3 Check for
DOI: 10.1002/sim.8054 updates

Received: 5 March 2018 Revised: 11 September 2018 Accepted: 9 November 2018

RESEARCH ARTICLE WILEY Statistics

Machine learning methods for leveraging baseline covariate
information to improve the efficiency of clinical trials

Zhiwei Zhang'® | Shujie Ma

Department of Statistics, University of

California, Riverside, California Clinical trials are widely considered the gold standard for treatment evaluation,
and they can be highly expensive in terms of time and money. The efficiency
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involves a function of covariates. The optimal augmentation is well character-
ized in theory but must be estimated in practice. In this article, we investigate
the use of machine learning methods to estimate the optimal augmentation. We
consider and compare an indirect approach based on an estimated regression
function and a direct approach that aims directly to minimize the asymptotic
variance of the treatment effect estimator. Theoretical considerations and sim-
ulation results indicate that the direct approach is generally preferable over the
indirect approach. The direct approach can be implemented using any existing
prediction algorithm that can minimize a weighted sum of squared prediction
errors. Many such prediction algorithms are available, and the super learn-
ing principle can be used to combine multiple algorithms into a super learner
under the direct approach. The resulting direct super learner has a desirable ora-
cle property, is easy to implement, and performs well in realistic settings. The
proposed methodology is illustrated with real data from a stroke trial.
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1 | INTRODUCTION

Randomized clinical trials are widely considered the gold standard for comparing two or more medical treatments, one
of which may be placebo or no treatment. Analysis of clinical trial data is essentially a comparison of different treatments
with respect to clinically important outcome variables. Depending on the scientific context, the effect of one treatment
versus another may be measured by a difference in mean or proportion, a risk ratio or odds ratio for a binary outcome, or
a difference in survival probability or mean restricted survival time for a survival outcome subject to censoring. Tradition-
ally, such an effect measure is estimated using its empirical counterpart (eg, difference in sample mean or proportion),
although special techniques may be required to deal with censoring and/or missingness.

In addition to treatment and outcome data, clinical trials usually collect information on a large number of baseline
covariates, such as demographics, clinical measurements, and biomarkers. Some of these covariates may be related to
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outcome variables in one or both treatment groups, and it makes sense to consider how to use such covariate data to
improve the efficiency of treatment comparisons. In practice, this is commonly done under a regression model that relates
the outcome of interest to treatment and relevant baseline covariates. Such a regression model describes the conditional
treatment effect (ie, the treatment effect in each subpopulation defined by the covariates), which may differ from the
marginal treatment effect due to possible noncollapsibility.! For example, with a binary outcome, the conditional odds
ratio estimated from a logistic regression model is generally different from the marginal odds ratio, unless the former is
identically equal to one. A notable exception here is the analysis of covariance model, which implies that the treatment
difference in mean outcome is the same with or without conditioning on the baseline covariates in the model. In reality,
an unsaturated regression model is likely to be misspecified, which may lead to inconsistent estimation of the marginal
or conditional effect, although some exceptions have been noted,? and some simple modifications proposed,** for robust
estimation of the marginal effect.

Suppose we are interested in estimating a marginal treatment effect, as is the case in most clinical trials, and would like
to incorporate baseline covariate data without changing the estimand or relying on correct specification of a regression
model for consistent estimation. This problem has been considered by a number of authors.>® Tsiatis et al* and Zhang et al®
proposed an augmentation approach based on semiparametric theory. Their approach is to augment an unadjusted esti-
mator or estimating function, which does not involve covariate data, with a term based on treatment and an arbitrary
function of the covariates. The optimal augmentation, which leads to the smallest variance of the augmented estimator,
has also been characterized. To take advantage of the optimality result, one may use a working regression model to esti-
mate the optimal augmentation and use the estimated augmentation to construct an augmented estimator. The resulting
estimator is consistent and asymptotically normal regardless of model (in)correctness. If the working model is correct,
the estimator attains the minimum variance in the class of augmented estimators. Rubin and van der Laan® provided an
improvement based on empirical efficiency maximization in estimating the optimal augmentation. Tian et al’ considered
the use of a lasso penalty in estimating the optimal augmentation and proposed a cross-validation procedure for choos-
ing the tuning parameter and for making valid inference. Other approaches to this problem include targeted maximum
likelihood estimation (TMLE)*° and inverse probability weighting.®

In this article, we focus on the augmentation approach and consider how to use machine learning methods to
estimate or approximate the optimal augmentation. Compared to parametric regression models, machine learning
methods offer more flexibility and hence a better chance to approximate the optimal augmentation well, and their
slower-than-parametric rate of convergence does not incur a cost in terms of the asymptotic variance of the treatment
effect estimator. We consider two ways to use machine learning methods in the present context, ie, an indirect approach
based on an estimated regression function and a direct approach that aims directly to minimize the asymptotic variance of
the treatment effect estimator. The direct approach is better aligned with our analytical objective, performs better in sim-
ulation experiments, and therefore is recommended over the indirect approach. The optimization in the direct approach
can be formulated as minimizing a weighted sum of squared prediction errors, and thus can be easily implemented using
any existing prediction algorithm that can accommodate such a loss function. With a large variety of machine learning
methods available,' it may be difficult to choose the best-performing method for a given application, especially in the
design stage. This is unnecessary, however, according to the super learning principle, which allows us to combine a col-
lection of learning methods into a super learner with a desirable oracle property.'"'? We apply the super learning principle
to the present problem and develop a simple and easy-to-implement super learner under the direct approach. Simulation
results show that the direct super learner performs well in realistic settings.

The rest of this paper is organized as follows. In the next section, we describe the various methods. In Section 3,
we present numerical results (simulation and data analysis) based on a stroke study. Concluding remarks are given in
Section 4. Some technical details are relegated to an appendix.

2 | METHODOLOGY

2.1 | Preliminaries

Consider a randomized clinical trial comparing an experimental treatment (T = 1) with a control treatment (T = 0).
Let Y denote the outcome variable of interest and X a vector of baseline covariates that may be related to Y in one or both
treatment groups. Note that T and X are independent of each other because of randomization. Let 6 be a marginal effect
measure of T = 1versus T = 0, ie, some contrast of the conditional distributions of Ygiven T = 1versus T = 0. A
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common example of @ is the difference in mean
0 = 1 — po, ®
where y, = E(Y|T = f),t = 0,1. Assuming that 6 has been chosen appropriately based on clinical considerations, we
consider the statistical problem of how to estimate 8 consistently and efficiently.
Let (X;,T;,Y:),i = 1, ... ,n, denote the observed data based on n independent subjects in the trial; these are concep-
tualized as independent copies of (X, T, Y). Suppose an unadjusted estimator of 9, say 0~, can be obtained from (T}, Y;),
i =1, ... ,n. For example, if 6 is given by (1), then a natural choice of 0 is the difference in sample mean

0=Y,-Y,, 2

where Y, = { Z?zl I(T; =n)}7! 2?:1 I(T; = t)Y; and I(-) is the indicator function. We do not assume specific choices of ]
and only require that 8 be consistent, regular, and asymptotically linear, ie,

ni=1

Vn@-6) = \%Zw(n,m +0,(0). 3)

where y is known as the influence function. This requirement is met by many estimators that are commonly used in

clinical trials. For example, with 8 defined by (2), expression (3) holds with

T(Y —p) A =-T)Y = po)
T l1-7n

w(T,Y) = ; “4)

where # = P(T = 1). Section 3 of Tian et al” gives more examples. Expression (3) implies that gis asymptotically normal
and justifies inference procedures based on asymptotic normality. However, ] may be inefficient because it does not make
use of the available information in X.

Motivated by the semiparametric theory,'*** an augmentation approach has been developed to incorporate covariate
information into the estimation of 6.>>” Following Tsiatis et al*> and Tian et al,” an augmented estimator of § may be
obtained as

fa)=0- %;(Ti — m)a(X)), (5)

where a(X) is an arbitrary function of X such that E{a(X)?} < 0. For example, a(X) may be taken to be a linear function
of X. For any fixed function a, 6(a) is consistent for 8 and asymptotically normal with asymptotic variance var{y(T,Y) —
(T — m)a(X)}. The asymptotic variance is minimized by taking a(x) equal to

aOpt(x) = ’1(1,7‘7) - 7’(0’ x)’ (6)

where n(t,x) = E{wy(T.Y)|]T = t,X = x}. The corresponding estimator, ie, §(aopt), is the most efficient among all
estimators of form (5). In a nonparametric model where the only constraint on the joint distribution of (X, T,Y) is
P(T = 1|1X) = # (due to randomization), if g is a nonparametric estimator, then §(aopt) is the most efficient nonpara-
metric estimator that is regular and asymptotically linear.*'* For nonparametric estimation of (1) with ] given by (2), the
optimal augmentation is
my(X) — pi1 + mo(X) — pio
1-7n N
where m(x) = E(Y|T = X = x),t = 0,1, and the influence function of 6(a.p) is equal to the efficient influence
function for nonparametric estimation of 9, ie,

ey =00 mem)

aopt(x) =

b}

In this case, both the augmentation approach and the TMLE approach®® aim to solve the efficient influence function
equation’ ie, Z?:l Weff(Xi, Ti’ le) =0.

2.2 | Learning the optimal augmentation

In reality, the optimal function a,p is unknown and must be estimated from data. Let @ be a generic estimator with
probability limit a*. We recognize that, in general, a* is not equal to acp;. Under mild regularity conditions, we show in
Appendix that

ni=1

Vr{d@-o} = %Z (W (T2 YD) — (T; = m)a* (X))} + 0,(1). @)
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so that é\(ﬁ) is asymptotically equivalent to g(a*). In particular, the asymptotic variance of 5(&) depends on the limit
but not on the variability or convergence rate of @. Motivated by this observation, we consider estimating a,p; using a
flexible machine learning method in the hope that @ will converge to a limit close to aop (in a sense that will be defined
later), possibly at the expense of a slower-than-parametric convergence rate. At the same time, since (7) is an asymptotic
result, we should also pay attention to the finite-sample performance of 6(a@) and optimize @ accordingly. We will consider
different ways of applying machine learning methods to the present setting, starting with an obvious and straightforward
approach.

2.2.1 | Anindirect approach
Equation (6) suggests that an estimate of a,,; may be obtained from an estimate of the regression function #(t,x) =
E{y(T,Y)|T = t,X = x}. This latter regression problem is complicated by the fact that y(T, Y), the “response variable”,
typically depends on unknown parameters and is not fully observed. For instance, with 6 defined by (2), w(T,Y) given
by (4) involves y; and u,, which are unknown but easily estimated. An estimate of (T, Y), say w(T, Y), may be obtained
by replacing the unknown parameters in y(T, Y) with empirical estimates (see section 3 in the work of Tian et al” for
specific examples). Once i is available, we can apply any existing machine learning method to the “data” (y (T}, Y;), T, Xi),
i =1, ...,n, treating (T;,X;) as input and @ (T}, Y;) as output, to obtain an estimate of #(t, x), say 7(t,x). In the special
case of (4), where y(T, Y) is linear in Y, we could estimate E(Y'| T, X) using a machine learning method and substitute the
estimate into (4) (together with Y, for u,, t = 0,1) to obtain 7(t, x). Once 7(t, x) is available, the corresponding estimate
of agp(x) is

dina(x) = 7(1,x) = 7(0, x),
where the subscript “ind” emphasizes that this is an indirect estimate (through 7).

There is a great variety of machine learning methods,'® some of which may be more appropriate than others for a given
application. Without knowing or assuming which methods perform best, we can simply combine all candidate methods
into a super learner with a desirable oracle property.'*'? Let {#i,k = 1, ..., K} be a collection of K candidate learners,
where K may increase with n in a polynomial fashion. The super learner is a linear combination of the 7, with coefficients
determined using a cross-validation procedure. Let the sample be partitioned into J subsamples that are roughly equal in
size. For eachj € {1, ... ,J}, we use the jth subsample as a validation sample and combine the other subsamples into a
training sample. Let /) and n"(k_j ) be obtained from the training sample using the same methods for obtaining ¢ and 7.
Then, we can find the coefficients in the super learner as

n K 2
@1, ... 8%) = argmin,,... a Y, {v?(‘f'i)(n, Yp) - Zakﬁ;‘“(n,xo} :

i=1 k=1
where j; is the index of the subsample that contains subject i. Theoretical considerations suggest that a; be constrained
to a bounded set in the aforementioned minimization, and practical considerations lead to the following constraints:
Zl,le ax = 1, ax > 0 Vk (see chapter 3 in the work of van der Laan and Rose'?). In other words, we perform a linear
regression of (T}, Y;) on {(n’\(k_"')
learner estimate of # is just 77y = 211;1 A7k, which can be substituted into (6) to obtain Qg ing(x) = 74(0,x) + 7a(1, %),
where the subscript “sl.ind” indicates that this is an indirect super learner.

The indirect nature of this approach is unsatisfactory. The risk function that 7 attempts to minimize is

(T1,Xi), k =1, ..., K} without an intercept using constrained least squares. The super

h— E{y(T,Y) - i(T, X))} (8)

where the expectation is with respect to the joint distribution of (X, T, Y). The global minimizer of (8) is just the true
regression function », which corresponds to ap through (6). If 77 converges to #, say under a correctly specified model H,
the corresponding ding = 7(1, -) — 7(0, -) converges to aope- If the model H is misspecified, then 7 is expected to converge to

h* = argminpey E{w(T.Y) - (T, X)}’,

and Ging to @}, | = h*(1,-) —h*(0, -), which does not have a clear interpretation in terms of estimating 6. Although we know
that
alq € Az = {h(1,) —h(0,") : h€ H},

we do not know (without further information) that §(ﬁind) attains the minimum asymptotic variance among the estimators
0(a), a € Ajy. Therefore, there is a mismatch between the risk function (8) and the objective of estimating 0 efficiently.
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As a result, an indirect augmented estimator @(ﬁmd) is not necessarily more efficient than the unadjusted estimator 0.5
and the estimator 6(dg nq) based on the indirect super learner is not necessarily more efficient that the estimators 6(ay),
k = 1, ... ,K, based on individual learners. These problems do arise in realistic situations, as we shall see in a simulation
study.

2.2.2 | A direct approach

For efficient estimation of 6, the relevant quantity to minimize is the asymptotic variance of 0(a), ie,
E{y(T,Y) = (T — maX)}*. ©

Treating this as a risk function, the direct approach is to directly minimize a sample version of (9) with respect to a. For
an individual learner, this means choosing @ to minimize the sum of squares

> {(#(T. V) = (Ti - max) ) (10)
i=1

or a penalized version of it. This has been suggested by Rubin and van der Laan® in the case where a is constrained to
a parametric family. Another example of this, with a assumed linear and with a lasso penalty, has been considered by
Tian et al.” More generally, we note that (10) can be rewritten as a weighted sum of squares

ST £7¢ /R IR
;,(Tl n){(Ti_”) a(X»},

where (T; — n)? isregarded as aweight and (T}, Y;)/(T;—r) as aresponse variable. This implies that (10) can be minimized
by any prediction algorithm that is able to minimize a weighted sum of squared prediction errors. When = = 1/2 (a
common case in clinical trials), the weight is the same for all subjects, and any prediction algorithm that can minimize
an unweighted sum of squared prediction errors can be used to estimate ap;.

An important advantage of this approach over the indirect approach is that the risk function (9) is better aligned than
(8) is with our analytical objective of estimating 6 efficiently. A local minimizer of (9), say

ay, = argminge AE{y(T,Y) — (T - ma(X)}?,

corresponds directly to a locally optimal estimator of 0, ie,
avar {0 (ak) } = ggtl avar {H(a)} ,

where avar denotes asymptotic variance. In particular, if @q;; minimizes (10) over a class of functions that include a(x) = 0,
then 5(adir) is asymptotically at least as efficient as the unadjusted estimator 0= §(0).

Here, again, we can combine multiple candidate learners into a super learner using the general super learning principle
(see section 3.5 in the work of van der Laan and Rose'?). Let {ax, k = 1, ..., K} be a collection of K candidate learners.
Suppose the sample has been partitioned into J subsamples as before, and let 7~ and a;;f ) be obtained from the jth
training sample (the whole sample minus the jth subsample) using the same methods for obtaining i and . The direct

N . A~ K NA .
super learner of ap is given by Qg .air = Y-, frax With

i=1

n K 2
(1. ... Bx) = argming,_ 50 { §IT, ) = (Ti - n)Zﬂka;"”(Xo} : 1)
k=1

where j; is the index of the subsample containing subject i. This minimization can be carried out as a linear regression
of =/ (T;, Y;) on {(T; — n)aj;ff’(xi), k =1, ...,K} without an intercept using constrained least squares. Here, we could
apply the same constraints as in Section 2.2.1, requiring S, to form a probability vector; however, based on our numerical
experience, we choose to use a less stringent set of constraints, ie, |#;| < B Vk for some constant B > 1. Under quite
general conditions, §(asl_dir) is asymptotically equivalent to an oracle “estimator” based on the best (in the sense of mini-
mizing (9) on a sample of size (J — 1)n/J) linear combination of @ (subject to any constraints on the g, ) (see theorem 1
in the work of van der Laan and Dudoit® for precise statements of the results and the technical conditions required). In
particular, §(as1_dir) is asymptotically at least as efficient as é(ak) for any k, as long as the configuration (f, = 1, fir = 0 Vk')
is permissible in (11).
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As an example, suppose a linear model is assumed for a and estimated by minimizing (10) with a lasso penalty, and
each @y is obtained using a different tuning parameter, as in the work of Tian et al.” With a finite collection of tuning
parameter values, the estimator of a,p; proposed by Tian et al” is a@, where

~ " i) 2
k= argming Y { §0(T;, Y - (T; - ;i (X0 |
i=1
This a@ is known as a discrete super learner based on the @y and is asymptotically equivalent to the best of the @y in the
sense of minimizing (9)(see chapter 3 in the work of van der Laan and Rose'?). However, the oracle property of @; is not
as strong as that of the “true” super learner Gy 4;r based on @y because the minimization in (11) is over a larger class of
functions than the search for k. Consequently, 9@) may be expected to underperform 6(dg q4ir) asymptotically.

In a similar spirit, Balzer et al® used cross-validation to choose a working model for outcome regression in the TMLE
approach. Their approach is “direct” in the sense that model selection is based on the principle of empirical efficiency
maximization.® Their estimator has the flavor of a discrete super learner in that cross-validation is only used to select one
model and not to combine several candidate models.

2.3 | Variance estimation

For any estimator @ that satisfies (7), the asymptotic variance of 0@) is consistently estimated by
1 n
~ ~ 2
~ 2 AP YD) — (T - mac ) (12)
i=1

Although this variance estimator is asymptotically valid, it may suffer from a downward resubstitution bias in finite sam-
ples, especially if @ is chosen to minimize (12). This may or may not be a serious issue, depending on how hard @ attempts
to minimize (12). If necessary, a cross-validation procedure can be used to remove the resubstitution bias. Let the sample
be partitioned into L subsamples that are roughly equal in size, and let (" and @) be obtained from the Ith subsample
using the same method for obtaining # and @. Then, the cross-validated estimate of avar{@(a)} is given by

n
1 ~ (=L, (=L 2
~ 2 APTL YD) — (T - P XD
i=1

where /; is the index of the subsample that includes subject i. The partitioning used here may or may not be the same as the
ones used in Section 2.2. When a super learner is developed from a collection of learning methods, the same partitioning
used to find the coefficients for the super learner can be used to obtain cross-validated variance estimates for the individual
learning methods. For example, in the direct approach, a cross-validated estimate of avar{6(dy)} may be obtained as

2

n
1 (= A(—j;
LY YD - (1 - mE P x|
i=1

because @y does not depend on the partitioning. This is not true for é(asl_dir) because the super learner dg q;; depends on
the aforementioned partitioning. The minimum in (11) is not fully cross-validated for §(asmir) as it does not account for
the estimation of the coefficients f,. To obtain a fully cross-validated estimate of avar{@\(asl,dir)}, one should perform an
external cross-validation in which all steps in obtaining dg 4ir are repeated for each training sample. It is often difficult to
decide whether or not the resubstitution bias is a serious issue for a given augmented estimator. To be safe, we recommend
always using a fully cross-validated variance estimate to make inference about 6.

3 | NUMERIAL RESULTS

3.1 | Background

We now illustrate and evaluate the proposed methodology in the context of the National Institute of Neurological Disor-
ders and Stroke (NINDS) Recombinant Tissue Plasminogen Activator (rt-PA) for Acute Ischemic Stroke Treatment Trial.'®
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In this randomized placebo-controlled double-blind trial, 624 patients with acute ischemic stroke were randomized 1 : 1
to rt-PA or placebo within three hours of stroke onset, and their clinical outcomes were evaluated at 24 hours and three
months post-treatment. The study consisted of two (temporally ordered) parts, with 291 patients enrolled in part 1 and 333
in part 2. The main difference between the two parts was that the time from stroke onset to treatment (TOT) was within
90 minutes in part 1 and between 90 minutes and 180 minutes in part 2. Except for that difference, the patients in the two
parts were treated and evaluated in the same manner, and therefore will be combined in our simulation and analysis.

As in previous analyses of the NINDS rt-PA trial data,'¢"'® we will compare treatments with respect to clinical outcomes
at three months, as measured by the Barthel Index, the Modified Rankin Scale, the Glasgow Outcome Scale, and the
National Institutes of Health Stroke Scale (NIHSS). The Barthel Index measures the ability to perform activities of daily
living and yields a score that ranges from 0 to 100 (complete independence). The Modified Rankin Scale is a simplified
overall assessment of function, with a score that ranges from 0 (absence of symptoms) to 5 (severe disability). The Glas-
gow Outcome Scale is a global assessment of function, with a score that ranges from 1 (good recovery) to 5 (death). The
NIHSS is a 42-point scale with 0 indicating no stroke symptoms and higher scores for more severe symptoms. Scores of 95
or 100 on the Barthel Index, 0 or 1 on the Modified Rankin Scale and the NIHSS, and 1 on the Glasgow Outcome Scale are
considered to indicate treatment success.'® For each instrument, the efficacy of rt-PA relative to placebo is measured by
the between-group differences (rt-PA minus placebo) in the mean score and the probability of success. For ease of inter-
pretation and comparison, the mean score analyses are performed on standardized scores in the unit interval, obtained
by dividing the original scores by the maximum score for each instrument.

Our objective here is to improve the efficiency of these treatment comparisons by utilizing the following baseline covari-
ates: clinical site, study part, continuous TOT, baseline NIHSS, age, preexisting disability, and history of diabetes. These
covariates were chosen by Ingall et al'” in their regression analysis and will be taken as given in applying the proposed
methodology. Six patients with missing covariate data will be excluded in this exercise. The super learning principle will
be used to combine the following prediction algorithms (identified as R packages): glm (generalized linear models), glm-
net (glm with elastic net'®), gam (generalized additive models®), rpart (recursive partitioning and regression trees*), and
randomForest.”> The super learner library includes two versions of glmnet, with « = 1 for lasso and 0 for ridge, and
two versions of randomForest, with m = 2 or 3 (number of covariates to be chosen randomly for each tree). In addition,
the library will include a trivial predictor based on the sample mean to produce an “intercept” in the super learner. The
super learner is implemented with five-fold cross-validation, and its variance estimate is obtained from another (external)
five-fold cross-validation.

3.2 | Simulation

The different methods are compared in a simulation study, which can be described as follows. We consider a population
of patients with potential outcomes Y(0) = Y(1) satisfying Fisher's sharp null hypothesis, which implies that 8 = u; — u,
is 0. Let X be a vector of baseline covariates and let F denote the joint distribution of Xand Y = Y(0) = Y(1). Suppose F'is
discrete with support {(x;,y,),l = 1, ... ,N},and write F = Zfil Dié1, where p; > 0, VI, ZLPI =1, and §; denotes a point
mass of 1 at (x;, ;). Note that the population may be infinite even though the support for (X, Y) is assumed finite. Consider
a randomized trial based on a random sample of size n from the population described earlier. Let (X;, Y;),i = 1, ... ,n,
denote the covariate and outcome values in the sample; thus, (X}, Y;) are independent and identically distributed according
to F. Let T; denote the randomized treatment for the ith subject in the sample, so T; is Bernoulli with success probability
x, independently of (X;, Y;) and across subjects. The aforementioned description is for an arbitrary support set {(x;,y;),l =
1, ... , N} and any probability vector ( pl)fi ,- To make the simulation study somewhat relevant to the NINDS rt-PA study,
we take the support set to be the collection of observed (X, Y) values in the study, and set p, = 1/N,l = 1, ... ,N. For
each outcome variable, 1000 samples of size n = 200 are simulated and analyzed using different methods.

Table 1 presents the simulation results for the standardized scores, ie, empirical bias, standard deviation, relative effi-
ciency, median standard error, and coverage probability for estimating 0, a zero difference in mean score. Inference is
based on both un-cross-validated and fully cross-validated standard errors and the associated 95% Wald confidence inter-
vals. The relative efficiency of an estimator is calculated as the ratio of the variance of the unadjusted estimator 6 (defined
by (2)) to the variance of the estimator under consideration. For example, compared to the unadjusted estimator, an esti-
mator with relative efficiency 2 allows the sample size to be reduced by half while maintaining the same level of precision.
The results are compared between 6 and various versions of 5(6), where @ may be obtained using a super learner or one
of the prediction algorithms described earlier, under the direct or indirect approach. In Table 1, all estimators are nearly
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TABLE 1 Simulation results for standardized (to the unit interval) scores: empirical bias, standard deviation (SD), relative efficiency (RE),
median standard error (SE), and coverage probability (CP) for estimating a zero difference in mean score (§ = 0). The RE of an estimator is
the ratio of the variance of the unadjusted estimator to that of the estimator in question. SE and CP results are obtained with and without
cross-validation (cv)

Method Indirect Approach Direct Approach
(Algorithm) Bias SD RE SE SE, CP CPy Bias SD RE SE SE, CP CP,
Barthel Index

unadjusted —0.001 0.061 1.00 0.059 0.937 —0.001 0.061 1.00 0.059 0.939

glm —0.001 0.061 1.00 0.059 0.060 0.936 0.940 —0.001 0.050 1.50 0.046 0.050 0.936 0.954
glmnet (@ = 0) —0.001 0.061 1.00 0.059 0.060 0.937 0.940 —0.001 0.050 1.49 0.047 0.050 0.932 0.949
glmnet (@ = 1) —0.001 0.061 1.00 0.059 0.060 0.937 0.939 —0.001 0.050 1.50 0.047 0.050 0.931 0.944
gam —0.001 0.061 1.00 0.059 0.060 0.936 0.939 —0.001 0.050 1.49 0.045 0.050 0.930 0.952
rpart —0.002 0.057 1.15 0.051 0.056 0.907 0.938 —0.001 0.049 1.53 0.040 0.054 0.880 0.957
randomForest (m = 2) —-0.002 0.056 1.18 0.051 0.055 0.922 0.943 —0.001 0.049 1.57 0.033 0.048 0.817 0.939
randomForest (m = 3) —0.002 0.054 1.29 0.047 0.054 0.906 0.946 —0.001 0.048 1.62 0.024 0.047 0.679 0.936
super learner —0.002 0.054 1.29 0.047 0.054 0.910 0.940 —0.002 0.048 1.64 0.027 0.048 0.729 0.946

Modified Rankin Scale

unadjusted 0.002 0.057 1.00 0.059 0.953 0.002 0.057 1.00 0.059 0.954

glm 0.002 0.057 1.00 0.059 0.059 0.952 0.956 0.002 0.049 1.39 0.046 0.050 0.946 0.957
glmnet (¢ = 0) 0.002 0.057 1.00 0.059 0.059 0.953 0.955 0.002 0.048 1.43 0.046 0.049 0.946 0.963
glmnet (¢ = 1) 0.002 0.057 1.00 0.059 0.059 0.953 0.955 0.002 0.048 1.45 0.046 0.049 0.949 0.962
gam 0.002 0.057 1.00 0.059 0.059 0.952 0.956 0.002 0.048 1.41 0.045 0.050 0.936 0.960
rpart 0.002 0.056 1.06 0.051 0.056 0.923 0.944 0.002 0.050 1.31 0.039 0.053 0.880 0.964
randomForest (m = 2)  0.002 0.053 1.18 0.051 0.055 0.945 0.957 0.002 0.047 1.47 0.033 0.047 0.825 0.949
randomForest (m = 3) 0.002 0.051 1.27 0.047 0.053 0.931 0.950 0.002 0.046 1.55 0.023 0.046 0.662 0.948
super learner 0.002 0.052 1.24 0.048 0.053 0.928 0.948 0.002 0.046 1.55 0.026 0.047 0.712 0.956

Glasgow Outcome Scale

unadjusted —0.001 0.042 1.00 0.041 0.942 —0.001 0.042 1.00 0.041 0.943

glm —0.001 0.042 1.00 0.041 0.042 0.942 0.942 0.000 0.036 1.34 0.033 0.036 0.931 0.950
glmnet (¢ = 0) —0.001 0.042 1.00 0.041 0.042 0.942 0.944 0.000 0.036 1.35 0.033 0.036 0.937 0.950
glmnet (@ = 1) —0.001 0.042 1.00 0.041 0.042 0.942 0.944 0.000 0.036 1.35 0.033 0.035 0.935 0.949
gam —0.001 0.042 1.00 0.041 0.042 0.942 0.945 0.000 0.036 1.34 0.032 0.036 0.927 0.949
rpart 0.000 0.040 1.08 0.037 0.040 0.920 0.942 0.000 0.035 1.41 0.029 0.038 0.890 0.967
randomForest (m = 2) 0.000 0.039 1.14 0.037 0.039 0.938 0.948 0.000 0.035 1.45 0.023 0.034 0.811 0.949
randomForest (m = 3) 0.000 0.038 1.23 0.034 0.038 0.922 0.953 0.000 0.034 1.52 0.017 0.034 0.673 0.952
super learner 0.000 0.038 1.20 0.034 0.038 0.921 0.953 0.000 0.034 1.50 0.018 0.035 0.713 0.958

NIHSS

unadjusted 0.000 0.053 1.00 0.052 0.948 —0.001 0.053 1.00 0.052 0.946

glm 0.000 0.053 1.00 0.052 0.052 0.947 0.948 —0.001 0.046 1.33 0.042 0.046 0.920 0.950
glmnet (@ = 0) 0.000 0.053 1.00 0.052 0.052 0.948 0.948 —0.001 0.046 1.34 0.042 0.045 0.930 0.940
glmnet (@ = 1) 0.000 0.053 1.00 0.052 0.052 0.948 0.948 —0.001 0.046 1.35 0.042 0.045 0.929 0.941
gam 0.000 0.053 1.00 0.052 0.052 0.947 0.948 —0.001 0.046 1.32 0.041 0.046 0.916 0.950
rpart 0.000 0.050 1.12 0.046 0.050 0.935 0.954 0.000 0.045 1.42 0.036 0.048 0.885 0.962
randomForest (m = 2) 0.000 0.050 1.13 0.046 0.049 0.926 0.943 —0.001 0.044 1.45 0.029 0.043 0.803 0.943
randomForest (m = 3) 0.000 0.048 1.21 0.042 0.048 0.904 0.948 —0.001 0.044 1.48 0.021 0.042 0.671 0.936
super learner 0.000 0.049 1.20 0.043 0.048 0.916 0.950 —0.001 0.044 1.47 0.023 0.043 0.682 0.948

Abbreviations: NTHSS, National Institutes of Health Stroke Scale.

unbiased, but they differ substantially in efficiency. Under the indirect approach, 8(a) is not necessarily more efficient
than 0 and the super learner estimator H(asl ina) does not necessarily outperform the estimators based on individual pre-
diction algorithms. The dlrect approach clearly outperforms the indirect approach as well as the unadjusted method.
Under the direct approach, B(a) is generally more efficient than 0 and the super learner estimator H(asl dir) usually attains
the best efficiency (approximately) among all estimators considered. The un—cross-validated standard errors sometimes
exhibit a downward bias, leading to serious under-coverage of confidence intervals. The cross-validated standard errors
generally perform better, and the associated confidence intervals have close-to-nominal coverage.

Table 2 shows the analogous simulation results for the dichotomized outcomes, which are qualitatively similar to those
in Table 1.
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TABLE 2 Simulation results for dichotomized outcomes: empirical bias, standard deviation (SD), relative efficiency (RE), median standard
error (SE), and coverage probability (CP) for estimating a zero difference in proportion (¢ = 0). The RE of an estimator is the ratio of the
variance of the unadjusted estimator to that of the estimator in question. SE and CP results are obtained with and without cross-validation (cv)

Method Indirect Approach Direct Approach
(Algorithm) Bias SD RE SE SE., CP CP Bias SD RE SE SE., CP CP
Barthel Index

unadjusted 0.000 0.069 1.00 0.070 0.958 0.000 0.069 1.00 0.070 0.956

glm 0.000 0.069 1.00 0.070 0.071 0.960 0.963 0.001 0.063 1.22 0.058 0.063 0.921 0.952
glmnet (@ = 0) 0.000 0.069 1.00 0.070 0.071 0.958 0.960 0.000 0.062 1.25 0.059 0.062 0.939 0.952
glmnet (o = 1) 0.000 0.069 1.00 0.070 0.071 0.958 0.960 0.000 0.061 1.26 0.059 0.063 0.936 0.955
gam 0.000 0.069 1.00 0.070 0.071 0.960 0.963 0.001 0.062 1.25 0.057 0.063 0.928 0.957
rpart 0.000 0.067 1.06 0.062 0.068 0.925 0.953 0.001 0.060 1.33 0.050 0.067 0.903 0.972
randomForest (m = 2) 0.000 0.065 1.14 0.062 0.067 0.941 0.960 0.000 0.059 1.34 0.041 0.060 0.829 0.953
randomForest (m = 3) 0.001 0.062 1.22 0.057 0.065 0.929 0.959 0.000 0.059 1.37 0.031 0.059 0.674 0.954
super learner 0.000 0.063 1.20 0.058 0.065 0.933 0.961 0.001 0.059 1.37 0.036 0.061 0.750 0.953

Modified Rankin Scale

unadjusted 0.002 0.069 1.00 0.067 0.943 0.002 0.068 1.00 0.067 0.943

glm 0.002 0.069 1.00 0.067 0.068 0.942 0.944 0.002 0.062 1.22 0.057 0.062 0.929 0.945
glmnet (a = 0) 0.002 0.069 1.00 0.067 0.068 0.943 0.946 0.002 0.062 1.24 0.057 0.061 0.932 0.946
glmnet (a = 1) 0.002 0.069 1.00 0.067 0.068 0.943 0.946 0.002 0.061 1.25 0.058 0.061 0.934 0.947
gam 0.002 0.069 1.00 0.067 0.068 0.942 0.944 0.001 0.061 1.27 0.055 0.061 0.921 0.948
rpart 0.003 0.064 1.14 0.059 0.065 0.926 0.953 0.003 0.059 1.36 0.048 0.064 0.894 0.963
randomForest (m = 2) 0.002 0.064 1.14 0.059 0.064 0.931 0.949 0.002 0.058 1.38 0.040 0.058 0.828 0.948
randomForest (m = 3) 0.002 0.062 1.23 0.055 0.062 0.910 0.950 0.002 0.058 1.39 0.029 0.057 0.684 0.941
super learner 0.002 0.062 1.22 0.055 0.062 0.912 0.957 0.002 0.058 1.40 0.032 0.058 0.726 0.948

Glasgow Outcome Scale

unadjusted 0.002 0.070 1.00 0.069 0.940 0.002 0.070 1.00 0.069 0.938

glm 0.002 0.070 0.99 0.069 0.069 0.939 0.941 0.001 0.061 1.31 0.057 0.062 0.937 0.951
glmnet (¢ = 0) 0.002 0.070 1.00 0.069 0.069 0.940 0.941 0.001 0.061 1.31 0.058 0.061 0.939 0.951
glmnet (a = 1) 0.002 0.070 1.00 0.069 0.069 0.940 0.941 0.001 0.061 1.31 0.058 0.061 0.940 0.951
gam 0.002 0.070 0.99 0.069 0.069 0.939 0.940 0.001 0.061 1.33 0.056 0.061 0.927 0.955
rpart 0.002 0.067 1.09 0.061 0.066 0.918 0.933 0.001 0.059 1.41 0.048 0.065 0.907 0.970
randomForest (m = 2) 0.001 0.065 1.16 0.060 0.065 0.928 0.949 0.001 0.059 1.41 0.040 0.058 0.808 0.950
randomForest (m = 3) 0.001 0.062 1.26 0.056 0.063 0.910 0.958 0.001 0.059 1.42 0.030 0.058 0.675 0.947
super learner 0.001 0.063 1.25 0.056 0.063 0.912 0.951 0.001 0.059 1.42 0.033 0.059 0.721 0.946

NIHSS

unadjusted —0.002 0.065 1.00 0.063 0.944 —0.001 0.064 1.00 0.063 0.947

glm —0.002 0.066 1.00 0.063 0.064 0.943 0.946 —0.001 0.059 1.22 0.055 0.060 0.928 0.948
glmnet (a = 0) —0.002 0.065 1.00 0.063 0.064 0.944 0.946 0.000 0.059 1.22 0.055 0.059 0.926 0.946
glmnet (a = 1) —0.002 0.065 1.00 0.063 0.064 0.944 0.946 —0.001 0.059 1.22 0.056 0.059 0.929 0.939
gam —0.002 0.066 1.00 0.063 0.064 0.944 0.945 —0.001 0.058 1.25 0.053 0.059 0.927 0.948
rpart —0.001 0.062 1.12 0.057 0.062 0.930 0.945 —0.002 0.057 1.31 0.046 0.063 0.877 0.972
randomForest (m = 2) -0.002 0.062 1.12 0.057 0.061 0.928 0.947 —0.001 0.056 1.36 0.039 0.056 0.829 0.950
randomForest (im = 3) -0.002 0.060 1.18 0.052 0.059 0.923 0.952 —0.001 0.056 1.37 0.028 0.055 0.674 0.948
super learner —0.002 0.060 1.17 0.053 0.060 0.925 0.952 —0.001 0.056 1.36 0.031 0.057 0.698 0.946

Abbreviations: NIHSS, National Institutes of Health Stroke Scale.

3.3 | Analysis

Table 3 shows the results of analyzing the NINDS rt-PA trial data using the same methods compared in Tables 1 and 2.
Note that, for all instruments but the Barthel Index, higher scores represent worse outcomes, and a negative treatment
difference (rt-PA minus placebo) in mean standardized score represents a beneficial effect of rt-PA relative to placebo.
The results in Table 3 demonstrate a substantial and statistically significant benefit of rt-PA for most outcomes and effect
measures, with the possible exception of mean difference in the NTHSS score. In some cases, the cross-validated standard
error is substantially larger than the un—cross-validated standard error, showing the effect of cross-validation. In other
cases, the two standard errors are close to each other, suggesting that overfitting may be a lesser issue in these cases. The
cross-validated standard errors of the augmented estimates are generally smaller for the direct approach than the indirect
approach, and those for the direct approach are usually smaller than the standard error of the unadjusted estimator. The



M—Wl LEy-Statistics

ZHANG AND MA

TABLE 3 Analysis of the National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator trial
data: point estimates (PE) and standard errors (SE) with and without cross-validation (cv) for the treatment differences (rt-PA minus
placebo) in the mean standardized score and the probability of success (defined using four different instruments)

Method
(Algorithm)

unadjusted
glm
glmnet («
glmnet (a =
gam

rpart
randomForest (m = 2)
randomForest (m = 3)
super learner

0)

|
-
Z

unadjusted
glm
glmnet (a
glmnet («
gam
rpart
randomForest (m = 2)
randomForest (m = 3)
super learner

0)
1)

unadjusted
glm
glmnet («
glmnet («
gam
rpart
randomForest (m = 2)
randomForest (m = 3)
super learner

0)
1y

unadjusted

glm

glmnet (« = 0)
glmnet (@ = 1)

gam

rpart

randomForest (m = 2)
randomForest (m = 3)
super learner

Difference in Mean Standardized Score
Indirect Approach

PE

0.084
0.084
0.084
0.084
0.084
0.087
0.084
0.084
0.085

—0.107
—0.107
—0.107
—0.107
—0.107
—0.085
—0.104
—0.106
—0.098

—0.060
—0.060
—0.060
—0.060
—0.060
—0.059
—0.060
—0.060
—0.060

—0.052
—0.052
—0.052
—0.052
—0.052
—0.051
—0.053
—0.053
—0.053

SE

0.033
0.033
0.033
0.033
0.033
0.027
0.029
0.032
0.028

0.033
0.033
0.033
0.033
0.033
0.030
0.029
0.032
0.029

0.024
0.024
0.024
0.024
0.024
0.020
0.021
0.023
0.020

0.029
0.029
0.029
0.029
0.029
0.025
0.026
0.028
0.025

SE.,

0.033
0.033
0.033
0.033
0.029
0.031
0.033
0.030

0.033
0.033
0.033
0.033
0.029
0.031
0.032
0.029

0.024
0.024
0.024
0.024
0.022
0.022
0.023
0.021

0.030
0.030
0.030
0.030
0.026
0.028
0.029
0.026

Direct Approach
PE SE  SE
Barthel Index
0.084  0.033
0.075 0.027
0.075 0.027
0.075 0.027
0.074  0.027
0.089 0.027
0.087 0.021
0.085 0.028 0.030
0.085 0.027 0.028
Modified Rankin Scale
—0.107 0.033
—0.095 0.027
—0.096 0.027
—0.097 0.027
—0.090 0.026
—0.096 0.027
—0.106 0.021
—0.106 0.028 0.030

—0.095 0.028 0.028
Glasgow Outcome Scale

—0.060 0.024
—-0.052 0.019
—-0.053 0.019
—-0.054 0.019
—-0.052 0.019
—0.055 0.019
—0.063 0.015
—0.060 0.020

—-0.054 0.020
NIHSS

0.029
0.025
0.025
0.025
0.024
0.025
0.019
0.025
0.020

0.028
0.028
0.028
0.028
0.029
0.028

0.028
0.028
0.027
0.028
0.028
0.028

0.020
0.020
0.020
0.020
0.021
0.020
0.021
0.020

—0.052
—0.041
—0.042
—0.044
—0.043
—0.049
—0.059
—0.053
—0.056

0.025
0.025
0.025
0.026
0.027
0.026
0.027
0.025

Difference in Probability of Success
Indirect Approach

PE

0.142
0.142
0.142
0.142
0.142
0.099
0.136
0.140
0.130

0.164
0.164
0.164
0.164
0.164
0.142
0.156
0.162
0.156

0.145
0.145
0.145
0.145
0.145
0.122
0.139
0.143
0.135

0.138
0.138
0.138
0.138
0.138
0.124
0.128
0.135
0.127

SE

0.040
0.040
0.040
0.040
0.040
0.034
0.035
0.038
0.034

0.038
0.038
0.038
0.038
0.038
0.034
0.033
0.037
0.033

0.039
0.039
0.039
0.039
0.039
0.033
0.034
0.038
0.034

0.035
0.035
0.035
0.035
0.035
0.031
0.032
0.034
0.031

SEqy

0.040
0.040
0.040
0.040
0.038
0.037
0.039
0.037

0.038
0.038
0.038
0.038
0.035
0.036
0.037
0.035

0.039
0.039
0.039
0.039
0.034
0.036
0.038
0.035

0.036
0.036
0.036
0.036
0.033
0.034
0.035
0.033

Direct Approach

PE

0.142
0.138
0.138
0.137
0.127
0.129
0.139
0.139
0.125

0.164
0.151
0.152
0.153
0.141
0.144
0.150
0.157
0.138

0.145
0.130
0.133
0.133
0.122
0.132
0.141
0.142
0.126

0.138
0.132
0.131
0.130
0.123
0.132
0.129
0.130
0.124

SE  SE.

0.040
0.034
0.034
0.034
0.033
0.034
0.027
0.035
0.035

0.035
0.034
0.034
0.034
0.036
0.035
0.036
0.034

0.038
0.033
0.033
0.033
0.032
0.033
0.026
0.033
0.033

0.034
0.034
0.034
0.033
0.035
0.034
0.035
0.033

0.039
0.033
0.033
0.033
0.033
0.032
0.026
0.033
0.029

0.034
0.034
0.034
0.034
0.036
0.034
0.036
0.034

0.035
0.032
0.032
0.032
0.031
0.030
0.025
0.032
0.030

0.033
0.033
0.032
0.032
0.036
0.033
0.033
0.033

cross-validated standard error of the direct super learner estimate is usually equal and sometimes close to the smallest
cross-validated standard error among all estimates.

4 | DISCUSSION

Clinical trials can be very expensive in terms of time and money. Improving the efficiency of clinical trials via effective
use of information, including baseline covariate information, is key to accelerating the development of new and effective
medical products. This article shows that machine learning methods can bring about substantial improvements in the
efficiency of clinical trials, which translate into big savings for medical product developers and the society as a whole.
There are different ways of using machine learning methods for this purpose and, in this article, we have considered
and compared a direct approach and an indirect approach. The indirect approach is obvious and straightforward but not
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well aligned with the analytical objective. As a result, it does not perform well and sometimes fails to improve upon the
unadjusted estimator. The direct approach aims to minimize a risk function that is directly interpretable as the asymptotic
variance of the treatment effect estimator. It is easy to implement via weighted least squares, and generally performs
better than the indirect approach and the unadjusted estimator. Therefore, we recommend the direct approach over the
indirect one.

There is a great variety of machine learning methods available with different properties and operating characteristics.
The super learning principle allows us to combine many candidate algorithms into a super learner with a desirable oracle
property. Our simulation results confirm that the super learner generally performs better (or no worse) than the candidate
algorithms under the direct approach. In addition to its superior statistical performance, the direct super learner also has
an important practical advantage, ie, it eliminates the need for trial planners to choose among many candidate algorithms,
as we can simply include them all in the library for building a super learner. We do need to specify the library of candidate
algorithms a priori to avoid data dredging.
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APPENDIX

JUSTIFICATION FOR EQUATION (7)

We write Py for the true distribution of (X, T, Y) and P, for the empirical distribution of (X;, T;,Y;),i = 1, ... ,n. Let
G, = \/Z(Pn — IPy) be the empirical process. We shall use operator notation for integrals, writing

0@ =0 - P, {(T - naX)} .
It follows that
Vi {8@ -0} = v/n@ - 0) - VP, {(T - 5200}

= Gu{w(T.Y) = (T = m)aX) } + 0p(1),

(AD)

where the second step follows from (3) and the fact that Py { (T — 7)a(X)} = 0 for any function a because of randomization.

We assume that, with probability tending to 1, both @ and a* belong to some Donsker class of functions with a
square-integrable envelope (with respect to IPy). Techniques for verifying the Donsker condition can be found in the work
of van der Vaart and Wellner.* We also assume that a converges in probability to a* in L,(Py), ie,

P, [{a(X) - a*(X)}z] = 0,(1).
Now, it follows from theorem 19.24 in the work of van der Vaart* that
GCn{w(T.Y) = (T - maAX)} = Go{w (T, Y) — (T — m)a*(X)} + 0p(1).
Substituting this into (A1) completes the proof of (7).


https://doi.org/10.1002/sim.8054

	Machine learning methods for leveraging baseline covariate information to improve the efficiency of clinical trials
	Abstract
	INTRODUCTION
	METHODOLOGY
	Preliminaries
	Learning the optimal augmentation
	An indirect approach
	A direct approach

	Variance estimation

	NUMERIAL RESULTS
	Background
	Simulation
	Analysis

	DISCUSSION
	REFERENCES
	APPENDIX  


