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Summary

An online identification and control scheme based on a wavelet neural network
(WNN) and model predictive control (MPC) are presented. The WNN comprises
a backpropagation neural network with wavelet activation functions and a parallel
feedforward term. The WNN is used to identify the structural system, and the model
is used to provide the predictions for MPC. The backpropagation network parame-
ters and the controller are trained by the gradient descent algorithm to minimize per-
formance indices. The feedforward component is trained using recursive least
squares. The latter is found to drastically reduce the number of hidden layer neurons
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and significantly reduce the computational load of the neural network. Due to the
general structure of the controller, its performance is satisfactory even under the

Funding information strict condition imposed by a fixed learning rate. The efficacy of the control was

Departments of Civil and Environmental demonstrated through a series of computational simulations of a 5-story seismically
Engineering; Electrical and Biomedical . . . . . ]
Engineering isolated structure with conventional lead-rubber bearings. Significant reductions of

all response amplitudes were achieved for both near-field (pulse) and far-field
ground motions, including reduced deformations along with corresponding reduc-
tion in acceleration response. In particular, the controller effectively regulated the

apparent stiffness at the isolation level.
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1 | INTRODUCTION

Seismic isolation is recognized as one of the most effective mitigation strategies for structural and nonstructural systems.[l’z] In
general, seismic isolation systems shift the fundamental period of the isolated structure away from the range of predominant
excitation periods, which results in reduced acceleration demand. However, as a result of the lengthened period, the base dis-
placement of the isolated system becomes larger and, in some cases, may lead to instability of the isolation system. This issue
arises in case of near-field ground motions, which are dominated by long-period velocity pulses. For the case of long period
structures, the velocity pulse tends to develop large displacements.”®! The pulse displacement is usually associated with the
fault-normal direction, where high spectral acceleration components are observed in the long period range."*! These long period
spectral acceleration components tend to resonate with conventionally isolated structures, leading to an excessive base displace-
ment that may destabilize the structure. To maintain the isolation deformations to within acceptable limits, two potential alter-
natives are to increase the effective stiffness of the isolation system or to provide additional damping mechanisms. However,
increasing the stiffness is counterintuitive. For this reason, many of the isolation systems provide various sources of damping
mechanism to overcome the unacceptably large isolation deformations."! This damping may be provided by the isolator directly
or by means of supplemental damping devices. However, increasing the damping capacity of the isolated structures by means of
supplementary dampers leads to an increase in the superstructure's accelerations and interstory drifts.'! In such circumstances,

Struct Control Health Monit. 2017;¢2061.
https://doi.org/10.1002/stc.2061

wileyonlinelibrary.com/journal/stc Copyright © 2017 John Wiley & Sons, Ltd. 1of 15


http://orcid.org/0000-0001-7386-2785
http://orcid.org/0000-0002-9745-1603
http://orcid.org/0000-0002-3865-2499
http://orcid.org/0000-0001-9550-7020
mailto:pekcan@unr.edu
https://doi.org/10.1002/stc.2061
https://doi.org/10.1002/stc.2061
http://wileyonlinelibrary.com/journal/stc

20f 15 Wl LEY KHODABANDOLEHLOU Et AL.

conventional seismic isolation systems alone, such as rubber bearings and friction pendulum, may not be the best alternative for
seismic response mitigation.

Various alternative hybrid strategies have been proposed and studied analytically and experimentally to overcome the short-
comings of the conventional seismic isolation system (e.g., large isolator deformations). Some of these strategies combine con-
ventional isolation system with actively or semiactively controllable devices.”~'®" Furthermore, control strategies using
adaptive neural networks and their application in various types of structural systems, including seismically isolated structures,
have been extensively studied during the last two decades.”!’* Although varying levels of response reduction have been dem-
onstrated by means of active control strategies, there is still a need to develop efficient, consistent, and robust techniques to
address the issues stated earlier.

Despite the availability of various adaptive control methods, their application requires an accurate mathematical model of
the system.*>! However, model uncertainty or unmodeled dynamics in real-world applications can cause a deterioration in
the performance of model-based control systems. This makes model-free methods more attractive. Artificial neural networks
can accurately approximate nonlinear systems and have therefore received considerable attention in the identification of nonlin-
ear systems. Han et al.l*®! designed a generalized predictive controller for a second-order nonlinear system based on a
feedforward neural network identifier. Their simulation results show that neural network control is robust and can meet the
design specifications.

The main drawbacks of neural networks are their slow convergence rate, multilayer structure, and computational complexity.
Zhang and Beneveniste*’! proposed wavelet networks to eliminate or mitigate these disadvantages. Wavelet networks use
wavelets with different scale and shift parameters as activation functions and are thus a good alternative to neural networks
for identification of nonlinear systems. They also argued that in higher dimensional problems, wavelet networks typically
have fewer hidden layer nodes than other neural networks.

The published research on the development and application of wavelet neural network controllers and system identification
is abundant. Sousa et al.”?®! identified the model of a robot using a wavelet network and used the identified model to design a
dynamic controller. They proved the stability of their controller using the second method of Lyapunov. They argued that in spite
of the difficulty of their design and stability analysis, wavelet network controllers provide more flexibility than standard adap-
tive control approaches. Zayeni and Ahmadi'*”' applied a radial wavelet network to the identification of nonlinear system. The
structure and learning method of their network are similar to those of radial basis function networks, but their activation func-
tions are wavelets. Simulation results show that these networks can identify models of complex nonlinear systems.
Khodabandehlou and Fadali”®! used wavelet network and generalized predictive controller for online identification and
networked control of an unmanned vehicle. Their simulation results show satisfactory performance under fixed and random net-
work delay. For more publications on the application of wavelet networks to system identification and control, interested readers
are referred to previous studies.***!= 4]

This study proposes a new model predictive controller (MPC) that uses a wavelet neural network for output identification of
nonlinear dynamics and uses it for MPC control of seismically isolated structures. The wavelet neural network includes a back
propagation neural network and a feedforward term trained using recursive least squares. This configuration reduces the number
of hidden layer nodes significantly. The computational complexity of the error backpropagation algorithm is O(n*) with n hid-
den layer nodes. Consequently, reducing n reduces the computational complexity of the wavelet neural network drastically and
allows its utilization in online identification and control. This parallel configuration is, to the best of our knowledge, new and is
one of the main contributions of this paper. In addition, this paper presents the first application of this new configuration to
seismically isolated structures. The approach is applied computationally to the control of a seismically isolated five-story struc-
ture subjected to ground motions with both far-field (FF) and near-field (NF) characteristics. Simulation results demonstrate that
significant reductions of all response amplitudes were achieved particularly for near-field (pulse) ground motions, including
reduced deformations along with corresponding reduction in acceleration response.

2 | WAVELET NEURAL NETWORK

Model predictive control relies on using an accurate system model to predict future outputs. In cases where such a model is
not available, system identification becomes an essential part of model predictive control. In this study, a three-layer wave-
let neural network in parallel with a feedforward component trained using the recursive least squares (RLS) algorithm is
used to identify the model parameters. The RLS algorithm establishes a linear relationship between the inputs and outputs,
and the wavelet neural network minimizes the identification error. Figure 1 depicts the structure of the wavelet neural
network.
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FIGURE 1 Wavelet neural network structure

The input—output equation of the network can be expressed as

I ™M~

ij(k) =

1

sii 2w (Wi Xune—p;) /rii) + X gj, xun,  1<j<T (h
1 =1 =1

}7(/() = [)71<k)7)72(k)7"'7)7J(k)}T7 2

where y is the network output and wy = [uy,] is the n X 1 network input vector. Assuming that the network has J outputs and m
hidden layer nodes, S =[s; ;] is a /X m matrix, W=[w; ;] is m X n matrix, p=[p;] is m X 1 vector, and R=[r; ;] is a m X m diag-
onal matrix whose diagonal elements are positive, and off-diagonals are zero and Q =[g; ;] is J X n matrix. The activation func-
tion of the hidden layer nodes, v, is

Wy, = w(t_Tp). 3)

The activation function is chosen to be the Mexican hat wavelet

2 1 2
() = % (1-£)e ™. @

The well-known error back propagation algorithm is used to train the wavelet neural network weights, whereas Q is trained
using the RLS algorithm. RLS learns the behavior of the system much faster than the wavelet network and traditional neural
networks. Consequently, the wavelet neural network learns the behavior of the system faster, which makes the model more
appropriate for online identification and control. In addition, particularly when the system behavior is approximately linear
under certain operating conditions, the parallel configuration drastically reduces the number of hidden layer nodes for specified
accuracy. Consequently, the training time of the WNN drops significantly making the algorithm more efficient for real time
applications. The reduction of the number of hidden layer nodes for specified approximation accuracy reduces model complex-
ity without sacrificing accuracy.



4 0f 15 Wl LEY KHODABANDOLEHLOU Et AL.

The cost function for training the network parameter is assumed to be sum of squared errors
1N m R 5
(k) =5 Z Z (0 -5K)" 5)
—1j=

where y;(k) is the jth output of the system and y;(k) is the jth output of the wavelet neural network at time step k. The gradient
descent method is used to update the network parameters

97 (k)

Okl = Ok =Y 5= ©6)
o}
where y is the gradient descent algorithm learning rate. By defining the partial error as
ey, (k) = 3;(k) = y;(k)— 21 q;,uN;- ©)
t=
The change in each parameter can be calculated using the chain rule as®’-**-"
2§ et 2 ®)
— =) e (k) —=——.
06]( j=1 i aUk

3 | WAVELET NEURAL NETWORK BASED MPC

Predictive control uses an explicit model of the system to predict future outputs of the system and uses them to calculate future
inputs. It assumes that the inputs and outputs of the system can be measured and used to update the network parameters. In each
iteration, the controller updates the network parameters and uses the wavelet neural network to predict future outputs over a
prediction horizon N, then calculates the future inputs over a control horizon N, <N,, by minimizing the cost function

=2
3

1N
Je= ey o(k+0)" +5 X pAulk+i=1)%, ©)
i=1

N | —

i=1j=1

where ey, . (k+1) is the error between desired value and predicted value of the jth output of the system at time k+i and /; is
penalty on this error, Au is the change in the control input, and p is the penalty on the change in the control input.

Because the desired accelerations and displacements are zero, minimizing prediction error is equivalent to minimizing the
response of the system. To avoid excessive control force, a penalty on control force increments is included in the cost function.
A long control horizon leads to a smooth and small control input but decreases the tracking performance. A long prediction
horizon leads to smooth control input also but decreases the tracking speed.

The controller cost function J,. can be written in terms of the control as

Jo=1 [z (€ (k4 1)Ley, ok + 1)) + p(Hu(k))" (Hu(k)) |, (10)

j=1

in which L is a diagonal matrix with ['s as its diagonal elements and

1 0 0
-1 1 0

H=|0 -1 1 0], (11)
0 0
0 0 -1 1

e (k+1)=y, (k+1)=y(k+1) ,1<j<J, (12)
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where yj; is the desired value of the jth output and y; is its predicted value as follows:

v, (k+1) = [k +1), .y (k+N,)] 1<, (13)
Vik+1) =[5k + 1), ....5;(k + N,)] " 1<j <, (14)
u(k) = [u(k),utk +1), .. ,ulk+N,— 1)]" 1<i<m. (15)

The change in control input can be calculated by optimizing J.. via gradient descent based on the following generalized
form:

Ve ——ﬁGT Le, .(k+ 1) (16)
ou(k) = e '
Au(k) = (I +ipH") "' x au(;'() and u(k + 1) = u(k) + Au(k), (17)
ay;(k + )
/AN
Gyu = {gyj_’u(s,l)} such that gyjyu(s, ) =1 ou(k+1-1)
0 ,s<1
1<j<J,1<$<N, 1< ISN,, (18)

where / is the learning rate of the gradient descent algorithm.*>*°! All the derivatives are calculated using the chain rule

f});j(kJFQ) . aﬁj(kJFQ) a);j(k+q_1)
ou(k+r)  oy(k+q—1)" oy(k+q-2)

xd)?j(k+r+2) y aﬁj(k—i-r—i- 1)
T oyk+r41) ou(k+r)

19)

3.1 | Alternative controllers

A benchmark comparison of the proposed WNN-based controller is demonstrated with respect to linear quadratic Gaussian
(LQG) and multivariable proportional-integral (PI) controllers. LQG control assumes that enough state variables of the struc-
ture, that is enough velocities and displacements, can be measured to make the system observable. The measurements are
fed to a Kalman filter, which estimates the states and control inputs of the system. In practice, accelerations are the only mea-
sured variables, and velocities and displacements are obtained by integrating the accelerations. Integration introduces errors in
the inputs to the Kalman filter and reduce the quality of LQG control.

Designing a PI controller for single-input—multi-output systems is a challenging problem. The system must be completely
controllable, whereas the seismically isolated structural model has five uncontrollable modes. To overcome this, Kalman
decomposition is used to find the controllable subsystem of the structure. The controllable subsystem of the structure is a
single-input—six-output system. A multivariable PI controller is then designed for the controllable subsystem using linear qua-
dratic methods. Details of the two controllers are available in Anderson and Moore*>! and are omitted for brevity. The response
of an actively controlled five-story seismically isolated simulation model with different controllers is presented in Section 5 and
in Table 3.



6 of 15 KHODABANDOLEHLOU Et AL.
WILEY

4 | COMPUTATIONAL SIMULATION MODEL

The computational simulation model represents the five-story seismically isolated structure that was developed for an experi-
mental program by Kelly and Tsai'*®' as shown in Figure 2. The model was analyzed as a conventionally isolated structure with
lead-rubber bearings (LRB) only, and with LRBs coupled with actuators that provide the active control forces. In general, var-
ious types of devices may be employed in active control. Although a specific type has not been assumed nor modeled, the most
suitable devices in these types of applications may be hydraulic (or electrical) actuators. The lumped system properties are sum-
marized in Table 1. The postyield stiffness, k;, of the isolation system was originally selected so that the fundamental period of
the structure is 2.5 s once the lead plug yields. The characteristic strength, Q,, is selected to be 10% of the building's weight, and
the postyield to preyield stiffness ratio, a, is taken as 8.5%. These values were recommended by Ramallo et al.”*”! to achieve
acceptable control of the base displacement without excessive structural accelerations for both moderate and severe seismic
events. The inherent damping of the structure is assumed to be 2%.

4.1 | Equations of motion

The all-inclusive equations of motion of the seismically isolated structure (Figure 2) can be written as

M, i’ + Ciy + K u, =0, (20)

mbd;; + Fd(cb(t)ﬂ ub) + F‘Y(a(t% Up, l/ib,Z) _IsT V= O> (21)

in which My, C,, and K are the mass, damping, and stiffness matrices of the superstructure, respectively. Equation 20 governs
the superstructure motion, whereas Equation 21 defines the base slab motion. Furthermore, m,; is the base slab mass,
ks, cs
ky cy
k3 c3
kz cz

ky ¢4 Actuators
kb, Cb

FIGURE 2 Simulation model, (a) LRB isolated, (b) LRB isolated and controlled

TABLE 1 Properties of the simulation model

Floor mass (kg) Stiffness coefficients (kN/m) Damping coefficients (kNes/m)
my, = 6,800 k, =232 c,=3.74

my =5,897 ky=33,732 ¢ =67

m, = 5,897 k> =129,093 ;=58

ms3=5,897 ks =28,621 c3=57

my=5,897 ky=24,954 ¢, =50

ms=15,897 ks = 19,059 c5=38
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Fa(cp(t),up), and Fy(a(t), up, tip, z) are the damping force and the restoring force of the substructure (isolation level), respec-
tively. The damping force term F; is provided for cases where additional source of damping at the isolation level might be con-
sidered. uj, u,, and u, are the acceleration, velocity, and displacement vectors of the superstructure with respect to the base slab,
respectively, and i1, 15, and u,, are those of substructure with respect to the ground. The superscript, ¢, denotes the total displace-
ment with respect to a fixed reference. I is the influence array of the superstructure motion on the substructure motion, and V
is the vector of shear forces induced on the superstructure:

V, = —M, . (22)
The total displacement vectors can be expressed as

u! = u, + Luy, + Lug, (23)

u’b = up, + oug, (24)

where I, is the influence array of the base slab motion on the DOFs of the superstructure, I, and I, are the influence arrays of
the ground motion on the superstructure and base slab DOFs, respectively, and u, is the total ground displacement. Substituting
for u! and uj and rearranging, the governing equations of motion can be written as

Mu; + Cyu, + Kyug = —M; (Ib".‘.b + Il’;ig)a (25)

myiiy + Fa(cp,tip) + Fy(a, up, tip,z) = —mp L tig — XM (s + L iy, + Tyii). (26)

The restoring force F(a, up, itp, z) represents the true hysteresis behavior of conventional LRB isolation systems. The well-
known Bouc-Wen model®! has been used in this study:

F, = kpuy, + (1 —a)kexyz, 27

2 = Ay — Bliip|z|z)"™" = yiip 2", (28)

where a is the ratio of the postyield to the preyield stiffness of the isolation system, x, is the yield displacement of the isolators, z
is dimensionless parameter that defines the hysteresis of the isolation system, and n, A, f, and y are constant parameters that
control the shape of the hysteresis loops. The parameter z is found by solving the nonlinear differential Equation 28. For the
elastic stiffness to be modeled properly (A=/+7), and for the unloading to follow the elastic stiffness (f=y). Equations 25
and 26 can be written in matrix form

M C K E, E.
— —— —~
v 1 o e 1 S ) v 8
= u "
M, my, + UM, | | 0 ¢l Ly 0 kpl Lup —mpL,-T'ML, | % [ -1, |7

where I, is the location matrix of the restoring force of the isolation system and the control force. Equation 29 can be repre-
sented in state space as

X = Ax + Bf, + Eii,, (30)

y=Cx+D,f.+E,ii, +, 31

7 . 9T . . .
where x = [uST, Up, usT7 ub} is the state vector, y represents the vector of measurements, and v is the measurement noise. The
state matrices are defined as

0 I 0 0
A= -1z v 1~} ) B:[~1 ]’E:[ -1 }7 (32)
-M—"K -M—C M™E. -M™E,
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and C,, Dy, and E, are obtained from the measured state. Assuming that the floor and base slab accelerations are measured:

(33)

I e B — -1 - M; 0
Cy{—M K —-M C],Dy{—M EC},EyO,M[ }

IXTMS my

In case of passive isolators, (f.=(l—a)k.x,z) represents the hysteretic behavior; otherwise, the control force is
superimposed on f,.. The state of the structure is used to generate its input—output data for identification and to update the param-
eters of the wavelet neural network as described earlier.

The computational simulation of both the uncontrolled (seismically isolated with conventional LRBs) and the controlled
(with or without LRBs) structure are performed using Matlab/Simulink."*”! A block diagram of the online identification and
control implementation is shown schematically in Figure 3.

The neural network input vector includes the control force and the history of acceleration. The input to the network is
defined as

uN<k) = [fc(k_l)7Y(k_l)7"'7Y(k_10)]7 (34)

where y is a 6 X 1 vector of accelerations:

y(k) = [y, (k), 32 (k) ..., ys ()] (35)

For the simulations in this study, 10 hidden layer neurons and a fixed learning rate of y=0.2 were specified. Both the pre-
diction horizon N, and the control horizon N, were set equal to 10. The control input weighting factors for different cases inves-
tigated were chosen as p = 10~" for a medium-level penalty on the acceleration response, and p =10~ for high penalty on the
acceleration response. Because the accelerations along the height of the base isolated structure are approximately equal, the
weight matrix L for the output prediction error is the identity matrix to impose the same penalty on all of the accelerations.
The neural network parameters are randomly initialized except for setting the matrix R equal to the identity and the vector q
equal to zero.

Because the RLS algorithm can quickly establish a linear relationship between inputs and outputs, no pretuning is needed on
the WNN. However, for real world applications, the number of hidden layer nodes can be effectively predetermined using an
approximate computational simulation model of the structure.

-

—1—1— STRUCTURE
Ye(k)
GD
GD [«
y
GD (= _T_.)
; h
> 2
Ye(k)
> WNN
v
Yia(k)
z
Y
b MPC ‘—®‘— _"'J'r"""" FIGURE 3 Block diagram of the online
4 : %) identification and control scheme.
-+ /-E MPC = model predictive control;

WNN = wavelet neural network
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Last but not the least, for accurate system identification, the excitation should be sufficiently large to excite significant
modes of vibration of the system, which is always the case for high-intensity ground motions of interests. However, a key factor
that may affect the performance of controller implementation is the noise in output measurements. Therefore, the simulations
were repeated for two cases, with and without measurement noise to demonstrate the robustness of the proposed control strategy
in that regard. Robustness with respect to variations in system parameters (structural stiffness, isolation properties, etc.) is not
considered in this paper because the nonlinearities are assumed to be only associated with the isolation bearings. However, a
more comprehensive assessment is part of an ongoing study that investigates full-scale implementation of the proposed control
strategy, including the effects of variations in system parameters.

4.2 | Ground motions

To illustrate the effectiveness of the proposed WNN-based control implementation, the seismically isolated structure is sub-
jected to a series of recorded far-field and near-field ground motions. Seven far-field and seven near-field [pulse] type recorded
ground motions are selected as summarized in Table 2, and 5% damped acceleration response spectra are plotted in Figure 4.
The ground motions were selected as a subset of FEMA P695 records."*”! The ground motions were neither time-scaled nor
amplitude-scaled because the main purpose of the study is to provide a relative comparison of achieved controlled response ver-
sus conventional seismic isolation. Selected ground motions in the near-field [pulse] type group were targeted to have peak
ground velocities (PGV) greater than 100 cm/s (with one exception; 1992 Erzincan) and peak ground acceleration (PGA) to
PGYV ratios less than 0.7 g/m/s. For the far-field type ground motions, the corresponding targets were PGV > 40 cm/s and
PGA/PGV<1.2 g/m/s. Whereas both [high] PGV and [low] PGA/PGV parameters are considered as “damage” indicators,
the average PGAs of the two sets of ground motions were selected to be comparable; 0.55 g (FF) versus 0.60 g (NF).

S | PERFORMANCE OF CONVENTIONAL AND CONTROLLED STRUCTURES

In the simulation, the only observable responses were assumed to be floor and isolation level accelerations as indicated in
Equations 31 through 34. Therefore, the penalty factor p that is used in the minimization of the control cost function J, applies
to the measured acceleration response in Equation 10. Smaller p values imply smaller desired acceleration response. Furthermore,
WNN-based control does not require real-time simulation of the structure. However, a feasible weight p, learning rate 4, and the
number of hidden layer nodes m are determined offline using an approximate simulation model before implementation. These

TABLE 2 Details of the ground motion records

Equation ID Record name M, Recording station Dur.(s) R ((km) PGA(g) PGV (cm/s) PGD (cm)

Far-field (FF) ground motions

FO1 01-Northridge, 1994 6.7  Beverly Hills-Mul. 23.95 13.3 0.62 40.7 8.56
F02 02-Northridge, 1994 6.7  Canyon Count.-WLC 19.95 26.5 0.48 44.9 12.5
F03 03-Duzce, Turkey, 1999 7.1  Bolu 55.85 41.3 0.82 62.1 13.6
F04 06-Imperial Valley, 1979 6.5  El Centro Array 11 39.03 29.4 0.38 42.1 18.6
F05 12-Landers, 1992 7.3  Coolwater 27.96 82.1 0.42 423 13.8
FO6 18-Cape Mendocino, 1992 7.0 Rio Dell Overpass 35.90 22.7 0.55 419 19.5
FO7 20-Chi-Chi, Taiwan, 1999 7.6 TCUO045 89.98 77.5 0.51 40.0 143

Near-field (NF) with pulse ground motions

NO1 02-Imperial Valley, 1979 6.5  El Centro Array 7 36.80 27.6 0.46 109.3 44.7
NO2 04-Superstition Hills, 1987 6.5 Parachute Test Site 22.30 16.0 0.45 111.9 52.8
NO3 06-Erzincan, Turkey, 1992 6.7 Erzincan 21.30 9.00 0.52 95.5 27.7
NO4 09-Northridge, 1994 6.7  Rinaldi Receiving 14.93 10.9 0.83 166.0 28.1
NO5 10-Northridge, 1994 6.7  Sylmar—Olive View 39.90 16.8 0.84 129.4 39.9
NO6 12-Chi-Chi, Taiwan, 1999 7.6 TCUO065 89.98 26.7 0.81 126.2 92.6

NO7 13-Chi-Chi, Taiwan, 1999 7.6  TCU102 89.98 45.6 0.30 112.5 89.2
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parameters are fixed during real time application, and the network weights are the only parameters that are updated every time step.
In this study, first, a lower bound p=10"* was selected to examine the efficacy of the control method to reduce accelerations irre-
spective of the associated displacements. This is referred to as the Cont-C2 case. In an attempt to reduce displacements while main-
taining accelerations, base shear, and foundation shear forces under acceptable limits, a larger p = 10~! was used. This case is

referred to as Cont-Cl1.
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and control force (if any)
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Thus, the three different cases investigated are (a) conventional seismically isolated structure with LRBs (Passive), (b)
structure with LRBs coupled with control with high penalty on acceleration response (Cont-C2; p=10""), and (c) structure
with LRBs coupled with control with medium-level penalty on acceleration response (Cont-CI; p=10""). Each case was
subjected to both NF and FF ground motions. A summary of the simulation results is presented in Figure 5 and Figure 9
for the NF and FF ground motions, respectively. These figures present the average of maximum (a) floor and base [isolator]
displacements, (b) interstory drifts, (c) displacements relative to isolator, (d) floor and base accelerations, (e) [superstructure]
base shear, and (f) total shear force at the foundation level, which includes the isolator force and control force for the con-
trolled cases.

As can be seen in Figure 5(a—d), the overall displacement response is reduced by an average of 40% in the Cont-CI case
with similar reductions in acceleration response along the height of the structure in comparison to the Passive case. In par-
ticular, the simultaneous reduction in the base displacement and the floor accelerations under pulse-type NF ground motions
is notable. Sample displacement response history comparisons for two of the NF ground motions are shown in Figure 6
where the pulse-type nature of the earthquakes is evident. The simulation results demonstrate that Cont-C2 implementation
reduces the resonance behavior of the seismic isolation system induced by long-period ground motions. Although the initial
displacement pulse was not reduced significantly, subsequent larger isolation deformations were mitigated. These response
reductions are achieved by the control force which effectively regulates the apparent isolation stiffness in real time
(Figure 7). Furthermore, reduced floor accelerations result in lower superstructure base shear as well as foundation forces
(Figure Se,d).

The Cont-C2 case employs a low weight p for control input with an objective to completely attenuate the acceleration
response. As shown in Figure 5, this objective was achieved to the extent possible, which further resulted in significantly

FIGURE 6 Sample isolator displacement response history comparisons. (a) NF05, (b) NF03
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FIGURE 7 Sample isolator deformation versus isolator/control force deformation response. (a) NF03, (b) NF03
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reduced interstory drifts and base shear forces, albeit at the expense of larger isolator deformations compared to Cont-C1 and
Passive cases. In theory, the floor accelerations would tend to zero as the effective stiffness at the base of the structure reduces to
zero. Our simulations show that WNN control dictates out-of-phase control forces with respect to isolator forces, which results
in essentially zero effective stiffness in the isolation system (Figure 8).

[~ - - - Isolator force Control force — — Net force
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FIGURE 8 Sample isolator deformation versus isolator/control force deformation response; Cont-C2 case under NF03 ground motion
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FIGURE 9 Comparison of average maximum response—far-field ground motions. (a) Story and base [isolator] displacements, (b) interstory drifts,
(c) displacements relative to isolator, (d) story and base [isolator level] accelerations, (e) [superstructure] base shear, (f) sum of isolator force and
control force (if any)
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TABLE 3 Normalized response comparisons

Near-field Far-field

Cont-C1  Cont-C1 + Noise Cont-C2 LQG PI Cont-C1  Cont-C1 + Noise Cont-C2 LQG PI

+ve isolator displ 0.625 0.612 1.383 1.018  0.947 0.868 0.836 1.298 1.304 1.094
-ve isolator displ 0.660 0.624 1.012 1.307 1.123 0.860 0.830 1.586 1.278  1.239
+ve story displ* 0.662 0.620 0.122 0.516  0.650 1.027 1.058 0.234 0.339  0.345
-ve story displ* 0.678 0.643 0.138 0.613  0.723 1.004 1.015 0.212 0311  0.356
+ve story drift 0.760 0.739 0.311 0.516  0.650 1.078 1.099 0.320 0.339  0.345
-ve story drift 0.755 0.777 0.251 0.613  0.723 1.023 1.033 0.347 0311  0.356
+ve story accel 0.755 0.778 0.267 0.609 0.719 1.023 1.032 0.348 0.298  0.343
-ve story accel 0.760 0.740 0.312 0.517 0.653 1.078 1.099 0.334 0.323  0.328
Peak base shear 0.643 0.596 0.119 0.613 0.723 0.973 0.987 0.212 0336 0.356
Peak found shear 0.618 0.560 0.108 0.628 0.738 0.894 0.895 0.199 0.362 0.381

*Relative to isolators

Similar observations can be made in case of far-field (FF) ground motions. However, WNN-based control does not lead to
significant changes in response quantities when compared to the conventional isolated system. This is primarily due to the fact
that the passive isolator properties were deemed near optimal to achieve small displacements, accelerations, hence small forces,
particularly for moderate level earthquakes as is the case with the FF ground motions."*”! Evidently, the seismic demand on the
isolated structure due to FF ground motions is relatively insignificant in comparison to NF ground motions (Figure 9). This is
confirmed by the present study as the average maximum control force in Conz-C2 remained less than 13 kN versus 40 kN of
isolator force with approximately 8% reduction in base displacements only. Finally, Cont-C2 implementation resulted in signif-
icant reduction of all response quantities except for increased base displacements. Clearly, this may be considered a desired out-
come as the benefits of reduced floor accelerations and interstory drifts outweigh the slight increase in the base displacements
for certain types of buildings with deformation and acceleration sensitive equipment.

To demonstrate the relative efficiency as well as the effect of potential noise in the output measurements (acceleration
response), additional cases were considered and simulated as listed in Table 3. The table summarizes normalized response quan-
tities with respect to the conventional passive case. It can be seen that classical LQG and multivariable PI controllers can
achieve the desired response reduction in general but fail to reduce deformation response at the isolation bearing level. In con-
trast, the achieved response reductions of all quantities by the Cont-C1 case with and without noise are similar, demonstrating
the insensitivity of the proposed WNN-based controller to the noise in the measurements.

6 | SUMMARY AND CONCLUSIONS

The primary objective of this study was to assess the applicability of the proposed WNN-based control to reduce the isolator
deformations (base displacements) in seismically isolated structures subjected to near-field ground motions. This can be
achieved using conventional techniques by providing higher levels of damping at the isolation level but only at the expense
of increasing floor accelerations and interstory drifts. Clearly, given the uncertainty and variability of ground motion character-
istics, the control and reduction of both the displacements and accelerations require active control. For this purpose, a WNN
comprising a wavelet back propagation network in parallel with a feedforward component trained using recursive least squares
is introduced. The feedforward component significantly reduces the number of hidden layer nodes and provides fast efficient
learning. The computational complexity of the error backpropagation algorithm is O(n’) with n hidden layer nodes. Conse-
quently, the computational complexity of the wavelet neural network is reduced drastically with the number of hidden layer neu-
rons. Hence, the parallel wavelet network is suited to online identification and control. The WNN-based control with MPC was
used for online identification and control of a nonlinear structural system. The only input to the network was assumed to be
monitored floor accelerations.

The efficacy of the method was demonstrated through a series of computational simulations. Two control cases that reduce
the acceleration response and mitigate deformations were evaluated. Both cases demonstrate the effectiveness of WNN-based
control in comparison to conventional isolation. They also highlight the efficiency and flexibility of the proposed approach to
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achieve multiple performance objectives. All response quantities were significantly reduced for both near-field (NF) and far-
field (FF) ground motions, in particular an average of 40% reduction in isolator deformations, with corresponding reductions
in floor accelerations, was observed. A comparison between the average responses to NF and FF ground motions suggests that
one of the control cases is capable of reducing large base displacements due to NF ground motions without compromising per-
formance under FF ground motions.

The controller performance was dictated by the established performance objective through a penalty factor and WNN learn-
ing rate. The controller effectively regulated the apparent stiffness at the isolation level. This observed feature of the WNN-
based control makes the method a desirable hybrid seismic isolation alternative in general and, particularly, a good candidate
for lightweight structural system and equipment isolation. Finally, the proposed control method is fast, accurate, and robust,
which allows implementation for large-scale dynamic systems. Furthermore, controllers that optimize other performance indi-
ces (objectives) can be readily implemented to provide more targeted response control.
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