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ABSTRACT: Molybdenum disulfide is a prominent semiconductor that
received a lot of attention recently due to its unique properties. Possessing a
layered crystal structure, one can tune the band gap from indirect to direct
while transforming the material from the bulk to monolayer structure. MoS2
is a highly researched material. However, not all of the nature of this
intriguing material is revealed yet. The aim of this work is to deepen the
knowledge of the scientific community about MoS2 by deciphering its
bonding picture. As is shown using the SSAdNDP approach, Mo and S form
2-centered bonds and there is a lone pair on each S. Most importantly, the
remaining electrons are distributed over Mo atoms and form conjugated
aromatic σ-bonds inside every hexagonal ring, which makes molybdenum the main carrier of σ-aromaticity.

1. INTRODUCTION

Nowadays, the development of materials with tunable
electronic and mechanical properties is a topical task in the
field of nanoscience. The recent progress of experimental and
theoretical techniques allows the fabrication and character-
ization of monolayer- and few-layer-scale structures that obtain
different and unique properties as they transform from bulk to
nanostructures. The need of the nanotechnology industry for
materials with desired properties is partially covered by
transition metal dichalcogenides. Transition metal dichalcoge-
nides (TMDs) form a big class of layered compounds with the
general formula MX2, where M stands for a transition metal,
and X is a chalcogen. The neighboring layers interact via weak
van der Waals forces,1 while M and X atoms within one layer
have strong covalent bonding.2,3 TMD materials have been
widely explored recently,4−12 and amidst them, molybdenum
disulfide (MoS2)

13−18 received the most attention of
researchers from different chemical and physical disciplines.
The configuration of stacked layers exhibits properties of a dry
lubricant, which found an application in aerospace technolo-
gies.19,20 Besides its outstanding mechanical characteristics,
this layered material has the ability to transform from an
indirect band gap of 1.2 eV in bulk to a direct band gap of 1.9
eV in the monolayer.21,22 Due to its unique electronic23−31 and
optical18,32 properties including tunable band gap,16,33,34 MoS2
is one of the most intensively studied materials in the world.
Different crystal phases6,35 of this TMD compound have a
great variety of potential applications in solar batteries,36−41

sensors, and detectors42−52 due to the high band-edge
excitation of d−d transitions. Despite the continuously
growing number of publications dedicated to MoS2, some of
its fundamental aspects still remain unclear. The aim of this
work is to provide a convincing bonding picture for the MoS2
monolayer.53,54 In this paper, we perform the bonding analysis

of this material and show that there are aromatic σ-bonds
inside hexagonal rings. Mo atoms are the main carriers of this
aromaticity.

2. COMPUTATIONAL METHODS
Solid-state calculations of the MoS2 monolayer were
performed within the density functional theory (DFT)
formalism using the generalized gradient approximation with
the Perdew−Burke−Ernzerhof exchange-correlation functional
revised for solids (PBEsol)55 and the projected augmented
wave approach, as implemented in the Vienna Ab-initio
Simulation Package (VASP).56 The following lattice constants
were used for the pristine MoS2 unit cell (Figure 1): a = b =
3.192 Å, c = 20.0 Å, α = β = 90°, γ = 60°.
The first step is preparatory calculations for bonding analysis

performed using a 3 × 3 × 1 supercell with a 350 eV kinetic
energy cutoff and 11 × 11 × 1 Γ-centered Monkhorst−Pack k-
point sampling. The vacuum gap is added only in the z-
direction, and the monolayer remains continuous. The unit cell
of 3 × 3 × 1 size is chosen for computational convenience.
Then, periodic natural bond orbital (NBO)57,58 and
SSAdNDP59−61 calculations were performed for the bonding
analysis. Periodic NBO, like the standard NBO code, enables
the assignment of 1c−2e bonds (lone pairs) and 2c−2e bonds
(2-centered 2-electron bonds). The SSAdNDP code, which is
an extension of AdNDP for solid-state calculations, allows the
recognition of multicenter delocalized bonds (nc−2e, n > 2).
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AdNDP works within the concept of electron density
overlapping. AdNDP, particularly SSAdNDP, was successfully
applied as a bonding decoder to many one-dimensional (1D),
two-dimensional (2D), and three-dimensional (3D) systems
including those with aromatic properties.62−73 Both NBO and
AdNDP use the concept of occupation numbers (ONs), which
represent the amount of electron density localized on a
multicenter bond. The closer these values to 2.0, the more
reliable a bonding picture is. A User-Directed Search
procedure implemented in SSAdNDP (UD-SSAdNDP) allows
solving nontrivial bonding cases. Comprehensive guidelines
and examples to UD search can be found in the Supporting
Information of the following literature.74,75

We chose the def2-TZVP76 basis set for the projection of
PW for the electron density matrix used in SSAdNDP
calculations to be in precise agreement with the initial PW
results.
The MN15L77/def2-TZVP level of theory was used for

isolated cluster calculations via Gaussian1678 software.

3. RESULTS AND DISCUSSION
Periodic NBO and SSAdNDP showed that as was expected,
every Mo atom is bonded to six neighboring S atoms by 2-
center−2-electron (2c−2e) bonds (Figure 1B) with ONs = 1.8
|e|. This implies that every S is bonded to three Mo atoms by
2c−2e bonds. Additionally, every sulfur has a lone pair (1c−
2e) on it (Figure 1A) with ONs = 1.9 |e|. For the purpose of
this work, we simplified the description of 2c−2e Mo−S bonds
to the Lewis-like level. It does not affect in any way the main
idea of the current paper − the presence of σ-aromaticity
inside hexagonal rings. What matters is that every such 2c−2e
bond requires 2 electrons as well as every lone pair. Therefore,
after localization of all lone pairs and 2c−2e bonds 18 out of
162 valence electrons remain unlocalized in our unit cell. We
tested 1c−1e bonds on S and 1c−2e bonds on Mo atoms in
both spin-polarized and closed-shell configurations but
occupation numbers (ONs) of such bonds are about 0.4−0.5
|e|, which does not look very convincing. This indicates the
presence of conjugated multicenter bonds.
After testing several bonding combinations, we say without a

shadow of a doubt that the MoS2 monolayer possesses sigma

aromaticity inside every hexagonal ring, that is, 3c−2e
multicenter bonds over 3 Mo atoms with ONs being ∼1.5 |
e| (Figure 2). As we can see in Figure 2, these sigma bonds in

some way consist of 3dz
2 molybdenum orbitals connected in

the center of the ring. The σ-bonding is quite nontrivial since
we observed that the major contribution to these σ-bonds
comes from Mo atoms, i.e., when localizing conjugated orbitals
like 9c−2e bonds over 3 molybdenum and 6 sulfur atoms, the
ONs are just slightly higher being ∼1.6 |e|. Therefore, we refer
these conjugated sigma systems as 3c−2e sigma bonds
localized over Mo atoms. Alvarez et. al.79 showed that Mo
covalent radius is 1.54 Å, which, definitely, enables the
overlapping of Mo electron density within the MoS2 system.
It is worth mentioning that the energy difference between

the closed- and open-shell configurations is just 5 × 10−8 eV
according to our level of theory. Both configurations give
absolutely the same bonding pattern.
The reader may set a fair point that the picture of the 3c−2e

orbital is not very smooth. The problem likely lies in the
periodic NBO projection code since d-metals like molybde-
num are always tricky subjects in the field of quantum
chemistry calculations. Indeed, the average value of the
“spillover” output parameter of the projection code is 0.82,
while its highest allowed value is 1.01. Once at least one of the
spillover values exceeds this threshold, the results are not
reliable anymore. Our value of 0.82 is below 1.01, so the results
are trustworthy. However, based on our experience, when the
system does not contain any d- or f- elements, the spillover
values are of the order of <10−3. That is why we assign the
problem of the picture distortion to the interaction of d-
electron density and projection code. Anyway, the code,
definitely, works good enough for this system and qualitatively
proves the presence of σ-aromaticity.
To further verify the presence of electron density inside the

hexagonal ring, we performed Electron Localization Function
(ELF) analysis. As can be seen in Figure 3, there is a
trianglelike area of electron localization probability inside rings,
which we interpret as the analog of the proposed delocalized σ-
bond.
Thermal 2D-slices of ELF are presented in Figure 4.

Noticeably, according to the thermal map, the highest ELF
value inside the triangle area corresponds to the highest
observable value around Mo atoms in all directions. This fact
indicates that the remaining 18 electrons of the system indeed
show delocalized behavior rather than lone pair character. The

Figure 1. (A) 1c−2e s-lone pairs of S atoms, ONs = 1.9 |e|. (B) 2c−2e
Mo−S bond, ONs = 1.8 |e|. Hereinafter, Mo atoms are purple, and S
atoms are yellow.

Figure 2. Sigma-aromatic orbital inside of the hexagonal MoS2 ring.
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above-mentioned trianglelike area is marked with purple
triangles in Figure 4. For the reader’s convenience, we
indicated locations of Mo and S atoms in 2D-slices.
The analysis of the isolated cluster model is complicated by

nontrivial periodic conditions; however, such complexity even
supports our idea to some degree. Let us consider one solitary
neutral ring with S atoms being bonded by Mo from all three
directions (Figure 5). The system contains 72 valence

electrons. 48 of them are localized in a trivial way as six 1c−
2e lone pairs on S and 18 2c−2e bonds between every S and
Mo. Then, AdNDP reveals one lone pair on each Mo located
on “triangle” vertices (Figure 6, left). No other lone pairs were
found either on S or Mo as well as in solid-state calculations.
Interestingly, we have found six 2c−2e bonds between Mo
atoms with ONs = 1.8 |e| that form an outer frame (Figure 6,
right). These six Mo−Mo bonds are likely to be formed by the
electrons that molybdenum shares with sulfur in the periodic
system. This fact once more indicates the strong electron
density overlapping of Mo atoms.
66 electrons are localized to this point meaning that 6

electrons, or 3 bonds, remain unlocalized yet. For symmetry

reasons, we initially tried to localize the remaining bonds over
three triangles as shown in Figure 7 (left). 3c−2e localization
over 3 Mo atoms is not very convincing with an ON of just 1.3
|e|. When the S atoms are treated alongside with Mo, that is,
when the complete 5c−2e triangle is considered, the ON is
increased to 1.6 |e|. However, the bond shape (see Supporting
Information (SI), Figure S1) makes no sense in terms of
potential periodic extension (Figure 9). Indeed, the 5c−2e
bond expectedly disappears when a bigger cluster with more
rings is considered (see SI, Figure S2) with the ON being
reduced to 1.4 |e|.
The ON of the 3c−2e σ-bond inside the ring (Figure 8) is

1.8 |e|, and this bond does not break any symmetry and
periodicity rules.
In addition, 4 electrons remain unlocalized yet. We believe

that there is no way to localize them symmetrically because of
the extremely complicated periodic conditions in the solid
state, which are impossible to model within the isolated neutral
cluster model. In qualitative approximation, every above-
mentioned triangle (Figure 7) is a part of three neighboring
hexagonal rings. Considering the presence of a 3c−2e σ-bond
inside every ring, the triangle formally possesses 1/3 electron
density of every σ-bond, i.e., 2/3 |e|. A schematic
representation is given in Figure 7(right). In sum, there are
2/3 × 3 = 2 |e| on each triangle that came from three
neighboring rings. In this cluster model, there are three
triangles and only one ring. Roughly speaking, 2/3 |e| are
withdrawn from each triangle to form one 3c−2e σ-bond
inside a ring, while the remaining 4/3 |e| have nowhere to go
due to the lack of periodicity. In total, 4/3 × 3 = 4 electrons
remain unlocalizable since there are not enough rings in the
isolated cluster model. The same bonding pattern is observed
when a bigger cluster model is considered (Figure 9) with
more unlocalizable bonds. Obviously, such an explanation aims
at giving an understanding of why 4 electrons remain
unlocalized rather than provide the physical insight into
electron distribution.
The extended isolated cluster model (Figure 9) allows

shedding some light on the 2c−2e bonding nature between
Mo and S atoms. For example, let us consider the Mo atom,
marked by a red circle in Figure 9, which experiences an
approximated solid-state surrounding. According to the NBO
analysis, it forms the following 2c−2e bonding combination
with each S atom: 46% of electron density are attributed to Mo
and 54% to S. 20% of molybdenum density are formed by p-
electrons and 77% of d-electrons, while 18% of sulfur density
comes from s-electrons and 81% from p-electrons. These
numbers indicate that two-center bonding shows mostly
covalent behavior between the d-electrons of molybdenum
and the p-electrons of sulfur. However, sulfur forms 3 covalent
bonds with neighboring molybdenum atoms but possesses 4 p-

Figure 3. ELF of MoS2. The isosurface value is 0.4.

Figure 4. Left: ELF slice with 001 Miller indices; the sliced plane
contains Mo atoms; three Mo and three S atoms are placed for
convenience purposes. Right: ELF slice with 100 Miller indices.
Purple triangles indicate the same point sliced in different directions.

Figure 5. Isolated MoS2 cluster model.

Figure 6. Left: three 1c−2e lone pairs on Mo atoms, ONs = 1.6.
Right: 2c−2e Mo−Mo bonds; only 3 out of 6 are depicted for
convenience purposes.
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electrons. Interestingly, the NBO analyses in the cluster model
show that the s-lone pair on sulfur is approximately 50% s-
density and 50% p-density. These facts alongside with solid-
state NBO charges, Mo0.96+S2

0.48−, and ELF analysis make
reasonable the idea of covalent bonding between Mo and S,
leaving the resonance interpretation possible, i.e., two single
sulfur 3p-electrons interact with two Mo atoms through
covalent bonds, and the paired 3p-electrons coordinate with
one Mo atom that provides an empty orbital. Additionally,
sulfur s-density is involved to a certain degree. As we can see,
the 2c−2e bonding picture is complex in its electron
involvement but can be simplified to the Lewis-like level.

The further discussion of the 2c−2e bonding nature is
beyond the scope of the current research. As we mentioned
above, what matters is electron counting. Indeed, the simplified
Lewis-like bonding model via AdNDP is independent of the
presence of any resonances and takes into account only
electron counting.

4. CONCLUSIONS
As we found using the SSAdNDP approach, there are 2c−2e
bonds between Mo and S as well as one lone pair on each S in
the MoS2 monolayer. Next, we found that the only way to
localize the remaining electrons is to conjugate the 3c−2e σ-
bonds inside every hexagonal ring. That is, three molybdenum
atoms of every ring are the main carriers of the proposed σ-
aromaticity. The Mo covalent radius of 1.54 Å enables electron
density overlapping.
ELF analysis and the isolated cluster model support the idea

of σ-aromaticity inside hexagonal rings as well as Mo−Mo
electron density overlapping.
We believe that the deciphering of the MoS2 monolayer

bonding picture is an essential step toward understanding the
nature of this unique and multifunctional material. We hope
that our observation may shed light on some important aspects
of molybdenum disulfide in the future.
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