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Abstract:
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to
tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achiev-
ing this goal is that we usually do not have a priori knowledge of the grouping information of patients with
respect to treatment effect. To address this problem, we consider a heterogeneous regression model which al-
lows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We
develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific
treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation.
We also study the theoretical properties of the proposed method and show that under suitable conditions there
exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true
grouping information with high probability. This provides theoretical support for making statistical inference
about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated
in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.
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1 Introduction

Treatment effects are often heterogeneous, that is, the same treatment can have different effects on different
patients [1, 2]. For instance, molecularly targeted cancer drugs are only effective for patients with tumors ex-
pressing targets [3], and the relative efficacy of antiretroviral drugs for treating human immunodeficiency virus
infection sometimes depends on baseline viral load and CD4 count [4]. Understanding the heterogeneity of
treatment effects (HTE) is critical to the eventual success of precision medicine, which seeks to tailor medical
treatments to individual patients.

Possible HTE is usually assessed in a subgroup analysis [1, 5–8] or, more generally, a regression analysis
relating the outcome of interest to treatment and a collection of baseline covariates [9]. Such a regression model
can incorporate HTE as interactions between treatment and baseline covariates, and can be used to estimate
covariate-specific treatment effects indirectly. Alternatively, a covariate-specific treatment effect model can be
specified and estimated directly without relying on a regression model for the outcome [10, 11]. There is also
a growing literature on HTE estimation using machine learning methods (e. g. [12–14]). All of these methods
are based on observed baseline covariates; they do not address possible HTE due to unmeasured covariates.

The collection of observed baseline covariates is often limited, and thus may be insufficient for characterizing
the true HTE across individual patients. The true HTE structure is not empirically identifiable unless all effect
modifiers are measured, but can be explored under appropriate assumptions. Zhang et al. [4, 15] use random
effect models to conduct sensitivity analyses concerning the joint distribution of two potential outcomes (for
two different treatments). Shen and He [16] propose a two-group logistic-normal mixture model for the true
HTE and develop a model-based procedure for testing the equivalence of the two groups. The model of Shen
and He [16] includes a normality assumption for the outcome and a logistic regression model relating the latent
group membership to a collection of observed covariates.

In this article, we propose a general latent class model for exploring the true HTE. Different from the afore-
mentioned existing models, our model deals with an unspecified number of latent groups, without assuming
normality for the outcome or a particular relationship between the latent group membership and the observed
Zhiwei Zhang is the corresponding author.
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covariates. In our model, we assume that the treatment coefficients are subject-specific and belong to different
groups with unknown grouping information. The subgroups, therefore, can be driven by observed covariates,
unobserved covariates or an arbitrary combination of both types of covariates. We recover the latent subgroups
and estimate the model using concave fusion penalization, an unsupervised machine learning method, that ap-
plies a concave penalty, such as the smoothly clipped absolute deviations penalty [SCAD, [17]] or the minimax
concave penalty [MCP, [18]], to pairwise differences of coefficients for treatment effects. The fusion penalized
approach has been proposed for clustering analysis of grouping data objects [19] and grouping means of clinical
outcomes with random errors [20], but not for exploring HTE. Ma and Huang [20] briefly mentioned potential
applications of the fusion penalized approach to the estimation of subject-specific coefficient models without
providing theoretical justifications and numerical studies.

We consider the present paper as the first work which applies the fusion learning approach to the investiga-
tion of HTE through subject-specific treatment coefficients and provides a theoretical analysis of the resulting
estimator for the proposed general latent class model with subject-specific treatment effects. The consistency
and asymptotic distributional properties of the estimators follow from the fact that, under appropriate condi-
tions, the oracle least squares estimator based on a priori knowledge of the true group membership is a local
minimizer of the objective function with high probability. Moreover, we derive the conditions on the number of
subgroups and the number of covariates compared with the sample size as well as the lower bound of the mini-
mum difference of coefficient values between the subgroups in order to identify the true subgroups of treatment
effects. Computationally, we apply an alternating direction method of multipliers (ADMM) algorithm [21] for
implementing the proposed approach. This algorithm has been used widely in convex optimization problems.
We derive the convergence properties of the ADMM in the present setting. Another contribution is that using
the proposed fusion penalized estimator, we further propose a bootstrapping procedure to test homogeneity
of the treatment effects for confirmatory analysis.

The rest of this article is organized as follows. Section 2 introduces the proposed latent class model. Section 3
describes the concave fusion penalization method for model estimation. In Section 4 we establish the theoretical
properties of the proposed estimator. Section 5 introduces a bootstrapping procedure for testing homogeneity.
In Section 6 we evaluate the finite-sample properties of the proposed method via simulation studies, and apply
the method to AIDS Clinical Trials Group Study 175. Concluding remarks are given in Section 7. The compu-
tational algorithm and the technical proofs are provided in the Appendix.

2 Model

Suppose the data consist of (𝑦𝑖, 𝑧𝑧𝑧𝑖, 𝑥𝑥𝑥𝑖), 𝑖 = 1, … , 𝑛, where yi is an outcome variable, 𝑧𝑧𝑧𝑖 a q-vector of patient
characteristics related to the outcome, and 𝑥𝑥𝑥𝑖 a p-vector of treatment or exposure characteristics. The vector 𝑥𝑥𝑥𝑖
may include discrete components (e. g. indicators of treatment groups or exposure status) and/or continuous
components (e. g. dose of drug or radiation). Our goal is to understand how the causal effect of 𝑥𝑥𝑥𝑖 may vary
across individual subjects. Let 𝑦𝑖(𝑥𝑥𝑥) denote the potential outcome for the ith subject under treatment 𝑥𝑥𝑥 [22]. We
assume that treatment assignment is strongly ignorable [23] in the sense that

𝑥𝑥𝑥𝑖 ⟂ 𝑦𝑖(𝑥𝑥𝑥)|𝑧𝑧𝑧𝑖, (1)

where ⟂ denotes independence and 𝑥𝑥𝑥 may be any treatment that could conceivably be given to the ith subject.
From this assumption it follows that

𝐸{𝑦𝑖(𝑥𝑥𝑥)|𝑧𝑧𝑧𝑖} = 𝐸{𝑦𝑖(𝑥𝑥𝑥)|𝑧𝑧𝑧𝑖, 𝑥𝑥𝑥𝑖 = 𝑥𝑥𝑥} = 𝐸{𝑦𝑖|𝑧𝑧𝑧𝑖, 𝑥𝑥𝑥𝑖 = 𝑥𝑥𝑥},

which is empirically identified for any possible treatment 𝑥𝑥𝑥 for the ith subject. Assumption (1) is trivially true
in a randomized clinical trial where 𝑥𝑥𝑥𝑖 is independent of all baseline variables; in this case, adjustment for 𝑧𝑧𝑧𝑖 is
not strictly necessary but may improve efficiency.

Suppose the data generation mechanism can be described by the following linear regression model:

𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖 + 𝜀𝑖, 𝑖 = 1, … , 𝑛, (2)

where 𝜂𝜂𝜂 and 𝛽𝛽𝛽𝑖 are unknown regression coefficients and the ɛi’s are i.i.d. random errors with E(ɛi) = 0 and
Var(𝜀𝑖) = 𝜎2. We assume that the first entry in each 𝑥𝑥𝑥𝑖 is 1 so the intercept is included in 𝛽𝛽𝛽𝑖. Under this model
and the strongly ignorable treatment assignment assumption, the subject-specific regression coefficient 𝛽𝛽𝛽𝑖 rep-
resents the causal effect of 𝑥𝑥𝑥𝑖 on the ith subject, and the distribution of 𝛽𝛽𝛽𝑖 across i represents the true HTE. With
more unknown parameters than observations, model (2) is not estimable without additional assumptions.
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A simple way to constrain model (2) and achieve identification is to assume that the 𝛽𝛽𝛽𝑖 are all equal. This
leads to the following model:

𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽 + 𝜀𝑖, 𝑖 = 1, … , 𝑛, (3)

which is commonly used in practice. Model (3) is quite restrictive as it rules out any HTE with respect to ob-
served and unobserved covariates. The model can be expanded by including interaction terms between some
or all components of 𝑧𝑧𝑧𝑖 and 𝑥𝑥𝑥𝑖, thereby allowing 𝛽𝛽𝛽𝑖 to be a specified function of 𝑧𝑧𝑧𝑖. The expanded model can
accommodate a particular form of observed HTE, but it does not account for any latent HTE. Moreover, even
if the HTE is only driven by the observed covariates 𝑧𝑧𝑧𝑖, it is unclear in what specific form 𝑧𝑧𝑧𝑖 causes the HTE.
For instance, the common assumption that 𝛽𝛽𝛽𝑖 = 𝛽+𝛽+𝛽+ΓΓΓ𝑡𝑡𝑡𝑖, where 𝑡𝑡𝑡𝑖 is a subset of 𝑧𝑧𝑧𝑖, and 𝛽𝛽𝛽 and ΓΓΓ are coefficients
implies a linear interaction structure which may be too stringent in practice. When many baseline variables are
present, there can be many interaction terms. This increases the chance of false positive results in interaction
tests and may lead to overstated and misleading conclusions [24].

Another approach is to treat 𝛽𝛽𝛽𝑖 as a subject-specific random vector following a specified conditional distri-
bution given 𝑧𝑧𝑧𝑖. A prominent example in this category is the common linear mixed model where 𝛽𝛽𝛽𝑖 is assumed
to follow a normal distribution, independently of 𝑧𝑧𝑧𝑖. Such a model may have identifiability issues in the present
setting, where each subject contributes only one observation. Another example in this category, which achieves
identifiability, is the two-group logistic-normal mixture model of Shen and He [16]. In the present notation,
their model can be expressed as

𝑦𝑖 = 𝑥𝑥𝑥T
𝑖 𝛽𝛽𝛽𝑖 + 𝜀𝑖, where 𝛽𝛽𝛽𝑖 = 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2𝑤𝑖 and 𝑤𝑖 = 𝐼(𝑧𝑧𝑧T

𝑖 𝛾𝛾𝛾 + 𝜖 > 0), (4)

where ε is an error distributed by the standard logistic distribution, so that 𝑃(𝑤𝑖 = 1|𝑧𝑧𝑧𝑖) = exp(𝑧𝑧𝑧T
𝑖 𝛾𝛾𝛾)/(1 +

exp(𝑧𝑧𝑧T
𝑖 𝛾𝛾𝛾)). This model assumes that the 𝛽𝛽𝛽𝑖 in (2) arise from a finite mixture model with two possible values

(𝛼𝛼𝛼1 and 𝛼𝛼𝛼1 + 𝛼𝛼𝛼2), that ɛi is normally distributed, and that the latent group membership is related to observed
covariates through a logistic regression model. Under these assumptions, model (4) can be estimated using a
standard EM algorithm, and Shen and He [16] further develop an EM test for the null hypothesis 𝛼𝛼𝛼2 = 0, which
indicates the absence of (observed or latent) HTE. This approach, as a model-based way to estimate the true
HTE, is limited by the two-group assumption and the modeling assumptions.

Here we consider a more flexible latent class model and propose a machine learning approach to recovering
the subgroups. We assume that the 𝛽𝛽𝛽𝑖 in (2) arise from a mixture model with an unspecified number of groups.
Specifically, let 𝒢 = (𝒢1, … , 𝒢𝐾) be a mutually exclusive partition of {1, …, n}. Suppose 𝛽𝛽𝛽𝑖 = 𝛼𝛼𝛼𝑘 for all 𝑖 ∈ 𝒢𝑘,
where 𝛼𝛼𝛼𝑘 is the common value for the 𝛽𝛽𝛽𝑖’s in group 𝒢𝑘. In other words, we assume that

𝛽𝛽𝛽𝑖 = 𝛼𝛼𝛼1𝑤𝑖1 + 𝛼𝛼𝛼2𝑤𝑖2 + ⋯ + 𝛼𝛼𝛼𝐾𝑤𝑖𝐾 ,

where 𝛼𝛼𝛼𝑘 = (𝛼𝑘1, … , 𝛼𝑘𝑝)T, and wik ∈ (0, 1) is the (latent) indicator for the kth group 𝒢𝑘, i. e. wik = 1 for 𝑖 ∈ 𝒢𝑘
and wik = 0 otherwise. Substituting this into model (2) yields the latent class model:

𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 (𝛼𝛼𝛼1𝑤𝑖1 + 𝛼𝛼𝛼2𝑤𝑖2 + ⋯ + 𝛼𝛼𝛼𝐾𝑤𝑖𝐾) + 𝜀𝑖, (5)

where the number of subgroups K is unknown and the group indicators wik are unobservable. Model (5) in-
cludes the case of no HTE as a special case (i. e. K = 1 and hence 𝑤𝑖1 ≡ 1). Of note, we do not parameterize the
distribution of ɛi, nor do we specify how the wik’s may be related to 𝑧𝑧𝑧𝑖. Thus, our model is considerably more
flexible than the model of Shen and He [16].

Although the subgroups in model (5) are not (fully) ascertainable using observed covariates, an exploratory
analysis based on model (5) can provide unique insights into the true HTE and helpful guidance for future
research. For example, if the results indicate that a new treatment only benefits a small (and unidentified)
proportion of the patient population, that finding might motivate scientists to collect more covariate data (e. g.
biomarkers) in future studies and search for predictors of treatment benefit. Conversely, if there is no indication
of clinically important HTE, that information would support a decision to (re)direct limited resources toward
other, more promising areas of research.

3 Estimation

To identify the subgroups of the heterogeneous treatment effects, we first need to estimate model (5), i. e. we
need to estimate the number of subgroups K, the coefficients 𝜂𝜂𝜂 and 𝛼𝛼𝛼, and the group membership wik for each
observation. Estimating model (5) is the same as estimation of model (2), since they are the same models with
different notations. We propose a concave fusion method for model estimation described below.
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For any vector a, denote its L2 norm by ‖a‖ = (∑ |𝑎𝑖|2)1/2. Consider the criterion

𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) =
1
2

∑
𝑛
𝑖=1

(𝑦𝑖 − 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 − 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖)2 + ∑
1≤𝑖<𝑗≤𝑛

𝑝(‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗‖, 𝜆), (6)

where 𝛽𝛽𝛽 = (𝛽𝛽𝛽T
1 , … ,𝛽𝛽𝛽T

𝑛)T, and p(·, λ) is a penalty function with a tuning parameter λ ≥ 0. For a given λ > 0, let

( ̂𝜂(𝜆),𝛽(𝜆)) = argmin
𝜂∈IR𝑞,𝛽∈IR𝑛𝑝

𝑄𝑛(𝜂, 𝛽; 𝜆). (7)

We use sparsity-inducing penalties (to be discussed later) in (6). For a sufficiently large λ, the penalty shrinks
some of ‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗‖ to zero. We partition the treatment effects into subgroups according to the unique values of
̂𝛽𝛽𝛽. Specifically, let 𝜆̂be the value of the tuning parameter on the path selected based on a data-driven procedure

such as the BIC. For simplicity, write ( ̂𝜂𝜂𝜂, ̂𝛽𝛽𝛽) ≡ ( ̂𝜂𝜂𝜂(𝜆̂), ̂𝛽𝛽𝛽(𝜆̂)). Let { ̂𝛼𝛼𝛼1, … , ̂𝛼𝛼𝛼𝐾} be the distinct values of ̂𝛽𝛽𝛽, where 𝐾 is
the number of the distinct values. These are the estimates of subgroup-specific treatment effects. The samples
can then be divided into subgroups accordingly. Denote the set of indices of the kth subgroup by 𝒢𝑘 = {𝑖 ∶ 𝛽𝑖 =
𝛼𝑘, 1 ≤ 𝑖 ≤ 𝑛}, 1 ≤ 𝑘 ≤ 𝐾̂. Accordingly, we have 𝑤̂𝑖𝑘 = 1 , if 𝑖 ∈ 𝒢𝑘 and 𝑤̂𝑖𝑘 = 0, otherwise.

A popular sparsity-inducing penalty is the L1 or lasso penalty with 𝑝𝛾(𝑡, 𝜆) = 𝜆|𝑡| [25], but this penalty tends
to produce too many subgroups [20]. Thus, we focus on two concave penalty functions: the smoothly clipped
absolute deviation penalty [SCAD, [17]] and the minimax concave penalty [MCP, [18]]. The SCAD penalty is

𝑝𝛾(𝑡, 𝜆) = 𝜆 ∫
|𝑡|

0
min{1, (𝛾 − 𝑥/𝜆)+/(𝛾 − 1)}𝑑𝑥.

The MCP has the form

𝑝𝛾(𝑡, 𝜆) = 𝜆 ∫
|𝑡|

0
(1 − 𝑥/(𝛾𝜆))+𝑑𝑥.

These penalties lead to nearly unbiased estimators of the parameters due to the fact that their derivatives equal
zero at large (in magnitude) values of the parameter estimates. Moreover, they are more aggressive in enforcing
a sparser solution. Thus, they are better suited for the current problem, where the number of subgroups may
be expected to be much smaller than the sample size.

We compute ( ̂𝜂𝜂𝜂(𝜆), ̂𝛽𝛽𝛽(𝜆)) given in (7) for λ in a given interval [𝜆min, 𝜆max], where λmax is the value that forces a
constant ̂𝛽𝛽𝛽 solution, i. e. ̂𝛽𝛽𝛽𝑗(𝜆max) = ̂𝛽𝛽𝛽𝑘(𝜆max), 1 ≤ 𝑗 < 𝑘 ≤ 𝑛 ; λmin is a small positive number. We are particularly
interested in the path { ̂𝛽𝛽𝛽(𝜆) ∶ 𝜆 ∈ [𝜆min, 𝜆max]}. The ADMM algorithm for computing the solution path on a
grid of λ values is described in detail in Section A.1 of the Appendix. We also derive the convergence property
of the ADMM algorithm with concave penalties. The result is given in Proposition A.1 of the Appendix.

Figure 1 illustrates the solution path for the estimates of the treatment coefficients ( ̂𝛽21(𝜆), … , ̂𝛽2𝑛(𝜆)) against
λ using MCP, SCAD and lasso penalties for simulated data in Example 1 of Section 6, which has two subgroups
with ‘treatment effects’ 0 and 2, respectively. The path is calculated using a “bottom up” approach starting
from λmin. It looks similar to the dendrogram for agglomerative hierarchical clustering. However, unlike the
clustering algorithms which form the clusters based on a direct measure of dissimilarity, the fusion of the
coefficients is based on solving the optimization problems along the solution path. We shall refer to the solution
path { ̂𝛽𝛽𝛽(𝜆), 𝜆 ∈ [𝜆min, 𝜆max]} as a fusiongram.

In Figure 1, the fusiongrams for SCAD and MCP look similar. They both include a segment containing nearly
unbiased estimates of the treatment effects. When the λ value reaches around 0.6, the estimates of (𝛽21, … , 𝛽2𝑛)
merge into two values that are close to the true values 0 and 2. When the λ value exceeds 1.0, the estimates
shrink to one value. For the lasso, the estimates of (𝛽21, … , 𝛽2𝑛) merge to one value quickly at λ = 0.05 due to
the overshrinkage of the L1 penalty.

Figure 1: Solution paths for (𝛽21(𝜆), … , 𝛽2𝑛(𝜆)) against 𝜆 with n = 200 for data from Example 1 in Section 6.
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4 Theoretical properties

In this section, we study the theoretical properties of the proposed estimator. Specifically, we provide sufficient
conditions under which there exists a local minimizer of the objective function equal to the oracle least squares
estimator with a priori knowledge of the true groups with high probability. We also derive the lower bound of
the minimum difference of coefficients between subgroups in order to be able to estimate the subgroup-specific
treatment effects.

4.1 Notation and conditions

Let W̃= {𝑤𝑖𝑘} be an n × K matrix with wik = 1 for 𝑖 ∈ 𝒢𝑘 and wik = 0 otherwise. Let W =W̃⊗I𝑝. Let ℳ𝒢 = {𝛽 ∈
IR𝑛𝑝} ∶ 𝛽𝑖 = 𝛽𝑗, for 𝑖, 𝑗 ∈ 𝐺𝑘, 1 ≤ 𝑘 ≤ 𝐾. For each 𝛽𝛽𝛽 ∈ ℳ𝒢 , it can be written as 𝛽𝛽𝛽 = W𝛼𝛼𝛼, where 𝛼𝛼𝛼 = (𝛼𝛼𝛼T

1 , … ,𝛼𝛼𝛼T
𝐾)T

and 𝛼𝛼𝛼𝑘 is a p × 1 vector of the kth subgroup-specific parameter for k = 1, …, K. Simple calculation shows

WTW = diag(∣𝒢1∣ , … , ∣𝒢𝐾 ∣)⊗I𝑝,

where ∣𝒢𝑘 ∣ denotes the number of elements in 𝒢𝑘. Denote the minimum and maximum group sizes by
∣𝒢min∣ = min1≤𝑘≤𝐾 ∣𝒢𝑘 ∣ and ∣𝒢max∣ = max1≤𝑘≤𝐾 ∣𝒢𝑘 ∣, respectively. For any positive numbers an and bn , let 𝑎𝑛 ≫ 𝑏𝑛
denote 𝑎−1

𝑛 𝑏𝑛 = 𝑜(1). For any vector 𝜁 = (𝜁1, … , 𝜁𝑠)
T ∈ IR𝑠, let ∥𝜁∥∞ = max1≤𝑙≤𝑠 ∣𝜁𝑙∣ . For any symmetric ma-

trix A𝑠×𝑠, denote its L2 norm by ‖A‖ = max𝜁∈𝑅𝑠, ‖𝜁‖=1 ∥A𝜁∥, and let 𝜆min(A) and 𝜆max(A) be the smallest and
largest eigenvalues of A, respectively. For any matrix A = (𝐴𝑖𝑗)

𝑠,𝑡
𝑖=1,𝑗=1

, denote ‖A‖∞ = max1≤𝑖≤𝑠 ∑𝑡
𝑗=1 ∣𝐴𝑖𝑗∣. Let

y = (𝑦1, … , 𝑦𝑛)T, Z = (𝑧𝑧𝑧1, … ,𝑧𝑧𝑧𝑛)T, and X =diag(𝑥𝑥𝑥T
1 , … ,𝑥𝑥𝑥T

𝑛). Denote X̃ = XW and U = (Z,XW). Finally, denote
the scaled penalty function by

𝜌(𝑡) = 𝜆−1𝑝𝛾(𝑡, 𝜆).

We make the following basic assumptions.

(C1) The function ρ(t) is symmetric, non-decreasing and concave on [0, ∞). It is constant for t ≥ a λ for some
constant a > 0, and ρ(0) = 0. In addition, ρ′(t) exists and is continuous except for a finite number values of t
and ρ′(0 + ) = 1.

(C2) The noise vector 𝜀 = (𝜀 = (𝜀 = (𝜀1, … , 𝜀𝑛)T has sub-Gaussian tails such that 𝑃(|aT𝜀| > ‖a‖𝑥) ≤ 2 exp(−𝑐1𝑥2) for any
vector a ∈ IR𝑛 and x > 0, where 0 < 𝑐1 < ∞.

(C3) Assume ∑𝑛
𝑖=1 𝑧2𝑖𝑙 = 𝑛 for 1 ≤ l ≤ q, and ∑𝑛

𝑖=1 𝑥2𝑖𝑗1{𝑖 ∈ 𝒢𝑘} = ∣𝒢𝑘 ∣ for 1 ≤ j ≤ p, 𝜆min(UTU) ≥ 𝐶1 ∣𝒢min∣,
sup𝑖 ‖𝑥𝑥𝑥𝑖‖ ≤ 𝐶2√𝑝 and sup𝑖 ‖𝑧𝑧𝑧𝑖‖ ≤ 𝐶3√𝑞 for some constants 0 < 𝐶1 < ∞, 0 < 𝐶2 < ∞ and 0 < 𝐶3 < ∞.

Conditions (C1) and (C2) are common assumptions in penalized regression in high-dimensional settings. The
concave penalties such as MCP and SCAD satisfy (C1). In the literature, it is commonly assumed that the small-
est eigenvalue of the transpose of the design matrix multiplied by the design matrix is bounded by C1n, which
may not hold for UTU. By some calculation and X̃ = XW, we have

X̃TX̃ = diag ∑
𝑖∈𝒢𝑘

𝑥𝑥𝑥𝑖𝑥𝑥𝑥T
𝑖 , 𝑘 = 1, … , 𝐾.

By assuming that 𝜆min(∑𝑖∈𝒢𝑘
𝑥𝑥𝑥𝑖𝑥𝑥𝑥T

𝑖 )≥𝑐 ∣𝒢𝑘 ∣ for some constant 0 < 𝑐 < ∞, we have 𝜆min(X̃TX̃) ≥ 𝑐 ∣𝒢min∣. IfZTX̃ = 0
and 𝜆min(ZTZ) ≥ 𝐶𝑛, we have

𝜆min(UTU) = min{𝜆min(ZTZ), 𝜆min(X̃TX̃)} ≥ min(𝑐 ∣𝒢min∣ , 𝐶𝑛),

and ∣𝒢min∣ ≤ 𝑛/𝐾. Therefore, we let the smallest eigenvalue in Condition (C3) be bounded below by 𝐶1 ∣𝒢min∣.

4.2 Heterogeneous model

In this section, we study the theoretical properties of the proposed estimator under the heterogeneous model
in which there are at least two subgroups, that is, K ≥ 2. If the underlying groups 𝒢1, … , 𝒢𝐾 were known, the
oracle estimator of (𝜂𝜂𝜂,𝛽𝛽𝛽) would be

( ̂𝜂𝑜𝑟, 𝛽𝑜𝑟) = argmin
𝜂∈IRq, 𝛽∈ℳ𝒢

1
2

∥ y − Z𝜂 − X𝛽∥2. (8)

5
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Since 𝛽𝛽𝛽 = W̃𝛼𝛼𝛼, the oracle estimators for the common coefficient 𝛼𝛼𝛼 and the coefficients 𝜂𝜂𝜂 are

( ̂𝜂𝑜𝑟,𝛼𝑜𝑟) = argmin
𝜂∈IR,𝛼∈IR𝐾𝑝

1
2

||y − Z𝜂 − X𝛼||2 = (UTU)−1UTy.

Let 𝛼𝛼𝛼0
𝑘 be the true common coefficient vector for group 𝒢𝑘, k = 1,…,K and 𝛼𝛼𝛼0 = ((𝛼𝛼𝛼0

𝑘)T, 𝑘 = 1, … , 𝐾)T. Of course,
oracle estimators are not real estimators; they are theoretical constructions useful for stating the properties of
the proposed estimators.

Theorem 1
Suppose ∣𝒢min∣ ≫ √(𝑞 + 𝐾𝑝)𝑛 log 𝑛. Then under Conditions (C1)-(C3), we have with probability at least 1 − 2(𝐾𝑝 +

𝑞)𝑛−1,

∥(( ̂𝜂𝑜𝑟 − 𝜂0)𝑇 , (𝛼𝑜𝑟 − 𝛼0)𝑇)
𝑇

∥ ≤ 𝜙𝑛, (9)

and

∥ ̂𝛽𝛽𝛽𝑜𝑟 − 𝛽𝛽𝛽0∥ ≤ √∣𝒢max∣𝜙𝑛, sup
𝑖

∥ ̂𝛽𝛽𝛽𝑜𝑟
𝑖 − 𝛽𝛽𝛽0

𝑖 ∥ ≤ 𝜙𝑛,

where

𝜙𝑛 = 𝑐−1/2
1 𝐶−1

1 √𝑞 + 𝐾𝑝 ∣𝒢min∣−1 √𝑛 log 𝑛. (10)

Moreover, for any vector a𝑛 ∈ IR𝑞+𝐾𝑝 with ||a𝑛|| = 1, we have as 𝑛 → ∞,

𝜎𝑛(a𝑛)−1a𝑇
𝑛 (( ̂𝜂𝑜𝑟 − 𝜂0)𝑇 , (𝛼𝑜𝑟 − 𝛼0)𝑇)𝑇→𝐷𝑁(0, 1), (11)

where

𝜎𝑛(a𝑛) = 𝜎[a𝑇
𝑛 (U𝑇U)−1a𝑛]

1/2
. (12)

Remark 1
Since ∣𝒢min∣ ≤ 𝑛/𝐾, by the condition ∣𝒢min∣ ≫ √(𝑞 + 𝐾𝑝)𝑛 log 𝑛, then q, K and p must satisfy 𝐾√𝑞 + 𝐾𝑝 =

𝑜{√𝑛(log 𝑛)−1}.

Remark 2
By letting ∣𝒢min∣ = 𝛿𝑛/𝐾 for some constant 0 <δ ≤ 1, the bound (9) is 𝜙𝑛 = 𝑐−1/2

1 𝐶−1
1 𝛿−1𝐾√𝑞 + 𝐾𝑝√log 𝑛/𝑛. More-

over, if q, K and p are fixed quantities, then 𝜙𝑛 = 𝐶∗√log 𝑛/𝑛 for some constant 0 < 𝐶∗ < ∞.

Let

𝑏𝑛 = min
𝑖∈𝒢𝑘,𝑗∈𝒢𝑘′ ,𝑘≠𝑘′

‖𝛽0
𝑖 − 𝛽0

𝑗 ‖ = min
𝑘≠𝑘′

‖𝛼0
𝑘 − 𝛼0

𝑘′‖

be the minimal difference of the common values between two groups.

Theorem 2
Suppose the conditions in Theorem 1 hold. If bn > a λ and 𝜆 ≫ 𝜙𝑛, for some constant a > 0, where ϕn is given in (10),

then there exists a local minimizer ( ̂𝜂𝜂𝜂(𝜆), ̂𝛽𝛽𝛽(𝜆)) of the objective function 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽; 𝜆) given in (6) satisfying

𝑃 (( ̂𝜂𝜂𝜂(𝜆), ̂𝛽𝛽𝛽(𝜆)) = ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟)) → 1.

Remark 3
Remark 1 shows that the oracle estimator ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) is a local minimizer of the objective function with a high probability,

and thus the true groups can be recovered with the estimated common value for group k given as ̂𝛼𝛼𝛼𝑘(𝜆) = ̂𝛽𝛽𝛽𝑜𝑟
𝑖 for 𝑖 ∈ 𝒢𝑘.

This result holds given that 𝑏𝑛 ≫ 𝜙𝑛. As discussed in Remark Remark 2, when K, p and q are finite and fixed numbers
and ∣𝒢min∣ = 𝛿𝑛/𝐾 for some constant 0 < δ ≤ 1, 𝑏𝑛 ≫ 𝐶∗√log 𝑛/𝑛 for some constant 0 < 𝐶∗ < ∞.

Let ̂𝛼𝛼𝛼(𝜆) = ( ̂𝛼𝛼𝛼1(𝜆)T, … , ̂𝛼𝛼𝛼𝐾(𝜆)T)T be the estimated treatment effects such that ̂𝛼𝛼𝛼𝑘(𝜆) = ̂𝛽𝛽𝛽𝑖(𝜆) for 𝑖 ∈ 𝒢𝑘, where
k = 1,…,K, and ̂𝛽𝛽𝛽(𝜆) = { ̂𝛽𝛽𝛽𝑖(𝜆)T, 1 ≤ 𝑖 ≤ 𝑛}T is the local minimizer given in Theorem 2. Based on the results in
Theorem 1 and 2, we obtain the asymptotic distribution of ( ̂𝜂𝜂𝜂(𝜆)T, ̂𝛼𝛼𝛼(𝜆)T)T given in the following corollary.

6
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Corollary 1
Under the conditions in Theorem 2, we have for any a𝑛 ∈ IR𝑞+𝐾𝑝 with ||a𝑛|| = 1, as 𝑛 → ∞,

𝜎𝑛(a𝑛)−1a𝑇
𝑛 (( ̂𝜂(𝜆) − 𝜂0)𝑇 , (𝛼(𝜆) − 𝛼0)𝑇)𝑇→𝐷𝑁(0, 1),

with 𝜎𝑛(a𝑛) given in (12). As a result, we have for any vectors a𝑛1 ∈ IR𝑞 with ||a𝑛1|| = 1 and a𝑛2 ∈ IR𝐾𝑝 ||a𝑛2|| = 1, as
𝑛 → ∞,

𝜎−1
𝑛1 (a𝑛1)a𝑇

𝑛1( ̂𝜂(𝜆) − 𝜂0)→𝐷𝑁(0, 1) 𝑎𝑛𝑑 𝜎−1
𝑛2 (a𝑛2)a𝑇

𝑛2(𝛼(𝜆) − 𝛼0)→𝐷𝑁(0, 1),

where

𝜎𝑛1(a𝑛1) = 𝜎[a𝑇
𝑛1[Z𝑇Z − Z𝑇X̃(X̃𝑇X̃)−1X̃𝑇Z]

−1
a𝑛1]

1/2
,

𝜎𝑛2(a𝑛2) = 𝜎[a𝑇
𝑛2[X̃𝑇X̃ − X̃𝑇Z(Z𝑇Z)−1Z𝑇X̃]

−1
a𝑛2]

1/2
.

Remark 4
From the oracle property in Theorem 2, we have that 𝑃(𝐾 = 𝐾) → 1, 𝐾 is the estimated number of subgroups. Moreover,

since ̂𝛽𝛽𝛽𝑜𝑟 = W̃𝛼𝛼𝛼𝑜𝑟 and ̂𝛽𝛽𝛽(𝜆) = ̂̃W ̂𝛼𝛼𝛼(𝜆), then 𝑃(̂̃W = W̃) → 1, where ̂̃W = {𝑤̂𝑖𝑘} with 𝑤̂𝑖𝑘 = 1 for 𝑖 ∈ 𝒢𝑘 and wik = 0
otherwise. Hence, the subgroup memberships can be recovered with a high probability.

Remark 5
The asymptotic distribution of the penalized estimators provides a theoretical justification for further conducting sta-

tistical inference about heterogeneity. By the results in Corollary Theorem 1, for given a𝑛1 ∈ IR𝑞 and a𝑛2 ∈ IR𝐾𝑝,
100(1 – α)% confidence intervals for a𝑇

𝑛1𝜂0 and a𝑇
𝑛2𝛼𝛼𝛼0 are given by

a𝑇
𝑛1 ̂𝜂(𝜆) ± z𝛼/2𝜎̂𝑛1(a𝑛1) 𝑎𝑛𝑑 a𝑇

𝑛2𝛼(𝜆) ± 𝑧𝛼/2𝜎̂𝑛2(a𝑛2),

respectively, where zα/2 is the (1 – α/2)100 percentile of the standard normal, and 𝜎̂𝑛1(a𝑛1) and 𝜎̂𝑛2(a𝑛2) are estimates of
𝜎𝑛1(a𝑛1) and 𝜎𝑛2(a𝑛2) with σ2 estimated by

𝜎̂2 = (𝑛 − 𝑞 − 𝐾𝑝)−1 ∑
𝑛
𝑖=1

(𝑦𝑖 − 𝑧𝑧𝑧T
𝑖 ̂𝜂𝜂𝜂 − 𝑥𝑥𝑥T

𝑖
̂𝛽𝛽𝛽𝑖)

2.

4.3 Homogeneous model

When the true model is the homogeneous model given as 𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛼𝛼𝛼 + 𝜀𝑖, 𝑖 = 1, … , 𝑛, we have 𝛽𝛽𝛽1 = ⋯ =
𝛽𝛽𝛽𝑛 = 𝛼𝛼𝛼 and K = 1. The penalized estimator ( ̂𝜂𝜂𝜂(𝜆), ̂𝛽𝛽𝛽(𝜆)) of (𝜂𝜂𝜂,𝛽𝛽𝛽), where 𝛽𝛽𝛽 = (𝛽𝛽𝛽T

1 , … ,𝛽𝛽𝛽T
𝑛)T, also has the oracle

property given as follows. We define the oracle estimator for (𝜂𝜂𝜂,𝛼𝛼𝛼) as

( ̂𝜂𝑜𝑟,𝛼𝑜𝑟) = argmin
𝜂∈IR𝑞,𝛼∈IR𝑝

1
2

||y − Z𝜂 − x𝛼||2

= (U∗TU∗)−1U∗Ty,

where x =(𝑥𝑥𝑥1, … ,𝑥𝑥𝑥𝑛) T and U∗ = (Z, x). Let ̂𝛽𝛽𝛽𝑜𝑟 = ( ̂𝛽𝛽𝛽𝑜𝑟T
1 , … , ̂𝛽𝛽𝛽𝑜𝑟T

𝑛 )T, where ̂𝛽𝛽𝛽𝑜𝑟
𝑖 = ̂𝛼𝛼𝛼𝑜𝑟 for all i. Let 𝜂𝜂𝜂0 and 𝛼𝛼𝛼0 be the

true coefficient vectors. We introduce the following condition.

(C3*) Assume ∑𝑛
𝑖=1 𝑧2𝑖𝑙 = 𝑛 for 1 ≤ l ≤ q, and ∑𝑛

𝑖=1 𝑥2𝑖𝑗 = 𝑛 for 1 ≤ j ≤ p, 𝜆min(U∗TU∗) ≥ 𝐶1𝑛, sup𝑖 ‖x𝑖‖ ≤ 𝐶2√𝑝 and
sup𝑖 ‖𝑧𝑧𝑧𝑖‖ ≤ 𝐶3√𝑞 for some constants 0 < 𝐶1 < ∞, 0 < 𝐶2 < ∞ and 0 < 𝐶3 < ∞.

Theorem 3
Suppose Conditions (C1), (C2) and (C3*) hold. If p  =  o(n(logn) – 1) and q = o(n(logn) – 1), the oracle estimator has

the property that with probability at least 1 − 2(𝑝 + 𝑞)𝑛−1,

||(( ̂𝜂𝑜𝑟 − 𝜂0)𝑇 , (𝛼𝑜𝑟 − 𝛼0)𝑇)𝑇 || ≤ 𝜙𝑛,
sup

𝑖
||𝛽𝑜𝑟

𝑖 − 𝛽0
𝑖 || ≤ 𝜙𝑛, (13)

where

𝜙𝑛 = 𝑐−1/2
1 𝐶−1

1 √𝑞 + 𝑝√𝑛−1 log 𝑛,

7
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in which c1 and C1 are given in Conditions (C2) and (C3* ), respectively, and for any vector a𝑛 ∈ IR𝑞+𝑝 with ||a𝑛|| = 1,
as 𝑛 → ∞,

𝜎𝑛(a𝑛)−1aT
𝑛(( ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0)T, ( ̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0)T)T → 𝑁(0, 1), (14)

where

𝜎𝑛(a𝑛) = 𝜎 [aT
𝑛(U∗TU∗)−1a𝑛]1/2 .

Moreover, if 𝜆 ≫ 𝜙𝑛, then there exists a local minimizer ( ̂𝜂𝜂𝜂(𝜆), ̂𝛽𝛽𝛽(𝜆)) of the objective function 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽; 𝜆) given in (6)
satisfying

𝑃 (( ̂𝜂𝜂𝜂(𝜆), ̂𝛽𝛽𝛽(𝜆)) = ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟)) → 1. (15)

Remark 6
By Theorem 3, the local minimizer ̂𝛽𝛽𝛽𝑖(𝜆) = ̂𝛼𝛼𝛼(𝜆) = ̂𝛼𝛼𝛼𝑜𝑟 for all i with probability approaching 1. Then, we have for any

vectors a𝑛1 ∈ I𝑅𝑞 with ||a𝑛1|| = 1 and a𝑛2 ∈ IR𝑝 with ||a𝑛2|| = 1, as 𝑛 → ∞,

𝜎−1
𝑛1 (a𝑛1)a𝑇

𝑛1( ̂𝜂(𝜆) − 𝜂0)→𝐷𝑁(0, 1) 𝑎𝑛𝑑 𝜎−1
𝑛2 (a𝑛2)a𝑇

𝑛2(𝛼(𝜆) − 𝛼0)→𝐷𝑁(0, 1),

where

𝜎𝑛1(a𝑛1) = 𝜎[a𝑇
𝑛1[Z𝑇Z − Z𝑇x(x𝑇x)−1x𝑇Z]

−1
a𝑛1]

1/2
,

𝜎𝑛2(a𝑛2) = 𝜎[a𝑇
𝑛2[x𝑇x − x𝑇Z(Z𝑇Z)−1Z𝑇x]

−1
a𝑛2]

1/2
.

5 Testing of a homogeneous model

Next, we propose a residual bootstrapping procedure to test homogeneity of the treatment effects, i. e. to test
whether the model is the homogeneous model, given as 𝑦𝑖 = 𝑧𝑧𝑧T

𝑖 𝜂𝜂𝜂 +𝑥𝑥𝑥T
𝑖 𝛼𝛼𝛼 + 𝜀𝑖, 𝑖 = 1, … , 𝑛. We consider this model

as the reduced model, and the full model is given in (2). We estimate the reduced model by OLS and obtain
the resulting estimators as ̂𝜂𝜂𝜂R and ̂𝛼𝛼𝛼R. We then estimate the full model by our proposed method and denote
the resulting estimators as ̂𝜂𝜂𝜂F and ̂𝛽𝛽𝛽F

𝑖 . Let the fitted values be 𝜇̂R
𝑖 = 𝑧𝑧𝑧T

𝑖 ̂𝜂𝜂𝜂R + 𝑥𝑥𝑥T
𝑖 ̂𝛼𝛼𝛼R and 𝜇̂F

𝑖 = 𝑧𝑧𝑧T
𝑖 ̂𝜂𝜂𝜂F + 𝑥𝑥𝑥T

𝑖
̂𝛽𝛽𝛽F
𝑖 for the

reduced and full models, respectively. Borrowing the idea from [26], we use the integrated squared deviation
between 𝜇̂R

𝑖 and 𝜇̂F
𝑖 as the test statistic, which would be 𝒯𝑛 = ∑𝑛

𝑖=1(𝜇̂F
𝑖 −𝜇̂R

𝑖 )2/𝑛. Let the residuals be ̂𝜖𝑖 = 𝑦𝑖 −𝜇̂F
𝑖

for i = 1,…,n. We obtain a randomly resampled residual ̂𝜖∗
𝑖 and then create synthetic response variables 𝑦∗

𝑖 =
𝜇̂R

𝑖 + ̂𝜖∗
𝑖 . Using (𝑧𝑧𝑧𝑖, 𝑥𝑥𝑥𝑖, 𝑦∗

𝑖 ) as bootstrap observations, we obtain the fitted values 𝜇̂∗R
𝑖 and 𝜇̂∗F

𝑖 , respectively, by
refitting the reduced and full models, and then creat the bootstrapped version of the test statistic, denoted as
𝒯 ∗

𝑛 = ∑𝑛
𝑖=1(𝜇̂∗F

𝑖 − 𝜇̂∗R
𝑖 )2/𝑛 . Using the Monte Carlo simulations to approximate the conditional distribution

ℒ ∗(𝒯 ∗
𝑛 ) = ℒ(𝒯 ∗

𝑛|(𝑧𝑧𝑧𝑖, 𝑥𝑥𝑥𝑖)𝑛
𝑖=1), we obtain the (1 – α)th quantile ̂𝑡𝛼 and reject the hypothesis of homogeneity if

𝒯𝑛 > ̂𝑡𝛼 at the significance level α. Alternatively, we can obtain the P -value pv by finding the (1− 𝑝v)th quantile
̂𝑡𝑝v

which satisfies ̂𝑡𝑝v
= 𝒯𝑛.

6 Numerical studies

6.1 Simulation studies

We use the modified Bayes Information Criterion (BIC) [27] for high-dimensional data settings to select the
tuning parameter by minimizing

BIC(𝜆) = log [∑
𝑛
𝑖=1

(𝑦𝑖 − zT
𝑖 ̂𝜂(𝜆) − xT

𝑖 𝛽𝑖(𝜆))2/𝑛] + 𝐶𝑛
log𝑛

𝑛 (𝐾̂(𝜆)𝑝 + 𝑞), (16)

where Cn is a positive number which can depend on n. When Cn = 1, the modified BIC reduces to the traditional
BIC [28]. Following [29], we use Cn = log(np + q). We select λ by minimizing the modified BIC.
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One important evaluation criterion for clustering methods is their ability to reconstruct the true underlying
cluster structure. We, therefore, use the Rand Index measure [30] to evaluate the accuracy of the clustering
results. The Rand Index is viewed as a measure of the percentage of correct decisions made by an algorithm. It
is computed by using the formula:

RI = TP + TN
TP + FP + FN + TN , (17)

where a true positive (TP) decision assigns two observations from the same ground truth group to the same
cluster, a true negative (TN) decision assigns two observations from different groups to different clusters, a false
positive (FP) decision assigns two observations from different groups to the same cluster, and a false negative
(FN) decision assigns two observations from the same group to different clusters. The Rand Index lies between
0 and 1. Higher values of the Rand Index indicate better performance of the algorithm.

Example 1
(Two subgroups). We simulate data from the heterogeneous model with two groups:

𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖 + 𝜀𝑖, 𝑖 = 1, … , 𝑛, with 𝛽𝛽𝛽𝑖 = 𝛼𝛼𝛼1𝑤𝑖1 + 𝛼𝛼𝛼2𝑤𝑖2, (18)

where 𝑧𝑧𝑧𝑖 = (𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3)T ∼ 𝒩 (0,ΣΣΣ), in which ΣΣΣ = {𝜎𝑗𝑗′}, σjj = 1 and 𝜎𝑗𝑗′ = 0.3 for j≠j′, and 𝑥𝑥𝑥𝑖 = (1, 𝑥𝑖)T, in which
xi is simulated from centered and standardized binomial with probability 0.7 for one outcome. We simulate
the error terms ɛi from independent N(0, 0.52). Let 𝜂𝜂𝜂 = (1, 1, 1)T, 𝛼𝛼𝛼1 = (2, 2)T and 𝛼𝛼𝛼2 = (0, 0)T. Moreover, let
𝑤𝑖1 = 𝐼(𝑧2𝑖1 + 𝑢𝑖 − 1 < 0) and 𝑤𝑖2 = 1 − 𝑤𝑖1, where 𝑢𝑖 ∼ 𝒩 (0, 1).

Table 1: The sample mean, median and standard deviation (s.d.) of 𝐾, the Rand Index (RI) value and the percentage (per)
of 𝐾 equaling to the true number of subgroups by MCP and SCAD based on 500 replications with n = 200, 400 in Example
1.

n = 200 n = 400

mean median s.d. RI per mean median s.d. RI per

MCP 2.100 2.000 0.302 0.799 0.890 2.080 2.000 0.272 0.826 0.920
SCAD 2.100 2.000 0.303 0.799 0.890 2.080 2.000 0.273 0.825 0.920

We select the λvalue by minimizing the modified BIC given in (16). Table 1 reports the sample mean, median and
standard deviation (s.d.) of the estimated number of groups 𝐾, the average value of Rand Index (RI) defined in
(17) for measuring clustering accuracy, and the percentage (per) of 𝐾 equaling to the true number of subgroups
by the MCP and SCAD methods based on 500 simulation realizations with n = 200,400. The median of 𝐾 is 2
which is the true number of subgroups for all cases. As n increases, the mean gets closer to 2 and the standard
deviation becomes smaller. Moreover, the Rand Index (RI) value and the percentage of correctly selecting the
number of subgroups become closer to 1 as n increases.

Table 2: The sample mean, median and asymptotic standard error (ASE) of the estimators 𝛼̂𝛼𝛼1 and 𝛼̂𝛼𝛼2 by MCP and SCAD
and oracle estimators 𝛼̂𝛼𝛼𝑜𝑟

1 and 𝛼̂𝛼𝛼𝑜𝑟
2 based on 500 replications with n = 200, 400 in Example 1.

n = 200 n = 400

mean median ASE mean median ASE

̂𝛼11 MCP 2.016 2.019 0.046 2.012 2.014 0.034
SCAD 2.016 2.018 0.046 2.012 2.014 0.034

̂𝛼𝑜𝑟
11 1.996 1.997 0.047 2.009 2.009 0.033

̂𝛼12 MCP 1.927 1.929 0.045 1.947 1.945 0.034
SCAD 1.927 1.929 0.045 1.947 1.946 0.034

̂𝛼𝑜𝑟
12 1.990 1.989 0.046 1.999 1.999 0.034

̂𝛼21 MCP 0.016 0.016 0.053 0.006 0.010 0.038
SCAD 0.016 0.016 0.053 0.006 0.010 0.038

̂𝛼𝑜𝑟
21 0.006 0.010 0.055 0.009 0.009 0.039

̂𝛼22 MCP 0.087 0.086 0.054 0.086 0.084 0.038
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SCAD 0.087 0.086 0.054 0.086 0.084 0.038
̂𝛼𝑜𝑟
22 – 0.011 – 0.014 0.055 0.001 0.001 0.039

To further study the estimation accuracy and evaluate the asymptotic properties stated in Section 4, Table 2
presents the sample mean, median and asymptotic standard error (ASE) obtained according to Corollary Corol-
lary 1 of the estimators ̂𝛼𝛼𝛼1 = ( ̂𝛼11, ̂𝛼12)T and ̂𝛼𝛼𝛼2 = ( ̂𝛼21, ̂𝛼22)T by the MCP and SCAD methods and oracle esti-
mators ̂𝛼𝛼𝛼𝑜𝑟

1 = ( ̂𝛼𝑜𝑟
11, ̂𝛼𝑜𝑟

12)T and ̂𝛼𝛼𝛼𝑜𝑟
2 = ( ̂𝛼𝑜𝑟

21, ̂𝛼𝑜𝑟
22)T based on 500 replications with n = 200 and 400. The medians and

means of ̂𝛼𝛼𝛼1 and ̂𝛼𝛼𝛼2 are close to the true values 2 and 0 for all cases. Moreover, the asymptotic standard errors
of the penalized estimators ̂𝛼𝛼𝛼1 and ̂𝛼𝛼𝛼2 are close to those of the oracle estimators ̂𝛼𝛼𝛼𝑜𝑟

1 and ̂𝛼𝛼𝛼𝑜𝑟
2 . This supports the

oracle property established in Theorem 2.
Next, we calculate the mean squared error (MSE) of the estimates ̂𝜂𝜂𝜂 by using the formula ‖ ̂𝜂𝜂𝜂−𝜂𝜂𝜂‖/√𝑞. Figure 2

depicts the boxplots of the MSEs of ̂𝜂𝜂𝜂 by the MCP and SCAD, respectively, at n = 200 (white) and n = 400 (grey).
The MCP and SCAD result in similar MSEs of ̂𝜂𝜂𝜂. The MSE values decrease as n increases for both MCP and
SCAD.

Figure 2: The boxplots of the MSEs of 𝜂̂𝜂𝜂 using MCP and SCAD, respectively, with n = 200 (white) and n = 400 (grey) in
Example 1.

Lastly, we fit the two-group logistic-normal mixture model given in (4) using the R package “flexmix”, and
obtain the average values of RI, which are 0.516 and 0.518, for n = 200 and 400, respectively, based on 500 sim-
ulation realizations. We see that our method leads to higher RI values than the structured mixture modelling
approach, even though our method does not need to specify the true number of subgroups beforehand. Table 3
reports the sample mean, median and empirical standard deviation (ESD) of the estimators ̂𝛼𝛼𝛼1 and ̂𝛼𝛼𝛼2 by using
the clustering result from the mixture modelling approach to fit regressions of the two groups. Clearly, the
estimated values from our method given in Table 2 are closer to the true values 𝛼𝛼𝛼1 and 𝛼𝛼𝛼2 than those obtained
from the mixture modelling approach given in Table 3. The mixture modelling method requires the indicator
function which is 𝑤𝑖 = 𝐼(𝑧𝑧𝑧T

𝑖 𝛾𝛾𝛾 + 𝜖 > 0) given in (4) to be a parametric linear function of 𝑧𝑧𝑧𝑖, so that it fits a
mis-specified model for this example. As a result, it leads to biased estimates of 𝛼𝛼𝛼1 and 𝛼𝛼𝛼2.

Table 3: The sample mean, median and empirical standard deviation (ESD) of the estimators 𝛼̂𝛼𝛼1 and 𝛼̂𝛼𝛼2 by the mixture
modelling approach based on 500 replications in Example 1.

n = 200 n = 400

mean median ESD mean median ESD

̂𝛼11 1.834 1.809 0.266 1.819 1.794 0.179
̂𝛼12 1.254 1.262 0.137 1.263 1.266 0.090
̂𝛼21 0.809 0.842 0.419 0.786 0.796 0.343
̂𝛼22 0.949 0.977 0.210 0.940 0.957 0.151

10

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Ma et al.

Example 2
(Three subgroups). We simulate data from the heterogeneous model with three groups:

𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖+𝜀𝑖, 𝑖 = 1, … , 𝑛, with 𝛽𝛽𝛽𝑖 = 𝛼𝛼𝛼1𝑤𝑖1 + 𝛼𝛼𝛼2𝑤𝑖2 + 𝛼𝛼𝛼3𝑤𝑖3, (19)

where 𝑧𝑧𝑧𝑖, ɛi and 𝜂𝜂𝜂 are simulated in the same way as in Example 1. Let 𝑥𝑥𝑥𝑖 = (1, 𝑥𝑖)T, where xi is generated from
centered and standardized binomial with probability 0.5 for one outcome. Let 𝛼𝛼𝛼1 = (−𝑐, −𝑐)T, 𝛼𝛼𝛼2 = (0, 0)T and
𝛼𝛼𝛼2 = (𝑐, 𝑐)T. Moreover, let 𝑤𝑖1 = 𝐼(|𝑧𝑖1 + 𝑧𝑖2 + 𝑧𝑖3| < 0.9), 𝑤𝑖2 = 𝐼(𝑧𝑖1 + 𝑧𝑖2 + 𝑧𝑖3 ≥ 0.9) and 𝑤𝑖3 = 1− 𝑤𝑖1 − 𝑤𝑖2. Let
n = 200.

Figure 3 displays the fusiongram for ( ̂𝛽21(𝜆), … , ̂𝛽2𝑛(𝜆)), the elements of the second component in ̂𝛽𝛽𝛽𝑖(𝜆)’s,
against λ values with c = 2. The fusiongrams for SCAD and MCP look similar. They generate three subgroups
for λ in a certain interval, and the estimates of the treatment effects are nearly unbiased on this segment. For
the LASSO, the estimates merge to a single value quickly due to the overshrinkage of the L1 penalty.

Figure 3: Fusiongram for 𝛽21(𝜆), … , 𝛽2𝑛(𝜆), the second component in ̂𝛽𝛽𝛽 i(𝜆)’s, against 𝜆 with c = 2 in Example 2.

Table 4: The sample mean, median and standard deviation (s.d.) of 𝐾, the Rand Index (RI) value and the percentage (per)
of 𝐾 equaling to the true number of subgroups by MCP and SCAD based on 500 replications for c = 2, 3 and 4 in Example
2.

c = 2 c = 3 c = 4

MCP SCAD MCP SCAD MCP SCAD

mean 3.450 3.470 3.400 3.410 3.350 3.370
median 3.000 3.000 3.000 3.000 3.000 3.000
s.d. 0.775 0.765 0.769 0.758 0.748 0.726
RI 0.651 0.651 0.658 0.657 0.672 0.672
per 0.630 0.600 0.680 0.660 0.800 0.760

We next conduct the simulations by selecting λ via minimizing the modified BIC given in (16). Table 4 reports
the sample mean, median and standard deviation (s.d.) of the estimated number of groups 𝐾, the Rand Index
(RI) defined in (17) for measuring clustering accuracy, and the percentage (per) of 𝐾 equaling to the true number
of subgroups by the MCP and SCAD methods based on 500 simulation realizations for c = 2, 3 and 4. We observe
that the median values of 𝐾 are 3, which is the true number of subgroups, for all cases. Moreover, as the c value
becomes larger, the Rand Index (RI) value and the percentage of correctly selecting the number of subgroups
increase.

Example 3
(No treatment heterogeneity). We generate data from a model with homogeneous treatment effects given

by 𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽+𝜀𝑖, 𝑖 = 1, … , 𝑛, where 𝑧𝑧𝑧𝑖 , 𝑥𝑥𝑥𝑖, ɛi and 𝜂𝜂𝜂 are simulated in the same way as in Example 1.
Set 𝛽𝛽𝛽 = (𝛽1, 𝛽2)T = (2, 2) and n = 200. We use our proposed penalized estimation method to fit the model.
The sample mean of the estimated number of groups 𝐾 is 1.19 and 1.18, respectively, for the MCP and SCAD
methods, and the sample median is 1 for both methods based on 500 replications.

Table 5: The empirical bias (Bias) for the estimates of 𝛽𝛽𝛽 and 𝜂𝜂𝜂, and the average asymptotic standard error (ASE) calculated
according to Corollary 1 and the empirical standard error (ESE) for the MCP and SCAD methods and oracle estimator
(ORACLE) in Example 3.

β1 β2 η1 η2 η3
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Bias – 0.005 0.003 – 0.002 0.007 0.003
MCP ASE 0.035 0.037 0.036 0.037 0.037

ESE 0.034 0.036 0.041 0.038 0.041

Bias – 0.004 0.002 – 0.001 0.007 0.003
SCAD ASE 0.035 0.036 0.036 0.037 0.037

ESE 0.034 0.036 0.040 0.037 0.041

Bias – 0.004 0.002 – 0.001 0.006 0.004
ORACLE ASE 0.036 0.036 0.037 0.038 0.038

ESE 0.036 0.037 0.039 0.034 0.039

To evaluate the asymptotic normality established in Corollary 1, Table 5 lists the empirical bias (Bias) for the
estimates of 𝛽𝛽𝛽 and 𝜂𝜂𝜂, the average asymptotic standard error (ASE) calculated according to Corollary 1, the
empirical standard error (ESE) for the MCP, SCAD as well as the oracle estimator (ORACLE). The bias, ASE and
ESE for the estimates of 𝛽𝛽𝛽 by the MCP and SCAD are calculated based on the replications with the estimated
number of groups equal to one. For other cases, they are calculated based on the 500 replications. The biases
are small for all cases. The ESE and ASE are similar for both MCP and SCAD, and they are also close to the
corresponding values for the oracle estimator. These results indicate that the proposed method works well for
the homogeneous model.

6.2 Empirical example

We apply our method to the AIDS Clinical Trials Group Study 175. This study was a randomized clinical trial
to compare zidovudine with other three therapies including zidovudine and didanosine, zidovudine and zal-
citabine, and didanosine in adults infected with the human immunodeficiency virus type I. We use the log-
transformed values of the CD4 counts at 20± 5 weeks as the responses yi [31]. For illustration of our method, we
use didanosine as the treatment variable and use a binary variable xi for this treatment. Thus, the coefficient of
xi represents the difference in the treatment effect between the two therapies: didanosine and zidovudine. We
randomly select 500 patients from the study to consist of our dataset. Moreover, we include 5 baseline covari-
ates in the model, which are age (years), weight (kg), Karnofsky score, log-transformed CD8 counts at baseline,
and gender (0 = female, 1 = male).

To see possible heterogeneity in treatment effects, we first fit the homogeneous linear model (3) by using yi
as the response and the 5 baseline covariates and the treatment variable as predictors and obtain the residuals,
so that the effects of the baseline covariates are controlled. In Figure 4 (a), it shows the kernel density plot of
the residuals. We can see that the distribution has multiple modes for these patients, which indicates possible
heterogeneous treatment effects.

Figure 4: The kernel density plot of the residuals (a) by fitting the homogeneous linear model (3) and (b) by fitting the
heterogeneous linear model (2).

Next, we fit the heterogeneous model 𝑦𝑖 = 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖+𝜀𝑖, 𝑖 = 1, … , 𝑛, where 𝛽𝛽𝛽𝑖 = (𝛽1𝑖, 𝛽2𝑖)T, 𝑧𝑧𝑧𝑖 = (𝑧𝑖1 … , 𝑧𝑖5)T

which are the 5 covariates described above, and 𝑥𝑥𝑥𝑖 = (1, 𝑥𝑖)T, in which xi is the binary variable for the treatment
didanosine. All of the predictors are centered and standardized before applying the regularization methods.
Figure 5 displays the fusiongrams for the estimated treatment coefficients, ( ̂𝛽21(𝜆), … , ̂𝛽2𝑛(𝜆)), by MCP. We
obtain similar patterns by using SCAD. The fusiongrams suggest the existence of heterogeneity in the treatment
effects. In particular, the modified BIC criterion selected the λ value in the region that gives two subgroups with
different treatment effects. Moreover, Figure 4 (b) shows the kernel density plot of the residuals by fitting the
heterogeneous linear model (2). It shows a uni-modal distribution.
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Figure 5: Fusiongram for ̂𝛽𝛽𝛽2(𝜆) =𝛽21(𝜆), … , 𝛽2𝑛(𝜆) against 𝜆.

Table 6: The estimates (Est.), their standard errors (s.e.) and p-values (P-value) for testing significance of 𝛼𝛼𝛼1 and 𝛼𝛼𝛼2 by the
MCP and SCAD methods, and those values of 𝛽𝛽𝛽 = 𝛼𝛼𝛼1 by the OLS method.

α11(intercept) α12(trt) α21 (intercept) α22(trt)

MCP Est. 5.809 – 0.065 5.735 1.687
s.e. 0.016 0.041 0.055 0.110
p-value <0.001 0.112 <0.001 <0.001

SCAD Est. 5.809 – 0.065 5.737 1.688
s.e. 0.016 0.042 0.055 0.110
p-value <0.001 0.122 <0.001 <0.001

OLS Est. 5.787 0.077 – –
s.e. 0.019 0.040 – –
p-value <0.001 0.054 – –

Let ̂𝛼𝛼𝛼1 = ( ̂𝛼11, ̂𝛼12)T and ̂𝛼𝛼𝛼2 = ( ̂𝛼21, ̂𝛼22)T be the estimated coefficients for 𝑥𝑥𝑥𝑖 in the two identified groups 𝒢1 and
𝒢2, respectively, so that ̂𝛽𝛽𝛽𝑖 = ̂𝛼𝛼𝛼1 for 𝑖 ∈ 𝒢1 and ̂𝛽𝛽𝛽𝑖 = ̂𝛼𝛼𝛼2 for 𝑖 ∈ 𝒢2. In Table 6, we report the estimates (Est.)
and their standard errors (s.e.) of 𝛼𝛼𝛼1 = (𝛼11, 𝛼12)T and 𝛼𝛼𝛼2 = (𝛼21, 𝛼22)T by the MCP and SCAD methods, and
those values of 𝛽𝛽𝛽 = 𝛼𝛼𝛼1 by the OLS method. Note that the first and second components represent the coefficients
for intercept and the treatment variable (trt), respectively. We also report the p-values (p-value) for testing
whether each coefficient is zero or not. By the OLS method, the p-value for testing whether the coefficient of
the therapy (didanosine), α12, is zero or not is greater than 0.05. This result indicates that the effect of the therapy
(didanosine) is not significantly different from that of the standard treatment (zidovudine) by assuming that
the treatment effect is homogeneous. In comparison, by the proposed concave fusion approach, the p-value for
testing significance of the treatment coefficient, α12, for one group is greater than 0.05, but the p-value for the
other group is less than 0.001. This result implies that although the treatment has no statistically significant
effect on one group of patients, its effect on the other group is prominent.

Next, we employ the bootstrapping method given in Section 5 to test homogeneity of the treatment effect. We
obtain the p-value <0.01. Thus, the heterogeneity of the treatment effect is further confirmed by the inference
procedure. Lastly, we apply the method to model (2) with all three therapies by letting 𝑥𝑥𝑥𝑖 = (1, 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)T,
where xi1 = zidovudine and didanosine (trt1), xi2 = zidovudine and zalcitabine (trt2), and xi3 = didanosine (trt3).
Let ̂𝛼𝛼𝛼1 = ( ̂𝛼11, ̂𝛼12, ̂𝛼13, ̂𝛼14)T and ̂𝛼𝛼𝛼2 = ( ̂𝛼21, ̂𝛼22, ̂𝛼23, ̂𝛼24)T be the estimated coefficients for 𝑥𝑥𝑥𝑖 in the two identified
groups 𝒢1 and 𝒢2, respectively. In Table 7, we report the estimates (Est.) and their standard errors (s.e.) of
𝛼𝛼𝛼1 = (𝛼11, 𝛼12, 𝛼13, 𝛼14)T and 𝛼𝛼𝛼2 = (𝛼21, 𝛼22, 𝛼23, 𝛼24)T by the MCP and SCAD methods, and those values of 𝛽𝛽𝛽 = 𝛼𝛼𝛼1
by the OLS method. We obtain two subgroups as well by our proposed method. Moreover, the two methods,
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MCP and SCAD, have similar results, and the effects of the three therapies are more significantly different from
the standard therapy in one group than they are in the other group.

Table 7: The estimates (Est.), their standard errors (s.e.) and p-values (P-value) for testing significance of 𝛼𝛼𝛼1 and 𝛼𝛼𝛼2 by
MCP and SCAD, and those values obtained by OLS.

α11 α12 α13 α14 α21 α22 α23 α24

MCP Est. 3.985 0.114 0.104 0.126 5.525 1.116 1.200 1.214
s.e. 0.086 0.049 0.051 0.052 0.074 0.103 0.106 0.107
p-value <0.001 0.020 0.041 0.015 <0.001 <0.001 <0.001 <0.001

SCAD Est. 3.985 0.114 0.105 0.127 5.524 1.116 1.199 1.214
s.e. 0.086 0.047 0.051 0.052 0.074 0.102 0.106 0.107
p-value <0.001 0.015 0.040 0.015 <0.001 <0.001 <0.001 <0.001

OLS Est. 5.846 0.069 0.067 0.065 – – – –
s.e. 0.019 0.024 0.024 0.024 – – – –
p-value <0.001 0.004 0.005 0.007 – – – –

7 Discussion

It will be of interest to extend the proposed method to a more general class of regression problems including
generalized linear and Cox regression models. Moreover, it is also possible to relax the linearity assumption
on the covariates 𝑧𝑧𝑧𝑖 by considering a nonparametric or semiparametric functional form of 𝑧𝑧𝑧𝑖. For these more
complicated models, the ADMM algorithm can still be employed with some modifications. However, further
work is needed to study the theoretical properties. We refer to Section A.2 for detailed discussions on these
extensions. Also, we have assumed that the number of treatment variables p and the number of confounding
variables q are both smaller than the sample size n, although we allow p and q to diverge with n. For high-
dimensional problems with p > n or q > n, a sparsity condition on the coefficients would be needed to ensure
identifiability of the model. Further studies are needed to develop computational algorithms and theoretical
results for the high-dimensional setting.

Funding

The research of Ma is supported in part by U.S. NSF grant DMS-1712558 and NIH grant R01 ES024732-03.

A Appendix

In the Appendix, we give the computational details, the convergence property of the ADMM algorithm and
the technical proofs for Theorem 1–Theorem 3.

A.1 Computation

A.1.1 ADMM with concave penalties

We derive an ADMM algorithm for computing the solution (7). The key idea is to introduce a new set of pa-
rameters 𝛿𝛿𝛿𝑖𝑗 = 𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗. Then, we can reformulate the problem of minimizing (6) as that of minimizing

𝐿0(𝜂, 𝛽, 𝛿) =
1
2

∑
𝑛
𝑖=1

(𝑦𝑖 − z𝑇
𝑖 𝜂 − x𝑇

𝑖 𝛽𝑖)2 + ∑
𝑖<𝑗

𝑝𝛾(𝛿𝑖𝑗, 𝜆),

subject to 𝛽𝑖 − 𝛽𝑗 − 𝛿𝑖𝑗 = 0,
(20)
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where 𝛿𝛿𝛿 = {𝛿𝛿𝛿T
𝑖𝑗, 𝑖 < 𝑗}T. Let ⟨a,b⟩ = aTb be the inner product of two vectors a and b with the same dimension.

The augmented Lagrangian is

𝐿(𝜂𝜂𝜂,𝛽𝛽𝛽,𝛿𝛿𝛿,𝜐𝜐𝜐) = 𝐿0(𝜂𝜂𝜂,𝛽𝛽𝛽,𝛿𝛿𝛿) + ∑
𝑖<𝑗

⟨𝜐𝜐𝜐𝑖𝑗,𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗 − 𝛿𝛿𝛿𝑖𝑗⟩ +
𝜗
2

∑
𝑖<𝑗

‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗 − 𝛿𝛿𝛿𝑖𝑗‖2, (21)

where the dual variables 𝜐𝜐𝜐 = {𝜐𝜐𝜐T
𝑖𝑗, 𝑖 < 𝑗}T are Lagrange multipliers and ϑ is a penalty parameter. We then

compute the estimates of (𝜂𝜂𝜂,𝛽𝛽𝛽,𝛿𝛿𝛿,𝜐𝜐𝜐) through iterations using the ADMM.
For a given value of 𝛿𝛿𝛿𝑚 and 𝜐𝜐𝜐𝑚 at step m, the iteration goes as follows:

(𝜂𝑚+1, 𝛽𝑚+1) = argmin
𝜂,𝛽

𝐿(𝜂, 𝛽, 𝛿𝑚, 𝜐𝑚), (22)

𝛿𝑚+1 = argmin
𝛿

𝐿(𝜂𝑚+1, 𝛽𝑚+1, 𝛿, 𝜐𝑚), (23)

𝜐𝑚+1
𝑖𝑗 = 𝜐𝑚

𝑖𝑗 + 𝜗(𝛽𝑚+1
𝑖 − 𝛽𝑚+1

𝑗 − 𝛿𝑚+1
𝑖𝑗 ). (24)

In (22), the problem is equivalent to the minimization of the function

𝑓 (𝜂𝜂𝜂,𝛽𝛽𝛽) =
1
2

∑
𝑛
𝑖=1

(𝑦𝑖 − 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 − 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖)2 +
𝜗
2

∑
𝑖<𝑗

‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗 − 𝛿𝛿𝛿𝑚
𝑖𝑗 + 𝜗−1𝜐𝜐𝜐𝑚

𝑖𝑗 ‖2 + 𝐶,

where C is a constant independent of (𝜂𝜂𝜂,𝛽𝛽𝛽). Some algebra shows that we can write 𝑓 (𝜂𝜂𝜂,𝛽𝛽𝛽) as

𝑓 (𝜂𝜂𝜂,𝛽𝛽𝛽) =
1
2

‖Z𝜂𝜂𝜂 + X𝛽𝛽𝛽 − y‖2 +
𝜗
2

‖A𝛽𝛽𝛽 − 𝛿𝛿𝛿𝑚 + 𝜗−1𝜐𝜐𝜐𝑚‖2 + 𝐶, (25)

where A =𝐷 ⊗ I𝑝. Here 𝐷 = {(𝑒𝑖 − 𝑒𝑗), 𝑖 < 𝑗}T with ei being the ith unit n × 1 vector whose ith element is 1 and
the remaining ones are 0, I𝑝 is a p × p identity matrix and ⊗ is the Kronecker product.

Thus for given 𝛿𝛿𝛿𝑚 and 𝜐𝜐𝜐𝑚 at the mth step, the updates 𝛽𝛽𝛽𝑚+1 and 𝜂𝜂𝜂𝑚+1 are

𝛽𝑚+1 = (XTQ𝑍X + 𝜗ATA)−1[XTQ𝑍y + 𝜗AT(𝛿𝑚 − 𝜗−1𝜐𝑚)],

𝜂𝑚+1 = (ZTZ)−1ZT(y − X𝛽𝑚+1),
(26)

where Q𝑍 = I𝑛 − Z(ZTZ)−1ZT. Since

AT(𝛿𝛿𝛿𝑚 − 𝜗−1𝜐𝜐𝜐𝑚) = (𝐷T ⊗ I𝑝)(𝛿𝛿𝛿𝑚 − 𝜗−1𝜐𝜐𝜐𝑚) = vec((ΔΔΔ𝑚 − 𝜗−1ΥΥΥ𝑚)𝐷),
where ΔΔΔ𝑚 = {𝛿𝛿𝛿𝑚

𝑖𝑗 , 𝑖 < 𝑗}𝑝×𝑛(𝑛−1)/2 and ΥΥΥ𝑚 = {𝜐𝜐𝜐𝑚
𝑖𝑗 , 𝑖 < 𝑗}𝑝×𝑛(𝑛−1)/2, then we have

𝛽𝛽𝛽𝑚+1 = (XTQ𝑍X + 𝜗ATA)−1[XTQ𝑍y + 𝜗vec((ΔΔΔ𝑚 − 𝜗−1ΥΥΥ𝑚)𝐷)]. (27)

In (23), after discarding the terms independent of 𝛿𝛿𝛿, we need to minimize
𝜗
2

‖𝜁𝜁𝜁𝑚
𝑖𝑗 − 𝛿𝛿𝛿𝑖𝑗‖2 + 𝑝𝛾(‖𝛿𝛿𝛿𝑖𝑗‖, 𝜆) (28)

with respect to 𝛿𝛿𝛿𝑖𝑗, where 𝜁𝜁𝜁𝑚
𝑖𝑗 = 𝛽𝛽𝛽𝑚

𝑖 − 𝛽𝛽𝛽𝑚
𝑗 + 𝜗−1𝜐𝜐𝜐𝑚

𝑖𝑗 . This is a groupwise thresholding operator corresponding to
pγ.

For the L1 penalty, the solution is

𝛿𝛿𝛿𝑚+1
𝑖𝑗 = 𝑆(𝜁𝜁𝜁𝑚

𝑖𝑗 , 𝜆/𝜗), (29)

where 𝑆(𝑧𝑧𝑧, 𝑡) = (1−𝑡/‖𝑧‖𝑧‖𝑧‖)+𝑧𝑧𝑧 is the groupwise soft thresholding operator. Here (x)+ = x if x > 0 and = 0 , otherwise.
For the MCP with γ > 1/ϑ, the solution is

𝛿𝛿𝛿𝑚+1
𝑖𝑗 =

⎧{
⎨{⎩

𝑆(𝜁𝜁𝜁𝑚
𝑖𝑗 ,𝜆/𝜗)

1−1/(𝛾𝜗) if ‖𝜁𝜁𝜁𝑚
𝑖𝑗 ‖ ≤ 𝛾𝜆,

𝜁𝜁𝜁 𝑖𝑗 if ‖𝜁𝜁𝜁𝑚
𝑖𝑗 ‖ > 𝛾𝜆.

� (30)

For the SCAD penalty with γ > 1/ϑ + 1, the solution is

𝛿𝛿𝛿𝑚+1
𝑖𝑗 =

⎧{{
⎨{{⎩

𝑆(𝜁𝜁𝜁𝑚
𝑖𝑗 , 𝜆/𝜗) if ‖ 𝜁𝜁𝜁𝑚

𝑖𝑗 ‖ ≤ 𝜆 + 𝜆/𝜗,
𝑆(𝜁𝜁𝜁𝑚

𝑖𝑗 ,𝛾𝜆/((𝛾−1)𝜗))
1−1/((𝛾−1)𝜗) if 𝜆 + 𝜆/𝜗 < ‖𝜁𝜁𝜁𝑚

𝑖𝑗 ‖ ≤ 𝛾𝜆,
𝜁𝜁𝜁𝑚

𝑖𝑗 if ‖𝜁𝜁𝜁𝑚
𝑖𝑗 ‖ > 𝛾𝜆.

� (31)

Finally, the update of 𝜐𝜐𝜐𝑖𝑗 is given in (24).
We summarize the above analysis in Algorithm 1.
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Algorithm 1 ADMM for concave fusion
Require: Initialize 𝛿𝛿𝛿0, 𝜐𝜐𝜐0.
 1: for 𝑚 = 0, 1, 2, ⋯do
 2:  Compute 𝛽𝛽𝛽𝑚+1 using (6)
 3:  Compute 𝜂𝜂𝜂𝑚+1 (26)
 4:  Compute 𝛿𝛿𝛿𝑚+1 (29), (30) or (13)
 5:  Compute 𝜐𝜐𝜐𝑚+1 using (24)
 6:  if convergence criterion is met, then
 7:   Stop and denote the last iteration by (𝜂̂𝜂𝜂(𝜆),𝛽𝛽𝛽(𝜆)),
 8:  else
 9:   m = m + 1.
10:  end if
11: end for
Ensure: Output

Remark 7
Our algorithm enables us to have ̂𝛿𝛿𝛿𝑖𝑗 = 0 for a sufficiently large λ. We put observations i and j in the group with the

same treatment effect if ̂𝛿𝛿𝛿𝑖𝑗 = 0. As a result, we have 𝐾 estimated groups 𝒢1, … , 𝒢𝐾 . The estimated treatment effect for the
kth group is ̂𝛼𝛼𝛼𝑘 = |𝒢𝑘 |−1 ∑𝑖∈𝒢𝑘

̂𝛽𝛽𝛽𝑖, where |𝒢𝑘 | is the cardinality of 𝒢𝑘.

Remark 8
In the algorithm, we require the invertibility of XTQ𝑍X+ 𝜗ATA. It can be derived that AT A = 𝑛I𝑛𝑝 − (1𝑛 ⊗ I𝑝)(1𝑛 ⊗

I𝑝)T. For any nonzero vector a = (𝑎𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝)T ∈ IR𝑛𝑝, we have aT(𝜗ATA)a ≥ 0 and aT(XTQ𝑍X)a ≥ 0.
Note that aT(𝜗ATA)a = 0 if and only if 𝑎𝑖𝑗 = 𝑎𝑗 for all i. When 𝑎𝑖𝑗 = 𝑎𝑗 for all i, we have aT(XTQ𝑍X)a > 0 given
that 𝜆min(∑𝑛

𝑖=1(𝑥𝑥𝑥T
𝑖 , 𝑧𝑧𝑧T

𝑖 )T(𝑥𝑥𝑥T
𝑖 , 𝑧𝑧𝑧T

𝑖 )) > 0, which is a common assumption that the design matrix needs to satisfy in linear
regression. Therefore, XTQ𝑍X + 𝜗ATA is invertible.

Remark 9
We track the progress of the ADMM based on the primal residual r𝑚+1 = A𝛽𝛽𝛽𝑚+1−𝛿𝛿𝛿𝑚+1. We stop the algorithm when

r𝑚+1 is close to zero such that ∥r𝑚+1∥ < 𝑎 for some small value a.

A.1.2 Initial value and computation of the solution path

To start the ADMM algorithm described above, it is important to find a reasonable initial value. For this purpose,
we consider the ridge fusion criterion given by

𝐿𝑅(𝜂𝜂𝜂,𝛽𝛽𝛽) =
1
2

‖Z𝜂𝜂𝜂 + X𝛽𝛽𝛽 − y‖2 +
𝜆∗

2
∑

1≤𝑖<𝑗≤𝑛
‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗‖2,

where λ* is the tuning parameter having a small value. We use λ* = 0.001 in our analysis. Then 𝐿𝑅(𝜂𝜂𝜂,𝛽𝛽𝛽) can be
written as

𝐿𝑅(𝜂𝜂𝜂,𝛽𝛽𝛽) =
1
2

‖Z𝜂𝜂𝜂 + X𝛽𝛽𝛽 − y‖2 +
𝜆∗

2
‖A𝛽𝛽𝛽‖2,

where 𝐴𝐴𝐴 is defined in (25). The solutions are

𝛽𝑅(𝜆∗) = (𝛽T
𝑅,1(𝜆∗), … , 𝛽T

𝑅,𝑛(𝜆∗))T = (XTQ𝑍X + 𝜆∗ATA)−1XTQ𝑍y,
𝜂𝑅(𝜆∗) = (ZTZ)−1ZT(y − X𝛽𝑅(𝜆∗)),

whereQ𝑍 is given in (27). Next, we assign the subjects to K* groups by ranking the median values of𝛽𝛽𝛽T
𝑅,𝑖(𝜆∗). We

let 𝐾∗ = ⌊𝑛1/2⌋ to ensure that it is sufficiently large, where ⌊𝑎⌋ denotes the largest integer no greater than a. We
then find the initial estimates 𝜂𝜂𝜂0 and 𝛽𝛽𝛽0 from least squares regression with K* groups. Let the initial estimates
𝛿𝛿𝛿0𝑖𝑗 = 𝛽𝛽𝛽0

𝑖 − 𝛽𝛽𝛽0
𝑗 and 𝜐𝜐𝜐0 = 0.

To compute the solution path of 𝜂𝜂𝜂 and 𝛽𝛽𝛽 along the λ values, we use the warm start and continuation strategy
to update the solutions. Let [𝜆min, 𝜆max] be the interval on which we compute the solution path, where 0 ≤
𝜆min < 𝜆max < ∞. Let 𝜆min = 𝜆0 < 𝜆1 < ⋯ < 𝜆𝐾 ≡ 𝜆max be a grid of λ values in [𝜆min, 𝜆max]. Compute
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( ̂𝜂𝜂𝜂(𝜆0), ̂𝛽𝛽𝛽(𝜆0)) using (𝜂𝜂𝜂0,𝛽𝛽𝛽0) as the initial value. Then compute ( ̂𝜂𝜂𝜂(𝜆𝑘), ̂𝛽𝛽𝛽(𝜆𝑘)) using ( ̂𝜂𝜂𝜂(𝜆𝑘−1), ̂𝛽𝛽𝛽(𝜆𝑘−1)) as the
initial value for each k = 1,…,K.

Note that we start from the smallest λ value in computing the solution path. This is different from the
coordinate descent algorithms for computing the solution path in penalized regression problems [32], where
the algorithms start at the λ value that forces all the coefficients to zero.

A.1.3 Convergence of the algorithm

We next derive the convergence properties of the ADMM algorithm.

Proposition 1
Let r𝑚 = A𝛽𝛽𝛽𝑚−𝛿𝛿𝛿𝑚 and s𝑚+1 = 𝜗AT(𝛿𝛿𝛿𝑚+1−𝛿𝛿𝛿𝑚) be the primal residual and the dual residual in the ADMM described

above, respectively. It holds that lim𝑚→∞ ‖r𝑚‖2 = 0 and lim𝑚→∞ ‖s𝑚‖2 = 0 for the MCP and SCAD penalties.

This proposition shows that the primal feasibility and the dual feasibility are achieved by the algorithm.
Proof. By the definition of 𝛿𝛿𝛿𝑚+1, we have

𝐿(𝜂𝜂𝜂𝑚+1,𝛽𝛽𝛽𝑚+1, 𝛿𝛿𝛿𝑚+1,𝜐𝜐𝜐𝑚)≤𝐿(𝜂𝜂𝜂𝑚+1,𝛽𝛽𝛽𝑚+1,𝛿𝛿𝛿,𝜐𝜐𝜐𝑚)

for any 𝛿𝛿𝛿. Define

𝑓 𝑚+1 = inf
A𝛽𝑚+1−𝛿=0

{
1
2

∥y − Z𝜂𝑚+1 − X𝛽𝑚+1∥2 + ∑
𝑖<𝑗

𝑝𝛾(|𝛿𝑖𝑗|, 𝜆)}

= inf
A𝛽𝑚+1−𝛿=0

𝐿(𝜂𝑚+1, 𝛽𝑚+1, 𝛿, 𝜐𝑚).

Then

𝐿(𝜂𝜂𝜂𝑚+1,𝛽𝛽𝛽𝑚+1, 𝛿𝛿𝛿𝑚+1,𝜐𝜐𝜐𝑚)≤𝑓 𝑚+1.

Let t be an integer. Since 𝜐𝜐𝜐𝑚+1 = 𝜐𝜐𝜐𝑚 + 𝜗(A𝛽𝛽𝛽𝑚+1−𝛿𝛿𝛿𝑚+1), then we have

𝜐𝜐𝜐𝑚+𝑡−1 = 𝜐𝜐𝜐𝑚 + 𝜗 ∑
𝑡−1

𝑖=1
(A𝛽𝛽𝛽𝑚+𝑖−𝛿𝛿𝛿𝑚+𝑖),

and thus

𝐿(𝜂𝑚+𝑡, 𝛽𝑚+𝑡, 𝛿𝑚+𝑡, 𝜐𝑚+𝑡−1)

=
1
2

∥y − Z𝜂𝑚+𝑡 − X𝛽𝑚+𝑡∥2 + (𝜐𝑚+𝑡−1)T(A𝛽𝑚+𝑡 − 𝛿𝑚+𝑡)

+
𝜗
2

||A𝛽𝑚+𝑡 − 𝛿𝑚+𝑡||2 + ∑
𝑖<𝑗

𝑝𝛾(|𝛿𝑚+𝑡
𝑖𝑗 |, 𝜆)

=
1
2

∥y − Z𝜂𝑚+𝑡 − X𝛽𝑚+𝑡∥2 + (𝜐𝑚)T(A𝛽𝑚+𝑡 − 𝛿𝑚+𝑡)

+ 𝜗 ∑
𝑡−1

𝑖=1
(A𝛽𝑚+𝑖 − 𝛿𝑚+𝑖)T(A𝛽𝑚+𝑡 − 𝛿𝑚+𝑡)

+
𝜗
2

||A𝛽𝑚+𝑡 − 𝛿𝑚+𝑡||2 + 𝑝𝛾(|𝛿𝑚+𝑡
𝑖𝑗 |, 𝜆)

⩽ 𝑓 𝑚+𝑡.

Since the objective function 𝐿(𝜂𝜂𝜂,𝛽𝛽𝛽,𝛿𝛿𝛿,𝜐𝜐𝜐) is differentiable with respect to (𝜂𝜂𝜂,𝛽𝛽𝛽) and is convex with respect to 𝛿𝛿𝛿, by
applying the results in Theorem 4.1 of [33], the sequence (𝜂𝜂𝜂𝑚,𝛽𝛽𝛽𝑚, 𝛿𝛿𝛿𝑚) has a limit point, denoted by (𝜂𝜂𝜂∗,𝛽𝛽𝛽∗,𝛿𝛿𝛿∗).
Then we have

𝑓 ∗ = lim𝑚→∞ 𝑓 𝑚+1 = lim𝑚→∞ 𝑓 𝑚+𝑡 = inf
A𝛽𝛽𝛽∗−𝛿𝛿𝛿=0

{
1
2

∥y − Z𝜂𝜂𝜂∗−X𝛽𝛽𝛽∗∥2 + ∑
𝑖<𝑗

𝑝𝛾(|𝛿𝛿𝛿𝑖𝑗|, 𝜆)},

and for all t ≥ 0

lim𝑚→∞ 𝐿(𝜇𝑚+𝑡, 𝛽𝑚+𝑡, 𝜂𝑚+𝑡, 𝜐𝑚+𝑡−1)

=
1
2

∥y − Z𝜂∗ − X𝛽∗∥2 + ∑
𝑖<𝑗

𝑝𝛾(|𝛿∗
𝑖𝑗|, 𝜆) + lim𝑚→∞ (𝜐𝑚)T‖(A𝛽∗ − 𝛿∗) + (𝑡 −

1
2

)𝜗‖A𝛽∗ − 𝛿∗‖2

≤ 𝑓 ∗.

17
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Hence lim𝑚→∞ ‖r𝑚‖2 = 𝑟∗=‖A𝛽𝛽𝛽∗−𝛿𝛿𝛿∗‖2 = 0.
Since 𝛽𝛽𝛽𝑚+1 minimizes 𝐿(𝜂𝜂𝜂𝑚,𝛽𝛽𝛽,𝛿𝛿𝛿𝑚,𝜐𝜐𝜐𝑚) by definition, we have that

𝐿(𝜂𝜂𝜂𝑚,𝛽𝛽𝛽,𝛿𝛿𝛿𝑚,𝜐𝜐𝜐𝑚)/𝜕𝛽𝛽𝛽 = 0,

and moreover,

𝐿(𝜂𝑚, 𝛽𝑚+1, 𝛿𝑚, 𝜐𝑚)/𝜕𝛽
= XT(Z𝜂𝑚 + X𝛽𝑚+1 − y) + AT𝜐𝑚 + 𝜗AT(A𝛽𝑚+1 − 𝛿𝑚)
= XT(Z𝜂𝑚 + X𝛽𝑚+1 − y) + AT(𝜐𝑚 + 𝜗(A𝛽𝑚+1 − 𝛿𝑚))
= XT(Z𝜂𝑚 + X𝛽𝑚+1 − y) + AT(𝜐𝑚+1 − 𝜗(A𝛽𝑚+1 − 𝛿𝑚+1) + 𝜗(A𝛽𝑚+1 − 𝛿𝑚))
= XT(Z𝜂𝑚 + X𝛽𝑚+1 − y) + AT𝜐𝑚+1 + 𝜗AT(𝛿𝑚+1 − 𝛿𝑚).

Therefore,

s𝑚+1 = 𝜗AT(𝛿𝛿𝛿𝑚+1 − 𝛿𝛿𝛿𝑚) = −(XT(Z𝜂𝜂𝜂𝑚+X𝛽𝛽𝛽𝑚+1−y) + AT𝜐𝜐𝜐𝑚+1).

Since ‖A𝛽𝛽𝛽∗−𝛿𝛿𝛿∗‖2 = 0,

lim
𝑚→∞

𝐿(𝜂𝑚, 𝛽𝑚+1, 𝛿𝑚, 𝜐𝑚)/𝜕𝛽

= lim𝑚→∞XT(Z𝜂𝑚 + X𝛽𝑚+1 − y) + AT𝜐𝑚+1

= XT(Z𝜂 ∗ +𝑋𝛽∗ − 𝑦) + AT𝜐∗ = 0.

Therefore, lim𝑚→∞ s𝑚+1 = 0.

A.2 Extension to nonlinear models

In this paper, we focus on the linear regression model (2) to introduce our proposed method for exploring
treatment heterogeneity. It is worth mentioning that our method can be readily extended to semi-parametric
models by relaxing the linearity assumption on 𝑧𝑧𝑧𝑖. Considering the model:

𝑦𝑖 = 𝑚(𝑧𝑧𝑧𝑖) + 𝑥𝑥𝑥T
𝑖 𝛽𝛽𝛽𝑖 + 𝜀𝑖, 𝑖 = 1, … , 𝑛,

where 𝑚(⋅⋅⋅) is an unknown function of 𝑧𝑧𝑧𝑖. This model has no constraint on the functional form of 𝑧𝑧𝑧𝑖. Following
the approach in Ma et al. [34], we can estimate 𝑚(⋅⋅⋅) by tensor-product regression splines weighted by categorical
kernel functions, where the splines are used for the continuous predictors and the categorical kernels are for the
discrete predictors, respectively. Then the objective function for obtaining the estimates consists of two parts
similar as given in (6). The first part is a weighted least squares criterion as presented in eq. (2) of Ma et al.
[34], and the second part contains the same penalty functions as given in (6). As a result, the proposed ADMM
algorithm proposed in Section A.1 can be applied. Moreover, we can also assume semi-parametric structures
on 𝑚(⋅⋅⋅) for further dimensionality reduction while retaining model flexibility. For example, when 𝑧𝑧𝑧𝑖 is a set of
continuous variables, we can assume the additive structure:

𝑚(𝑧𝑧𝑧𝑖) = 𝑚1(𝑧𝑖1) + ⋯ + 𝑚𝑞(𝑧𝑖𝑞),

where mk( · ) for k = 1,...,q are unknown functions. Also the partially linear additive structure is another popular
semi-parametric model, given as

𝑚(𝑧𝑧𝑧𝑖) = 𝑚1(𝑧𝑖1) + ⋯ + 𝑚𝑞1(𝑧𝑖𝑞1) + 𝑧𝑧𝑧T
𝑖2𝜂,𝜂,𝜂,

where 𝑧𝑧𝑧𝑖 = (𝑧𝑧𝑧T
𝑖1, 𝑧𝑧𝑧T

𝑖2)T, 𝑧𝑧𝑧𝑖1 = (𝑧𝑖1, ..., 𝑧𝑖𝑞1)
T and 𝑧𝑧𝑧𝑖2 = (𝑧𝑖,𝑞1+1, ..., 𝑧𝑖𝑞)T. If we use regression splines to approximate

the unknown functions, the same ADMM algorithm given in Section A.1 can be applied to obtain the parameter
estimators with the components in 𝑧𝑧𝑧𝑖 replaced by their spline basis functions. We refer to Ma et al. [35] for the
details of using regression splines to estimate unknown functions in these settings.

It is also of interest to extend the proposed method to the case with discrete responses. For a general scenario,
one may fit a generalized linear model:

𝐸(𝑦𝑖|𝑧𝑧𝑧𝑖, 𝑥𝑥𝑥𝑖) = 𝜇𝑖 = 𝑔−1(𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖), 𝑖 = 1, … , 𝑛,
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where g is a known monotone link function. For obtaining the estimates of the parameters, we can consider the
negative quasi-likelihood function

𝑄(𝜇, 𝑦) = ∫
𝑦

𝜇
{(𝑦 − 𝜉)/𝑉(𝜉)}𝑑𝜉 ,

where V( · ) is the conditional variance of y given (𝑧𝑧𝑧,𝑥𝑥𝑥). Then the parameter estimates can be obtained by min-
imizing

∑
𝑛
𝑖=1

𝑄(𝑔−1(𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖), 𝑦𝑖) + ∑
1≤𝑖<𝑗≤𝑛

𝑝(‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗‖, 𝜆).

Because 𝑄(𝑔−1(𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 + 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑖), 𝑦𝑖) is differentiable with respect to (𝜂, 𝛽𝜂, 𝛽𝜂, 𝛽𝑖), the ADMM algorithm given in Section
A.1 can be straightforwardly applied.

A.3 Proof of Theorem 1

In this section we show the results in Theorem 1. For every 𝛽𝛽𝛽 ∈ℳ𝒢 , it can be written as 𝛽𝛽𝛽 = W𝛼𝛼𝛼. Recall U =
(Z,XW). We have

( ̂𝜂𝑜𝑟

𝛼𝑜𝑟 ) = arg min
𝜂∈𝑅𝑞,𝛼∈𝑅𝐾𝑝

1
2

‖y − Z𝜂 − X𝛽‖ = arg min
𝜂∈𝑅𝑞,𝛼∈𝑅𝐾𝑝

1
2

‖y − Z𝜂 − XW𝛼‖2.

Thus

( ̂𝜂𝜂𝜂𝑜𝑟

̂𝛼𝛼𝛼𝑜𝑟 ) = [(Z,XW)T(Z,XW)]−1(Z,XW)Ty = (UTU)−1U𝑇y.

Then

( ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0
̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0 ) = (UTU)−1UT𝜀𝜀𝜀.

Hence

∥( ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0
̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0 )∥ ≤ ∥(UTU)−1∥ ∥UT𝜀𝜀𝜀∥ . (32)

By Condition (C1), we have

∥(UTU)−1∥ ≤ 𝐶−1
1 ∣𝒢min∣−1. (33)

Moreover

𝑃(∥UT𝜀𝜀𝜀∥∞ > 𝐶√𝑛 log 𝑛) ≤ 𝑃(∥ZT𝜀𝜀𝜀∥∞ > 𝐶√𝑛 log 𝑛) + 𝑃(∥(XW)T𝜀𝜀𝜀∥
∞

> 𝐶√𝑛 log 𝑛),

for some constant 0 < 𝐶 < ∞. Since XW = [xT
𝑖 1{𝑖 ∈ 𝒢𝑘}]

𝑛,𝐾
𝑖=1,𝑘=1

, we have

∥(XW)T𝜀𝜀𝜀∥
∞

= sup
𝑗,𝑘

| ∑
𝑛
𝑖=1

𝑥𝑖𝑗𝜀𝑖1{𝑖 ∈ 𝒢𝑘}|

and by union bound, Condition (C1) that ∑𝑛
𝑖=1 𝑥2𝑖𝑗1{𝑖 ∈ 𝒢𝑘} = ∣𝒢𝑘 ∣ and Condition (C3),

𝑃 (∥(XW)T𝜀∥∞ > 𝐶√𝑛 log 𝑛)

≤ ∑
𝑝,𝐾
𝑗=1,𝑘=1

𝑃 (| ∑
𝑛
𝑖=1

𝑥𝑖𝑗𝜀𝑖1{𝑖 ∈ 𝒢𝑘}| > 𝐶√𝑛 log 𝑛)

≤ ∑
𝑝,𝐾
𝑗=1,𝑘=1

𝑃 (| ∑
𝑛
𝑖=1

𝑥𝑖𝑗𝜀𝑖1{𝑖 ∈ 𝒢𝑘}| > √|𝒢𝑘 |𝐶√log 𝑛)

≤ 2𝐾𝑝 exp(−𝑐1𝐶2 log 𝑛) = 2𝐾𝑝𝑛−𝑐1𝐶2 .
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By union bound, Condition (C1) that ∥Z𝑘∥ = √𝑛, where Z𝑘 is the kth column of Z, and Condition (C3),

𝑃 (∥ZT𝜀∥∞ > 𝐶√𝑛 log 𝑛)

≤ ∑
𝑞
𝑘=1

𝑃 (|ZT
𝑘𝜀| > √𝑛𝐶√log 𝑛)

≤ 2𝑞 exp(−𝑐1𝐶2 log 𝑛) = 2𝑞𝑛−𝑐1𝐶2 .

It follows that

𝑃(∥UT𝜀𝜀𝜀∥∞ > 𝐶√𝑛 log 𝑛) ≤ 2(𝐾𝑝 + 𝑞)𝑛−𝑐1𝐶2 .

Since ∥UT𝜀𝜀𝜀∥ ≤ √𝑞 + 𝐾𝑝 ∥UT𝜀𝜀𝜀∥∞, then

𝑃(∥UT𝜀𝜀𝜀∥ > 𝐶√𝑞 + 𝐾𝑝√𝑛 log 𝑛) ≤ 2(𝐾𝑝 + 𝑞)𝑛−𝑐1𝐶2 . (34)

Therefore, by (32), (33) and (34), we have with probability at least 1 − 2(𝐾𝑝 + 𝑞)𝑛−𝑐1𝐶2 ,

∥( ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0
̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0 )∥ ≤ 𝐶𝐶−1

1 √𝑞 + 𝐾𝑝 ∣𝒢min∣−1 √𝑛 log 𝑛.

The result (9) in Theorem 1 is proved by letting 𝐶 = 𝑐−1/2
1 . Moreover,

∥𝛽𝑜𝑟 − 𝛽0∥2 = ∑
𝐾
𝑘=1

∑
𝑖∈𝒢𝑘

∥𝛼𝑜𝑟
𝑘 − 𝛼0

𝑘∥2 ≤ ∣𝒢max∣ ∑
𝐾
𝑘=1

∥𝛼𝑜𝑟
𝑘 − 𝛼0

𝑘∥2

= ∣𝒢max∣ ∥𝛼𝑜𝑟 − 𝛼0∥2 ≤ ∣𝒢max∣ 𝜙2
𝑛,

and

sup
𝑖

∥ ̂𝛽𝛽𝛽𝑜𝑟
𝑖 − 𝛽𝛽𝛽0

𝑖 ∥ = sup
𝑘

∥ ̂𝛼𝛼𝛼𝑜𝑟
𝑘 − 𝛼𝛼𝛼0

𝑘∥ ≤ ‖ ̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0‖ ≤ 𝜙𝑛.

Let U = (U1, … ,U𝑛)T, and ΞΞΞ𝑛 = UTU. Then

aT
𝑛(( ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0)T, ( ̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0)T)T = ∑

𝑛
𝑖=1

aT
𝑛ΞΞΞ−1

𝑛 U𝑖𝜀𝑖.

Hence

𝐸{aT
𝑛(( ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0)T, ( ̂𝛼𝛼𝛼𝑜𝑟 − 𝛼𝛼𝛼0)T)T} = 0,

and for any vector a𝑛 ∈ IR𝑞+𝐾𝑝 with ||a𝑛|| = 1,

var{aT
𝑛(( ̂𝜂𝑜𝑟 − 𝜂0)T, (𝛼𝑜𝑟 − 𝛼0)T)T}

= 𝜎2
𝑛(a𝑛) = 𝜎2 [aT

𝑛(UTU)−1a𝑛] ≥ 𝜎2aT
𝑛𝛯−1

𝑛 a𝑛.

Moreover, for any ε > 0,

∑
𝑛
𝑖=1

𝐸[(aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖)2 ⋅ 1{|aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖 |>∈𝜎𝑛(a𝑛)}]

≤ ∑
𝑛
𝑖=1

{𝐸(aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖)4}1/2[𝑃{|aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖| >∈ 𝜎𝑛(a𝑛)}]1/2.

Since 𝐸(𝜀4𝑖 ) ≤ 𝑐 for some constant 𝑐 ∈ (0, ∞) by Condition (C2), then

∑
𝑛
𝑖=1

{𝐸(aT
𝑛ΞΞΞ−1

𝑛 U𝑖𝜀𝑖)4}1/2 ≤ 𝑐1/2aT
𝑛ΞΞΞ−1

𝑛 a𝑛.

Moreover,

max
𝑖

𝑃 {|aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖| > 𝜎𝑛(a𝑛)}

≤ max
𝑖

𝐸(aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖)2/{2𝜎2
𝑛(a𝑛)} ≤ 𝑐′−2(𝑞 + 𝐾𝑝)aT

𝑛𝛯−1
𝑛 𝛯−1

𝑛 a𝑛/(aT
𝑛𝛯−1

𝑛 a𝑛)

for some constant 𝑐′ ∈ (0, ∞). Therefore, by the above results, we have

𝜎−2
𝑛 (a𝑛) ∑

𝑛
𝑖=1

𝐸[(aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖)2 ⋅ 1{|aT
𝑛𝛯−1

𝑛 U𝑖𝜀𝑖 |>∈𝜎𝑛(a𝑛)}]

≤ {𝜎2aT
𝑛𝛯−1

𝑛 a𝑛}−1𝑐1/2aT
𝑛𝛯−1

𝑛 a𝑛{𝑐′∈−2(𝑞 + 𝐾𝑝)aT
𝑛𝛯−1

𝑛 𝛯−1
𝑛 a𝑛/(aT

𝑛𝛯−1
𝑛 a𝑛)}1/2

≤ 𝑐1/2𝑐′1/2𝐶−1/2
1 ∈−1𝜎−1(𝑞 + 𝐾𝑝)1/2∣𝒢min∣−1/2 = 𝑜(1).

Then, the result (11) follows from Lindeberg–Feller Central Limit Theorem.
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A.4 Proof of Theorem 2

In this section we show the results in Theorem 2. Define

𝐿𝑛(𝜂, 𝛽) =
1
2

‖y − Z𝜂 − X𝛽‖2, 𝑃𝑛(𝛽) = 𝜆 ∑
𝑖<𝑗

𝜌(‖𝛽𝑖 − 𝛽𝑗‖),

𝐿𝒢
𝑛 (𝜂,𝛼) =

1
2

‖y − Z𝜂 − XW𝛼‖2, 𝑃𝒢
𝑛 (𝛼) = 𝜆 ∑

𝑘<𝑘′
|𝒢𝑘‖𝒢𝑘′ |𝜌(‖𝛼𝑘 − 𝛼𝑘′‖),

and let

𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) = 𝐿𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) + 𝑃𝑛(𝛽𝛽𝛽), 𝑄𝒢
𝑛 (𝜂𝜂𝜂,𝛼𝛼𝛼) = 𝐿𝒢

𝑛 (𝜂𝜂𝜂,𝛼𝛼𝛼) + 𝑃𝒢
𝑛 (𝛼𝛼𝛼).

Let 𝑇 ∶ ℳ𝒢 → 𝑅𝐾𝑝 be the mapping that 𝑇(𝛽𝛽𝛽) is the Kp × 1 vector consisting of K vectors with dimension p and
its kth vector component equals to the common value of 𝛽𝛽𝛽𝑖 for 𝑖 ∈ 𝒢𝑘. Let 𝑇∗ ∶ 𝑅𝑛𝑝 → 𝑅𝐾𝑝 be the mapping that
𝑇∗(𝛽𝛽𝛽) = {|𝒢𝑘 |−1 ∑𝑖∈𝒢𝑘

𝛽𝛽𝛽T
𝑖 , 𝑘 = 1, … , 𝐾}T. Clearly, when 𝛽𝛽𝛽 ∈ℳ𝒢 , 𝑇(𝛽𝛽𝛽) =𝑇∗(𝛽𝛽𝛽).

By calculation, for every 𝛽𝛽𝛽 ∈ℳ𝒢 , we have 𝑃𝑛(𝛽𝛽𝛽) = 𝑃𝒢
𝑛 (𝑇(𝛽𝛽𝛽)) and for every 𝛼 ∈𝛼 ∈𝛼 ∈ 𝑅𝐾 , we have 𝑃𝑛(𝑇−1(𝛼𝛼𝛼)) =

𝑃𝒢
𝑛 (𝛼𝛼𝛼). Hence

𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) = 𝑄𝒢
𝑛 (𝜂𝜂𝜂,𝑇(𝛽𝛽𝛽)), 𝑄𝒢

𝑛 (𝜂𝜂𝜂,𝛼𝛼𝛼) = 𝑄𝑛(𝜂𝜂𝜂,𝑇−1(𝛼𝛼𝛼)). (35)

Consider the neighborhood of (𝜂𝜂𝜂0,𝛽𝛽𝛽0):

Θ= {𝜂𝜂𝜂 ∈𝑅𝑞,𝛽𝛽𝛽∈𝑅𝐾𝑝∶ ∥𝜂𝜂𝜂 − 𝜂𝜂𝜂0∥ ≤ 𝜙𝑛, sup
𝑖

∥𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽0
𝑖 ∥ ≤ 𝜙𝑛}.

By Theorem 1, there exists an event E1 in which

∥ ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0∥ ≤ 𝜙𝑛, sup
𝑖

∥ ̂𝛽𝛽𝛽𝑜𝑟
𝑖 − 𝛽𝛽𝛽0

𝑖 ∥ ≤ 𝜙𝑛

and 𝑃(𝐸𝐶
1 ) ≤ 2(𝑞 + 𝐾𝑝)𝑛−1. Hence ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) ∈ Θ in E1. For any 𝛽𝛽𝛽 ∈𝑅𝑛𝑝, let 𝛽𝛽𝛽∗ = 𝑇−1(𝑇∗(𝛽𝛽𝛽)) . We show that

( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) is a strictly local minimizer of the objective function (6) with probability approaching 1 through the
following two steps.

i. In the event E1, 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) > 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) for any (𝜂𝜂𝜂T,𝛽𝛽𝛽T)T ∈ Θ and ((𝜂𝜂𝜂)T, (𝛽𝛽𝛽∗)T)T ≠ (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T.

ii. There is an event E2 such that 𝑃(𝐸𝐶
2 ) ≤ 2𝑛−1. In 𝐸1 ∩𝐸2, there is a neighborhood of (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T, denoted

by Θn such that 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) ≥ 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) for any ((𝜂𝜂𝜂)T, (𝛽𝛽𝛽∗)T)T ∈ Θ𝑛 ∩ Θ for sufficiently large n.

Therefore, by the results in (i) and (ii), we have 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) > 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) for any (𝜂𝜂𝜂T,𝛽𝛽𝛽T)T ∈ Θ𝑛 ∩ Θ and
((𝜂𝜂𝜂)T, (𝛽𝛽𝛽)T)T ≠ (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T in 𝐸1 ∩ 𝐸2, so that (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T is a strict local minimizer of 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) (6)
over the event 𝐸1 ∩ 𝐸2 with 𝑃(𝐸1 ∩ 𝐸2) ≥ 1 − 2(𝑞 + 𝐾𝑝 + 1)𝑛−1 for sufficiently large n.

In the following we prove the result in (i). We first show 𝑃𝒢
𝑛 (𝑇∗(𝛽𝛽𝛽)) = 𝐶𝑛 for any 𝛽𝛽𝛽 ∈Θ, where Cn is a constant

which does not depend on 𝛽𝛽𝛽. Let 𝑇∗(𝛽𝛽𝛽) = 𝛼𝛼𝛼 = (𝛼𝛼𝛼T
1 , … ,𝛼𝛼𝛼T

𝐾)T. It suffices to show that ‖𝛼𝛼𝛼𝑘 − 𝛼𝛼𝛼𝑘′‖ > 𝑎𝜆 for all k and
k′. Then by Condition (C2), 𝜌(‖𝛼𝛼𝛼𝑘 − 𝛼𝛼𝛼𝑘′‖) is a constant, and as a result 𝑃𝒢

𝑛 (𝑇∗(𝛽𝛽𝛽)) is a constant. Since

‖𝛼𝛼𝛼𝑘 − 𝛼𝛼𝛼𝑘′‖ ≥ ‖𝛼𝛼𝛼0
𝑘 − 𝛼𝛼𝛼0

𝑘′‖ − 2 sup
𝑘

‖𝛼𝛼𝛼𝑘 −𝛼−𝛼−𝛼 0
𝑘‖,

and

sup
𝑘

‖𝛼𝑘 − 𝛼0
𝑘‖2 = sup

𝑘
∥|𝒢𝑘 |−1 ∑

𝑖∈𝒢𝑘
𝛽𝑖 − 𝛼0

𝑘∥
2

= sup
𝑘

∥|𝒢𝑘 |−1 ∑
𝑖∈𝒢𝑘

(𝛽𝑖 − 𝛽0
𝑖 )∥

2

= sup
𝑘

|𝒢𝑘 |−2∥∑
𝑖∈𝒢𝑘

(𝛽𝑖 − 𝛽0
𝑖 )∥

2
≤ sup

𝑘
|𝒢𝑘 |−1 ∑

𝑖∈𝒢𝑘
∥(𝛽𝑖 − 𝛽0

𝑖 )∥2

≤ sup
𝑖

∥𝛽𝑖 − 𝛽0
𝑖 ∥2 ≤ 𝜙2

𝑛,

(36)

then for all k and k′

‖𝛼𝛼𝛼𝑘 − 𝛼𝛼𝛼𝑘′‖ ≥ ‖𝛼𝛼𝛼0
𝑘 − 𝛼𝛼𝛼0

𝑘′‖ − 2 sup
𝑘

‖𝛼𝛼𝛼𝑘 −𝛼−𝛼−𝛼 0
𝑘‖ ≥ 𝑏𝑛 − 2𝜙𝑛 > 𝑎𝜆,
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where the last inequality follows from the assumption that 𝑏𝑛 > 𝑎𝜆 ≫ 𝜙𝑛. Therefore, we have 𝑃𝒢
𝑛 (𝑇∗(𝛽𝛽𝛽)) = 𝐶𝑛,

and hence 𝑄𝒢
𝑛 (𝜂𝜂𝜂,𝑇∗(𝛽𝛽𝛽)) = 𝐿𝒢

𝑛 (𝜂𝜂𝜂,𝑇∗(𝛽𝛽𝛽)) + 𝐶𝑛 for all (𝜂𝜂𝜂T,𝛽𝛽𝛽T)T ∈ Θ. Since (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛼𝛼𝛼𝑜𝑟)T)T is the unique global
minimizer of 𝐿𝒢

𝑛 (𝜂𝜂𝜂,𝛼𝛼𝛼), then 𝐿𝒢
𝑛 (𝜂𝜂𝜂,𝑇∗(𝛽𝛽𝛽)) > 𝐿𝒢

𝑛 ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛼𝛼𝛼𝑜𝑟) for all (𝜂𝜂𝜂T, (𝑇∗(𝛽𝛽𝛽))T)T ≠ (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛼𝛼𝛼𝑜𝑟)T)T and hence
𝑄𝒢

𝑛 (𝜂𝜂𝜂,𝑇∗(𝛽𝛽𝛽)) > 𝑄𝒢
𝑛 ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛼𝛼𝛼𝑜𝑟) for all 𝑇∗(𝛽𝛽𝛽) ≠ ̂𝛼𝛼𝛼𝑜𝑟. By ( 35), we have 𝑄𝒢

𝑛 ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛼𝛼𝛼𝑜𝑟) = 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) and 𝑄𝒢
𝑛 (𝜂,𝜂,𝜂,𝑇∗(𝛽𝛽𝛽)) =

𝑄𝑛(𝜂𝜂𝜂, 𝑇−1(𝑇∗(𝛽𝛽𝛽))) = 𝑄𝑛(𝜂, 𝛽𝜂, 𝛽𝜂, 𝛽∗). Therefore, 𝑄𝑛(𝜂, 𝛽𝜂, 𝛽𝜂, 𝛽∗) > 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) for all 𝛽𝛽𝛽∗≠ ̂𝛽𝛽𝛽𝑜𝑟, and the result in (i) is proved.
Next we prove the result in (ii). For a positive sequence tn, let Θ𝑛 = {𝛽𝑖 ∶ sup𝑖 ‖𝛽𝑖 −𝛽𝑜𝑟

𝑖 ‖ ≤ 𝑡𝑛}. For (𝜂𝜂𝜂T,𝛽𝛽𝛽T)T ∈
Θ𝑛 ∩ Θ, by Taylor’s expansion, we have

𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) − 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) = Γ1 + Γ2,

where

Γ1 = − (y − Z𝜂 − X𝛽𝑚)TX(𝛽 − 𝛽∗)

Γ2 =
𝑛

∑
𝑖=1

𝜕𝑃𝑛(𝛽𝑚)
𝜕𝛽T

𝑖
(𝛽𝑖 − 𝛽∗

𝑖 ).

and 𝛽𝛽𝛽𝑚 = 𝛼𝛽𝛽𝛽 + (1 − 𝛼)𝛽𝛽𝛽∗ for some constant α ∈(0, 1). Moreover,

Γ2 = 𝜆 ∑{𝑗>𝑖} 𝜌′(∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥) ∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T(𝛽𝑖 − 𝛽∗
𝑖 )

+𝜆 ∑{𝑗<𝑖} 𝜌′(∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥) ∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T(𝛽𝑖 − 𝛽∗
𝑖 )

= 𝜆 ∑{𝑗>𝑖} 𝜌′(∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥) ∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T(𝛽𝑖 − 𝛽∗
𝑖 )

+𝜆 ∑{𝑖<𝑗} 𝜌′(∥ 𝛽𝑚
𝑗 − 𝛽𝑚

𝑖 ∥) ∥ 𝛽𝑚
𝑗 − 𝛽𝑚

𝑖 ∥−1(𝛽𝑚
𝑗 − 𝛽𝑚

𝑖 )T(𝛽𝑗 − 𝛽∗
𝑗 )

= 𝜆 ∑{𝑗>𝑖} 𝜌′(∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥) ∥ 𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ∥−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T{(𝛽𝑖 − 𝛽∗
𝑖 ) − (𝛽𝑖 − 𝛽∗

𝑖 )}.

(37)

When 𝑖, 𝑗 ∈ 𝒢𝑘, 𝛽𝛽𝛽∗
𝑖 = 𝛽𝛽𝛽∗

𝑗 , and 𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 = 𝛼(𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗). Thus,

Γ2 =𝜆
𝐾

∑
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘,𝑖<𝑗}

𝜌′(||𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||)‖𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T(𝛽𝑖 − 𝛽𝑗)

+ 𝜆 ∑
𝑘<𝑘′

∑
{𝑖∈𝒢𝑘,𝑗′∈𝒢𝑘′ }

𝜌′(||𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||)||𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T{(𝛽𝑖 − 𝛽∗
𝑖 ) − (𝛽𝑗 − 𝛽∗

𝑗 )}.

Moreover,

sup
𝑖

‖𝛽𝛽𝛽∗
𝑖 −𝛽𝛽𝛽0

𝑖 ‖2 = sup
𝑘

‖𝛼𝛼𝛼𝑘 −𝛼−𝛼−𝛼 0
𝑘‖2 ≤ 𝜙2

𝑛, (38)

where the last inequality follows from (36). Since 𝛽𝛽𝛽𝑚
𝑖 is between 𝛽𝛽𝛽𝑖 and 𝛽𝛽𝛽∗

𝑖 ,

sup
𝑖

‖𝛽𝛽𝛽𝑚
𝑖 −𝛽𝛽𝛽0

𝑖 ‖ ≤ 𝛼 sup
𝑖

‖𝛽𝛽𝛽𝑖−𝛽𝛽𝛽0
𝑖 ‖ + (1 − 𝛼) sup

𝑖
‖𝛽𝛽𝛽∗

𝑖 −𝛽𝛽𝛽0
𝑖 ‖ ≤ 𝛼𝜙𝑛 + (1 − 𝛼)𝜙𝑛 = 𝜙𝑛. (39)

Hence for k ≠ k′, 𝑖 ∈ 𝒢𝑘, 𝑗′ ∈ 𝒢𝑘′ ,

‖𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 ‖ ≥ min
𝑖∈𝒢𝑘,𝑗′∈𝒢𝑘′

‖𝛽𝛽𝛽0
𝑖 − 𝛽𝛽𝛽0

𝑗 ‖ − 2max
𝑖

‖𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽0

𝑖 ‖ ≥ 𝑏𝑛 − 2𝜙𝑛 > 𝑎𝜆,

and thus 𝜌′(‖𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 ‖) = 0. Therefore,

Γ2 = 𝜆
𝐾

∑
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘,𝑖<𝑗}

𝜌′(‖𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ‖)‖𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ‖−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T(𝛽𝑖 − 𝛽𝑗)

= 𝜆
𝐾

∑
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘,𝑖<𝑗}

𝜌′(‖𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ‖)‖𝛽𝑖 − 𝛽𝑗‖,

where the last step follows from 𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 = 𝛼(𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗). Furthermore, by the same reasoning as (36), we have

sup
𝑖

‖𝛽𝛽𝛽∗
𝑖 − ̂𝛽𝛽𝛽𝑜𝑟

𝑖 ‖ = sup
𝑘

‖𝛼𝛼𝛼𝑘− ̂𝛼𝛼𝛼𝑜𝑟
𝑘 ‖2 ≤ sup

𝑖
‖𝛽𝛽𝛽− ̂𝛽𝛽𝛽𝑜𝑟

𝑖 ‖.
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Then
sup

𝑖
‖𝛽𝛽𝛽𝑚

𝑖 − 𝛽𝛽𝛽𝑚
𝑗 ‖ ≤ 2 sup

𝑖
‖𝛽𝛽𝛽𝑚

𝑖 − 𝛽𝛽𝛽∗
𝑖 ‖ ≤ 2 sup

𝑖
‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽∗

𝑖 ‖

≤ 2(sup
𝑖

‖𝛽𝛽𝛽𝑖 − ̂𝛽𝛽𝛽𝑜𝑟
𝑖 ‖ + sup

𝑖
‖𝛽𝛽𝛽∗

𝑖 − ̂𝛽𝛽𝛽𝑜𝑟
𝑖 ‖) ≤ 4 sup

𝑖
‖𝛽𝛽𝛽𝑖 − ̂𝛽𝛽𝛽𝑜𝑟

𝑖 ‖ ≤ 4𝑡𝑛.

Hence 𝜌′(‖𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 ‖) ≥ 𝜌′(4𝑡𝑛) by concavity of ρ( · ). As a result,

Γ2 ≥ ∑
𝐾
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘,𝑖<𝑗}

𝜆𝜌′(4𝑡𝑛)‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗‖. (40)

Let

Q = (QT
1 , … ,QT

𝑛)T = [(y − Z𝜂𝜂𝜂 − X𝛽𝛽𝛽𝑚)TX]T.

Then

Γ1 = −QT(𝛽𝛽𝛽 − 𝛽𝛽𝛽∗) = − ∑
𝐾
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘}

QT
𝑖 (𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗)

|𝒢𝑘 |

= − ∑
𝐾
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘}

QT
𝑖 (𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗)
2|𝒢𝑘 | − ∑

𝐾
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘}

QT
𝑖 (𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗)
2|𝒢𝑘 |

= − ∑
𝐾
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘}

(Q𝑗 − Q𝑖)T(𝛽𝛽𝛽𝑗 − 𝛽𝛽𝛽𝑖)
2|𝒢𝑘 |

= − ∑
𝐾
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘,𝑖<𝑗}

(Q𝑗 − Q𝑖)T(𝛽𝛽𝛽𝑗 − 𝛽𝛽𝛽𝑖)
|𝒢𝑘 | .

(41)

Moreover,

Q𝑖 = (𝑦𝑖 − 𝑧𝑧𝑧T
𝑖 𝜂𝜂𝜂 − 𝑥𝑥𝑥T

𝑖 𝛽𝛽𝛽𝑚
𝑖 )𝑥𝑥𝑥𝑖 = (𝜀𝑖 + zT

𝑖 (𝜂𝜂𝜂0 − 𝜂𝜂𝜂) + 𝑥𝑥𝑥T
𝑖 (𝛽𝛽𝛽0

𝑖 − 𝛽𝛽𝛽𝑚
𝑖 ))𝑥𝑥𝑥𝑖,

and then

sup
𝑖

‖Q𝑖‖ ≤ sup
𝑖

{‖x𝑖‖(‖𝜀‖∞ + ‖z𝑖‖𝜂0 − 𝜂‖ + ‖x𝑖‖‖𝛽0
𝑖 − 𝛽𝑚

𝑖 ‖)}

By Condition (C1) that sup𝑖 ‖𝑥𝑥𝑥𝑖‖ ≤ 𝐶2√𝑝 and sup𝑖 ‖𝑧𝑧𝑧𝑖‖ ≤ 𝐶3√𝑞, ( 39) that sup
𝑖

‖𝛽0
𝑖 − 𝛽𝑚

𝑖 ‖ ≤ 𝜙𝑛 and ‖𝜂𝜂𝜂0 − 𝜂𝜂𝜂‖ ≤ 𝜙𝑛,

we have

sup
𝑖

‖Q𝑖‖ ≤ 𝐶2√𝑝(‖𝜀𝜀𝜀‖∞ + 𝐶3√𝑞𝜙𝑛 + 𝐶2√𝑝𝜙𝑛).

By Condition (C3)

𝑃(‖𝜀𝜀𝜀‖∞ > √2𝑐−1
1 √log 𝑛) ≤ ∑

𝑛
𝑖=1

𝑃(|𝜀𝑖| > √2𝑐−1
1 √log 𝑛) ≤ 2𝑛−1.

Thus there is an event E2 such that 𝑃(𝐸𝐶
2 ) ≤ 2𝑛−1, and over the event E2,

sup
𝑖

‖Q𝑖‖ ≤ 𝐶2√𝑝(√2𝑐−1
1 √log 𝑛 + 𝐶3√𝑞𝜙𝑛 + 𝐶2√𝑝𝜙𝑛).

Then

| (Q𝑗−Q𝑖)T(𝛽𝑗−𝛽𝑖)
|𝒢𝑘 | |

≤ |𝒢min|−1Q𝑗 − Q𝑖𝛽𝑖 − 𝛽𝑗 ≤ |𝒢min|−12 sup
𝑖
Q𝑖𝛽𝑖 − 𝛽𝑗

≤ 2𝐶2|𝒢min|−1√𝑝(√2𝑐−1
1 √log 𝑛 + 𝐶3√𝑞𝜙𝑛 + 𝐶2√𝑝𝜙𝑛)‖𝛽𝑖 − 𝛽𝑗‖.

(42)

Therefore, by (40), (41) and (42), we have

𝑄𝑛(𝜂, 𝛽) − 𝑄𝑛(𝜂, 𝛽∗)

≥
𝐾

∑
𝑘=1

∑
{𝑖,𝑗∈𝒢𝑘,𝑖<𝑗}

{𝜆𝜌′(4𝑡𝑛) − 2𝐶2|𝒢min|−1√𝑝(√2𝑐−1
1 √log 𝑛 + 𝐶3√𝑞𝜙𝑛 + 𝐶2√𝑝𝜙𝑛)}||𝛽𝑖 − 𝛽𝑗||.

Let tn = o(1), then 𝜌′(4𝑡𝑛) → 1. Since 𝜆 ≫ 𝜙𝑛, p = o(n), and |𝒢min|−1𝑝 = 𝑜(1), then 𝜆 ≫ |𝒢min|−1√𝑝√log 𝑛, 𝜆 ≫
|𝒢min|−1√𝑝𝑞 and 𝜆 ≫ |𝒢min|−1𝑝𝜙𝑛. Therefore, 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) − 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) ≥ 0 for sufficiently large n, so that the result
in (ii) is proved.
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A.5 Proof of Theorem 3

In this section we show the results in Theorem 3. The proofs of (13) and (14) follow the same arguments as
the proof of Theorem 1 by letting X̃ = x and |𝒢min| = 𝑛, and thus they are omitted. Next, we will show (15). It
follows similar procedures as the proof of Theorem 2 with the details given below. Define ℳ = {𝛽𝛽𝛽 ∈ IR𝑛𝑝 ∶
𝛽𝛽𝛽1 = ⋯ = 𝛽𝛽𝛽𝑛}. For each 𝛽𝛽𝛽 ∈ ℳ, we have 𝛽𝛽𝛽𝑖 = 𝛼𝛼𝛼 for all i. Let 𝑇 ∶ ℳ → 𝑅𝑝 be the mapping that 𝑇(𝛽𝛽𝛽) is the p × 1
vector equal to the common vector 𝛼𝛼𝛼. Let 𝑇∗ ∶ 𝑅𝑛𝑝 → 𝑅𝑝 be the mapping that 𝑇∗(𝛽𝛽𝛽) = {𝑛−1 ∑𝑛

𝑖=1 𝛽𝛽𝛽𝑖. Clearly,
when 𝛽𝛽𝛽 ∈ℳ, 𝑇(𝛽𝛽𝛽) =𝑇∗(𝛽𝛽𝛽). Consider the neighborhood of (𝜂𝜂𝜂0,𝛽𝛽𝛽0):

Θ= {𝜂𝜂𝜂∈𝑅𝑞,𝛽𝛽𝛽∈𝑅𝑝∶ ∥𝜂𝜂𝜂 − 𝜂𝜂𝜂0∥ ≤ 𝜙𝑛, sup
𝑖

∥𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽0
𝑖 ∥ ≤ 𝜙𝑛},

where 𝜙𝑛 = 𝑐−1/2
1 𝐶−1

1 √𝑞 + 𝑝√𝑛−1 log 𝑛. By the result in (13), there exists an event E1 such that on the event E1,

∥ ̂𝜂𝜂𝜂𝑜𝑟 − 𝜂𝜂𝜂0∥ ≤ 𝜙𝑛, sup
𝑖

∥ ̂𝛽𝛽𝛽𝑜𝑟
𝑖 − 𝛽𝛽𝛽0

𝑖 ∥ ≤ 𝜙𝑛,

and 𝑃(𝐸𝐶
1 ) ≤ 2(𝑞 + 𝑝)𝑛−1. Hence ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) ∈ Θ on the event E1. For any 𝛽𝛽𝛽∈𝑅𝑛𝑝, let 𝛽𝛽𝛽∗ = 𝑇−1(𝑇∗(𝛽𝛽𝛽)) . We show

that ( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) is a strictly local minimizer of the objective function (6) with probability approaching 1 through
the following two steps.

(i). On the event E1, 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) > 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) for any (𝜂𝜂𝜂T,𝛽𝛽𝛽T)T ∈ Θ and ((𝜂𝜂𝜂)T, (𝛽𝛽𝛽∗)T)T ≠ (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T.
(ii). There is an event E2 such that 𝑃(𝐸𝐶

2 ) ≤ 2𝑛−1. On 𝐸1 ∩ 𝐸2, there is a neighborhood of (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T,
denoted by Θn such that 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) ≥ 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) for any ((𝜂𝜂𝜂)T, (𝛽𝛽𝛽∗)T)T ∈ Θ𝑛 ∩ Θ for sufficiently large n.

Therefore, by the results in (i) and (ii), we have 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) > 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) for any (𝜂𝜂𝜂T,𝛽𝛽𝛽 T)T ∈ Θ𝑛 ∩ Θ and
((𝜂𝜂𝜂)T, (𝛽𝛽𝛽)T)T ≠ (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T in 𝐸1 ∩ 𝐸2, so that (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T is a strict local minimizer of 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) ( 6) on
the event 𝐸1 ∩ 𝐸2 with 𝑃(𝐸1 ∩ 𝐸2) ≥ 1 − 2(𝑞 + 𝑝 + 1)𝑛−1 for sufficiently large n.

By the definition of (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T, we have 1
2 ‖y−Z𝜂𝜂𝜂−X𝛽𝛽𝛽∗‖2 > 1

2 ‖y−Z ̂𝜂𝜂𝜂𝑜𝑟−X ̂𝛽𝛽𝛽𝑜𝑟‖2 for any ((𝜂𝜂𝜂)T, (𝛽𝛽𝛽)T)T ∈ Θ
and ((𝜂𝜂𝜂)T, (𝛽𝛽𝛽∗)T)T ≠ (( ̂𝜂𝜂𝜂𝑜𝑟)T, ( ̂𝛽𝛽𝛽𝑜𝑟)T)T. Moreover, since 𝑝𝛾(‖ ̂𝛽𝛽𝛽𝑜𝑟

𝑖 − ̂𝛽𝛽𝛽𝑜𝑟
𝑗 ‖, 𝜆) = 𝑝𝛾(‖𝛽𝛽𝛽∗

𝑖 −𝛽𝛽𝛽∗
𝑗 ‖, 𝜆) = 0 for 1 ≤ i,j ≤ n, we

have 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) = 1
2 ‖y − Z𝜂𝜂𝜂 − X𝛽𝛽𝛽∗‖2 and 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟) = 1

2 ‖y − Z ̂𝜂𝜂𝜂𝑜𝑟 − X ̂𝛽𝛽𝛽𝑜𝑟‖2. Therefore, 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) > 𝑄𝑛( ̂𝜂𝜂𝜂𝑜𝑟, ̂𝛽𝛽𝛽𝑜𝑟).
Next we prove the result in (ii). For a positive sequence tn, let Θ𝑛 = {𝛽𝛽𝛽𝑖∶sup𝑖‖𝛽𝛽𝛽𝑖− ̂𝛽𝛽𝛽𝑜𝑟

𝑖 ‖ ≤ 𝑡𝑛}. For (𝜂𝜂𝜂T,𝛽𝛽𝛽T)T ∈
Θ𝑛 ∩ Θ, by Taylor’s expansion, we have

𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) − 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) = Γ1 + Γ2,

where

Γ1 = −(y − Z𝜂 − X𝛽𝑚)TX(𝛽 − 𝛽∗)

Γ2 =
𝑛

∑
𝑖=1

𝜕𝑃𝑛(𝛽𝑚)
𝜕𝛽T

𝑖
(𝛽𝑖 − 𝛽∗

𝑖 ).

𝑃𝑛(𝛽) = 𝜆 ∑𝑖<𝑗 𝜌 (∥𝛽𝑖 − 𝛽𝑗∥), and 𝛽𝛽𝛽𝑚 = 𝑎𝛽𝛽𝛽 + (1 − 𝑎)𝛽𝛽𝛽∗ for some constant a ∈ (0, 1). Moreover, by (37),

Γ2 = 𝜆 ∑
{𝑗>𝑖}

𝜌′(||𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||)||𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||−1(𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 )T{(𝛽𝑖 − 𝛽∗
𝑖 ) − (𝛽𝑗 − 𝛽∗

𝑗 )}

= 𝜆 ∑
{𝑗>𝑖}

𝜌′(||𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ||)||𝛽𝑖 − 𝛽𝑗||,

where the second equality holds due to the fact that 𝛽𝛽𝛽∗
𝑖 = 𝛽𝛽𝛽∗

𝑗 and 𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 = 𝑎(𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗). Let 𝑇∗(𝛽𝛽𝛽) = 𝛼𝛼𝛼. Then,
following the same argument as (38), we have

sup
𝑖

‖𝛽∗
𝑖 − 𝛽0

𝑖 ‖2 = ‖𝛼 − 𝛼0‖2 ≤ sup
𝑖

‖𝛽𝑖 − 𝛽0
𝑖 ‖2.

Then

sup
𝑖

‖𝛽𝑚
𝑖 − 𝛽𝑚

𝑗 ‖ ≤ 2 sup
𝑖

‖𝛽𝑚
𝑖 − 𝛽∗

𝑖 ‖ ≤ 2 sup
𝑖

‖𝛽𝑖 − 𝛽∗
𝑖 ‖

≤ 2(sup
𝑖

‖𝛽𝑖 − 𝛽𝑜𝑟
𝑖 ‖ + sup

𝑖
‖𝛽∗

𝑖 − 𝛽𝑜𝑟
𝑖 )‖ ≤ 4 sup

𝑖
‖𝛽𝑖 − 𝛽𝑜𝑟

𝑖 ‖ ≤ 4𝑡𝑛.

Hence 𝜌′(‖𝛽𝛽𝛽𝑚
𝑖 − 𝛽𝛽𝛽𝑚

𝑗 ‖) ≥ 𝜌′(4𝑡𝑛) by concavity of ρ( · ). As a result,

Γ2 ≥ ∑
{𝑖<𝑗}

𝜆𝜌′(4𝑡𝑛)‖𝛽𝛽𝛽𝑖 − 𝛽𝛽𝛽𝑗‖. (43)
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Let

Q = (QT
1 , … ,QT

𝑛)T = [(y − Z𝜂𝜂𝜂 − X𝛽𝛽𝛽𝑚)TX]T.

By the same reasoning as the proof for (41), we have

Γ1 = −QT(𝛽𝛽𝛽 − 𝛽𝛽𝛽∗) = −𝑛−1 ∑
{𝑖<𝑗}

(Q𝑗 − Q𝑖)T(𝛽𝛽𝛽𝑗 − 𝛽𝛽𝛽𝑖). (44)

By the same argument as the proof for (42), we have that there is an event E2 such that 𝑃(𝐸𝐶
2 ) ≤ 2𝑛−1, and on

the event E2,

𝑛−1|(Q𝑗 − Q𝑖)T(𝛽𝑗 − 𝛽𝑖)

≤ 2𝐶2𝑛−1√𝑝(√2𝑐−1
1 √log 𝑛 + 𝐶3√𝑞𝜙𝑛 + 𝐶2√𝑝𝜙𝑛)||𝛽𝑖 − 𝛽𝑗||.

(45)

Therefore, by (43), (44) and (45), we have

𝑄𝑛(𝜂, 𝛽) − 𝑄𝑛(𝜂, 𝛽∗)

≥ ∑
{𝑖<𝑗}

{𝜆𝜌′(4𝑡𝑛) − 2𝐶2𝑛−1√𝑝(√2𝑐−1
1 √log 𝑛 + 𝐶3√𝑞𝜙𝑛 + 𝐶2√𝑝𝜙𝑛)}‖𝛽𝑖 − 𝛽𝑗‖.

Let tn = o(1), then 𝜌′(4𝑡𝑛) → 1. Since 𝜆 ≫ 𝜙𝑛, p = o(n), and n – 1p = o(1), then 𝜆 ≫ 𝑛−1√𝑝√log 𝑛, 𝜆 ≫ 𝑛−1√𝑝𝑞 and
𝜆 ≫ 𝑛−1𝑝𝜙𝑛. Therefore, 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽) − 𝑄𝑛(𝜂𝜂𝜂,𝛽𝛽𝛽∗) ≥ 0 for sufficiently large n, so that the result in (ii) is proved.
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