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ABSTRACT KEYWORDS

We consider a B-spline regression approach toward nonparametric model- B-spline; consistent; GLS
ing of a random effects (error component) model. We focus our attention
on the estimation of marginal effects (derivatives) and their asymptotic
properties. Theoretical underpinnings are provided, finite-sample perform-
ance is evaluated via Monte-Carlo simulation, and an application that
examines the contribution of different types of public infrastructure on pri-
vate production is investigated using panel data comprising the 48 con-
tiguous states in the United States over the period 1970-1986.

JEL CLASSIFICATION
C14; C23

1. Introduction

This article is concerned with nonparametric estimation of marginal effects in so-called “random
effects” panel data settings. There exists an extensive literature on nonparametric estimation of
conditional mean functions using regression spline methods, and a principal focus of this litera-
ture is on estimation of spline coefficients in particular. However, applied econometricians are
primarily interested in “marginal effects,” or equivalently, derivatives of the conditional mean
function, and this has received nowhere near the attention that estimation of the conditional
mean function itself has garnered. Second, in empirical work econometricians often find the
covariance matrix of errors in their regression spline models to be a nonscalar identity matrix
whereas the existing literature on this tends to assume a scalar covariance matrix. Third, nonpara-
metric regression splines have often been considered with only a single-predictor instead of mul-
tiple-predictors. In view of all these, an objective of this article is to develop the estimation of
marginal effects for the nonparametric spline regression model under a nonscalar covariance
error matrix and with multiple-predictors. While this is done in the context of panel random
effect models, the results we develop are general and applicable to a class of econometric models
including cross-sectional model with heteroscedasticity, regression models with serial correlation,
and seemingly unrelated regression models, among others.

The parametric random effects model has been extensively studied from a theoretical perspec-
tive, and is widely used by practitioners; see Baltagi (2013) and Hsiao (2003) by way of illustra-
tion. It is well known that the generalized least squares (GLS) estimator of a random effects
model is asymptotically efficient. Practitioners often find themselves in need of nonparametric
methods for estimating the regression function flexibly; see Wang (2003), Wang et al. (2005),
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Henderson et al. (2008), and Henderson et al. (2008) for nonparametric kernel regression meth-
ods with panel data or longitudinal data. Moreover, Lin et al. (2004) compared smoothing splines
with kernels in univariate nonparametric regression.

It is worth noting that regression splines as another popular nonparametric smoothing tool are
also well-suited to the estimation of random effects models because they involve simple least
squares procedures (i.e., maximum likelihood presuming normality), are simple to interpret, and
are widely embraced by practitioners. For excellent reviews of regression spline methods see
Stone (1985, 1994), Wang and Yang (2007, 2009), Schumaker (2007), Prautzsch et al. (2002), Ma
and Yang (2011), and Haupt et al. (2014). In econometrics, there exists an extensive related litera-
ture on semiparametric and nonparametric series (“sieve”) estimation; see Newey (1991, 1994,
1999), Andrews (1991), Shen and Wong (1994), Chen (2007), Horowitz (2009), and Phillips and
Liao (2014) by way of illustration.

Regression splines are often restricted to settings which involve univariate unknown smooth
functions, see Huang et al. (2007), Wang et al. (2013), and Ma et al. (2016) for their applications in
analysis of longitudinal data. However, in many econometrics applications, multiple predictors are
present. One such case is the multivariate panel data model with random effects, which is the focus
of this article. To this end, we propose to estimate the multivariate unknown regression function
via tensor-product B-splines. We also provide a simple expression for the spline estimator of its
partial derivatives, which are often required to investigate by economic applications. The results
presented here are also applicable to regression splines with a general class of error covariance
matrices. The theoretical properties of the proposed estimators are provided. Finite-sample perform-
ance is assessed via simulation, while an empirical application of the proposed estimator is pre-
sented for a panel data random effects econometric model with four explanatory variables.

Related work has considered the efficient nonparametric estimation of conditional mean func-
tions with panel data and within-group correlations via kernel smoothing. These include Wang
(2003) who considered nonparametric kernel-based marginal estimation for longitudinal/clustered
data, Wang et al. (2005) who studied marginal generalized semiparametric partially linear models
for clustered data, Lin et al. (2004) who showed that a smoothing spline estimator is asymptotic-
ally equivalent to a recently proposed seemingly unrelated kernel estimator of the univariate
unknown function in Wang (2003) for any working covariance matrix, and Henderson et al.
(2008) who proposed an iterative nonparametric kernel estimator for estimating nonparametric
panel data models with fixed effects, by way of illustration.

The rest of the article proceeds as follows. Section 2 introduces the proposed procedure and
outlines theoretical underpinnings; proofs are relegated to Appendix A. Section 3 assesses the
finite-sample performance of the proposed approach via Monte—Carlo simulation and compares
it with popular parametric approaches. Section 4 considers an illustrative application, while
Section 5 presents some concluding remarks.

2. Methodology

In this section, we provide the theoretical foundations of the proposed approach. Four main theo-
rems are developed. Theorem 2.1 presents the asymptotic variance of the spline regression func-
tion along with the order of its bias term, which is asymptotically negligible. We then establish
the asymptotic normal distribution for the spline regression function in Theorem 2.2. Theorem
2.3 presents the asymptotic variance for the estimator of the derivative of the regression spline
along with the order of its bias, while Theorem 2.4 establishes the spline derivative estimator’s
asymptotic normality. In what follows, we assume that T is fixed, but that n goes to infinity.
We consider a nonparametric one-way error component model written as

Yie = m(Xu) + s 1)
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where i=1,..,n,t=1,..,T, Y, is the endogenous variable, X;; = (X1, ...,Xitd)T is a vector of d
exogenous variables, and m(-) is an unknown smooth function. Assume for 1 <s < d, each X,
is distributed on a compact interval [a,, bs], and without loss of generality, we take all intervals
[as, bs] = [0,1]. Moreover, X; = (Xj1,... X;r) , for i =1,...,n, are independent and have the same
distribution. We allow ¢; to follow the random effects specification

&t = Ui + Vi, (2)

where u; is 1.i.d. (0,6%), v; is i.i.d. (0,62), u; and v; are uncorrelated for all i and ¢, and ¢> and
02 satisfy 0 < 02 < 0o and 0 < 02 < 0o. Let & = (611, ... &) be a T x 1 vector, and &, for i =
1,...,n, are independent. Then, V = E(g;:¢] ) takes the form

V = ¢’y + a*1rly, 3)
where Ir is an identity matrix of dimension T and 17 is a T x 1 column vector of ones. The
covariance matrix for & = (g, ....&] ) is

Q=Eke)=LZ/oV,Q'l=IyoV (4)

where A ® B is the Kronecker product of two matrices A and B. By simple linear algebra, V! =
(Vir)y poy = Vily + Va171] with Vi = 0,2 and V, = — (02 + 62T) o202

We use regression B-splines to estimate the mean function m(-) and its first derivative. Let
N = N, be the number of interior knots and let q be the spline order. Divide [0, 1] into (N + 1)
subintervals I = [Xj, Xj+1)’j =0,...N—1,Iy = [xn,1], where {,(]}]Iil is a sequence of interior

knots, given as
L= =A=0<0 < <in<l=)yp="" =N

Equally spaced knots are used to simplify the proof, but our asymptotic results can be extended

to cover alternative regular knot sequences. Define the gth order B-spline basis as By, =

{Bj(x;) : 1—g<j< N}T (de Boor, 2001, p. 89). Let G, , = GE?,;” be the space spanned by B; ;,
and let G, be the tensor product of Gy 4, ..., G4,4, Which is the space of functions spanned by

Bq(x) :Bl,q Q- ®Bd,q

T
d

- {HBjS’q(xs) 1-g<jy<NI1<s< d}

- K, x1

:[{le,__,,jd)q(x) 1-g<j,<N1<s< d}T]

K,x1’
where x = (x, ...xd)T and K, = (N + q)d. Let B, = [{Bq(XH), ...,Bq(XnT)}T} , where X;; =
nTxK,
(X1, .. Xirg) . Then, m(x) can be approximated by Bq(x)Tﬁ, where f is a K, x 1 vector. Letting
Y= [{(Yi,)l <t<T 1 <i<n}T} oy Ve estimate f by minimizing the weighted least squares criterion,
- == nTx
{Y B8} @7 {Y-Bp}.

Then, the estimator E of B solves the estimating equations B;STI{Y — Bqﬁ} = 0, which gives
the GLS estimator

~ -1
B = (BqTQ qu) B/ QY. (5)
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The estimator of m(x) is then given by m(x) = Bq(x)Tﬁ. In de Boor (2001, p. 116), it is
shown that the first derivative of a spline function can be expressed in terms of a spline of one
order lower. For any function s(x)€ G, that can be expressed by s(x)=

Zjl,m)jdajl,W,deth(xl) -+ Bj, 4(xa), the first derivative of s(x) with respect to x; is

. )11
(x, B;,, q(xs
5x5 ZS —2— 421 4<is <N, 1< £s<d it -nia By q-1() a(Xe)

s'sts

. . 1 .
in which @ = (q = (@, _j,js = G 1ie) [ Grg1 = ;) for 2= q<je<Nand 1<

§#s<d1—q<js<N. Leth:(N+q)d_1(N+q—1), and

Bs g-1( [{ By, g-1(Xs) -~ Bjy,q(Xa) }1 gy <N S92 g< <N ||
n

For 1 <s <d, 9% (x), which is the first derivative of m(x) with respect to x,, is estimated as

m 1
6_xm5(x) = Bs,qfl(X)TDs (B‘;Qiqu) BqTQilY,

in which D, = {Insgr @M @ I(N+q)d’S}L xK,’ and

-1 1

0 DY 0
A= Ha—q T1 7 Xo—q
-1 1
0 ... 0
My =(q—1) S

i i

0 0

AN+q-1 — AN  XAN+q-1 — AN (N+q—1)x (N+q)

Let Vm(x) be the gradient vector of m(x). The estimator of Vm(x) is

o T
om om
Vm(x) {axl( ) 8xd( )} ©)
=B ,(x)7 <B;Q’1Bq> _1BqTQ’1Y,

in which B, ,(x) = [{D1 1By1,1(x), ... D jBy1,a(x )HK E For any u € (0,1], we denote by

nX

C*#]0,1]¢ the space of order i Holder continuous functions on [0,1], i.e.,

0, 1)* = {¢ “llo,, = sup l9) = 90 ﬁfl)' < —|—oo}

_ </
x£x, %, X' €[0, 1]¢ HX X2

in which [)x||, = (Zlexf)l/z is the Euclidean norm of x, and [|¢]|, , is the C*#-norm of ¢.
Given a d-tuple o0 = (o, ..., 004) of non-negative integers, let [o] = o3 + - - - + a4 and let D* denote

the differential operator defined by D* = %. The assumptions needed for the asymptotic

M. 9xd
1 Oxy

results are listed below:

(A1) The regression function D*m € C*'|0, l]d for all o with [#] =p — 1 and for a given integer
p > d/2, the spline order satisfies g > p.
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(A2) The marginal density f(x) of X satisfies f(x) € C[0,1)% and f(x) € [cr» Cs] for constants
0<¢ < Cf < o0.
(A3) There exists a positive value # > 0 and a finite positive M, such that E(eit)z(z’q’) < M, for
all 7 and ¢.
(A4) As n— oo, the number of interior knots N satisfies N~'=o{n 1/Crtd}
and N = o{n"/2(logn)'}.

Define
Y= E(B;Q*IBQ), 2 (x) = B,(x) ' E7'B,(x), (7)

0,(x) = {B,,0) =B, ()} (8)

Assumption (Al) is a smoothness condition placed on the regression function, Assumption (A2)
is a condition for the design density function, and Assumption (A3) is a moment condition on
the error terms. These assumptions are commonly invoked in the nonparametric smoothing lit-
erature. The number of interior knots N increases with the sample size n and Assumption (A4)
presents the order requirement for N. Theorem 2.1 provides the asymptotic variance of the spline
estimator of the regression function, and the order of its bias term. Based on Assumption (A4),
the asymptotic bias is negligible. Hence, as a further step, we establish in Theorem 2.2 the asymp-
totic normal distribution of the regression function estimator.

Theorem 2.1. Under Assumptions (A1)-(A4), as n — oo,

i. Var{m(x)} = ¢3(x) +o(n"'N?) for %(x) given in (7), and there exist constants 0 < c; <
Cy < 00 such that

cn 'N? < inf ¢%(x) < sup o*(x) < Con 'NY,
xe0, 1] x€[0, 1)°

ii. SUP, (o, )¢ |E{ﬁ1(x)} —m(x)] = O(N7P).
Theorem 2.2. Under Assumptions (Al)-(A4), as n — oo,
o, (x){m(x) — m(x)} — N(0,1).

Similarly, Theorem 2.3 gives the asymptotic variance of the spline estimator of the derivative

of m(x), @(x), and the order of its bias. Theorem 2.4 further establishes the asymptotic
%%%%Fégyng%ge)r Assumptions (A1)-(A4), as n — oo,

i Var{ﬁn(x)} = ®,(x) + o(n"'N**) for ®,(x) given in (8), and there exist constants 0 <
co < Cp < 00 such that coly < n(N + 1)727d<D,,(x) < Coly, and
E{Tm0 | - V)], = ofN-r1 ).

i sup gy

Theorem 2.4. Under Assumptions (Al)-(A4), as n — oo,
@, (x){ Vm(x) - Vm(x) | — N(0s 1),

in which 04 is a d x 1 vector of 0s.



ECONOMETRIC REVIEWS . 797

Proofs of these theorems are presented in Appendix A. It is worth mentioning that, although,
we assume that the true variance-covariance matrix of the error terms has the exchangeable struc-
ture given in (3), our GLS estimation method indeed can be applied to settings with any given
varjance-covariance matrix satisfying a mild condition.

2.1. Efficiency of the proposed approach: GLS versus OLS

The proposed GLS estimator has smaller asymptotic variance than the ordinary least squares
(OLS) estimator. To see this, using the Cholesky decomposition, we have © = CC'. Then, the
GLS estimator is the same as the OLS estimator by using Y* = C'Y, B, = C'B, and & =

C'e, where Var(¢*) = I, which is
o Tk —Lp* Ty
ﬂ—(Bq Bq) Bq Y'.
The OLS estimator is
n_ *T s\ —1lpxT * *Tpx\—1lpxT *
p= (Bq QBq) Bq QY —{(Bq Bq) Bq +D}Y",
where
_ *T *\—lp*xT *Tpx\—lp*xT
D= (Bq QBq) Bq Q—(Bq Bq) Bq .
* ) * *\—1
Then, DB, = 0. Moreover, Var(f|X) = (BqTBq) , and
n _ *Tpx)—1 *Tx)—1 *\ 1 * *Tpx)—1 T
Var(B|X) = (Bq Bq) +(Bq Bq) (DBq) -l—(DBq)(Bq Bq) + DD
_ *Tp*)—1 T
= (Bq Bq) +DD'.
Therefore,

B,(x) " Var(B|X)B,(x) — B,(x) " Var(B|X)B,(x) = B,(x) "DD"B,(x) >0

2.2. GLS estimator with unknown covariance

In practice, B is infeasible as it depends on V given in (3) which involves unknown parameters
o2 and ¢2. We estimate ¢2 and o2 by the following way. Let &; = Y; — m(Xy), where m(X;) =
B,(Xi)" B and B is the OLS estimator: f = (BTBq)leTY. Thus, o2 is estimated by

7= (T 1)) Y e,

tAt =1

and o2 is estimated by

Ztlz =1 It

Based on the estimated 3i and Ev, we obtain the feasible GLS estimator
SE (-l ) S|
§=(s/a's) B 'Y,

where Q =Iy®V and V = 6217 4+ 62171}, The estimator of m(x) is then given by " (x) =
Bq(x)TﬁF, and the estimator of Vm(x) is
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— ~— -1 ~—
Vm' () =8, (x) (B]2 'B,) BIQ Y.

Theorem 2.5. Under the same assumptions as given in Theorem 2.1, as n — 00,

Lo () sup 1dVar{ (x)} ( “INY)  and SUP, (g, 1 \E{ Fx )} — m(x)| = O(NP);
(ii) o' (x ){ — N(0,1), where 6%(x) is given in (7).

2. (i) sup 601d||Var{Vm x)}l,=0(n"'N**¥)  and supxe[o’”dHE{WF(x)}—Vm(x)Hz:
O{N-(-V}; (ii) q)gl/2 {Vm Vm(x )}—>N(0d,1d), where @, (x) is given in (8).

Let £, = B]Q 'B,a2(x) = B,(0)' S, B,(x) and ®,(x) = {B;_

we have the following results.

T 1o
(x) X, B (X)}dxd' Then,

n q—1

Theorem 2.6. Under the same assumptions as given in Theorem 2.1, as n— oo, (i)

—F
&, 0 — m(o) } — N, 1) i) B, (x )T (x) = Vim(x) } — N(0s 1),
Based on the results given in Theorem 2.6, we can construct pointwise confidence intervals for

m(x) and Vm(x).

3. Finite-sample performance

In this section, we undertake Monte-Carlo simulations designed to assess the finite-sample per-
formance of the proposed approach. We consider both nonlinear and linear data generating proc-
esses (DGPs), and include parametric linear pooled and random effects models by way of
comparison. When the simulated DGP is linear, the linear parametric model that uses this infor-
mation will naturally be more efficient than the nonparametric B-spline approach, so we can
quantify the efficiency loss arising from ignorance of the underlying DGP. When the simulated
DGP is nonlinear, the misspecified linear model will be inconsistent while the proposed approach
remains consistent, so we can quantify the impact of incorrect parametric specification and high-
light potential benefits associated with adopting the proposed approach.

3.1. Nonlinear DGP

We simulate data according to
Y = m(Xy) + &ir
=1+ 2cos (2nXy) + u; + vir,

where X ~ U[0,1],u; ~ N(0,6%) and v;; ~ N(0,02). We let o, = (0,1),0, =1, n = (10,20,30),
and T = (10,20, 30), so the panel size nT ranges from 100 to 900.

For each of the M =10, 000 Monte-Carlo replications, we estimate a parametric linear pooled
model (“Linear Pooled”), a parametric linear random effects model (“Linear RE”), a nonparamet-
ric B-spline pooled model (“B-spline Pooled”), the proposed nonparametric B-spline random
effects model (“B-spline RE”). For the B-spline model, the spline degree and number of interior
knots are selected via crossvalidation. For each replication, we compute the root mean square
error (RMSE) for m(x) as
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n T
RMSE = , | (nT) " >N ((Xa) — m(Xa))”.

i=1 t=1

and RMSE for ﬁn(x) as

RMSE = (nT)*lzn: - (ﬁn(xn)—Vm(X,-t))z.

i=1 t=1

We summarize the nonlinear DGP Monte-Carlo results in Tables 1 and 2. Table 1 reports
median RMSE from the M Monte-Carlo replications for each model. Table 2 reports median
RMSE over all M Monte-Carlo replications relative to that for the proposed random effects B-
spline approach. In the latter table, numbers greater than one indicate that the method specified
in each column heading is less efficient than the proposed method. When ¢2 = 0, there are no
random effects present, so we can gauge any loss arising from the presumption of random effects
when in fact there are none (note that the random effects models are estimated as if random
effects were present). Given that the underlying DGP used here is nonlinear, we can assess how
the proposed method performs as n and T increase, thereby contrasting the consistency of the
proposed method with the inconsistency of its misspecified parametric counterpart.

3.2, Linear DGP
We simulate data according to
Yie = m(Xi) + &t
=14 2X + u; + vir

where X ~ U[-1,1],u; ~ N(0,62), and vi ~ N(0,0%). We let n = (10,20,30), T = (10,20, 30),
o, =(0,1), and o, = 1.

We summarize the linear DGP Monte-Carlo results in Tables 3 and 4. Given that the underly-
ing DGP for this simulation is linear, we can gauge the loss arising from not knowing the true
functional form of the DGP.

3.3. Discussion

Perhaps surprisingly, there is virtually no loss in efficiency for either the parametric or the pro-
posed nonparametric approach when one falsely presumes that random effects are present; see
e.g., the column with heading “B-spline Pooled,” 6, = 0, in Tables 2 and 4. When random effects
are present, however, all random effects approaches are more efficient than their pooled
counterparts.

When the DGP is linear (Tables 3 and 4), the loss in efficiency arising from not knowing the
true DGP diminishes with the panel size (nT). All approaches are consistent in this case (the
parametric model is correctly specified). But when the DGP is nonlinear (Tables 1 and 2), the
proposed approach is consistent while the parametric approach is inconsistent (RMSE does not
fall as either n or T increases).

4. Application to public capital productivity

We now consider a popular panel dataset that covers all 48 states in the continental U.S. over the
period 1970-1986 and revisit a previously examined relationship between public capital and
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Table 1. Nonlinear DGP RMSE (median taken over all M Monte—Carlo replications).

B-spline Linear B-spline Linear
n T pooled B-spline RE pooled Linear RE n T pooled B-spline RE pooled Linear RE
g, =0 g, =0
10 10 0.270 0.271 1.406 1.406 10 10 4372 4375 8.894 8.893
0 20 0.193 0.194 1.410 1410 10 20 2.868 2.878 8.890 8.890
10 30 0.156 0.157 1411 1411 10 30 2.223 2.229 8.889 8.889
20 10 0.193 0.193 1.410 1.410 20 10 2.868 2.886 8.890 8.889
20 20 0.133 0.133 1413 1413 20 20 1.958 1.963 8.889 8.889
20 30 0.110 0.110 1413 1413 20 30 1.661 1.660 8.888 8.888
30 10 0.156 0.157 1411 1411 30 10 2.223 2.218 8.889 8.889
30 20 0.110 0.110 1.413 1413 30 20 1.661 1.666 8.888 8.888
30 30 0.090 0.091 1.413 1413 30 30 1416 1418 8.887 8.887
o, =1 o, =1
0 10 0.451 0.392 1.436 1.433 10 10 5.039 4.649 8.894 8.890
10 20 0.362 0311 1.437 1.436 10 20 4211 3.847 8.892 8.891
10 30 0.324 0.282 1.437 1.436 10 30 3.437 2.663 8.890 8.888
20 10 0.320 0.274 1.426 1.425 20 10 4.258 3.946 8.892 8.890
20 20 0.262 0.226 1.428 1.427 20 20 2.861 2.225 8.890 8.889
20 30 0.231 0.201 1.427 1.426 20 30 2.179 1.829 8.888 8.887
30 10 0.263 0.225 1.423 1.422 30 10 3.661 2.802 8.889 8.887
30 20 0.215 0.184 1.423 1.423 30 20 2.199 1.847 8.889 8.888
30 30 0.187 0.162 1.423 1.422 30 30 1.834 1.546 8.886 8.885
Columns 1-6 present RMSE for m(x), Columns 7-12 RMSE for ﬁ(x).
Table 2. Nonlinear DGP relative median RMSE (relative to the proposed B-spline random effects estimator).
n T B-spline pooled Linear pooled Linear RE n T B-spline pooled Linear pooled Linear RE
o, =0 o, =0
10 10 0.996 5.192 5.194 10 10 0.999 2.033 2.033
10 20 0.998 7.282 7.283 10 20 0.997 3.089 3.089
10 30 0.998 9.002 9.002 10 30 0.997 3.988 3.988
20 10 0.999 7.291 7.291 20 10 0.994 3.081 3.080
20 20 1.000 10.584 10.584 20 20 0.998 4.529 4.529
20 30 0.999 12.856 12.856 20 30 1.000 5.354 5.354
30 10 0.999 9.010 9.011 30 10 1.002 4.007 4.007
30 20 0.999 12.853 12.853 30 20 0.997 5.336 5.336
30 30 0.999 15.607 15.607 30 30 0.999 6.267 6.267
g, =1 g, =1
10 10 1.149 3.660 3.653 10 10 1.084 1.913 1912
10 20 1.162 4.616 4.612 10 20 1.095 2312 2311
0 30 1.147 5.093 5.090 10 30 1.291 3.339 3.338
20 10 1.168 5.200 5.195 20 10 1.079 2.254 2.253
20 20 1.161 6.318 6.316 20 20 1.286 3.995 3.994
20 30 1.149 7.083 7.081 20 30 1.192 4.860 4.859
30 10 1.170 6.328 6.326 30 10 1.306 3.172 3.172
30 20 1.170 7.753 7.750 30 20 1.191 4.813 4.813
30 30 1.150 8.763 8.761 30 30 1.186 5.748 5.748

Numbers greater than one indicate that the estimator listed in the column heading is less efficient than the proposed estima-

tor. Columns 1-5 present RMSE for m(x), Columns 6-10 RMSE for Vm(x).

private sector output. The questions of whether public sector capital is productive and whether
there is a role for the public sector in encouraging private economic performance have been the
subject of much debate and have received extensive attention from economists. Some claim that
public capital has played a significant role in boosting private sector output, while others hold the
opposite view that public capital has been detrimental to private sector productivity.
Notwithstanding these contradictory conclusions, much of this work has been conducted within a
narrow parametric framework that assumes a Cobb-Douglas specification of the underlying
production function. A crucial shortcoming of the Cobb-Douglas functional form is its reliance
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n T B-spline pooled B-spline RE Linear pooled Linear RE n

T B-spline pooled B-spline RE Linear pooled Linear RE

g, =0 g, =0
10 10 0.176 0.177 0.118 0.118 10 10 0.226 0.228 0.117 0.119
10 20 0.122 0.122 0.083 0.084 10 20 0.157 0.157 0.082 0.084
10 30 0.098 0.098 0.068 0.069 10 30 0.120 0.121 0.066 0.067
20 10 0.122 0.122 0.083 0.084 20 10 0.157 0.158 0.082 0.083
20 20 0.085 0.085 0.059 0.059 20 20 0.106 0.106 0.057 0.057
20 30 0.069 0.069 0.049 0.049 20 30 0.088 0.088 0.047 0.047
30 10 0.098 0.098 0.068 0.069 30 10 0.120 0.120 0.066 0.066
30 20 0.069 0.069 0.049 0.049 30 20 0.088 0.088 0.047 0.047
30 30 0.057 0.057 0.039 0.039 30 30 0.071 0.071 0.038 0.038
g, =1 o, =1
10 10 0.369 0.315 0.268 0251 10 10 0.336 0.244 0.160 0.125
10 20 0.310 0.266 0.242 0229 10 20 0.212 0.157 0.112 0.084
10 30 0.288 0.252 0.233 0227 10 30 0.170 0.124 0.092 0.068
20 10 0.259 0.219 0.193 0176 20 10 0.224 0.161 0.111 0.086
20 20 0.226 0.193 0.178 0.168 20 20 0.149 0.106 0.082 0.060
20 30 0.203 0.179 0.168 0162 20 30 0.121 0.085 0.066 0.048
30 10 0.209 0.176 0.155 0.144 30 10 0.181 0.132 0.093 0.070
30 20 0.183 0.157 0.144 0136 30 20 0.120 0.084 0.066 0.049
30 30 0.165 0.143 0.134 0.129 30 30 0.099 0.071 0.054 0.039
Columns 1-6 present RMSE for m(x), Columns 7-12 RMSE for ﬁn(x).
Table 4. Linear DGP relative median RMSE (relative to the proposed B-spline random effects estimator).
n T B-spline pooled Linear pooled Linear RE n T B-spline pooled Linear pooled Linear RE
g, =0 g, =0
10 10 0.995 0.664 0.669 10 10 0.990 0.513 0.520
10 20 0.998 0.683 0.685 10 20 0.998 0.524 0.534
0 30 1.003 0.697 0.701 10 30 0.992 0.542 0.548
20 10 0.998 0.683 0.686 20 10 0.994 0.522 0.526
20 20 1.000 0.691 0.693 20 20 0.998 0.540 0.540
20 30 0.999 0.701 0.701 20 30 1.000 0.538 0.539
30 10 1.000 0.695 0.697 30 10 1.000 0.546 0.549
30 20 0.998 0.700 0.701 30 20 0.999 0.537 0.541
30 30 1.000 0.689 0.690 30 30 0.998 0.535 0.532
o, =1 g, =1
10 10 171 0.850 0.796 10 10 1375 0.656 0.511
10 20 1.168 0.909 0.862 10 20 1.354 0.712 0.535
10 30 1.141 0.924 0.899 10 30 1377 0.743 0.550
20 10 1.180 0.882 0.805 20 10 1395 0.691 0.533
20 20 1.170 0.921 0.872 20 20 1.397 0.770 0.563
20 30 1.138 0.939 0.905 20 30 1.431 0.781 0.568
30 10 1.189 0.882 0.820 30 10 1.378 0.710 0.535
30 20 1.168 0.920 0.871 30 20 1.420 0.785 0.578
30 30 1.152 0.933 0.898 30 30 1.392 0.757 0.554

Numbers greater than one indicate that the estimator listed in the column heading is less efficient than the proposed estima-

tor. Columns 1-5 present RMSE for m(x), Columns 6-10 RMSE for Vm(x).

on the dubious assumption of constant elasticities across all states and years. We follow Baltagi
and Pinnoi (1995) in what follows.

The astute reader may note that, theoretically, we treat the case of increasing n and fixed T,
while this is the case where 1, the number of states, is fixed. However, in any analysis, for a given
sample the number of cross-sectional units is naturally pre-determined, so we beg the reader’s

forgiveness and trust they will indulge us on this issue.

We estimate the B-spline random effects analogue of the model that appears in Baltagi and

Pinnoi (1995),

log (gsp);, = m(log (pcap);;, log (pc),,, log (emp),,, unemp;,) + &,

)
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Table 5. Comparison of elasticity estimates when least-squares crossvalidation is used.

Linear OLS Linear RE B-spline mean RE B-spline median RE
log(pcap) 0.1550 0.0044 0.0230 0.0118
log(pc) 0.3092 0.3106 0.2243 0.2651
log(emp) 0.5939 0.7297 0.8438 0.8348
unemp -0.0067 -0.0062 NA NA
CV-score 0.002576108
CV-degree 1310
CV-segments 11141

Models are pooled linear OLS (“Linear OLS”), linear random effects model (“Linear RE”), and B-spline random effects model
(“B-spline RE,” mean and median values).

Table 6. Comparison of elasticity estimates when least-squares crossvalidation is used.

Linear OLS Linear RE B-spline mean RE B-spline median RE

log(pcap) 0.1550 0.0044 0.0117 0.0439
log(pc) 0.3092 0.3106 0.2836 0.2720
log(emp) 0.5939 0.7297 0.7706 0.7623
unemp -0.0067 -0.0062 -0.0068 -0.0051
CV-score 0.002812414

CV-degree 1211

CV-segments 11111

Models are pooled linear OLS (“Linear OLS"), linear random effects model (“Linear RE"), and B-spline random effects model
(“B-spline RE,” mean and median values). Model is constrained to include all variables (minimum degree is 1).

where &; =u; +v; follows a one-way error components (random effects) specification,
E(vit|xi,u;) = 0 (here, the x; are the state-level predictors listed in (9)), E(u;|x;) = E(u;) = 0, and
m(-) is an unknown function to be estimated along with its partial derivatives (i.e., “elasticities”
for predictors appearing in log form). The variables in the model are “gsp” (gross state product),
“pcap” (private capital stock), “pc” (public capital stock), “emp” (employment), and “unemp”
(state unemployment rate). The B-spline degree and knots are selected via the crossvalidation
procedure that is outlined in Ma et al. (2015). By spline theory, any continuous function satisfy-
ing a mild condition can be well approximated by a combination of a sufficient number of spline
basis functions. However, using more spline functions may over fit the data while choosing less
spline functions may under fit the data. Thus, selecting the right number of spline functions by a
data-driven method is necessary. We apply the crossvalidation method which shows a good
numerical performance, but deriving the corresponding theory such as selection consistency is
very challenging as the variance and bias of the spline estimate involve the number of basis func-
tions in a complicated fashion. Note that Ma and Racine (2013) used the crossvalidation to select
variables, but here we include all the covariates in our analysis without variable selection. We use
a tensor B-spline basis and least squares crossvalidation (we also present as results for Hurvich
et al. (1998) AIC. approach). Mean and median elasticity values are reported for the B-spline
models, and for the sake of comparison, we also present results from the pooled linear and linear
random effects models that assume constant elasticities across all states and years.

Figure B.1 in Appendix B presents mean elasticities by year along with 95% asymptotic confi-
dence intervals when the least-squares crossvalidation method is used to select the B-spline degree
and number of knots. Figure B.3 presents mean elasticities by year along with 95% asymptotic
confidence intervals when the least-squares crossvalidation procedure imposes the restriction that
all variables must be included (minimum degree > 1). Figures B.5 and B.7 present the same
mean elasticities as Figures B.1 and B.3 but in this instance the AIC, approach is used instead of
least-squares crossvalidation. Note that all figures are relegated to Appendix B.

We also present boxplots in Figures B.2, B.4, B.6, and B.8 which are comparable to Figures
B.1, B.3, B.5, and B.7. These figures present robust pictures of the heterogeneity of elasticity
measures among states. Table 5 presents a summary of elasticity estimates (constant over year
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Table 7. Comparison of elasticity estimates when AIC, crossvalidation is used.

Linear OLS Linear RE B-spline mean RE B-spline median RE
log(pcap) 0.1550 0.0044 —0.0980 0.0350
log(pc) 0.3092 0.3106 0.2335 0.2396
log(emp) 0.5939 0.7297 0.8061 0.8120
unemp -0.0067 -0.0062 NA NA
AIC-score -4.919433
AlIC.-degree 2220
AlC-segments 11121

Models are pooled linear OLS (“Linear OLS”), linear random effects model (“Linear RE”), and B-spline random effects model
(“B-spline RE,” mean and median values).

Table 8. Comparison of elasticity estimates when AIC, crossvalidation is used.

Linear OLS Linear RE B-spline mean RE B-spline median RE

log(pcap) 0.1550 0.0044 0.0570 0.0784
log(pc) 0.3092 0.3106 0.2916 0.2627
log(emp) 0.5939 0.7297 0.6931 0.7397
unemp -0.0067 -0.0062 -0.0078 -0.0057
AIC-score -4.820016

AIC.-degree 2211

AlC-segments 1181

Models are pooled linear OLS (“Linear OLS"), linear random effects model (“Linear RE”), and B-spline random effects model
(“B-spline RE,” mean and median values). Model is constrained to include all variables (minimum degree is 1).

and state) from the linear OLS and linear random effects models, and also presents the mean and
median elasticity estimates over state and year from the B-spline model. Table 6 presents the
same results but forcing all variables to be included (minimum spline degree allowed is 1). Both
Tables 5 and 6 use least squares crossvalidation to determine the spline order and degree. Tables
7 and 8 present similar results, but using AIC, to determine the spline order and degree.

4.1. Discussion

The search for an optimal spline degree and number of interior knots is computationally chal-
lenging. Search is conducted over integer space and the objective function is nondifferentiable
and nonconvex. We have four predictors, so if we conduct a search allowing the spline degree to
range from 0 to 15, and the number of interior knots to range from 0 to 15, then, there are over
4 billion possibilities (16% = 4,294,967, 296), rendering an exhaustive search infeasible (we allow
the degree and the number of interior knots to differ for each predictor). We therefore make use
of the NOMAD solver (“nonsmooth optimization via mesh adaptive direct search,” Le Digabel
(2011)), which allows one to conduct a search over high-dimensional constrained integer spaces.
We re-run the NOMAD solver starting from a large number of initial values, which produced the
results that are reported below.

Some general patterns emerge, regardless of whether one forces all predictors to be included in
the model, or whether one uses least-squares as opposed to AIC.-based crossvalidation methods.

1. There is substantial heterogeneity across states in the year-by-year elasticity estimates.
The mean and median elasticity with respect to public capital (log (pc)) is uniformly lower than
in the linear random effects model that assumes constant elasticities across states and year.

3. The mean and median elasticity with respect to private capital (log (pcap)) is, on balance, higher
than in the linear random effects model that assumes constant elasticities across states and year.

4. The mean and median elasticity with respect to employment (log(emp)) is, on balance,
higher than in the linear random effects model that assumes constant elasticities across states
and year.
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5. Some states display negative elasticities with respect to both public and private capital. These
are consistent with the empirical (i.e, raw or nonmodel-based estimates given by, e.g.,
(log (gsp;;) — log (gsp;;_1))/(log (pc;;) — log (pc;_;)), but not reported here).

6. The robust summaries (medians, boxplots) of the nonparametric elasticity estimates by year
are very similar, regardless of whether degree > 0 or > 1, or whether least-squares versus
AIC, crossvalidation is used.

5. Concluding remarks

Applied econometricians typically focus on the estimation of “marginal effects” or derivatives of the
conditional mean function. Though the parametric random effects model has been extensively
studied, many practical problems require nonparametric estimates. It is well known that the GLS
estimator of a random effects model is asymptotically efficient. In this article, we propose an
approach based on regression splines that allows us to directly implement the GLS estimator of the
model’s parameters. In addition, the estimators are computationally attractive and simple both to
implement and to interpret. We establish theoretical properties of the proposed estimators, assess
their finite-sample performance via simulation, and illustrate their application via a widely studied
dataset. The results presented here are also applicable to regression splines with a general class of
error covariance matrices.
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APPENDIX A
A.1. Proofs of main propositions

For any vector { = ({},...{;) €R’, denote the norm by |||, = ({;"+ -+ 1LY < r < oo, ¢l =
max(|{y),..., [([).  For any matrix A= (Ay)5,,, denote [[All,=max;} . [Aj| and A=
sup{||Ax||/||x||, : x € R with ||x]|, # 0}. For any functions ¢, ®, define the empirical inner product and norm
as (@), w =130 (Xit)p(Xir) Vies Hd)||,2”,, = (¢, ¢), . If the functions ¢, are L,-integrable, we define
the theoretical inner product and the corresponding norm as (. @), = E(($.¢), ). |dll5 = E(||5 ). We
denote by the same letters ¢, C, any positive constants without distinction. For positive numbers a, and b,, n > 1,
let a, < b, denote that lim,_., a,/b, = ¢, where ¢ is some nonzero constant. Let h = 1/(N + 1) be the distance
between neighboring knots. Denote by [a] the largest integer not greater than the real number a. For any x, €
[0,1], its location and relative position indices j(x), d(x;) are defined as

J(xs) = jn(xs) = min{ [x,/h], N}, 05(x) = (% = Zjiy } /B (A1)

It is clear that y; (o) < % < Jj,(x)1+1,0 < 0(x5) < 1,V € [0,1), and 6(1) = 1.

Xs

E in (5) can be decomposed into Em and ES, such that ﬁ = EW, + 38 where

B,=X,'B,Q 'mp, =X,'B/Q " (utv), (A2)


http://www.sshrc.ca
http://www.sshrc.ca
http://www.sharcnet.ca
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for X, = B;Q’qu, in which m = {m(X“),...,m(XnT)}T,u = {ul,...,u,,}T ® 17, and v= {v“,...,vnT}T. Then,
m(x) = My, (x) + m,(x), in which

im(x) = By(x) By 1c(x) = By(x)" B, (A3)
Define
B.= Z_IB;Q’I(u +v)= Z_IB;Q’IS, i, (x) = By(x) ' B,
We first present a Bernstein’s inequality in Lemma A.1, which will be used throughout the proofs.

Lemma A.1. (Bosq, 1998, Theorem 1.2). Let ;1 < i< mn, be independent random variables with E(¢;) =0 and

E(&) =02, and let S, =Y &. Suppose Elgf < K2KIEE for some ¢>0, for i=1,..,nk = 3,4,...(Cramer’s
conditions), then,

2
P(IS:| > 1) < ZeXP{*m}
i=1 0j

Lemma A.2. Under Assumptions (A2) and (A4), as n — oo,

max  max (B, g By, jpatnu — (B

nax it B )]
VSIST i, nfgodyoody

= O, (n’lhd log n) 12 },

max — max |<Bj|,...,jd,qvBj’l,...,j;,q>n,tt’ - <Bj >--»,jd,Q’Bj',’---’j;xq%t"
lgw’g'r1],...,14,,/1,...1;

= 0,1 (0 ' log n)l/z},

Proof of Lemma A.2. Let

Gpreotidomtpitt = B g Ki)By g a (i) = B{ By g(Xi)By s q(Xir)}.
For t =, when [j; —ji| > q—1 for some 1 <s<d, th___,jd)jfll___,j;,m =0, when |j; —jl|<g—1forall 1 <s<d,
by the properties of the B-spline basis, there exist constants 0 < cpx < Cpx < 00 and 0 < ¢ < Cy < o0, such that
k k
cakh® < EIBj,, jwq(Xit) By, j,q(Xi)|" < Cpxh and cph®* < |E{3jl,..-,jd,q(Xir)Bj;,u-,j;,q(Xn)}\ < Cph™, thus,

s d gk d
EG, initsoiyint = kBT — Cgh™ > ch?,

for some constant 0 < ¢» < 0o, and E& . ., . < Cpcht.
S ]l,,..,]d,]l,.,.,]d,ltt >

. k _ k K
E|éj],,..,jd,j'1,.,.,j;,m| < 2k 1[E|Bj1,...,jd,q(xit)Bj’,,...,j[,,q(Xfr)| + |E{Bj1,.A.,jd,q(Xit)Bj’l,4..,j’d,q(Xit)}‘ ]
< 2K°1(Cp h? + Cyh™) < ek,

for some constant 0 < cx < 0o. For t# ¢/, there exist constants 0 < ¢, < Cy < o0 and 0 < ¢ < Cy < o0,
/o p2d k 2d /1 1,2dk k
such that ¢ h* <E|B;, j.q(Xi)By, j,q(Xie)|" < Cp i** and ™ < |E{B;, _j,.q(Xi) By, j.¢(Xiw)}" <
Cih?#* . Following the same reasoning as above, one can prove that there exist constants 0 < ci,z and ¢, < oo such
that EC]?1 > C::z m4,  and E|§jl,..,,jd,j/l,,..,j&,itt’|k < c’gkhz‘i. Thus, there exists a constant c¢=

k< ckIEL,

oo i o Jp it

-1 v /-1 E)
max(cgkcg2 €2 )» such that E[;, ;5 il esirdiy ittt < 005 for k> 3. Then, by Bernstein’s

inequality given in Lemma A.1I,

n / hdl
P(”1|ZCJ’1,-»-,J’N§:...,J'fl,itt > {c'n""'hlog "}1/2> <2exp {— o8t }
i=1

4Cp onhd + ZC{C’nhd log n}l/z

_ 2nfc’(4c,g,2)*‘

< 2n7*, for any ¢’ > 16Cz,,

which implies
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n

-1

W G gt
i=1

where the last inequality holds because T is fixed and K, = o(n). Thus, the Borel-Cantelli Lemma implies that

: : gll dgdy oo Jgp it

Following the same reasoning, one can prove that for

—1
ZCJI gy e Jyp i1

iP {max max

=1 SIST i osigod)s oy

> {c’nlhdlogn}l/z} < ZTZKf,n’4 < 00,
n=1

= 0, {(n "hlogn)'/*}. (A4)

max
1<e<T i,

sidls-

= Oa,s,{(n’lhz‘i log n)l/z}.

max
l/t%/<T11, S ,/

Lemma A.3. Under Assumptions (A2) and (A4), for o%(x) defined in (7), o2(x) = Var{in,(x)}, and there exist
constants 0 < ¢; < C; < 00 such that as n — oo,

e 't < inf o2(x) < sup o3(x) < ConthTC
xe[o,1)¢ x€fo,1)*

Proof of Lemma A.3. For any vector a, = {a;, 1-g<j;<N1<s< d}T € R and |[a,||, # 0,

-------

LT
n la" Ta, = Zr = ZJI s fis - s ja Wi s 'E{th___,jd)q(X,‘t)Bjrl)‘_q]-;,q(xit’)vtt/}
:ZZjhm’jmUs_j;‘gq_lajl,...,jdaj’l,.A,,j;E{le,...,jd,q(Xir)Bj’l,.A,,j’l‘,q(xir)}(Vl +Va)
p—
0 3 SR R SR

1At

Moreover, E{Bj,,m,jd,q(X,-t)Bj;,___,j;,q(x,-t)} = h? and E{Bj|,...,jd,q(Xit)Bj’l,...,j;,q(Xit’)} = K24 for t # ¢'. Thus,

1,7
n a,Xa,

- d
= Th ajl)___)jdaj;)___)j;(V1 -+ Vz)
s e jis s <q—1

2d —
+ T(T — l)h Z ajl _____ jda]-/, jt;Vz = A".
Jis e fds i o fly

Then, A, < Thi(Vy + V3)(2q — 1)"a]a, + T(T — 1)i**V,K,a, a, < h%ala, and A, > Thi(V, + V,)(2q — 1)*
azan = hdazan. Therefore, for large enough #, there exist constants 0 < cg < Cp < oo such that

cBhdanTa,, < n’laz):an < CBhdanTan. (A.5)
This leads to

Cp'h %) a, <na]L7'a, < c;'h%aa,, (A.6)
for any vector a, € R¥" and a, # Ok, . As a result, we have for any x € [0,1]%,
C3 h B, (x) " By(x) < nBy(x) 7B, (x) < ¢ 'h B, (x) "By (x),

and by B-spline properties, for large enough #, there exist constants 0 < ¢, < C, < oo such that
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inf B() “1B,(x) > ' th T inf By(x) " By(x) > cnthe

x€[0, 1] x€[0, 1]
sup Bq(x)TZ_qu(x) <cg'n'h ™ sup Bq(x)TBq(x) < Conth7d,
xefo,1]* xefo, 1]

Lemma A.4. Under Assumptions (A2)-(Ad), as n— oo, o,'(x)m,(x) = N(0,1), and sup o, (x)
{a(x)— m,(x)}] = Ops.(n 1214 log 1) = 0,(1).

Proof of Lemma A.4.
7, (x)7i;(x)

=0, (9B, "B,
ZVl X) X ZB it u,+v,,)

T
ZVZB (X ZZBq(Xn)(Vn' + u;)

=1 =1
—Za (x)By x) ho IZB {V1 (ui + vit) +VZZ v,ﬂ+u1)}
o

:E €i»

and {} are iid. random variables with E(e;) = 0. Moreover, E{a’l(x)ms(x)} = 1. By a central limit the-
orem we have that as n— oo, 4 T1(x)r.(x) — N(0,1). Denote ¢, =T Zsz L Vit iv it iy, .
T! ZtT B, ..j«(Xit)i and 9; = {9 ,,. ]d} Then ¥; for i = 1,...,n are independent. Since

n T ZBTQ & _YlilTizZ Zt v Xit Vzr it' Eit/
=n"1T72 ZZ By( Zﬂ Vit, it Ei (A7)
—n’IZT Z By(Xir)gir = n~ Zq?,,

where v, iy is the (it, it’)th component in Q7' given in (4). Note that v; sy = 0 for i # i/. Moreover, E(¢;) =
0, E(ﬁiyjlw-ﬂjd) =0 and

jd =

E(’&t]l 7E T_2 Zle ] th th zt’&zt’)z
tt'=
—2 172 ’ d
Z [E{le wofd Xrt)Vzt it' € zt’} ] < ch
ty =

for some constant 0 < ¢ < co. Let D, = n*h%? with o satisfying « < 1/2,1/2+ (24 #)"" <20, and 1/2n4+1 <
(3 +21n)a, Wthh are satisfied bg any 1 > 0 given in Assumptlon (A3). By Assumption (A4), D, — 00 as n — 00.
Write ¢ Sit T gxt 1 +¢ >it, !2’ where ¢ Sit,1 T vzt{|5;t| > D } and ¢ ‘-’tt 2 - 51[{|>tt| < D } Then

Dijis e = Yisjiy ot T iy njn2 T Dijiy i (A.8)
— T D,
where ’lgi;jl;.,.,jd,l =T ! Et le,..,,jd( i )grt 1)

- D,
Dijiycnja2 = IZle o J (Xir)< >1t2 —E(T IZle o (Xie 51:2)

and Y, ..z = E(T™! Zt i 1,)$52) Since  sup; , iiw] < (Vi + V2) < oo, this together with
Assumption (A3) implies that



808 S. MA ET AL.

(E|git|2(2+ﬂ))l/2(2+rl) S T71 Z:Zl (E‘l/,‘[,i[/giy|2(2+n))1/2(2+”) S (Vl + Vz)M'l/z(2+").

Thus, Elg;["®™ < (V, + V,)*®"M,. Let A, = {max;,, i, |n7' 300 i, w1l > 7™} for any m>0. Since
ci| < D, implies ¢, = 0, and thus, implies AS, then,

E|‘:1t| 2+’1
ZP (An) <ZP l<il > Du) < Z 2(2+'7)

<(Vi + V; )2(2+:7)ann—2a(z+n) )

n=1

o0
S(Vl + VZ)2(2+q)M”Z(n—l/zh—d)brqn—l—5/ < oo,
n=1
by the constraint 1/2 + (2+#) "' < 2o and Assumption (A4), for some finite constant & > 0. By Borel-Cantelli
Lemma, we have that for any m >0,
n! 19

iyjis e jas 1| — Oa.s.(n_m)~ (A.9)

Moreover,

Diivs i3 =B, {T‘ ZB], o (Xit) -..31}
=— E{ T ZBﬁ . zt)>zt 1}

By B-spline properties, we have max;,, . E|B;, . ;,(Xit)| < ¢h? for some constant 0 < ¢ < co. Since

ElcP | =[Elciflcal > Da}]l < (Ele ) 220 (P(|c, | > D)} 20/2CH0)
< (E\ c ‘2(2+'7) ) 1/2(2+n) (E| git|2(2+’1) D;Z(ZM) ) (3+2n)/2(2+n)

SE‘Q,-[|2(2+”)D;(3+2,1) < (V1 + VZ)Z(H”)M,,n*“(HZV’)h7(3+2”)d/2,
Then,

maX E{T IZle ja(Xit) xtl} <T" IZmaxE|B]1 ia (X it)QgH

§C (Vl + VZ)2(2+n)n—x(3+2q)h—(1/2+n)d

:o{ (n"'h?log n)l/z}.

by the constraint 1/257 + 1 < (3 + 2#7)o and Assumption (A4). Therefore,

max|n’12n:19,-,j,,,,,,jd,3|
1o i i=1
<n Zmax { ZBH He.¢ 51}‘:0{(n_1hd10gn)1/2}.

i= 1]1 sJd
Moreover, there exists a constant 0 < ¢ < oo such that E|B;,, _j, (Xy))> < k%, and thus,

(A.10)

E(W;, ) <¢"hE(ci)* < B (Vi + Va)*Elew|®
< (Vi + Vo) M/ = T
where ¢ = ¢"(V, + VZ)ZM,I/(ZH). Also,

(1912]1 ]d;l) SC”th( ) < C”hd(E|” |2(2+11))2/2 2+r7 (|g |>D )(1+;7)/(2+;7)

S (E|gy O (Blg, [ /i
=Eley DA < (Vi Vo) My (7 h2) Y = o),

and
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— T _
E(9}, ) S BT, By(Xu)sin )} = o(n™' i logn) = o(hf).
Thus, for sufficiently large #,
(’[912]1 14,2) <3{E( i1, ) + E(ﬁ
<ac"ne.

i1, ]d,l)+E(1912]1 ]d,S)}

Moreover, by the definition of ¥, . j,2, we have |9 ;2] S2D,,|T’1ZtTthwjd(X,m <2D,, and thus,
E|19,-,jh,_l,jd,2|k < (2D,,)k 2k!E|19,-,}-1,_4“jd,2|2. Therefore, by Bernstein’s inequality given in Lemma A.1, we have for a

given finite constant C >0,
C?nhd1
P( EC(nhdlogn)l/Z) <2expq — " osn 7 (-
16¢"'nh? + 4CD, (nh®log n)

Since D, (nh“ log n)l/ > = o(nh), then, for sufficiently large n, we have

- Ctnh’1 2 (177
P( > C(nhdlogn)l/2> < 2exp {—w} =20~ /) < ot

D Dijiia? 17¢" nhd
for C > 2v/17¢”. Then,

i f1s e fids 2

i=1

i=1

n 2:791]1 wjdr2

i=1

o0
E P| max
n=1
J1>-o)d

> C(n'h? logn)1/2>

oC
<2) Kyt < oo,
n=1

Thus, the Borel-Cantelli Lemma implies that

n
-1
n E Dijiynjnn2
d i=1

max

= O“_S_{(n_lhdlogn)l/z}. (A.11)

Therefore, by (A.7), (A.9), (A.10) and (A.11), we have ||n’ll?-TQ’ls||OO = Oa,S,{TZ(n’lhdlogn)l/z}. Since T is
fixed, then,
I BT (vl = BT

(A.12)
- O“-{Tz (n'h"log ”)1/2} = Oa.s.{(n’lhd log n)l/z}.

For any vector a, = {a;, j,:1—-¢<j; <N1<s< d}T € R with |[a,||, = 1, we have

\azn’l(zn —X)a,|

T
_‘ § T TI PL — E
o=

jl)-'->j11)j,p'"j£1 1

( wiva By gwadni = Biijva Byt )rﬂ)vﬂ’

T
< ajl,..-,jdaj’l,...,jgz((le,...,jdwBj’l,...,j;,,q>n,tt - <Bj1,...,jd,qvBj;,...,j;,,q>n>
Jus wwesjas is—fi|<q—1 =1
X (V1 -+ Vz)
+ Z i, ja Y,y Z ((le jas @ B’ ,j’d,q>n,zt/ - <B]‘|,---,]‘d:ﬂI‘Bj/l,--»,j,d)q>tt’> Vi
Juseesasfys ofy t#
<T(2q - 1) a 4, max max <<Bj1,...,jd,q B/ wilp q>n,tt - <Bf|,..-,jd,q B’ ol q) )
SIST s sgo s )
X (V1 -+ Vz)

+ T°K,a,a, max  max (B, ...ja Bj’l,u-,j:i,q>n,tt’ — (B, ...jnq By, ,j,’,,q)tt/‘vl

# i, ,J‘m’l, ..,’d
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The above result together with Lemma A.2 and Assumption (A4) imply that

layn ' (Z, — L)a,| =0, { (n’lhd log n) 1/2} + O(h’d)Oa_s.{ (nithd log ")1/2} (A.13)
=0, { (n’l log n) 1/2} = om(hd). '

By the above result and (A.5), we have with probability 1, as n — oo,cBhdanTa,1 < n’la;E,,an < CBhda;a,,, and
thus, for any vector a, € R¥ and a, #0,

lh_ aja, <al (n~ 'y,) ta, < I “lpd aa,. (A.14)
Therefore, by the result in Demko (1986) together with (A.6) and (A.14), we have

107E) Ml = O [0 E0) |, = Oue (). (A.15)

Following the same reasoning as the proof for (A.13), we have Hn’l():an)HOC=Oa_s_{(n’llogn)1/2}.
Therefore,

sup |mg(x) — m,(x)]

xE[O,l]d

= sup [B,(x)"(Z,' —T7)B/Q (u+v)|
x€[0,1)*

< supd\qu(X)HlHn’l(Zn—Z)Hoc\l(n"zn)’lIIxH(n’IX)’IHxHn’quTQ’l(u+V)Hoc
x€[0,1]

= 0, (n’l log n) 12 }OM (h’Zd)O“ { (n’lhd log n) 1/2}
= O, (n_lh_3d/2 log n) .

By the above result and Lemma A.3, one has sup,_j, ,«|0,,! (x){1,(x) — 111,(x) }| = Ops.(n"V2h 4 logn) = 0,(1)
by Assumption (A4). Therefore, by Slutsky’s theorem, one has as n — 00,0, (x)m,(x) — N(0,1).

Lemma A.5. Under Assumptions (A1), (A2), and (A4), as n — oo,supxe[o,l]dr?lm(x) — m(x)| = Og. (HP).

Proof of Lemma A.5. By Theorem 12.8 and (13.69) of de Boor (2001), there exists B e RY such that
supxe[o,l]qu(x)Tﬁ—m( )| = O(h?). Moreover, by B-spline properties, we have supxe[o’l]dHBq(x)H1 =0(1) and

max; <i<p, 1<r<1|| E{By(Xit) }||.c = O(h?). Following the same reasoning as the proof for Lemma A.2, we have

n

ol Z [Bq(xit) _ E{Bq(X,‘I)}} H \‘ = O“,{(rrlhd logn)l/Z}.

i=1

max

1<t<T

Thus,

<T max

1<t<T

”ZZB )

i=1 t=

n- ZB
. IZ ~E(B,(X, )}]H CT max [E(B,0)}.

<T max

1<t<T 1<i<n, 1<t<T

=0, {T(n"'hlogn)'*} + O(Th) = O(TH) = O(K?),

by Assumption (A4) and the condition that T is fixed. Then, Sup,cjo, 1d|mm(x) — m(x)| equals to
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sup, ¢/By(x) ' E; ! (B2 ' m) — m(x)|
< sup, el By(x ) L, (B] @ 'm) — By(x) ', (B, Q"B
+sup, (g, 1]d|Bq(X z (BJQ*IBLI@ — m(x)|

= sup \Bq(x)TZJI{B;Q”(m—B;ﬂ)}|+ sup |By(x)" B — m(x)|.

xelo, 1) xelo, 1)

(A.16)

Thus, by the above results together with (A.15), we have that with probability 1, there exist constants C;,C, €
(0,00) such that

SUPxe(o, 1) |1 (x) — m(x)]|

< Cisupcg By 11720 o o ”ZZB

i=1 t=

= 0(1)O(h~)O(hO(K?) + O(H) = O(KP).

W+QW

Proof of Theorems 2.1 and 2.2. Theorems 2.1 and 2.2 follow from Lemmas A.3, A.4, and A.5.

Proof of Theorems 2.3 and 2.4. The proofs of Theorems 2.3 and 2.4 follow reasoning that is similar to the
proofs of Theorems 2.1 and 2.2, and are omitted here.

Proof of Theorem 2.5. We will show the results in given in 1. Proving the results in 2 will follow the same
strategy, and thus, is omitted. By the definition of 62, we have 02 = {T(T — 1)} 'n"'Y, 20 2oizy E(eirein). Define

_{T _1)} ! _IZ[#,Z Eit&ip'

Then, 2 — 2 can be written as

~ — n —

Gt—c=n" zi:1{T(T_ 1)} lzt#{sita,-y — E(&iéir) }-
Let i,‘ = {T(T — 1)}71293' {Sitgit’ — E(E,‘tSiﬂ)}. Then,

~ _ n
D Yt 17

It is clear that E(&;) = 0. Moreover, &; is a function of ¢, and & for 1 < i < n are independent, so that &; for 1 <
i <n are independent. Let D, = n* with o < 1/2,(2+#) > 1 and a(1 +n) > 1/2, which are satisfied by any
n > 0 given in Assumption (A3). Write

&=+ &+ EDs, (A.18)
where &} = &{|&] > Da}, &3 = &{&] < Da} — &3, &5 = E[E{|&| < Dy}]. Since

(El¢ ‘zw)l/ 2+41) {E\{T -1} ZS"Sm -0 2+n] 1/(2+n)

tAY
(T = 1)} ELS eV 462
£
<T(T =)} Y (Blan )Y + 62 (A.19)
1
<{1(T - 1)}—1 Z (E|8it‘2<2+ﬂ))l/2(E|8it'|2(2+ﬂ))1/2 + o2
t#t

<{T(T - 1)} {T(T - 1)}M/* M) + o,
where the last inequality follows from Assumption (A3), then,
& < (My + 02)%.

let A, = {|n7' 30, étD | > n~™} for any given m > 0. Since |&;| < D, implies that é?'{ =0, and thus, AS, then,
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o0 oC
> _P(A4) SZPum > D)
n=1
E|G _ 2\@ )~ —a(2-)
<Z i < < (My + o) P "0 < oo,

n=1

Therefore, by Borel-Cantelli Lemma, we have that for any m >0,
P = O (7). o
Moreover, ffg = E(&) — E[E{|&)] > Du}] = —E[&{|&| > D,}]- Since
[E[E{ISi] > Da}l S{E\§i|(2+”)}

1/(
S{E‘§i|(2+”)}
§E|€i|(2+ﬂ)D;(l+ﬂ) < (M” + O_i)(2+n)n_a(1+,1)’

/(2+4n)

{P(&] > Dy

) (E|&,| @+ py @tm)y (1t @+n) (A21)

then,

_ n.p, _ n X _ n .
Tty sl <nTt Y el = a7t Yy B IG] > DAl

(A.22)
S(Mr, +O_i)(2+n)n—u(l+ﬂ) _ 0(1’171/2).

Following the same reasoning as the proof for (A.19), we have

(B <AT(T =D} 'Y Elewsa)* + o

1/2
- ny 1/ (2+n) 1/(2+n)
<(rr-ny'yY,, [{E(ef»“]} B e
SM;/Z(H")M;/Z(H") +ot = M}l]/(2+n) +g?
so that E&? < (M}/(H") +062)* < o0. Also,
E(E)? <(EIEPYCP(g| > D, )"
S(BIGPE Ee Dy e
=E|& D, < (My + o),
and by (A.21),
()’ < |ELE{I&] > DI < (M + a3) P 020,
Hence, for sufficiently large #,
E(&3)" < 3{EE” + E(E)) + E(¢)*} < 4(My/*H) + 67)2.

Moreover, by definition of ¢, we have E|¢%3|* < (2D,)* 2E(E%;)* < (2D,)F *KIE(E%;). Thus, by Bernstein’s
inequality given in Lemma A.1, we have for a given finite constant C> 0,

C’nlogn
16n(My/*™ + 62)? 4 4CD,,(nlogn)"/* |

P(D "0 &5l > Clnlogn)'?) < 2exp {
Since D, (nlog n)l/2 = n**1/2{]og (n)}l/2 = o(n), then, for sufficiently large n, we have
P(

< 2exp —% — o CHIM 1’2+'7)+ai)2}.
- 17H(M,17/(2+’7) +6i)2

n

o

i=1

> C(nlogn)1/2>

Choose a C satisfying C > 17V/2(M}/ ™ + 62). Then,

Z <|211§ |>Cnlogn)1/2) 00,
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so that
n D Bl = Ous{n ' (logm)'?}. (A.23)
Therefore, the results (A.17), (A.18), (A.20), (A.22) and (A.23) immediately imply that
62 — 62| = O {n"/*(logn)'/*}.
Moreover,

Gy — Gl {T(T -1} _IZZ\ZM i) {m (Xir) — m(Xa) }|

i=1 t=1

+{T(T ln’IZZ{m(X,,) — m(Xi) )
i=1 t=
It is clear that the results in Lemmas A.3, A.4 and A.5 still hold by letting £ =1, and we have sup,_, ,« |n(x) —
m(x)| = Ops.(n ’l/sz/Z(logn)l/z + N77). Thus, |62 — 62| = O,”_(n’l/sz/z(logn)l/2 + N7F), and
Gl — 0% <62 =62 + |62 — 02| = O, (n’l/sz/z(logn)l/Z +N’P>. (A.24)

Similarly, we have
\3?, — 62| = Oy (n’l/sz/Z(log n)l/z +N’P). (A.25)
N ~F ~F ~F
By the same strategy as given in A.3, we decompose as i (x) = m,,(x) + m, (x), where

A (x) = B,(x) By i (x) = By(x) B,

and

in which £, = B;ﬁiqu. By the definitions of 7' (x) and 7,(x), we have

~F

m, (x) = me(x) = @1(x) + wa(x),
where
oi(x) = B,(x) 'L, 'B] (@ —Q ),

m(x) = By(x) (£, —L,)B]Q .

n

Denote A = {A;; v} = ﬁi1 — Q7' Then,

~—1 _ B
n_lB;(Q —Q He=n"" l_,”/B (Xie ) A, iv €t

:(Ei + 3V — O'u — aﬁ)n’lziztlg Xir)eir + ( a — a IZ Zt#t, Xir )i

By following the same arguments as the proof for (A.12) with Q! replaced by Inr or Iy ® 171;, we have

71228 it ‘CttH 7Oa_$_{(n*1hdlogn)l/2}’
17 20> By(Xie)eulloe = Ous ("ﬂhdlogn)l/z}_

i tE
Thus, by the above results together with (A.24) and (A.25), we have
lln"'B, (!Afl —-Q el :O(n’l/sz/z(log m'? 4+ N’P> Ous. { (n"'hlogn) 1/2}
=0, (n " logn).
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The above result and (A.15) lead to

~—1

eI GO, L B (@ — e
:O“'s'(nilhid log 1’1) = Oa.s.(nil/zhid/z),

| (x)

P01 S0P - (A26)

and
I BJQ el <l B (@ — Q7 el| + [l By Qe
=0, (n" " logn) + Ou_s_{ (n'hlog n)l/z}
:Ou_s,{(n’lhd log n)l/z}.
Moreover,

[l (0 = Za)ll

nt Zle,A,.,jd, q(Xit)Bj/l, ...,j’d,q(xiz)

i=1
+ T’K, max max

A g, }

Since E{Bj, ..js.q(Xit)By;, .1, q(Xit) }= O(h%) and E{Bj,, ..jnaXi) By, .1, q(Xir) }= O(h?*) for t# ¢, this result
together with Lemma A.2 implies that there exists a constant C € (0, 00) such that with probability 1,

<(]62 = *| + |52 - ai\){T(Zq - l)d max max

1SIST jy,.

sy dly

n
n! Zle,...,jd,q(Xit)Bj’l, ...,j;,q(Xit’)
i1

I (0 = Lol <C(5% — 0ol + [67 — a2 {T(2q — 1)*h' + T°K,h*}
=O<n’1/2Nd/2(log n)'/? 4 N’P> o(N).
Hence,
SUP, (g, 141 @2 (%)
]‘fIIB’q(X)IIIH(n”fn)"IIOQII(n”En)’1 loolln ™ (0 — Zn)l\xl\n"B;ﬁqum

< SUPyefo, 1

(A27)
= 0, (N0, (N))O,.. (nfl/sz/z( logn)"/? + N’P> Ops (N0, { (n"'hlogn)" 2}

= Oa;,(n’l/sz/z)Oa,s,{n’l/sz/Z log(n)} = oa,s,(n’l/sz/z).
Therefore, the above results imply that

SUp, (o, l]d\rﬁf(x) — my(x)] §supx6[0) l]d|w1(x)\ +sup o, 1]4|a)2(x)|

=0, (n™1/2N2),
Next, by the definitions of 7} (x) and i, (x) and the same decomposition as given in (A.16), we have
Sup, (g, 10| {71, (x) = m(x)} = {7 (x) — m(x)}|
< supxe[o’l]d|8q(x)-r§;l {B;(Af1 (m - B;ﬂ) } - l’)’q(x)T):.;1 {B;Q’l (m - Bgﬁ) }|
+2sup, 5 14/ By(x) " B — m(x)|.
Following the same reasoning as the proofs for (A.26) and (A.27), we have
-2 (m-B/B)|

= O ()04 (K)0p (2N (log m) 2 4 N7) 0, (N 7) = 0, (N 7),

~—1

supxe[o,1]4|Bq(x)TZ;1B;(Q

~—1 ~—1
sup,o, 1B, (®) (£, —E,)B]Q <meqTﬂ)|

x€(0, 1

O4s. (N1 O, <n’1/2N‘i/2 (logn)"/* + N’P> Ous. (N0, (N0, (N0, (N?)
= Og.s. (N_P) .
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Thus, the above results imply that
Supxg[o) l]d |1’71£/‘(X) - ﬁqm(x)‘
= supy g ol {1, (%) — m(x)} — {7t () — m(x)}]
= 045 (N?) + 04 (NP) = 04 (n™/2N"2).
Therefore,
S0P, o, 1" () — (x|

< supyjq el (X) = 1 (X)] + supy g el (X) — i (x)] = 0.5, (n~V2NA2).

Hence, the result 1 of Theorem 2.5 follows directly from the above result and Theorem (2.1).

Proof of Theorem 2.6. By the result given in Theorem 2.5, there exists a constant C € (0, 00) such that

sup E[G,' (x){(x) — m(x)} — o, (x) {7 (x) — m(x)}|

xe[0,1]*
~— _ 1/2 ~ 1/2
< sup {El7," (x) - 0 ()} Bl (x) — m(x) "}
x€[0,1]*
<Cn AN sup {Ef7,' (x) — 0, (0P}

xe[0,1)¢
Moreover, by the result in Lemma A.3, we have
SUPc o, l]d\ﬁn(x) —0,(x)| < sup o (x)|52(x) — o2 (x)|
xe0,1]¢
<¢,"Pu' PN sup [6,(x) — 0 (%)),

xe[o, 1)

and by (A.24) and (A.25), we have sup [67(x) — 62(x)| = 045.(1). The above results imply that
xe[o, 1]

s[up]dE|<A7;1(x){ﬁ1(x) —m(x)} — o, (x){m(x) — mx)}| = o(1).

Then, (i) in Theorem 2.6 follows from Slutsky’s theorem. The proof of (ii) follows the same procedure, and thus,
is omitted.

APPENDIX B

B.1. Least squares crossvalidation (degree > 0)

Figures B.1 and B.2 present results for for the case where least-squares crossvalidation is used and where the
degree of the polynomial can be zero, thereby allowing for the removal of variables from the resulting estimate.
Figure B.1 presents the mean elasticities along with asymptotic 95% confidence intervals, while Figure B.2 presents
boxplot summaries which highlight the median and interquartile ranges.

B.2. Least squares crossvalidation, all variables forced to be relevant (degree > 1)

Figures B.3 and B.4 present results for the case where least-squares crossvalidation is used and where the degree of
the polynomial is > 1, thereby forcing all variables to be included in the resulting estimate. Figure B.3 presents
the mean elasticities along with asymptotic 95% confidence intervals, while Figure B.4 presents boxplot summaries
which highlight the median and interquartile ranges.

B.3. AIC. crossvalidation (degree > 0)

Figures B.5 and B.6 present results for the case where AIC. crossvalidation is used and where the degree of the
polynomial can be zero, thereby allowing for the removal of variables from the resulting estimate. Figure B.5
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T Average B-spline RE (0.02304) 030 T }— ATM .BspTeT}zr.‘z- 43)
- 025

0.0 — 0.15 —

0.10 —

Elasticity (private capital stock)

Elasticity (public capital stock)
=
|
—» —
—
— e ——
[
’;4
—_
bt
}__
—_
_
—_
—

0.05 — -

I
k

1971 —
1972 —

1970 —
1973
1974
1975 —
1976 —
1977 —|
1978 —
1979 —|
1980

1981 —
1982 —
1983

1984 —|
1985

1986

1970 —|
1081 —

T T T
» o &% o ow oo
i 2 22 2R
= s 2 g 2g8¢% 3
@282 23 g2
Year Year

Heterogeneity in Employment Elasticity

—— Bspline RE T —
LinearRET(0.7297]
Average Bispline RE (0.8438)

0.9 —

Elasticity (employment)

n
|

0.6 —

1970 —
7
1973 —
1974 —
1975 —
1976 —
1977 —
1978 —
1979 —

1980
1981 —
1982 —
1983
1984 —
1985
1986

[
Year

Figure B.1. Heterogeneity in B-spline RE elasticity estimates by year (solid line with dots is the average taken over state elastic-
ities by year, vertical bars show 95% confidence intervals). Horizontal lines represent Linear RE estimates and average of mean B-
spline RE estimates taken over both year and state.

presents the mean elasticities along with asymptotic 95% confidence intervals, while Figure B.6 presents boxplot
summaries which highlight the median and interquartile ranges.

B.4. AIC,. crossvalidation, all variables forced to be relevant (degree > 1)

Figures B.7 and B.8 present results for for the case where AIC, crossvalidation is used and where the degree of the
polynomial is >= 1, thereby forcing all variables to be included in the resulting estimate. Figure B.7 presents the
mean elasticities along with asymptotic 95% confidence intervals, while Figure B.8 presents boxplot summaries
which highlight the median and interquartile ranges.

B.5. Individual model summaries

Tables B.1 and B.2 present results for the pooled and random effects linear parametric specifications.
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Figure B.2. Heterogeneity in B-spline RE elasticity estimates by year (boxplots). Horizontal lines represent Linear RE estimates

and average of mean B-spline RE estimates taken over both year and state.
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Figure B.4. Heterogeneity in B-spline RE elasticity estimates by year (boxplots). Horizontal lines represent Linear RE estimates
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and average of mean B-spline RE estimates taken over both year and state.
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Figure B.7. Heterogeneity in B-spline RE elasticity estimates by year (solid line with dots is the average taken over state elastic-
ities by year, vertical bars show 95% confidence intervals). Horizontal lines represent Linear RE estimates and average of mean B-
spline RE estimates taken over both year and state.



ECONOMETRIC REVIEWS 823

Heterogeneity in Public K Elasticity

Heterogeneity in Private K Elasticity

Average B-spline RE (0.2016)
T
|
|
|
|
|
|
L

Linear RE (0.3105)

: DT
S D0 - -
gz L0+
e b b
sy DO+
2y r---[F---+
4 ~---C1----
Fit = = b ]

1.0
05
0.0 —
205 —|
1.0

(50098 repden orearrd) Ayorysery

9861
G861
V861
€861
7861
1861
0861
6261
8L6T
LL6T
9L6T
GL6T
VL6T
€L6T
TLOT
1261
06T

9861
G861
V861
€861
T86T
1861
0861
66T
8L6T
LL6T
9261
GL6T
VL6T
€61
TL6T
1261
06T

Year

Year

Heterogeneity in Unemployment

Heterogeneity in Employment Elasticity

T

Linear RE (-0.006172)

ine RE ( %[][)784)
T |
! |
! |
! |
[ m
T
Pl
n |
|
|
|
|

Average B-spl
TF 7 Ilr
! I
I
I
gy
| [
I I
I 1
L

0.02 —
0.00 —
0.02 —
0.04 —

JuotuAorduwau )

Linear RE (0.7297)

F--Cx)----4

- J---+
Fo-- DT - - -
B

TAverage B-spline RE (0.6931)
T
|
|
[
|
|
il

(yuowfordmo) £jorisersy

9861
G861
¥86T
€861
T861
1861
0861
6L6T
8L6T
LL6T
9L6T
GL6T
VL6T
€L6T
TLGT
TL6T
0L6T

9861
G861
7861
€861
[4:
1861
0861
6L6T
8L6T
LL6T
9L6T
GL6T
VL6T
€L6T
TL6T
1L61
0L6T

Year

Year

Figure B.8. Heterogeneity in B-spline RE elasticity estimates by year (boxplots). Horizontal lines represent Linear RE estimates

and average of mean B-spline RE estimates taken over both year and state.

Table B.1. Linear parametric pooled OLS model.

Pr(> t|)

t value

Std. Error
0.0576
0.0172
0.0103
0.0137
0.0014

Estimate
1.6433
0.1550
0.3092
0.5939

-0.0067

0.0000
0.0000
0.0000
0.0000
0.0000

28.54

(Intercept)
log(pcap)
log(pc)

9.04
30.10

43.20
-4.75

log(emp)
unemp

Table B.2. Linear parametric random effects model.

Pr(> t|)

t value

Std. Error
0.1335
0.0234
0.0198
0.0249
0.0009

Estimate
2.1354
0.0044
0.3106
0.7297

-0.0062

0.0000
0.8497
0.0000
0.0000
0.0000

16.00

(Intercept)
log(pcap)
log(pc)

0.19
15.68
29.28

-6.80

log(emp)
unemp
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