised nodes interchangeably throughout the
paper.

III. ENCODING OF THE H-MSR CODE

Motivated by [15], in this section we construct H-MSR code
with d = 2k − 2 = 2α under the similar product-matrix
framework. The code with d > 2k − 2 can be derived the
same way through truncating operations. As we have discussed
earlier, Hermitian code can be decomposed into q RS codes.
Therefore, our construction consists of concurrent processing
of q RS-MSR codes. We also present an encoding example at
the end of this section.

Let α0, . . . , αq−1 be a strictly decreasing integer sequence
satisfying 0 < αl ≤ κ(l), 0 ≤ l ≤ q−1, where αl corresponds
to the parameter α for the underlying regenerating code. The
least common multiple of α0, . . . , αq−1 is A. Suppose the
data contains B = A

∑q−1
l=0 (αl + 1) message symbols from

the finite field Fq2 . In practice, if the size of the actual data
is larger than B symbols, we can fragment it into blocks of
size B and process each block individually.

TABLE II

NOTATIONS

We arrange the B symbols into two matrices S, T as
following:

S =




S0

S1

...
Sq−1


 , T =




T0

T1

...
Tq−1


 , (8)

where

Sl = [Sl,1, Sl,2, . . . , Sl,A/αl
],

Tl = [Tl,1, Tl,2, . . . , Tl,A/αl
]. (9)

Sl,j (0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl) is a symmetric matrix
of size αl ×αl with the upper-triangular entries filled by data
symbols. Thus Sl,j contains αl(αl+1)/2 symbols. The number
of columns of each submatrix Sl, 0 ≤ l ≤ q − 1, is the same:
αl · A/αl = A. The size of matrix S is (

∑q−1
l=0 αl) × A. So it

contains
∑q−1

l=0 [αl(αl + 1)/2]A/αl = A
2

∑q−1
l=0 (αl + 1) data

symbols.
Tl,j (0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl) is constructed in the

same way as Sl,j . So T contains the other A
2

∑q−1
l=0 (αl + 1)

data symbols.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3961

Fig. 1. Illustration of storing the codeword matrices in distributed storage
nodes.

Definition 1: For a Hermitian code Hm over Fq2 , we encode
matrix Mdim(Hm)×A = [M1, M2 . . . , MA] by encoding each
column Mi, i = 1, 2, . . . , A, individually using Hm. The
codeword matrix is defined as

Hm(M) = [Hm(M1), Hm(M2), . . . , Hm(MA)], (10)

where Hm(Mi) has the following form ((∈ L(mQ)):

[((P0,0), . . . , ((P0,q−1), . . . , ((Pq2−1,0), . . . , ((Pq2−1,q−1)]
T .

(11)

The elements of Mi are viewed as the coefficients of the
polynomials f0(x), . . . , fq−1(x) in (when Mi is encoded.

Let

Φl =




1 0 0 . . . 0
1 1 1 . . . 1
1 φ φ2 . . . φαl−1

...
...

...
. . .

...
1 φq2−2 (φq2−2)2 . . . (φq2−2)αl−1




(12)

be a Vandermonde matrix, where φ is the primitive element
in Fq2 defined in section II-C and 0 ≤ l ≤ q − 1.

Let ∆ = diag(λ0, λ1, . . . , λq2−1) be a diagonal matrix,
where λi (0 ≤ i ≤ q2 − 1) is chosen using the following two
criteria: (i) All λi’s are different. (ii) Any dl = 2αl rows of
the matrix [Φl, ∆Φl] (0 ≤ l ≤ q −1) are linearly independent.

For the q × q identity matrix I , define

Λi = λiI (0 ≤ i ≤ q2 − 1) and Γ= diag(Λ0, Λ1, . . . , Λq2−1).

(13)

For distributed storage, we encode each pair of matrices
(S, T) using the encoding of H-MSR code algorithm defined
below.

Algorithm 1: Encoding of H-MSR code
Step 1: Encode the data matrices S, T defined in equation (8)

using a Hermitian code Hm over Fq2 with parameters
κ(l) (0 ≤ l ≤ q − 1) and m (m ≥ q2 − 1). Denote
the generated q3 × A codeword matrices as Hm(S)
and Hm(T).

Step 2: Compute the q3×A codeword matrix Y = Hm(S)+
ΓHm(T).

Step 3: Divide Y into q2 submatrices Y0, . . . , Yq2−1 of size
q × A and store each submatrix in a storage node as
shown in Fig. 1.

For encoding of H-MSR code, we have the following
theorem.

Theorem 1: The encoding of H-MSR code described in
Algorithm 1 can achieve the MSR point in distributed storage.

Proof: The proof will be divided into three steps.
First, we study the structure of the codeword matrix

Hm(S). Since every column of the matrix is an indepen-
dent Hermitian codeword, without loss of generality we will
decode the first column h = [h0,0, . . . , h0,q−1, . . . , hq2−1,0,
. . . , hq2−1,q−1]

T as an example. Arrange the q3 rational points
of the Hermitian curve following the order in Table I, we can
find that for each i, i = 0, 1, . . . , q2 − 1, the rational points
Pi,0, Pi,1, . . . , Pi,q−1 all have the same first coordinate.

Suppose (∈ L(mQ), ((Pi,l) = f0(Pi,l)+y(Pi,l)f1(Pi,l)+
· · · + (y(Pi,l))

q−1fq−1(Pi,l), 0 ≤ i ≤ q2 − 1, 0 ≤ l ≤ q −
1, deg fl(x) = αl − 1. Since Pi,0, Pi,1, . . . , Pi,q−1 all have
the same first coordinate and fj(Pi,l) is only applied to the
first coordinate of Pi,l, we have fj(Pi,l) = fj(φ

si), meaning
fj(Pi,l) does not depend on l, where s0 = −∞, si = i − 1
for i ≥ 1, and φ−∞ = 0. Therefore, we can derive q2 sets of
equations for 0 ≤ i ≤ q2 − 1:




f0(φ
si)+y(Pi,0)f1(φ

si)+. . .+[y(Pi,0)]
q−1fq−1(φ

si) = hi,0

f0(φ
si)+y(Pi,1)f1(φ

si)+. . .+[y(Pi,1)]
q−1fq−1(φ

si) = hi,1

. .
f0(φ

si)+y(Pi,q−1)f1(φ
si)+. . .+[y(Pi,q−1)]

q−1fq−1(φ
si)=hi,q−1.

(14)

If we store the codeword matrix in storage nodes according
to Fig. 1, then each set of the equations corresponds to a
storage node. As we mentioned above, the set of equations
in equation (14) can be derived from storage node i. If we
treat y(Pi,j)’s as coefficients, then the coefficient matrix Bi

in equation (14) is a Vandermonde matrix:

Bi =




1 y(Pi,0) . . . y(Pi,0)
q−1

1 y(Pi,1) . . . y(Pi,1)
q−1

...
...

. . .
...

1 y(Pi,q−1) . . . y(Pi,q−1)
q−1


 . (15)

Let hi = [hi,0, hi,1, . . . , hi,q−1]
T . Then the solution fi =

[f0(φ
si), f1(φ

si), . . . , fq−1(φ
si)]T can be expressed as:

fi = B−1
i hi. (16)

From all the q2 storage nodes, we can get vectors Fl =
[fl(0), fl(1), . . . , fl(φ

q2−2)]T , l = 0, . . . , q − 1, which can be
viewed as extended RS codes.

Now consider all the columns of Hm(S), we can get the
following equation:

ΦlSl,j = Fl,j , (17)

where Fl,j = [F (1)
l , . . . , F (αl)

l], 0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl,
and F (t)

l corresponds to the tth column of the submatrix Sl,j .
Second, we will consider the structure of the codeword

matrix Hm(T). Because the encoding process for Hm(T) is
the same as that of Hm(S), for ΓHm(T), we can derive

∆ΦlTl,j = ∆Gl,j , (18)

where Gl = [gl(0), gl(1), . . . , gl(φ
q2−2)]T , gl is a polynomial

defined the same as fl with coefficients from the columns of

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

the data matrix T , Gl,j = [G(1)
l , . . . , G(αl)

l], 0 ≤ l ≤ q−1, 1 ≤
j ≤ A/αl, and G(t)

l corresponds to the tth column of the
submatrix Tl,j .

Third, we will study the optimality of the code in the
sense of the MSR point. For ΦlSl,j + ∆ΦlTl,j , 0 ≤ l ≤
q − 1, 1 ≤ j ≤ A/αl, since Sl,j, Tl,j are symmetric and
satisfy the requirements for MSR point according to [15] with
parameters d = 2αl, k = αl + 1, α = αl, β = 1, B =
αl(αl + 1). By encoding S, T using Hm(S) + ΓHm(T) and
distributing Y0, . . . , Yq2−1 into q2 storage nodes, each row of
the matrix ΦlSl,j + ∆ΦlTl,j, 0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl,
can be derived in a corresponding storage node. Because
ΦlSl,j + ∆ΦlTl,j achieves the MSR point, data related to
matrices Sl,j , Tl,j, 0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl, can be
regenerated at the MSR point. Therefore, Algorithm 1 can
achieve the MSR point.

According to [29], the Hermitian code Hm could be viewed
as the concatenation of q RS codes. For H-MSR code, we have
a similar result:

Theorem 2: The H-MSR code could be viewed as the
concatenation of q RS-MSR codes. Each storage node contains
symbols related to each of the q RS-MSR codes encoded in
Algorithm 1.

Proof: (sketch) According to equation (17) and (18) in
the proof of Theorem 1, the H-MSR code can be viewed as
q concatenated RS-MSR codes, where the encoding matrix of
the lth RS-MSR code, 0 ≤ l ≤ q − 1, is

Ψl = [Φl, ∆Φl]. (19)

Similar to equation (16) in the proof of Theorem 1, for any
column Col(Yi) of the submatrix Yi in storage node i, we have
the following equation:

fi+Λigi = B−1
i Col(Yi)

= [f0(φ
si) + λig0(φ

si), f1(φ
si) + λig1(φ

si),

. . . , fq−1(φ
si) + λigq−1(φ

si)]T , (20)

where gi = [g0(φ
si), g1(φ

si), . . . , gq−1(φ
si)]T , with fl(φ

si)+
λigl(φ

si) corresponding to the lth RS-MSR code, 0 ≤ l ≤
q − 1. The codewords related to all of the q RS-MSR codes
are stored in each of the storage node i.

In [15], construction of the RS-MSR code under the
product-matrix framework was proposed along with data
regeneration and reconstruction algorithms. While Theorem 1
provides theoretic construction and efficient algorithms of the
H-MSR code, Theorem 2 presents the relationship between
H-MSR and RS-MSR codes, which makes the construction of
the H-MSR code under the product-matrix framework more
intuitive.

Example 1: Fig. 2 is an illustrative example with parameters
q = 3, α0 = 4, α1 = 3, α2 = 2. For this setting, the total num-

ber of symbols B to be stored is LCM(α0, α1, α2)
q−1∑
i=0

(αi +

1) = 12 × (5 + 4 + 3) = 144, where LCM stands for least
common multiple. Data matrix S stores the first 72 symbols.
Data matrix T has the same structure and stores data symbols
from b72 to b143. When we encode S, T using Algorithm 1,
each column of the matrix S and T will be encoded first by the

Fig. 2. An illustrative example of matrix S.

Hermitian code, resulting in the q3 × A = 27 × 12 codeword
matrix Y . Then the 3 × 12 submatrices Y0, . . . , Y8 will be
stored in 9 storage nodes. As we have elaborated in the proof
of Theorem 1, the 4 × 4 submatrices with solid line brackets
in Fig. 2 corresponds to the MSR code with α0 = 4, the 3×3
submatrices with long dash line brackets corresponds to the
MSR code with α1 = 3 and the 2 × 2 submatrices with short
dash line brackets corresponds to the MSR code with α2 = 2.

IV. REGENERATION OF THE H-MSR CODE

In this section, we will first discuss the regeneration of
the H-MSR code in error-free network. Then we will discuss
regeneration in hostile networks.

A. Regeneration in Error-Free Networks

The main idea of the regeneration algorithms is to regener-
ate the lth RS-MSR code described in the proof of Theorem 2
by downloading help symbols from dl = 2αl nodes, where dl

(0 ≤ l ≤ q − 1) represents the regeneration parameter d for
the lth RS-MSR code.

Suppose node z fails, we try to regenerate the exact H-MSR
code symbols of node z in a replacement node z′. For
convenience, we assume dq = 2αq = 0 and define

Ψi→j,l =




Ψi,l

Ψi+1,l

...
Ψj,l


 , (21)

where Ψt,l, i ≤ t ≤ j, is the tth row of Ψl. Each node i,
0 ≤ i ≤ q2 − 1, only stores its own encoding vector Ψi,l,
0 ≤ l ≤ q − 1. Replacement node z′ sends integer j from
q − 1 to 0 in descending order to dj − dj+1 helper nodes
that it has not requested before. Upon receiving the integer j,
helper node i calculates Ỹi = B−1

i Yi, which eliminates the
coefficient matrix Bi from the codeword matrix. Since the
lth row of Ỹi corresponds to the symbols related to the lth

RS-MSR code (0 ≤ l ≤ j), node i can divide the lth

row of Ỹi into 1 × αl row vectors ỹi,l,t (1 ≤ t ≤ A/αl).
Define Ỹi,l = [ỹi,l,1, ỹi,l,2, . . . , ỹi,l,A/αl

]. Then for every
0 ≤ l ≤ j and 1 ≤ t ≤ A/αl, node i can calculate the
help symbol p̃i,l,t = ỹi,l,tΦ

T
z,l, where Φz,l is the zth row of

the encoding matrix Φl defined in equation (12).

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3963

Fig. 3. An illustrative example of the H-MSR data regeneration.

Since dl1 > dl2 for l1 < l2, for efficiency consideration,
only dq−1 helper nodes need to provide symbols p̃i,l,t (0 ≤
l ≤ q − 1 and 1 ≤ t ≤ A/αl) for all the q RS-MSR codes,
while dj − dj+1 nodes only need to provide symbols p̃i,l,t

(0 ≤ l ≤ j and 1 ≤ t ≤ A/αl) for the first j + 1 RS-MSR
codes (0 ≤ j ≤ q−2). In this way, the total number of symbols
p̃i,l,t (1 ≤ t ≤ A/αl) for the lth RS-MSR code that the helper
nodes need to provide is dq−1 +

∑q−2
j=l (dj − dj+1) = dl.

Once the replacement node z′ receives all the requested
symbols, it can regenerate the symbols stored in the failed
node z. The entire process is summarized in the following
algorithm:

Algorithm 2: z′ regenerates symbols of the failed node z

Step 1: Calculate the regenerated symbols ỹz,l,t: For every
0 ≤ l ≤ q − 1 and 1 ≤ t ≤ A/αl, calculate the
regenerated symbols based on p̃i,l,t from dl helper
nodes similar to [15]. Without loss of generality,
we assume 0 ≤ i ≤ dl − 1:
Step 1.1: Let p = [p̃0,l,t, p̃1,l,t, . . . , p̃dl−1,l,t]

T , solve
the equation: Ψ0→dl−1,lx = p.

Step 1.2: Since x =

[
Sl,t

Tl,t

]
ΦT

z,l and

Sl,t, Tl,t are symmetric, we can calculate
xT = [Φz,lSl,t, Φz,lTl,t].
Step 1.3: Compute ỹz,l,t = Φz,lSl,t + λzΦz,lTl,t =

ψz,l

[
Sl,t

Tl,t

]
.

Step 2: Regenerate symbols of the failed node z: Let Ỹz

be a q×A matrix with the lth row defined as Ỹz,l =
[ỹz,l,1, . . . , ỹz,l,A/αl

] (0 ≤ l ≤ q − 1). The symbols
of the failed node z can be generated as: Yz′ = Yz =
BzỸz .

Theorem 1 guarantees that Algorithm 2 can achieve the
MSR point for data regeneration of the H-MSR code. More-
over, from Algorithm 2, we can derive the equivalent storage
parameters for each symbol block of size Bl = A(αl + 1):
d = 2αl, k = αl + 1, α = A, β = A/αl, 0 ≤ l ≤ q − 1 and
equation (2) of the MSR point holds for these parameters.

Example 2: Fig. 3 is an example for the data regeneration
of the H-MSR code illustrated in Fig. 2 with parameters

q = 3, α0 = 4, α1 = 3, α2 = 2. According to the order of the
points on the Hermitian curve in equation (11), the distribution
of the codeword matrix Y in Algorithm 1 and the analysis in
equation (14), symbols for α0, α1 and α2 are stored in each of
the storage nodes simultaneously. When storage node 0 fails,
the contents stored in node 0 can be regenerated according to
Algorithm 2 as shown in Fig. 3: α0 requires help symbols from
d0 = 8 nodes, α1 requires help symbols from d1 = 6 nodes,
α2 requires help symbols from d2 = 4 nodes.

B. Regeneration in Hostile Networks
In case that the network environment is hostile, Algorithm 2

may not be able to regenerate the failed node due to possible
bogus symbols received in the responses. In fact, even if the
replacement node z′ can derive the symbol matrix Yz′ using
Algorithm 2, it cannot verify the correctness of the result.

We develop two modes for the helper nodes to regenerate
the contents of a failed storage node in hostile networks: detec-
tion mode and recovery mode. The purpose of the detection
mode is to detect whether the received help symbols contain
errors. Once errors are detected, the recovery mode will be
used to correct the errors and locate the malicious nodes.

1) Detection Mode: In the detection mode, the replacement
node z′ will send requests in the way similar to that of the
error-free networks in Section IV-A. The only difference is that
when j = q−1, z′ sends requests to dq−1−dq+1 nodes instead
of dq−1 − dq nodes. The regeneration algorithm is described
in Algorithm 3 with the detection probability characterized in
Lemma 1 and Theorem 3.

Algorithm 3 (Detection Mode): z′ detects the bogus sym-
bols and regenerates the symbols of the failed node z in hostile
networks.
Step 1: Error Detection: For every 0 ≤ l ≤ q − 1 and

1 ≤ t ≤ A/αl, we can calculate the regenerated
symbols using the help symbols p̃′

i,l,t = p̃i,l,t + ei,l,t

from helper node i. If p̃i,l,t has been modified by
the malicious node i, we have ei,l,t ∈ Fq2\{0}.
Otherwise, we have ei,l,t = 0. To detect whether
there are i′s such that ei,l,t '= 0, we will compare
regenerated symbols calculated from two sets of
helper nodes. Without loss of generality, we assume
0 ≤ i ≤ dl.
Step 1.1: Let p1

′ = [p̃′
0,l,t, p̃

′
1,l,t, . . . , p̃

′
dl−1,l,t]

T ,
where the symbols are collected from node 0 to node
dl − 1, and solve the equation Ψ0→dl−1,lx1 = p1

′.
Step 1.2: Let p2

′ = [p̃′
1,l,t, p̃

′
2,l,t, . . . , p̃

′
dl,l,t

]T , where
the symbols are collected from node 1 to node dl, and
solve the equation Ψ1→dl,lx2 = p′

2.
Step 1.3: If x1 = x2, no error has been detected.
Compute ỹz,l,t = Φz,lSl,t + λzΦz,lTl,t as described
in Algorithm 2. Otherwise, at least one error has been
detected in the help symbols. Exit the algorithm and
switch to recovery regeneration mode.

Step 2: Failed Node Regeneration: Let Ỹz be a q ×
A matrix with the lth row defined as Ỹz,l =
[ỹz,l,1, . . . , ỹz,l,A/αl

] (0 ≤ l ≤ q − 1). The symbols
of the failed node z can be regenerated as: Yz′ =
Yz = BzỸz .

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

Lemma 1: Let ei = ei,l,t (i = 0, · · · , dl) be defined as
in Algorithm 3, x̂1 = Ψ−1

0→dl−1,l[e0, . . . , edl−1]
T and x̂2 =

Ψ−1
1→dl,l

[e1, . . . , edl
]T . Then when the number of malicious

nodes in the dl +1 helper nodes is no more than dl, the prob-
ability that x̂1 = x̂2 is at most 1/q2.

The proof of this lemma is given in the Appendix.
Theorem 3 (H-MSR Regeneration–Detection Mode): When

the number of malicious nodes in the dl + 1 helper nodes of
Algorithm 3 is no more than dl, the probability for the bogus
symbols sent from the malicious nodes to be detected is at
least 1 − 1/q2.

The proof of this theorem is given in the Appendix.
2) Recovery Mode: Once the replacement node z′ detects

errors using Algorithm 3, it will send integer j = q − 1 to all
the other q2−1 nodes in the network requesting help symbols.
Helper node i will provide help symbols similar to that of
Section IV-A. z′ can regenerate symbols using Algorithm 4.

Algorithm 4 (Recovery Mode): z′ regenerates symbols of
the failed node z in hostile networks.
Step 1: Calculate the regenerated symbols ỹz,l,t: For l =

q − 1 to 0 and t = 1 to A/αl, we can regenerate
the symbols when the errors in the q2 − 1 received
help symbols p̃′

i,l,t can be corrected. Without loss of
generality, we assume 0 ≤ i ≤ q2 − 2.
Step 1.1: Let p′ = [p̃′

0,l,t, p̃
′
1,l,t, . . . , p̃

′
q2−2,l,t]

T .
Substitute p̃′

i,l,t in p′ with the symbol ⊗ representing
an erasure if node i has been detected to be corrupted.
Step 1.2: Since Ψ0→q2−2,lx = p′, p′ can be viewed
as an MDS code with parameters (q2−1, dl, q

2−dl).
Decode p′ to p′

cw. If the ith position symbols of p′
cw

and p′ are different, mark node i as corrupted. If the
number of corrupted nodes detected is larger than
q2 − dl−1 − 1 for l > 0, flag the decoding as failure
and exit the algorithm.
Step 1.3: Solve x in Ψ0→q2−2,lx = p′

cw and
compute ỹz,l,t = Φz,lSl,t + λzΦz,lTl,t as described
in Algorithm 2.

Step 2: Regenerate symbols of the failed node z: Let Ỹz be
a q × A matrix with the lth row defined as Ỹz,l =
[ỹz,l,1, . . . , ỹz,l,A/αl

], 0 ≤ l ≤ q − 1. The symbols
of the failed node can be regenerated as z: Yz′ =
Yz = BzỸz .

For data regeneration described in Algorithm 4, we have the
following theorem:

Theorem 4 (H-MSR Regeneration–Recovery Mode): For
data regeneration, the number of errors that the H-MSR code
can correct is

τH−MSR = q)(q2 − dq−1 − 1)/2*. (22)

Proof: Since H-MSR code can be viewed as q MDS
codes with parameters (q2 − 1, dl, q

2 − dl), l = 0, . . . , q − 1,
αl ≤ κ(l) and κ(l) is strictly decreasing, we can choose the
sequence αl to be strictly decreasing so that dl is also strictly
decreasing. For the q MDS codes, the minimum distance of the
(q2 − 1, dq−1, q

2 − dq−1) code is the largest. In Algorithm 4,
this code is decoded first and it can correct up to τq−1 =⌊
(q2 − dq−1 − 1)/2

⌋
errors, where)x* is the floor function

of x. Next the code (q2 − 1, dl, q
2 − dl), l = q − 2, . . . , 0,

will be decoded sequentially. The (q2 − 1, dl, q
2 − dl) code

can correct at least τl = τq−1 errors when q2 −d0 −1 ≥ τq−1.
Thus, the total number of errors that the H-MSR code can
correct is τH−MSR = qτq−1 = q)(q2 − dq−1 − 1)/2*.

V. RECONSTRUCTION OF THE H-MSR CODE

In this section, we will first discuss reconstruction of the
H-MSR code in error-free networks. Then we will discuss
reconstruction of the H-MSR code when there are corrupted
nodes in the network.

A. Reconstruction in Error-Free Networks
The main idea of the algorithms is to reconstruct the lth

RS-MSR code, 0 ≤ l ≤ q − 1, by downloading help symbols
from kl = αl+1 nodes, where kl represents the reconstruction
parameter k of the lth RS-MSR code in the H-MSR code.

The reconstruction includes two major steps. For conve-
nience, we assume kq = 0. First, DC sends integer j to
kj − kj+1 helper nodes that it has not sent requests before
for j from q − 1 to 0 in descending order. Upon receiving
the requested integer j, node i will calculate Ỹi = B−1

i Yi,
which eliminates the coefficient matrix Bi from the codeword
matrix. Since the lth row of Ỹi is related to the symbols of
the lth RS-MSR code (0 ≤ l ≤ j), node i will provide the lth

row of Ỹi: Ỹi,l to the DC. Thus j indicates that DC requests
symbols related to the first j + 1 RS-MSR codes.

Since kl1 > kl2 if l1 < l2, for efficiency consideration, only
kq−1 helper nodes need to provide symbols of Ỹi,l (0 ≤ l ≤
q − 1) related to all of the q RS-MSR codes. Then kj − kj+1

nodes only need to provide symbols of Ỹi,l, 0 ≤ l ≤ j, which
are related to the first j +1 RS-MSR codes for 0 ≤ j ≤ q −2.
In this way, the total number of helper nodes that need to
provide symbols of Ỹi,l related to the lth RS-MSR code is
kq−1 +

∑q−2
j=l (kj − kj+1) = kl.

Second, after DC receives all the requested symbols, it can
reconstruct the original file using the following algorithm:

Algorithm 5: DC reconstructs the original file
Step 1: Prepare data: For every 0 ≤ l ≤ q − 1, divide the

response symbol vector Ỹi,l from the ith node into
A/αl equal row vectors: [ỹi,l,1, ỹi,l,2, . . . , ỹi,l,A/αl

].
Without loss of generality, we assume 0 ≤ i ≤ kl−1.

Step 2: Reconstruct data matrices: For every 0 ≤ l ≤ q−1
and 1 ≤ t ≤ A/αl, DC reconstructs the matrices
related to the original file:
Step 2.1: Let Rl,t = [ỹT

0,l,t, ỹ
T
1,l,t, . . . , ỹ

T
kl−1,l,t]

T ,

we have the equation: Ψ0→kl−1,l

[
Sl,t

Tl,t

]
= Rl,t

according to the encoding algorithm.
Step 2.2: DC reconstructs Sl,t, Tl,t using techniques
similar to [15].

Step 3: Reconstruct original file: DC reconstructs the orig-
inal file from all the matrices Sl,t, Tl,t, 0 ≤ l ≤ q−1
and 1 ≤ t ≤ A/αl.

B. Reconstruction in Hostile Networks

Similar to the regeneration algorithms, the reconstruction
algorithms in error-free networks do not work in hostile

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3965

networks. Even if the data collector can derive the symbol
matrices S, T using Algorithm 5, it cannot verify whether the
result is correct or not. There are two modes for the original
file to be reconstructed in hostile networks: detection mode,
which detects whether the received symbols contain errors,
and recovery mode, which will correct errors and locate the
malicious nodes.

1) Detection Mode: In detection mode, DC requests help
symbols in the way similar to that of the error-free networks
in Section V-A. The only difference is that when j = q − 1,
DC will send requests to kq−1 − kq + 1 nodes instead of
kq−1 − kq nodes. The reconstruction algorithm is described
in Algorithm 6 with the detection probability described in
Theorem 5.

Algorithm 6 (Detection Mode): DC detects the bogus sym-
bols to reconstruct the original file in hostile networks

Step 1: Prepare data: For every 0 ≤ l ≤ q−1, we can divide
the symbol vector Ỹ′

i,l into A/αl equal row vectors:
[ỹ′

i,l,1, ỹ
′
i,l,2, . . . , ỹ

′
i,l,A/αl

]. Ỹ′
i,l = Ỹi,l + ei,l is the

response from the ith storage node. If Ỹi,l has been
modified by the malicious node i, we have ei,l ∈
FA

q2\{0}. To detect whether there are i′s such that
ei,l '= 0, we will compare reconstructed symbols
calculated from two sets of storage nodes. Without
loss of generality, we assume 0 ≤ i ≤ kl.

Step 2: Reconstruct data matrices: For every 0 ≤ l ≤ q−1
and 1 ≤ t ≤ A/αl, DC reconstructs the matrices
related to the original file:
Step 2.1: Let R′

1,l,t = [ỹ′T
0,l,t, ỹ

′T
1,l,t, . . . , ỹ

′T
αl,l,t

]T ,
which are the symbols collected from node 0 to node

kl − 1 = αl, then we have Ψ0→αl,l

[
S1

T1

]
= R′

1,l,t.

Solve S1, T1 using the method same to algorithm 5.
Step 2.2: Let R′

2,l,t = [ỹ′T
0,l,t, . . . , ỹ

′T
αl−1,l,t,

ỹ′T
αl+1,l,t]

T , which are the symbols collected from
node 0 to node kl = αl + 1 except node αl, then

we have
[
Ψ0→αl−1,l

Ψαl+1,l

] [
S2

T2

]
= R′

2,l,t. Solve S2, T2

using the method same to algorithm 5.
Step 2.3: If [S1, T1] = [S2, T2], let [Sl,t, Tl,t] =
[S1, T1]. Otherwise, errors are detected in the
received symbols. Exit the algorithm and switch to
recovery reconstruction mode.

Step 3: Reconstruct original file: DC reconstructs the orig-
inal file from all the matrices Sl,t, Tl,t, 0 ≤ l ≤ q−1
and 1 ≤ t ≤ A/αl.

Theorem 5 (H-MSR Reconstruction–Detection Mode):
When the number of malicious nodes in the kl + 1 nodes of
Algorithm 6 is less than kl + 1, the probability for the bogus
symbols sent from the malicious nodes to be detected is at
least 1 − (1/q2)2(αl−2).

The proof of this theorem is given in the Appendix.

2) Recovery Mode: Once DC detects errors using Algo-
rithm 6, it will send integer j = q−1 to all the q2 nodes in the
network requesting symbols. The reconstruction procedures
are described in Algorithm 7.

Algorithm 7 (Recovery Mode): DC reconstructs the original
file in hostile networks
Step 1: Prepare data: For l = 0 to q − 1, divide the

symbol vector Ỹ′
i,l into A/αl equal row vectors:

[ỹ′
i,l,1, ỹ

′
i,l,2, . . . , ỹ

′
i,l,A/αl

]. Without loss of general-
ity, we assume 0 ≤ i ≤ q2 − 1.

Step 2: Reconstruct data matrices: For l = q − 1 to 0 and
t = 1 to A/αl, DC reconstructs the matrices related
to the original file when the errors in the received
symbol vectors ỹ′

i,l,t from q2 storage nodes can be
corrected:
Step 2.1: Let R′

l,t = [ỹ′T
0,l,t, ỹ

′T
1,l,t, . . . , ỹ

′T
q2−1,l,t]

T .
Substitute ỹ′

i,l,t in R′
l,t with the symbol ⊗ represent-

ing an erasure vector if node i has been detected to
be corrupted.
Step 2.2: Solve Sl,t, Tl,t using the method described
in section V-C. If symbols from node i are detected to
be erroneous during the calculation, mark node i as
corrupted. If the number of corrupted nodes detected
is larger than q2 − kl−1 for l > 0, flag the decoding
failure and exit the algorithm.

Step 3: Recover original file: DC recovers the original file
from all the matrices Sl,t, Tl,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.

For data reconstruction described in Algorithm 7, we have
the following theorem:

Theorem 6 (H-MSR Reconstruction–Recovery Mode): For
data reconstruction, the number of errors that the H-MSR code
can correct is

τH−MSR−REC = q)(q2 − kq−1)/2*. (23)

Proof: Similar to the proof of Theorem 4, for data recon-
struction Algorithm 7, H-MSR code can be viewed as q
MDS codes with parameters (q2 − 1, kl − 1, q2 − kl + 1).
The decoding for the reconstruction is performed from the
code with the largest minimum distance to the code with the
smallest minimum distance as in the data regeneration case.
Therefore, we have results similar to that of equation (22).

C. Recover Matrices Sl,t, Tl,t From q2 Storage Nodes

Reconstruction of data matrices Sl,t, Tl,t using symbols
collected from k storage nodes was first proposed in [15],
which is also employed in our proposed Algorithms 5 and 6.
When the symbols p̃′

i,l,t collected are bogus for some l, t,
we propose the following technique to correct errors and
recover the matrices Sl,t, Tl,t from q2 storage nodes. (For
convenience, we write R′

l,t in Algorithm 7 as R′):
For R′ in Algorithm 7 and Ψl = [Φl, ∆Φl], we have

Ψl

[
S′

T ′

]
= R′, and

ΦlS
′ΦT

l + ∆ΦlT
′ΦT

l = R′ΦT
l . (24)

Let C = ΦlS
′ΦT

l , D = ΦlT
′ΦT

l , and R̂′ = R′ΦT
l , then

C + ∆D = R̂′. (25)

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

Since C, D are both symmetric, we can solve the non-diagonal
elements of them as follows:{

Ci,j + λiDi,j = R̂′
i,j

Ci,j + λjDi,j = R̂′
j,i.

(26)

Because matrices C and D have the same structure, we only
focus on C (corresponding to S′). It is straightforward to see
that if node i is malicious and there are errors in the ith row
of R′, there will be errors in the ith row of R̂′. Furthermore,
there will be errors in the ith row and ith column of C. Define
S′ΦT

l = Ŝ′, we have
ΦlŜ

′ = C. (27)

Here we can view each column of C as a (q2−1, αl, q
2−αl)

MDS code because Φl is a Vandermonde matrix. The length
of the code is q2 − 1 since the diagonal elements of C is
unknown. Suppose node j is uncorrupted. If the number of
erasures σ (corresponding to the previously detected corrupted
nodes) and the number of the corrupted nodes τ that have not
been detected satisfy:

σ + 2τ + 1 ≤ q2 − αl, (28)

then the jth column of C can be recovered and the error
locations (corresponding to the corrupted nodes) can be pin-
pointed. The non-diagonal elements of C can be recovered.
So DC can reconstruct Sl,t using the method similar to [15].
For Tl,t, the recovering process is similar.

VI. ENCODING OF THE H-MBR CODE

In this section, we propose the H-MBR code based on the
MBR point with β = 1 under the product-matrix framework.
According to equation (3), we have d = α.

Let α0, . . . , αq−1 be a strictly decreasing integer sequence
satisfying 0 < αl ≤ κ(l), 0 ≤ l ≤ q − 1. The least common
multiple of α0, . . . , αq−1 is A. Let k0, . . . , kq−1 be an integer
sequence satisfying 0 < kl ≤ αl, 0 ≤ l ≤ q − 1. Suppose
the data contains B = A

∑q−1
l=0 (kl(2αl − kl + 1)/(2αl))

message symbols from the finite field Fq2 . In practice, if the
size of the actual data is larger than B symbols, we can
fragment it into blocks of size B and process each block
individually.

We arrange the B symbols into matrix M as below:

M =




M0

M1

...
Mq−1


 , (29)

where
Ml = [Ml,1, Ml,2, . . . , Ml,A/αl

], (30)

Ml,j =

[
Sl,j Tl,j

T T
l,j 0

]
, (31)

and Sl,j (0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl) is a symmetric
matrix of size kl × kl with the upper-triangular entries filled
by data symbols. Tl,j is a kl × (αl − kl) matrix. Thus Ml,j

contains kl(2αl − kl + 1)/2 symbols, Ml contains Akl(2αl −
kl + 1)/(2αl) symbols and M contains B symbols.

For distributed storage, we encode M using Algorithm 8:
Algorithm 8: Encoding H-MBR Code

Step 1: First we encode the data matrices M defined above
using a Hermitian code Hm over Fq2 with parameters
κ(l) (0 ≤ l ≤ q−1) and m (m ≥ q2−1). The q3×A
codeword matrix can be written as Y = Hm(M).

Step 2: Then we divide the codeword matrix Y into q2

submatrices Y0, . . . , Yq2−1 of size q × A and store
one submatrix in each of the q2 storage nodes as
shown in Fig. 1.

Then we have the following theorem:
Theorem 7: By processing the data symbols using

Algorithm 8, we can achieve the MBR point in distributed
storage.

Proof: Similar to the proof of Theorem 1, we can get the
following equation considering all the columns of Hm(M):

ΦlMl,j = Ul,j , (32)

where Ul,j = [U (1)
l , . . . , U (αl)

l], 0 ≤ l ≤ q −1, 1 ≤ j ≤ A/αl,
U (t)

l corresponds to the tth column of the submatrix Ml,j ,
each element of Ul = [ul(0), ul(1), . . . , ul(φ

q2−2)]T can be
derived from a distinct storage node, and Φl is defined in
equation (12).

Next we will study the optimality of the code in the sense
of the MBR point. For ΦlMl,j , 0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl,
Ml,j is symmetric and satisfies the requirements for MBR
point according to [15] with parameters d = αl, k = kl, α =
αl, β = 1, B = kl(2αl − kl + 1)/2. By encoding M using
Hm(M) and distributing Y0, . . . , Yq2−1 into q2 storage nodes,
each row of the matrix ΦlMl,j, 0 ≤ l ≤ q−1, 1 ≤ j ≤ A/αl,
can be derived in a corresponding storage node. Because
ΦlMl,j achieves the MBR point, data related to matrices
Ml,j, 0 ≤ l ≤ q − 1, 1 ≤ j ≤ A/αl, can be regenerated
at the MBR point. Therefore, Algorithm 8 can achieve the
MBR point.

Similar to the decomposition of the H-MSR code into q
concatenated RS-MSR codes, we have Theorem 8. In [15],
the RS-MBR code under the product-matrix framework was
explicitly constructed along with the corresponding algo-
rithms for data regeneration and reconstruction. According
to Theorem 8, the construction of the H-MBR code under
the product-matrix framework is feasible intuitively. Then we
provide accurate algorithms and strict proofs to demonstrate
the correctness and efficacy of the H-MBR code in the paper.

Theorem 8: The H-MBR code could be viewed as the
concatenation of q RS-MBR codes. Every storage node will
contain symbols related to each of the q RS-MBR codes
encoded using Algorithm 8.

Proof: (sketch) According to equation (32) in the proof of
theorem 7, the H-MBR code can be viewed as q concatenated
RS-MSR codes, where the encoding matrix of the lth RS-MSR
code is Φl for 0 ≤ l ≤ q − 1.

For any column Col(Yi) of the submatrix Yi in storage
node i, we have the following equation:

ui =B−1
i Col(Yi)=[u0(φ

si), u1(φ
si),. . . ,uq−1(φ

si)]T . (33)

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3967

With ul(φ
si), 0 ≤ l ≤ q−1 corresponding to the lth RS-MBR

code, the codewords related to all of the q RS-MBR codes are
stored in each of the storage node i.

VII. REGENERATION OF THE H-MBR CODE

In this section, we will first discuss regeneration of the
H-MBR code in error-free networks. Then we will discuss
regeneration in hostile networks.

A. Regeneration in Error-Free Networks
The main idea of the regeneration algorithms is similar to

that of the H-MSR code: regenerate the lth RS-MBR code,
0 ≤ l ≤ q − 1, by downloading help symbols from dl = αl

nodes, where dl is the regeneration parameter d for the lth

RS-MBR code in the H-MBR code regeneration.
Suppose node z fails, we use Algorithm 9 to regenerate

the exact H-MBR code symbols of node z. For convenience,
we suppose dq = αq = 0 and define

Φi→j,l =




Φi,l

Φi+1,l

...
Φj,l


 , (34)

where Φt,l, i ≤ t ≤ j, is the tth row of Φl.
Similar to the H-MSR code, replacement node z′ will

send requests to helper nodes in the way same as that in
Section IV-A. Upon receiving the request integer j, helper
node i will calculate and send the help symbols similar to that
of Section IV-A.

When the replacement node z′ receives all the requested
symbols, it can regenerate the symbols stored in the failed
node z using the following algorithm:

Algorithm 9: z′ regenerates symbols of the failed node z

Step 1: Calculate the regenerated symbols ỹz,l,t: For every
0 ≤ l ≤ q − 1 and 1 ≤ t ≤ A/αl, calculate the
regenerated symbols based on p̃i,l,t from dl helper
nodes, using techniques similar to [15]. Without loss
of generality, we assume 0 ≤ i ≤ dl − 1.
Step 1.1: Let p = [p̃0,l,t, p̃1,l,t, . . . , p̃dl−1,l,t]

T , solve
the equation: Φ0→dl−1,lx = p.
Step 1.2: Since x = Ml,tΦ

T
z,l and Ml,t is symmetric,

we can calculate ỹz,l,t = xT = Φz,lMl,t.
Step 2: Regenerate symbols of the failed node z: Let Ỹz

be a q×A matrix with the lth row defined as Ỹz,l =
[ỹz,l,1, . . . , ỹz,l,A/αl

], 0 ≤ l ≤ q − 1. Calculate the
regenerated symbols of the failed node z: Yz′ =
Yz = BzỸz .

For Algorithm 9 we can derive the equivalent storage
parameters for each symbol block of size Bl = Akl(2αl−kl+
1)/(2αl) : d = αl, k = kl, α = A, β = A/αl, 0 ≤ l ≤ q − 1
and equation (3) of the MBR point holds for these parameters.
Theorem 7 guarantees that Algorithm 9 can achieve the MBR
point for data regeneration of the H-MBR code.

B. Regeneration in Hostile Networks
In hostile networks, Algorithm 9 may be unable to regen-

erate the failed node due to possible bogus symbols received

in the responses. In fact, even if the replacement node z′ can
derive the symbol matrix Yz′ using Algorithm 9, it cannot
verify the correctness of the result.

Similar to the H-MSR code, there are two modes for the
helper nodes to regenerate the H-MBR code of a failed storage
node in hostile networks. One mode is the detection mode. The
purpose of this mode is to detect possible errors in the symbols
received from the helper nodes. Once errors are detected,
the recovery mode will be used to correct the errors and locate
the malicious nodes.

1) Detection Mode: In the detection mode, both the replace-
ment node z′ and the helper nodes will exchange information
similar to that of the error-free networks in Section VII-A.
The only difference is that when j = q − 1, z′ sends requests
to dq−1 − dq + 1 nodes instead of dq−1 − dq nodes. The
regeneration algorithm is described in Algorithm 10 with the
detection probability characterized in Theorem 9.

Algorithm 10 (Detection Mode): z′ detects the bogus sym-
bols and regenerates the symbols of the failed node z in hostile
networks

Step 1: Error Detection: For every 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl, we can calculate the regenerated
symbols using the help symbols p̃′

i,l,t = p̃i,l,t + ei,l,t

from helper node i. If p̃i,l,t has been modified by the
malicious node i, we have ei,l,t ∈ Fq2\{0}. To detect
whether there are i′s such that ei,l,t '= 0, we will
compare regenerated symbols calculated from two
sets of helper nodes. Without loss of generality,
we assume 0 ≤ i ≤ dl.
Step 1.1: Let p1

′ = [p̃′
0,l,t, p̃

′
1,l,t, . . . , p̃

′
dl−1,l,t]

T ,
where the symbols are collected from node 0 to node
dl − 1, and solve the equation Φ0→dl−1,lx1 = p′

1.
Step 1.2: Let p2

′ = [p̃′
1,l,t, p̃

′
2,l,t, . . . , p̃

′
dl,l,t

]T , where
the symbols are collected from node 1 to node dl, and
solve the equation Φ1→dl,lx2 = p2

′.
Step 1.3: If x1 = x2, compute ỹz,l,t = Φz,lMl,t

as described in Algorithm 9. Otherwise, errors are
detected in the help symbols. Exit the algorithm and
switch to recovery regeneration mode.

Step 2: Failed Node Regeneration: Let Ỹz be a q ×
A matrix with the lth row defined as Ỹz,l =
[ỹz,l,1, . . . , ỹz,l,A/αl

], 0 ≤ l ≤ q − 1. Calculate the
regenerated symbols of the failed node z: Yz′ =
Yz = BzỸz .

Theorem 9 (H-MBR Regeneration–Detection Mode): When
the number of malicious nodes in the dl + 1 helper nodes of
Algorithm 10 is less than dl +1, the probability for the bogus
symbols sent from the malicious nodes to be detected is at
least 1 − 1/q2.

The proof of this theorem is given in the Appendix.

2) Recovery Mode: Once the replacement node z′ detects
errors using Algorithm 10, it will send integer j = q−1 to all
the other q2−1 nodes in the network requesting help symbols.
z′ can regenerate symbols using Algorithm 11.

Algorithm 11 (Recovery Mode): z′ regenerates symbols of
the failed node z in hostile networks

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

Step 1: Calculate the regenerated symbols ỹz,l,t: For l =
q − 1 to 0 and t = 1 to A/αl, we can regenerate
the symbols when the errors in the q2 − 1 received
help symbols p̃′

i,l,t can be corrected. Without loss of
generality, we assume 0 ≤ i ≤ q2 − 2.
Step 1.1: Let p′ = [p̃′

0,l,t, p̃
′
1,l,t, . . . , p̃

′
q2−2,l,t]

T .
Substitute p̃′

i,l,t in p′ with the symbol ⊗ representing
an erasure if node i has been detected to be corrupted.
Step 1.2: Since Φ0→q2−2,lx = p′, p′ can be viewed
as an MDS code with parameters (q2−1, dl, q

2−dl).
Decode p′ to p′

cw. If the ith position symbols of p′
cw

and p′ are different, mark node i as corrupted. If the
number of corrupted nodes detected is larger than
q2 −dl−1 −1 for l > 0, flag the decoding failure and
exit the algorithm.
Step 1.3: Solve x in Φ0→q2−2,lx = p′

cw. Compute
ỹz,l,t = Φz,lMl,t as described in Algorithm 9.

Step 2: Regenerate symbols of the failed node z: Let Ỹz

be a q×A matrix with the lth row defined as Ỹz,l =
[ỹz,l,1, . . . , ỹz,l,A/αl

], 0 ≤ l ≤ q − 1. Calculate
the regenerated symbols of the failed node: Yz′ =
Yz = BzỸz .

For data regeneration described in Algorithm 11, since the
structures of the underlying Hermitian codes of H-MSR code
and H-MBR code with the same code rates are the same,
we have a similar result as that in Theorem 4.

Theorem 10 (H-MBR Regeneration–Recovery Mode): For
data regeneration, the number of errors that the H-MBR code
can correct is

τH−MBR = q)(q2 − dq−1 − 1)/2*. (35)

VIII. RECONSTRUCTION OF THE H-MBR CODE

In this section, we will first discuss reconstruction of the
H-MBR code in error-free networks. Then we will discuss
reconstruction when there are corrupted nodes in the network.

A. Reconstruction in Error-Free Networks
The main idea of the reconstruction algorithms is similar to

that of the H-MSR code: reconstruct the lth RS-MBR code,
0 ≤ l ≤ q − 1, by downloading help symbols from kl nodes,
where kl represents the reconstruction parameter k for the lth

RS-MBR code in the H-MBR code. We use Algorithm 12
in the network for the data collector DC to reconstruct the
original file. For convenience, we suppose kq = 0.

Similar to the H-MSR code described in Section V-A,
DC will send requests to storage nodes. Upon receiving the
request integer j, node i will calculate and send symbols. After
DC receives all the requested symbols, it can reconstruct the
original file using the following algorithm:

Algorithm 12: DC reconstructs the original file
Step 1: Prepare Data: For every 0 ≤ l ≤ q − 1, divide

the symbol vector Ỹi,l from the ith node into A/αl

equal row vectors: [ỹi,l,1, ỹi,l,2, . . . , ỹi,l,A/αl
]. With-

out loss of generality, we assume 0 ≤ i ≤ kl − 1.
Step 2: Reconstruct data matrices: For every 0 ≤ l ≤ q−1

and 1 ≤ t ≤ A/αl, DC reconstructs the matrices
related to the original file:

Step 2.1: Let Rl,t = [ỹT
0,l,t, ỹ

T
1,l,t, . . . , ỹ

T
kl−1,l,t]

T ,
we have the equation: Φ0→kl−1,lMl,t = Rl,t accord-
ing to the encoding algorithm.
Step 2.2: DC reconstructs Ml,t using techniques
similar to that of [15].

Step 3: Reconstruct original file: DC reconstructs the orig-
inal file from all the matrices Ml,t, 0 ≤ l ≤ q − 1
and 1 ≤ t ≤ A/αl.

B. Reconstruction in Hostile Networks

Similar to the H-MSR code, the reconstruction algorithms
for H-MBR code in error-free networks do not work in hostile
networks. Even if the data collector can calculate the symbol
matrices M using Algorithm 12, it cannot verify whether
the result is correct or not. There are two modes for the
original file to be reconstructed in hostile networks. One
mode is the detection mode, in which no error has been
found in the symbols received from the storage nodes. Once
errors are detected in the detection mode, the recovery mode
will be used to correct the errors and locate the malicious
nodes.

1) Detection Mode: In the detection mode, DC will send
requests in the way similar to that of the error-free networks
in Section VIII-A. The only difference is that when j = q−1,
DC will send requests to kq−1 − kq + 1 nodes instead of
kq−1 − kq nodes. Storage nodes will send symbols similar
to that of the error-free networks in Section VIII-A. The
reconstruction algorithm is described in Algorithm 13 with
the detection probability described in Theorem 11.

Algorithm 13 (Detection Mode): DC detects the
bogus symbols to reconstruct the original file in hostile
networks

Step 1: Prepare data: For every 0 ≤ l ≤ q−1, we can divide
the symbol vector Ỹ′

i,l into A/αl equal row vectors:
[ỹ′

i,l,1, ỹ
′
i,l,2, . . . , ỹ

′
i,l,A/αl

]. Ỹ′
i,l = Ỹi,l + ei,l is the

response from the ith storage node. If Ỹi,l has been
modified by the malicious node i, we have ei,l ∈
FA

q2\{0}. To detect whether there are i′s such that
ei,l '= 0, we will compare reconstructed symbols
calculated from two sets of storage nodes. Without
loss of generality, we assume 0 ≤ i ≤ kl.

Step 2: Reconstruct data matrices: For every 0 ≤ l ≤ q−1
and 1 ≤ t ≤ A/αl, DC can reconstruct the matrices
related to the original file:
Step 2.1: Let R′

1,l,t = [ỹ′T
0,l,t, . . . , ỹ

′T
kl−1,l,t]

T , which
are the symbols collected from node 0 to node kl−1,
then we have Φ0→kl−1,lM1 = R′

1,l,t. Solve M1 using
the method same to algorithm 12.
Step 2.2: Let R′

2,l,t = [ỹ′T
1,l,t, . . . , ỹ

′T
kl,l,t

]T , which
are the symbols collected from node 1 to node kl,
then we have Φ1→kl,lM2 = R′

2,l,t. Solve M2 using
the method same to algorithm 12.
Step 2.3: If M1 = M2, let Ml,t = M1. Otherwise,
errors are detected in the received symbols. Exit
the algorithm and switch to recovery reconstruction
mode.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3969

Step 3: Reconstruct original file: DC reconstructs the orig-
inal file from all the matrices Ml,t, 0 ≤ l ≤ q − 1
and 1 ≤ t ≤ A/αl.

Theorem 11 (H-MBR Reconstruction–Detection Mode):
When the number of malicious nodes in the kl + 1 nodes
of Algorithm 13 is less than kl + 1, the probability for the
bogus symbols sent from the malicious nodes to be detected
is at least 1 − 1/q2αl .

The proof of this theorem is given in the Appendix.
2) Recovery Mode: Once DC detects errors using

Algorithm 13, it will send integer j = q−1 to all the q2 nodes
in the network requesting symbols. Storage node i will use the
way similar to that of the error-free networks in Section VIII-
A to send symbols. The reconstruct procedures are described
in Algorithm 14.

Algorithm 14 (Recovery Mode): DC reconstructs the origi-
nal file in hostile networks
Step 1: Prepare data: For every 0 ≤ l ≤ q − 1, divide

the symbol vector Ỹ′
i,l into A/αl equal row vectors:

[ỹ′
i,l,1, ỹ

′
i,l,2, . . . , ỹ′

i,l,A/αl
]. Without loss of general-

ity, we assume 0 ≤ i ≤ q2 − 1.
Step 2: Reconstruct data matrices: For l = q − 1 to 0 and

t = 1 to A/αl, DC reconstructs the matrices related
to the original file when the errors in the received
symbol vectors ỹ′

i,l,t from q2 storage nodes can be
corrected:
Step 2.1: Let R′

l,t = [ỹ′T
0,l,t, ỹ

′T
1,l,t, . . . , ỹ

′T
q2−1,l,t]

T .
substitute ỹ′

i,l,t in R′
l,t with the symbol ⊗ represent-

ing an erasure vector if node i has been detected to
be corrupted.
Step 2.2: Solve Ml,t using the method in
section VIII-C. If symbols from node i are detected
to be erroneous during the calculation, mark node i as
corrupted. If the number of corrupted nodes detected
is larger than q2 − kl−1 for l > 0, flag the decoding
failure and exit the algorithm.

Step 3: Reconstruct original file: DC reconstructs the orig-
inal file from all the matrices Ml,t, 0 ≤ l ≤ q − 1
and 1 ≤ t ≤ A/αl.

For data reconstruction described in Algorithm 14, since
the structures of the underlying Hermitian codes of H-MSR
code and H-MBR code with the same code rates are the same,
we have a similar result as that in Theorem 6.

Theorem 12 (H-MBR Reconstruction–Recovery Mode): For
data reconstruction, the number of errors that the H-MBR code
can correct is

τH−MBR−REC = q)(q2 − kq−1)/2*. (36)

C. Recover Matrices Ml,t From q2 Storage Nodes

Reconstruction of data matrices Ml,t using symbols col-
lected from k storage nodes was first proposed in [15], which
is also employed in our proposed Algorithms 12 and 13. When
there are bogus symbols p̃′

i,l,t sent by the corrupted nodes for
certain l, t, we can recover the matrices Ml,t as follows (For
convenience, we write R′

l,t in Algorithm 14 as R′):

For R′ in Algorithm 14, we have ΦlM
′ = R′, where Φl =

[Φ
(1)
l , Φ

(2)
l], R′ = [R′

1, R
′
2]. Φ

(1)
l , R′

1 are q2 × kl submatrices
and Φ

(2)
l , R′

2 are q2 × (αl − kl) submatrices.
According to equation (31), we have

ΦlM
′ = [Φ

(1)
l S′ + Φ

(2)
l T ′T , Φ

(1)
l T ′] = [R′

1, R
′
2]. (37)

For R′
2 = Φ

(1)
l T ′, we can view each column of R′

2 as a
(q2, kl, q

2 − kl + 1) MDS code because Φl is a Vandermonde
matrix. If the number of erasures σ (corresponding to the pre-
viously detected corrupted nodes) and the number of corrupted
nodes τ that have not been detected satisfy:

σ + 2τ ≤ q2 − kl, (38)

then all the columns of T ′ can be recovered and the error loca-
tions (corresponding to the corrupted nodes) can be pinpointed.
After T ′ has been recovered, we can recover S′ following the
same process because Φ

(1)
l S′ = R′

1 − Φ
(2)
l T ′T . So DC can

reconstruct Ml,t.

IX. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the H-MSR
code and compare it with the performance of the RS-MSR
code. The comparison between the H-MBR code and the
RS-MBR code is the same. Therefore, it will be skipped here.

A. Scalable Error Correction

1) Error Correction for Data Regeneration: The RS-MSR
code introduced in [24] can correct up to τ errors by down-
loading symbols from d + 2τ nodes. However, the number of
errors contained in the received help symbols may vary. When
there is no error or the number of errors is far less than τ ,
downloading help symbols from too many nodes is a waste
of bandwidth. On the other hand, when the number of errors
is larger than τ , the decoding process will fail without being
detected. In this case, the symbols stored in the replacement
node will be erroneous. If this erroneous node becomes a
helper node later, the errors will propagate to other nodes.

The H-MSR code can detect the erroneous decodings using
Algorithm 3. If no error is detected, regeneration of the
H-MSR only needs to download help symbols from one more
node than the regeneration in error-free networks, while the
extra cost for the RS-MSR code is 2τ . If errors are detected in
the help symbols, the H-MSR code can correct the errors using
Algorithm 4. Moreover, the algorithm can determine whether
the decoding is successful, while the RS-MSR code is unable
to provide such information.

2) Error Correction for Data Reconstruction: The evalu-
ation result is similar to the data regeneration. The RS-MSR
code can correct up to τ errors with support from 2τ additional
helper nodes. The H-MSR code is more flexible. For error
detection, it only requires symbols from one additional node
using Algorithm 6. The errors can then be corrected using
Algorithm 7. The algorithm can also determine whether the
decoding is successful.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3970 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

B. Error Correction Performance

For data regeneration described in Algorithm 4, according
to Theorem 4 and equation (22), the H-MSR code can correct
τH−MSR = q)(q2 − dq−1 − 1)/2* errors, while the (q3 − q,∑q−1

l=0 dl, q
3 − q −∑q−1

l=0 dl +1) RS-MSR code with the same
rate can correct τRS−MSR =)(q3 − q −∑q−1

l=0 dl)/2* errors.
Therefore, we have the following theorem.

Theorem 13: For data regeneration, the number of errors
that the H-MSR code and the RS-MSR code can correct satisfy
τH−MSR > τRS−MSR when q ≥ 3.

Proof: For τRS−MSR, we have

τRS−MSR =

⌊(
q3 − q −

q−1∑

l=0

dl

)
/2

⌋
(39)

≤
⌊
(q3 − q − qdq−1 − q

2
(q − 1))/2

⌋

=

⌊
q(q2 − dq−1 − 1)/2 − q(q − 1)

4

⌋

≤ q(q2 − dq−1 − 1)/2 − q(q − 1)

4
.

For τH−MSR, we have

τH−MSR = q)(q2 − dq−1 − 1)/2*. (40)

When q = 3, it is easy to verify that τH−MSR > τRS−MSR.
When q > 3, We can rewrite equation (40) as

τH−MSR ≥ q(q2 − dq−1 − 1)/2 − q/2. (41)

The gap between τH−MSR and τRS−MSR is at least

q(q − 1)

4
− q

2
=

q2 − 3q

4
> 0, q > 3, (42)

so we have τH−MSR > τRS−MSR.
Example 3: Suppose q = 4 and m = 37, the Hermitian

curve is defined by y4 + y = x5 over F42 . From the previous
discussion, we have κ(0) = 10, κ(1) = 9, κ(2) = 7, κ(3) = 6.
Choose α0 = 6, α1 = 5, α2 = 4, α3 = 3. So d0 = 12,
d1 = 10, d2 = 8, d3 = 6. According to the analysis above,
we have τH−MSR = 4τ3 = 4)(15 − 6)/2* = 16, which is
larger than τRS−MSR =)(60 − 36)/2* = 12.

We also show that the maximum number of malicious nodes
from which errors can be corrected by the H-MSR code
in Fig. 4. The parameter q of the Hermitian code increases
from 4 to 16. Take q = 5 as an example. We choose
d0 = 14, d1 = 12, d2 = 10, d3 = 8, d4 = 6. According to the
decoding process in Algorithm 4, the 4th layer with d4 = 6
will be decoded first. The equivalent MDS code in this layer is
a (24, 6, 19) code and can correct 9 errors. Next we decode the
3rd layer with d3 = 8 and equivalent MDS code (24, 8, 17).
For this layer, the symbols corresponding to the errors detected
in the 4th layer will be viewed as erasures. Thus the 3rd layer
code can correct up to 3 more errors. For the first layer with
d0 = 14, the equivalent MDS code is (24, 14, 11). It can
correct at most 10 erasures. Therefore, the 3rd layer code can
correct at most 1 more error. In the decodings of subsequent
layers, symbols from the 10 nodes will be regarded as erasures.
Thus for q = 5 in the figure, the maximum number of nodes
from which errors can be corrected is 10.

Fig. 4. Comparison of the H-MSR code and the RS-MSR code for the
number of corrupted/manipulated nodes from which errors can be corrected.

For this code, the overall code dimension for the 5 layers
is
∑4

i=0 di = 50. For RS code with comparable performance,
the code would be (24, 10, 15). This code can correct only
7 errors, which is less than the manipulated/malicious helper
nodes that the H-MSR code can correct.

For data reconstruction described in Algorithm 7, according
to Theorem 6 and equation (23), the number of errors that
H-MSR code can correct is τH−MSR−REC = q)(q2 −
kq−1)/2*. Similarly, we can conclude that for data reconstruc-
tion the H-MSR code has better error correction capability than
the RS-MSR code under the same code rate.

C. Complexity Discussion

For the complexity of the H-MSR code, we only consider
the recovery mode, which needs the most amount of com-
putation. For the H-MSR regeneration, compared with the
RS-MSR code, the H-MSR code will slightly increase the
complexity of the helper nodes. For each helper node, the extra
operation is a matrix multiplication between B−1

i and Yi.
The complexity is O(q2). Similar to [29], for a replacement
node to correct possible errors and regenerate original symbols
using Algorithm 4, we can derive that the complexity to
regenerate symbols for the H-MSR code is O(q5). For the
RS-MSR code with the same code dimension as stated in
Theorem 13, the complexity would be O((q3)2) = O(q6).
For the reconstruction, compared with the RS-MSR code,
the additional complexity of the H-MSR code for each storage
node is also O(q2). To correct possible errors and recover
original symbols, the computational complexity for DC to
reconstruct the data is O(q5) for the H-MSR code and O(q6)
for the RS-MSR code.

X. CONCLUSION

In this paper, we developed a Hermitian code based min-
imum storage regeneration (H-MSR) code and a Hermitian
code based minimum bandwidth regeneration (H-MBR) code

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3971

for distributed storage under the product-matrix framework.
Due to the structure of Hermitian code, our proposed codes can
significantly improve the performance of the regenerating code
under malicious attacks. In particular, these codes can deal
with errors beyond the maximum distance separable (MDS)
code. Our theoretical analyses demonstrate that the H-MSR/
H-MBR codes have lower complexity than the RS based
minimum storage regeneration (RS-MSR) code and the RS
based minimum bandwidth regeneration (RS-MBR) code in
both regeneration and reconstruction. As a future research task,
we will further analyze the optimal design of regenerating code
based on the Hermitian-like codes.

APPENDIX

A. Proof of Lemma 1

Since Ψ0→dl−1,l and Ψ1→dl,l are full rank matrices, we can
get their corresponding inverse matrices. x̂1 = x̂2 is equivalent
to Ψ0→dl−1,lx̂1 = Ψ0→dl−1,lx̂2.

First, we have

Ψ0→dl−1,lx̂1 = [e0, e1, . . . , edl−1]
T . (43)

Suppose Ψ−1
1→dl,l

= [η0, η1, . . . , ηdl−1], then we have:

Ψr,l·ηs =

{
1, r = s + 1
0, r '= s + 1

, 1 ≤ r ≤ dl, 0 ≤ s ≤ dl−1. (44)

Ψ0→dl−1,lx̂2=Ψ0→dl−1,lΨ
−1
1→dl,l

[e1, e2, . . . , edl
]T

=Ψ0→dl−1,l[η0, . . . , ηdl−1][e1, . . . , edl
]T

=[x2,0, e1, . . . , edl−1]
T . (45)

To calculate x2,0, we first derive the expression of Ψ0,l.
Because Ψ1,l, Ψ2,l, . . . , Ψdl,l are linearly independent, they
can be viewed as a set of bases of the dl dimensional linear
space. So we have

Ψ0,l =

dl∑

r=1

ζrΨr,l, (46)

where ζr '= 0, r = 1, . . . , dl, because any dl vectors out of
Ψ0,l, Ψ1,l, . . . , Ψdl,l are linearly independent. Then

x2,0=

(
dl∑

r=1

ζrΨr,l

)
[η0, η1, . . . , ηdl−1][e1, e2, . . . , edl

]T

=

dl∑

r=1

ζrer. (47)

If

e0 =

dl∑

r=1

ζrer, (48)

then Ψ0→dl−1,lx̂1 = Ψ0→dl−1,lx̂2 and x̂1 = x̂2.
The number of errors corresponds to the number of mali-

cious nodes. When only one element of e0, e1, . . . , edl
is

nonzero, since ζ1, . . . , ζdl
are all nonzero, equation (48) will

never hold. In this case, the probability that x̂1 = x̂2 is 0.
When there are more than one nonzero elements, it means
there are more than one malicious nodes. If the number of
malicious nodes is less than dl + 1, they will not be able

to collude to solve the coefficients ζr in (46). In this case,
the probability that x̂1 = x̂2 holds will be 1/q2. In summary,
the probability that x̂1 = x̂2 is at most 1/q2.

B. Proof of Theorem 3

Since Ψ0→dl−1,l and Ψ1→dl,l are full rank matrices, x1 can
be calculated by (for convenience, we use ei to represent ei,l,t):

x1 = Ψ−1
0→dl−1,l

[
p̃0,l,t + e0, . . . , p̃dl−1,l,t + edl−1

]T

= x + Ψ−1
0→dl−1,l[e0, e1, . . . , edl−1]

T

= x + x̂1. (49)

x2 can be calculated in the same way:

x2=x + Ψ−1
1→dl,l

[e1, e2, . . . , edl
]T = x + x̂2. (50)

If x̂1 = x̂2, Algorithm 3 will fail to detect the errors. So we
will focus on the relationship between x̂1 and x̂2. According
to Lemma 1, when the number of malicious nodes in the dl+1
helper nodes is less than dl + 1, the probability that x̂1 = x̂2

is at most 1/q2. So the probability that x1 '= x2, equivalent
to the detection probability, is at least 1 − 1/q2.

C. Proof of Theorem 5

We arrange this proof as follows. We will first study the
requirements for S1 = S2, T1 = T2 in Algorithm 6 which
will lead to the failure of the Algorithm when there are
bogus symbols. Then we will study the corresponding failure
probabilities depending on different values of λi of the matrix
∆ defined in section III.

For convenience we write ei,l,t as ei in the proof, ei ∈
Fαl

q2 for 0 ≤ i ≤ αl + 1, R′
1,l,t as R′

1 and R′
2,l,t as R′

2.
We also write Ψ0→αl,l = [Φ0→αl,l, ∆αl

Φ0→αl,l], where
∆αl

= diag(λ0, λ1, . . . λαl
).

Step 1. Derive the requirements: For R′
1 = R1 + E1,

where E1 =




e0

e1

...
eαl


 as defined in Algorithm 6, we have:

Φ0→αl,lS1Φ
T
0→αl,l

+ ∆αl
Φ0→αl,lT1Φ

T
0→αl,l

=R1Φ
T
0→αl,l + E1Φ

T
0→αl,l. (51)

Suppose C1 = Φ0→αl,lS1Φ
T
0→αl,l

, D1 = Φ0→αl,lT1Φ
T
0→αl,l

,
we can write equation (51) as:

C1 + ∆αl
D1 = R1Φ

T
0→αl,l + E1Φ

T
0→αl,l = R̂1 + Ê1. (52)

It is easy to see that C1 and D1 are symmetric, so we have
{

C1,i,j + λiD1,i,j = R̂1,i,j + Ê1,i,j

C1,i,j + λjD1,i,j = R̂1,j,i + Ê1,j,i
, (53)

where C1,i,j , D1,i,j , R̂1,i,j , Ê1,i,j are the elements in the
ith row, jth column of C1, D1, R̂1, Ê1 respectively. Solve
equation (53) for all the i, j (i '= j, 0 ≤ i ≤ αl, 0 ≤ j ≤
αl − 1), we can get the corresponding C1,i,j , D1,i,j . Because
the structure of C1 and D1 are the same, we will only focus

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

on C1 (corresponding to S1) in the proof. The calculation for
D1 (corresponding to T1) is the same.

Φ0→αl,lS1Φ
T
0→αl,l

=




Φ0,l

Φ1,l

...
Φαl,l


S1[Φ

T
0,l, Φ

T
1,l, . . . , Φ

T
αl,l

] = C1.

(54)
So the elements of the ith row of C1 (except the element in
the diagonal position) can be written as:

Φi,lS1[Φ
T
0,l, . . . , Φ

T
i−1,l, Φ

T
i+1,l, . . . , Φ

T
αl,l

]

=[C1,i,0, . . . , C1,i,i−1, C1,i,i+1, . . . , C1,i,αl
]. (55)

Let Ω =




Φ0,l

Φ1,l

...
Φαl−1,l


 , then Ω is an αl × αl full rank matrix,

and we can derive S1 from

ΩS1 =




Θ1

...
Θαl


 , (56)

where Θi = [C1,i−1,0, . . . ,C1,i−1,i−2,C1,i−1,i, . . . ,C1,i−1,αl
] ·

[ΦT
0,l, . . . , Φ

T
i−2,l, Φ

T
i,l, . . . , Φ

T
αl,l

]−1, i = 1, . . . , αl.

For R′
2 = R2 + E2 in Algorithm 6, we can get ΩS2 the

same way. If ΩS1 = ΩS2, Algorithm 6 will fail to detect the
errors. This will happen if all the rows of ΩS1 and ΩS2 are
the same. So we will focus on the ith row of ΩS1 and ΩS2.

Step 2. Calculate the failure probabilities: Depending on
the values of λi, we discuss two cases:

(a) If none of the λi (0 ≤ i ≤ αl) equals to 0, we can solve
C1,i,j in equation (53):

C1,i,j=
λjR̂1,i,j − λiR̂1,j,i

λiλj
+

eiΦ
T
j,l

λi
−

ejΦ
T
i,l

λj

=N1,i,j + Q1,i,j . (57)

In equation (57), N1,i,j represents the original solution without
errors, while Q1,i,j represents the impact of the errors. So the
ith row of ΩS1 can be written as:

[C1,i,0, . . . , C1,i,i−1, C1,i,i+1, . . . , C1,i,αl
] · Π−1

1,i

= [N1,i,0, . . . , N1,i,i−1, N1,i,i+1, . . . , N1,i,αl
] · Π−1

1,i

+ [Q1,i,0, . . . , Q1,i,i−1, Q1,i,i+1, . . . , Q1,i,αl
] · Π−1

1,i

= ξi + δ1,i, (58)

where Π1,i = [ΦT
0,l, . . . , Φ

T
i−1,l, Φ

T
i+1,l, . . . , Φ

T
αl,l

]. ξi corre-
sponds to the part independent of the errors. δ1,i is the error
part and can be further expanded as:

δ1,i =

[
eiΦ

T
0,l

λi
, . . . ,

eiΦ
T
i−1,l

λi
,
eiΦ

T
i+1,l

λi
, . . . ,

eiΦ
T
αl,l

λi

]
Π−1

1,i

−
[
e0Φ

T
i,l

λ0
, . . . ,

ei−1Φ
T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
, . . . ,

eαl
ΦT

i,l

λαl

]
Π−1

1,i .

(59)

The first part of equation (59) can be reduced as follows:
[
eiΦ

T
0,l

λi
, . . . ,

eiΦ
T
i−1,l

λi
,
eiΦ

T
i+1,l

λi
, . . . ,

eiΦ
T
αl,l

λi

]
Π−1

1,i

=
ei

λi

[
ΦT

0,l, . . . , Φ
T
i−1,l, Φ

T
i+1,l, . . . , Φ

T
αl,l

]
Π−1

1,i (60)

=
ei

λi
.

So we have:

δ1,i =
eiΦ

T
i,l

λi
−
[
e0Φ

T
i,l

λ0
, . . . ,

ei−1Φ
T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
,

. . . ,
eαl

ΦT
i,l

λαl

]
Π−1

1,i

=
eiΦ

T
i,l

λi
− ρ1,i. (61)

For R′
2 = R2 + E2 in Algorithm 6 where E2 =




e0

...
eαl−1

eαl+1


,

we can derive C2,i,j , then ΩS2 the same way. The ith row of
ΩS2 can be written as:

ξi + δ2,i = ξi +
ei

λi
− ρ2,i, (62)

where ρ2,i =

[
e0ΦT

i,l

λ0
, . . . ,

ei−1ΦT
i,l

λi−1
,
ei+1ΦT

i,l

λi+1
, . . . ,

eαl−1ΦT
i,l

λαl−1
,

eαl+1Φ
T
i,l

λαl+1

]
Π−1

2,i , Π2,i = [ΦT
0,l, . . . , Φ

T
i−1,l, Φ

T
i+1,l, . . . , Φ

T
αl−1,l,

ΦT
αl+1,l].

Because Π1,i is a full rank matrix, ρ1,i = ρ2,i is equivalent
to ρ1,iΠ1,i = ρ2,iΠ1,i. Similar to the proof of Lemma 1,

suppose Π−1
2,i =




η0
...

ηαl−1

ηαl+1


, we have ηsΦ

T
r,l =

{
1 r = s
0 r '= s

. So

ρ1,iΠ1,i =

[
. . . ,

ei−1Φ
T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
,

. . . ,
eαl−1Φ

T
i,l

λαl−1
,
eαl

ΦT
i,l

λαl

]
, (63)

ρ2,iΠ1,i =

[
. . . ,

ei−1Φ
T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
,

. . . ,
eαl−1Φ

T
i,l

λαl−1
, x2,αl

]
. (64)

Because ΦT
0,l, . . . , Φ

T
i−1,l, Φ

T
i+1,l, . . . , Φ

T
αl−1,l, Φ

T
αl+1,l are

linearly independent, they can be viewed as a set of bases
of the αl dimensional linear space. So we have

ΦT
αl,l

=

αl+1∑

r=0,r &=i,αl

ζrΦ
T
r,l. (65)

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3973

Thus

x2,αl
=

[
. . . ,

ei−1Φ
T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
, . . . ,

eαl−1Φ
T
i,l

λαl−1
,

eαl+1Φ
T
i,l

λαl+1

]
· Π−1

2,i ·




αl+1∑

r=0,r &=i,αl

ζr · ΦT
r,l




=




αl+1∑

r=0,r &=i,αl

ζr ·
erΦ

T
i,l

λr


 . (66)

If

eαl
ΦT

i,l

λαl

=

αl+1∑

r=0,r &=i,αl

ζr
erΦ

T
i,l

λr
(0 ≤ i ≤ αl − 1), (67)

ρ1,i and ρ2,i will be equal, so are ΩS1 and ΩS2. Therefore,
Algorithm 6 will fail.

For the error ei (0 ≤ i ≤ αl + 1), the following equation
holds:

ei[Φ
T
0,l, Φ

T
1,l, . . . , Φ

T
αl−1,l] = [êi,0, êi,1, . . . , êi,αl−1] = êi.

(68)

Because [ΦT
0,l, Φ

T
1,l, . . . , Φ

T
αl−1,l] is a full rank matrix, there is

a one-to-one mapping between ei and êi. Equation (67) can
be written as:

êαl,i

λαl

=

αl+1∑

r=0,r &=i,αl

ζr
êr,i

λr
(0 ≤ i ≤ αl − 1). (69)

When the number of malicious nodes in the kl + 1 nodes is
less than kl + 1, the malicious nodes can collude to satisfy
equation (69) for at most one particular i. So the probability
that equation (69) holds is 1/q2 for at least αl −1 out of αl i′s
between 0 and αl − 1. If we consider equation (69) for all the
i′s simultaneously, the probability will be at most (1/q2)αl−1.
As discussed before, the probability for T1 = T2 will be at
most (1/q2)αl−1. In this case, the detection probability is at
least 1 − (1/q2)2(αl−1).

(b) If one of the λi (0 ≤ i ≤ αl) equals to 0, we can assume
λ0 = 0 without loss of generality. When i = 0, the solution
for equation (53) is:

C1,0,j = R̂1,0,j + e0Φ
T
j,l = N1,0,j + Q1,0,j. (70)

Similar to equations (58), (59) and (60), we have δ1,0 = e0.
For R′

2 = R2 + E2, it is easy to see that δ2,0 = e0. So the
first rows of ΩS1 and ΩS2 are the same no matter what the
error vector e0 is.

When i > 0, j = 0, the solution for equation (53) is:

C1,i,0 = R̂1,i,0 + 0 · ΦT
0,l + e0Φ

T
i,l = N1,i,0 + Q1,i,0, (71)

where 0 is a zero row vector. When i > 0, j > 0, the solution
has the same expression as equation (57). In this case, for the

ith (i > 0) row of ΩS1, equation (59) can be written as:

δ1,i =

[
0, . . . ,

eiΦ
T
i−1,l

λi
,
eiΦ

T
i+1,l

λi
, . . . ,

eiΦ
T
αl,l

λi

]
Π−1

1,i

−
[
−e0Φ

T
i,l, . . . ,

ei−1Φ
T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
,

. . . ,
eαl

ΦT
i,l

λαl

]
Π−1

1,i . (72)

The first part of equation (72) can be divided into two parts:
[
eiΦ

T
0,l

λi
, . . . ,

eiΦ
T
i−1,l

λi
,
eiΦ

T
i+1,l

λi
, . . . ,

eiΦ
T
αl,l

λi

]
Π−1

1,i

−
[
eiΦ

T
0,l

λi
,0, . . . ,0

]
Π−1

1,i

=
ei

λi
− ei

λi
[ΦT

0,l,0, . . . ,0]Π−1
1,i . (73)

So equation (72) can be further written as:

δ1,i =
ei

λi
−
[
eiΦ

T
0,l

λi
− e0Φ

T
i,l,

. . . ,
ei−1Φ

T
i,l

λi−1
,
ei+1Φ

T
i,l

λi+1
, . . . ,

eαl
ΦT

i,l

λαl

]
Π−1

1,i

=
ei

λi
− ρ1,i. (74)

By employing the same derivation in case (a), for 1 ≤ i ≤
αl − 1, ρ1,i and ρ2,i will be equal if

eαl
ΦT

i,l

λαl

=

αl+1∑

r=1,r &=i,αl

ζr
erΦ

T
i,l

λr
− ζ0e0Φ

T
i,l

+ζ0
eiΦ

T
0,l

λi
, (75)

êαl,i

λαl

=

αl+1∑

r=1,r &=i,αl

ζr
êr,i

λr
− ζ0ê0,i + ζ0

êi,0

λi
. (76)

When the number of malicious nodes in the kl + 1 nodes
is less than kl + 1, similar to case (a), the probability that
equation (76) holds is 1/q2 for at least αl −2 out of αl −1 i′s
between 1 and αl − 1. If we consider equation (76) for all the
i′s simultaneously, the probability will be at most (1/q2)αl−2.
Here the probability for T1 = T2 will be at most (1/q2)αl−2.
In this case, the detection probability is 1 − (1/q2)2(αl−2).

Combining both cases, the detection probability is at least
1 − (1/q2)2(αl−2).

D. Proof of Theorem 9

Similar to the proof of Theorem 3, we can write

x1=x + Φ−1
0→dl−1,l[e0, . . . , edl−1]

T = x + x̂1, (77)

x2=x + Φ−1
1→dl,l

[e1, . . . , edl
]T = x + x̂2. (78)

Since Φ0→dl−1,l, Φ1→dl,l are full rank matrices like the
matrices Ψ0→dl−1,l, Ψ1→dl,l in the proof of Lemma 1 and any
dl vectors out of Φ0,l, Φ1,l, . . . , Φdl,l are linearly independent,

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

3974 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

the rest of this proof is similar to that of Lemma 1. When the
number of malicious nodes in the dl + 1 helper nodes is less
than dl + 1, the probability for x̂1 = x̂2 is at most 1/q2.
Therefore, the detection probability is at least 1 − 1/q2.

E. Proof of Theorem 11

For convenience, we write ei,l,t as ei in the proof, ei ∈
[Fq2]αl for 0 ≤ i ≤ kl, R′

1,l,t as R′
1 and R′

2,l,t as R′
2.

In Algorithm 13, R1
′ = R1 + Q1 where Q1 =




e0

e1

...
ekl−1


. Let

Φ0→kl−1,l = [Φ
(1)
0→kl−1,l, Φ

(2)
0→kl−1,l], R1 = [R1,1, R1,2] and

Q1 = [Q1,1, Q1,2], where Φ
(1)
0→kl−1,l, R1,1, Q1,1 are kl × kl

submatrices and Φ
(2)
0→kl−1,l, R1,2, Q1,2 are kl × (αl − kl)

submatrices.
According to equation (31), we have

Φ0→kl−1,lM1 = [Φ
(1)
0→kl−1,lS1 + Φ

(2)
0→kl−1,lT

T
1 , Φ

(1)
0→kl−1,lT1]

= [R1,1 + Q1,1, R1,2 + Q1,2]. (79)

Since Φ
(1)
0→kl−1,l is a submatrix of a Vandermonde matrix, it is

a full rank matrix. So we have

T1=[Φ
(1)
0→kl−1,l]

−1R1,2+[Φ
(1)
0→kl−1,l]

−1Q1,2 =T +T̂1, (80)

S1 = [Φ
(1)
0→kl−1,l]

−1(R1,1 + Q1,1 − Φ
(2)
0→kl−1,lT

T
1)

= [Φ
(1)
0→kl−1,l]

−1(R1,1−Φ
(2)
0→kl−1,lT

T) (81)

+ [Φ
(1)
0→kl−1,l]

−1(Q1,1−Φ
(2)
0→kl−1,lT̂

T
1)

=S+[Φ
(1)
0→kl−1,l]

−1(Q1,1−Φ
(2)
0→kl−1,lT̂

T
1)=S+Ŝ1.

For R′
2 = R2 + Q2 in Algorithm 13, let

R2 = [R2,1, R2,2], Q2 = [Q2,1, Q2,2] and Φ1→kl,l =

[Φ
(1)
1→kl,l

, Φ
(2)
1→kl,l

], where R2,1, Q2,1, Φ
(1)
1→kl,l

are kl × kl

submatrices and R2,2, Q2,2, Φ
(2)
1→kl,l

are kl × (αl − kl)
submatrices. Similarly, we have

T2 = [Φ
(1)
1→kl,l

]−1R2,2 + [Φ
(1)
1→kl,l

]−1Q2,2 = T + T̂2, (82)

S2 = S + [Φ
(1)
1→kl,l

]−1(Q2,1 − Φ
(2)
1→kl,l

T̂ T
2) =S+Ŝ2. (83)

If T̂1 = T̂2 and Ŝ1 = Ŝ2, Algorithm 13 will fail to detect the
bogus symbols. So we will focus on T̂1, T̂2 and Ŝ1, Ŝ2.

Suppose Π1,j = [e0, . . . , ekl−1]
T , Π2,j = [e1, . . . , ekl

]T

are the jth, 1 ≤ j ≤ αl − kl, columns of Q1,2 and Q2,2

respectively, where ei ∈ Fq2 . Since Φ
(1)
0→kl−1,l and Φ

(1)
1→kl,l

are Vandermonde matrices and have the same relationship as
that of between Ψ0→dl−1,l and Ψ1→dl,l, similar to the proof
of Lemma 1, we can prove that when the number of malicious
nodes in the kl +1 nodes is less than kl +1, the probability of
[Φ

(1)
0→kl−1,l]

−1Π1,j = [Φ
(1)
1→kl,l

]−1Π2,j is at most 1/q2. Thus
the probability for T̂1 = T̂2 is at most 1/q2(αl−kl). Through
the same procedure, we can derive that the probability of
Ŝ1 = Ŝ2 is at most 1/q2kl . The probability for both Ŝ1 = Ŝ2

and T̂1 = T̂2 is at most 1/q2αl . So the detection probability
is at least 1 − 1/q2αl .

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor Prof.
A. G. Dimakis and the anonymous reviewers for their careful
reading of their article and their many insightful comments
and suggestions.

REFERENCES

[1] S. Rhea et al., “Maintenance-free global data storage,” IEEE Internet
Comput., vol. 5, no. 5, pp. 40–49, Sep./Oct. 2001.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: System support for automated availability management,” in Proc.
Symp. Netw. Syst. Design Implement., 2004, pp. 337–350.

[3] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[4] Y. Wu, “A construction of systematic MDS codes with minimum repair
bandwidth,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3738–3741,
Jun. 2011.

[5] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,” in Proc.
IEEE INFOCOM, Mar. 2012, pp. 2801–2805.

[6] D. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair optimal
erasure codes through Hadamard designs,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3021–3037, May 2013.

[7] A. Wang and Z. Zhang, “Exact cooperative regenerating codes with
minimum-repair-bandwidth for distributed storage,” in Proc. IEEE
INFOCOM, Apr. 2013, pp. 400–404.

[8] C. Tian and T. Liu, “Multilevel diversity coding with regeneration,” IEEE
Trans. Inf. Theory, vol. 62, no. 9, pp. 4833–4847, Sep. 2016.

[9] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regener-
ating codes for distributed storage,” in Proc. 45th Annu. Allerton Conf.
Control, Comput., Commun., Sep. 2007, pp. 1–5.

[10] A. Duminuco and E. Biersack, “A practical study of regenerating codes
for peer-to-peer backup systems,” in Proc. 29th IEEE Int. Conf. Distrib.
Comput. Syst., Jun. 2009, pp. 376–384.

[11] K. W. Shum, “Cooperative regenerating codes for distributed storage
systems,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–5.

[12] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC codes: Low-
complexity regenerating codes for distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 62, no. 6, pp. 3053–3069, Jun. 2016.

[13] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2009, pp. 2276–2280.

[14] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Interference alignment in regenerating codes for distributed storage:
Necessity and code constructions,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2134–2158, Apr. 2012.

[15] K. Rashmi, N. Shah, and P. Kumar, “Optimal exact-regenerating codes
for distributed storage at the msr and mbr points via a product-matrix
construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239,
Aug. 2011.

[16] V. Guruswami and M. Wootters, “Repairing Reed–Solomon codes,”
2015, arXiv:1509.04764. [Online]. Available: http://arxiv.org/abs/1509.
04764

[17] C. Tian, B. Sasidharan, V. Aggarwal, V. A. Vaishampayan, and
P. V. Kumar, “Layered exact-repair regenerating codes via embedded
error correction and block designs,” IEEE Trans. Inf. Theory, vol. 61,
no. 4, pp. 1933–1947, Apr. 2015.

[18] M. Abd-El-Malek, G. R. Ganger, M. K. Reiter, J. J. Wylie, and
G. R. Goodson, “Lazy verification in fault-tolerant distributed storage
systems,” in Proc. 24th IEEE Symp. Reliable Distrib. Syst. (SRDS),
Oct. 2005, pp. 179–190.

[19] C. Cachin and S. Tessaro, “Optimal resilience for erasure-coded Byzan-
tine distributed storage,” in Proc. Int. Conf. Dependable Syst. Netw.
(DSN), Jun. 2006, pp. 115–124.

[20] Y. S. Han, R. Zheng, and W. Ho Mow, “Exact regenerating codes
for byzantine fault tolerance in distributed storage,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 2498–2506.

[21] H. C. H. Chen and P. P. C. Lee, “Enabling data integrity protection
in regenerating-coding-based cloud storage,” in Proc. IEEE 31st Symp.
Reliable Distrib. Syst., Oct. 2012, pp. 51–60.

[22] F. Oggier and A. Datta, “Byzantine fault tolerance of regenerating
codes,” in Proc. IEEE Int. Conf. Peer-to-Peer Comput., Aug. 2011,
pp. 112–121.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BEYOND THE MDS BOUND IN DISTRIBUTED CLOUD STORAGE 3975

[23] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6734–6753, Oct. 2011.

[24] K. V. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar, “Regen-
erating codes for errors and erasures in distributed storage,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2012, pp. 1202–1206.

[25] R. Tandon, S. Amuru, T. C. Clancy, and R. M. Buehrer, “Toward optimal
secure distributed storage systems with exact repair,” IEEE Trans. Inf.
Theory, vol. 62, no. 6, pp. 3477–3492, Jun. 2016.

[26] K. Huang, U. Parampalli, and M. Xian, “On secrecy capacity of
minimum storage regenerating codes,” IEEE Trans. Inf. Theory, vol. 63,
no. 3, pp. 1510–1524, Mar. 2017.

[27] A. S. Rawat, “Secrecy capacity of minimum storage regenerating codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 1406–1410.

[28] S. Shao, T. Liu, C. Tian, and C. Shen, “On the tradeoff region of
secure exact-repair regenerating codes,” IEEE Trans. Inf. Theory, vol. 63,
no. 11, pp. 7253–7266, Nov. 2017.

[29] J. Ren, “On the structure of hermitian codes and decoding for burst
errors,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2850–2854,
Nov. 2004.

Jian Li received the B.S. and M.S. degrees in electrical engineering from
Tsinghua University, China, in 2005 and 2008, respectively, and the Ph.D.
degree in electrical engineering from Michigan State University, East Lansing,
in 2015. He is currently an Associate Professor with the School of Electronic
and Information Engineering, Beijing Jiaotong University, China. His current
research interests include network security, cloud storage, wireless sensor net-
work in Internet of Things, privacy-preserving communications, and cognitive
networks.

Tongtong Li (Senior Member, IEEE) received the Ph.D. degree in math from
Sun Yat-sen University, China, in 1995, and the Ph.D. degree in electrical
engineering from Auburn University, USA, in 2000. From 2000 to 2002, she
was with Bell Labs, and had been working on the design and implementation
of 3G and 4G systems. Since 2002, she has been with Michigan State
University, where she is currently an Associate Professor. Her research
interests fall into the areas of wireless and wired communications, wireless
security, information theory, statistical signal processing, and computational
brain analysis. She was a recipient of the National Science Foundation (NSF)
CAREER Award in 2008, for her research on efficient and reliable wireless
communications. She served as an Associate Editor for the IEEE SIGNAL
PROCESSING LETTERS from 2007 to 2009 and the IEEE TRANSACTIONS
ON SIGNAL PROCESSING from 2012 to 2016, and an Editorial Board Member
of EURASIP Journal on Wireless Communications and Networking from
2004 to 2011.

Jian Ren (Senior Member, IEEE) received the B.S. and M.S. degrees in
mathematics from Shaanxi Normal University and the Ph.D. degree in EE
from Xidian University, China. He is currently an Associate Professor with
the Department of ECE, Michigan State University. His current research inter-
ests include network security, cloud computing security, privacy-preserving
communications, distributed network storage, and Internet of Things. He was
a recipient of the U.S. National Science Foundation Faculty Early Career
Development (CAREER) Award in 2009. He served as the TPC Chair
of IEEE ICNC’17, a General Chair of ICNC’18, and an Executive Chair
of ICNC’19 and ICNC’20. He currently serves as an Associate Editor of
the IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE INTERNET OF
THINGS JOURNAL, ACM Transactions on Sensor Networks (TOSN), and a
Senior Associate Editor for IET Communications.

Authorized licensed use limited to: Michigan State University. Downloaded on June 20,2020 at 02:36:15 UTC from IEEE Xplore. Restrictions apply.

