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A Reputation-Based Contract for Repeated
Crowdsensing With Costly Verification

Donya Ghavidel Dobakhshari

Abstract—A system operator asks a group of sensors toexert
costly effort to collect accurate measurements of a value of in-
terest over time. At each time, each sensor is asked to report its
observation to the operator, and is suitably compensated for the
costly effort it exerts. Since both the effort and the observation are
private information for the sensor, a naive payment scheme which
compensates the sensor based only on its self-reported values of
the effort and the measurements will lead to both shirking and
falsification of outcomes by the sensor. In this paper, we design
an appropriate compensation scheme to incentivize the sensors to
both exert costly effort and then reveal the resulting observation
truthfully. To this end, we formulate the problem as a repeated
game and propose a compensation scheme that employs stochastic
verification by the operator coupled with an algorithm to assign a
reputation to each sensor. By including the history of the behavior
exerted by the sensor in determining present payments, we show
that the operator can incentivize higher effort as well as more
frequent truthtelling by the sensors.

Index Terms—Data acquisition, decision making, mechanism
design, sensor network, state estimation.

I. INTRODUCTION

NCENTIVIZING individuals to follow policies desired by
I the system operator in smart sensor and infrastructure net-
works has received increased attention in recent years (see,
e.g., [1]-[7] and the references therein). In such a setting, the
system operator delegates tasks to several autonomous agents.
Fulfilling these tasks may require costly effort by the agents,
who may not benefit directly from the outcome of the task. Thus,
these agents need to be incentivized to exert sufficient effort to
complete tasks. Further, it may be costly, or even impossible,
for the operator to assess the effort exerted by each agent and
the accuracy of the reported outcomes; instead, she must rely on
the data reported by the agent to do so. The focus of this paper
is on designing a compensation scheme that incentivizes agents
to both exert costly effort and reveal the outcomes truthfully in
such settings.
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For concreteness, we focus on an estimation problem in which
a central operator employs sensors to take measurements of a
quantity of interest (e.g. a random variable or a parameter) at
every time step over a predetermined time horizon, so as to gen-
erate an estimate of the quantity based on the sensors’ reports.
The sensors incur an effort cost for obtaining the measurements,
which may model, e.g., the cost of operating the device, or
battery power. The level of effort exerted by the sensors (and
hence the true accuracy of their measurements) is their private
information, and not known to the system operator. The operator
aims to compensate sensors in a way that incentivizes them to
exert high effort and truthfully report their measurements, so as
to attain an accurate estimate of the quantity of interest.

Designing an appropriate contract for this setting is difficult
due to two reasons: (i) profit misalignment in the sense that the
sensors do not benefit directly from an accurate estimate at the
operator, and (ii) information asymmetry between the operator
and the sensor providing the information. To alleviate these chal-
lenges, the operator needs to design incentive mechanisms that
mitigate both moral hazard (i.e., incentivizing desired actions
by the sensors when effort is costly and private information
for the sensor, see, e.g., [8, Chapter 4]) and adverse selection
(i.e., incentivizing sensors to provide truthful information about
the effort exerted when this information is private to them, see,
e.g., [8, Chapter 3]).

While an extensive literature in contract theory (see, e.g., [1],
[8], [9] and the references therein for an overview) has focused
on resolving either moral hazard or adverse selection separately,
the problem we consider features moral hazard followed by ad-
verse selection in a repeated setting. This problem has received
much less attention in the literature.

The closest works to ours are [10]-[13], which also consider
the problem of moral hazard followed by adverse selection,
although in static frameworks. In [10], the authors consider
a binary information elicitation problem for multiple tasks
when agents have endogenous proficiencies. The works of [11]
and [12] explore the verification of outcomes generated by
agents, directly and through comparison with reports of the
other agents, respectively. Finally, [13] considers a setting fea-
turing moral hazard followed by adverse selection for a single
agent in a single stage interaction. A key difference of our
work with [10]-[13] is in that these works have considered
the interaction between the system operator and the agents in
a single stage. The repeated setting that we consider herein
adds additional dimensions to the problem, as it introduces the
possibility of assigning reputations to the sensors based on the
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history of their measurements, selecting payments based on both
current reported measurements and sensors’ reputations, and the
selection of time-varying strategies by the sensors.

On the use of verification: We would first like to emphasize
the need for intelligent use of verification in this crowdsensing
problem. Given that the operator relies only on the information
transmitted by the self-interested sensors, some form of verifi-
cation or auditing of sensors’ self-reported outcomes is crucial
(see e.g., [14]-[16], in which verification is similarly proposed).
Further, even if the operator can verify all sensors at all stages
so as to ensure truthful revelation by the sensors through appro-
priate penalties, this approach may not, in general, be optimal
for the operator due to the costly nature of verification.

We propose an alternative scheme by allowing verification to
be done probabilistically at every time step. We then use this
verification scheme, coupled with a history-dependent payment
scheme, to design the contracts. In particular, we base the
compensation on a reputation score assigned to each sensor.
As such, the operator rewards the sensor based on the sequence
of its actions (summarized by the reputation score) rather than
merely on its behavior at the current stage. The operator assigns
a higher reputation (and consequently higher payments) to a
sensor that is verified and detected to be honest.

In terms of the methods through which verification or auditing
can happen, we focus on direct verification, and interpret it as
follows. In a sensor network application, we assume that the
operator is able to deploy a trusted (but probably more costly)
sensor in the field, or has the option of going directly to the
physical location to collect her own measurements. This process
of direct verification is indeed highly costly since it consumes
time and effort from the operator. Such verification may further
be imperfect or noisy. Our analysis in Section IV-D addresses
this type of imperfect verification by the operator.

Similar notions of costly direct verification, known as “costly
state verification,” appear in the economic literature on con-
tract theory (see e.g. [17]). Specifically, costly state verification
considers contract design problems in which verification (or
disclosure) of enterprise performance is costly, and so a lender
has to pay a monitoring cost to verify performance [18]. Our
assumption of availability of direct costly verification in akin to
this notion of costly state verification.

An alternative to direct verification in our context is cross-
verification, where the operator verifies sensors’ reports against
each other. The use of cross-verification has been explored in
crowdsourcing applications [19]-[23] as well as recently in
sensor networks [24]. These works illustrate how the use of cross
verification is in itself challenging, and at times ineffective, in
soliciting truthful information; in particular, truthtelling, while
an equilibrium, may be neither unique nor the maximum-reward
equilibrium. Our study of direct verification allows us to forego
these inefficiencies arising due to sensors’ strategic behavior
given cross-verification, and to focus solely on the effects of re-
peated interactions and reputation. The use of cross-verification
in reputation-based contracts remains an interesting direction of
future work.

Related literature: Using reputation for mitigating infor-
mation asymmetry, particularly in repeated games, has been
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commonly proposed, see e.g. [25]-[31]. In [25], the authors
address the problem of mitigating pure adverse selection by
means of reputation indices in a static setting. The authors
of [26] present a comprehensive study of the use of reputation
for mitigating adverse selection in repeated games. The works
in [28]-[30] have focused on repeated interactions between a
system operator and an agent under the assumption of only
moral hazard for the agent. The work in [31] assumes knowledge
of data quality as well as the sensors’ cost. Specifically, it is
assumed that the operator has a prior probability distribution on
the quality of data, and that each sensor’s cost is smaller than the
(fixed) reward in a static setting. In contrast, we assume no prior
knowledge on the quality and cost by the sensors, and further
consider a repeated setup with both moral hazard and adverse
selection.

The problem of providing incentives for participation in
crowdsensing has also been considered in several papers. A
comprehensive review of various incentive-based mechanisms,
including both monetary and non-monetary incentives, is pro-
vided in [1]. Existing works have focused on incentives to
mitigate moral hazard [24], [32], [33] or adverse selection [34],
[35] that arise in crowdsensing. For non-verifiable outcomes, a
class of peer prediction methods has been studied in [19]-[23].
These works use cross-verification between inputs of agents to
make truthtelling a Nash equilibrium. However, these works
assume knowledge of agent actions, and thus deal only with the
problem of adverse selection. Additionally, truthtelling, while an
equilibrium, is not necessarily the maximum-reward equilibrium
in these mechanisms.

Our work is also related to the literature on optimal mecha-
nism design. [36] reviews works on (the possibility of) optimal
mechanism design for single stage interactions given private
information to achieve properties like budget balance, individual
rationality, and incentive compatibility. The work closest to ours
on optimal mechanism design is [17], which studies the problem
of optimal contract design using costly state verification when
one party has private information. The setup of [17] considers
(i) only private information and (ii) a single stage/static inter-
action between the two parties. In contrast, we consider both
private information and private actions, as well as a repeated
interaction setup.

Contributions: The main contribution of our work is to
address the problem of simultaneously incentivizing high ef-
fort and truthful reports through contract design for repeated
principal-agent interactions. For specificity, we focus on a dis-
tributed estimation setup as it may appear in a crowdsensing
application; however, our techniques are applicable to any prob-
lem which exhibits moral hazard followed by adverse selection.
We propose a reputation-based payment scheme coupled with
stochastic verification for compensating the sensors. We show
that under this scheme, compared to a payment scheme that
does not use reputation scores, sensors will exert higher effort
over time, and will truthfully disclose their accuracy with a
higher frequency. Furthermore, the operator needs to resort to
verification with a lower frequency. Nevertheless, the operator
has to provide higher payments, as a result of which her overall
payoff may decrease.
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An earlier version of this work appeared in [37]. Compared
to [37], this paper makes the following contributions: (i) our
work in [37] studies the contract design problem for two stage
interactions. Here, we extend our work to general multi-stage
settings, and (ii) we consider several generalizations of the model
to relax some of the assumptions made in [37]. In particular, we
study the contract’s dependence on the length of the interaction,
analyze the effects of malicious sensors, consider an operator
with a budget constraint, and evaluate the effects of imperfect
verification by the operator.

Paper Organization: The remainder of the paper is or-
ganized as follows. In Section II, we present the model and
some preliminaries. We analyze the proposed reputation-based
payment scheme in Section III, and discuss its generalizations
in Section IV. We conclude in Section V with some avenues for
future work.

II. MODEL AND PRELIMINARIES

We study a repeated interaction between a system operator
who is interested in estimating a quantity of interest, and [
contracted agents (i.e., sensors) that can generate measurements
at each time step over a finite horizon of length K.! We do not
specify whether the quantity being reported is arandom variable,
parameter, or a field, since our setup is agnostic to that. The
operator has no alternate sources for generating measurements.
The accuracy of the measurements generated by the sensors
increases with the effort they expend. Thus, the operator is
interested in incentivizing high effort by the sensors, so as to
attain sufficiently accurate estimates. However, both the true
effort exerted by the sensors, as well as the outcomes they obtain
in terms of the measurement or its accuracy, are unobservable
by the operator. In other words, the operator faces moral hazard
(in that she does not know the level of effort expended by the
sensor) followed by adverse selection (in that she does not know
the outcome of the effort). She therefore relies on the report by
the sensors about the accuracy of their measurements.

Formally, the timeline is as follows. First, at time 0, the con-
tract specifying the payment function between the operator and
each sensor is signed. Then, at every stage/time k (1 < k < K),
every sensor i (1 < i < [I) performs the following actions:

i) Heexerts an effortxy; € [0, X;] to generate a measurement.
This effort incurs a cost of g(xy;) for the sensor and leads
to a measurement of accuracy level o (x; ).

ii) He informs the operator of the measurements and the ac-
curacy level that he generated. The sensor may misreport
the accuracy level as the one corresponding to some other
effort level Xy; as well as the measurements he generated.

After receiving measurements and accuracy reports from all the
sensors at each time &, the operator verifies the reports from any
sensor that she wishes to, by incurring a cost C per verification.
For now, we assume that the verification is perfect, i.e., the
operator can accurately detect any falsification by a sensor. We
study the case of imperfect verification in Section IV-D. After

'We will henceforth use she/her for the operator, and he/his for the sensor.
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the verification, the operator makes payments as specified by the
contract to each sensor.

We make the following assumption for simplicity.

Assumption 1: The accuracy a(xy;) is a deterministic func-
tion of xy;, and the function is known to both the sensor and the
operator. Therefore, without loss of generality, we may assume
that each sensor reports simply his effort level to the operator.

The strategy space for each sensor is as follows. At each time
step, sensor i decides on the pair (xi;, Xx;). If Xx; = xx;, we say that
sensor i has been truthful (7') at stage k; otherwise, we say that
he has falsified the output and is non-truthful (NT'). In general,
the sensor will choose a mixed strategy; denote the probability
that the sensor is truthful at stage k by gy;.

On the other hand, the strategy for the operator consists of
choosing the contract, which specifies the payment at every
stage, and deciding at every stage whether or not to verify a given
sensor. Denote the payment to sensor 7 at stage k by Py;, which
can depend on the reports from all the sensors till time k and the
results of the verifications conducted by the operator till time k.
The functional form of P, is specified in the contract. Denote the
decision to verify a sensor (resp. not verify) by V (resp. by NV).
Verification of sensor i at time k, captured through the variable
vii € {V, NV}, is done probabilistically; denote the probability
that vi; = V by py;. Let zx; denote the level of effort by sensor i
known to the operator at the end of stage k. Since verification is
perfect,

Xki lf Vii = V,
=1, . (D
X if v =NV,

We shall denote the vector of efforts by the sensors at time k by

Xi 2 X1, - .., X}, the set of all verification decisions at time k
by vk £ [y, ..., vy} and that of all the payments at time k by
Py £ (P, ..., Pu}.

We now specify the utility functions of the operator and the
sensors. Sensors incur an effort cost in taking measurements
and do not attach a value to the outcome of the task. Thus, the
instantaneous utility of sensor i at stage k is given by,

Ui = Pri — g(xi). ()

On the other hand, the operator derives a benefit S(x;) from the
measurements generated by the sensors at time k; this depends on
the (true) effort xy; of the sensors. We assume that this function is
increasing and concave. Without loss of generality, we normalize
S(0) =0, i.e., the operator does not derive any benefit when
xr; = 0, Vi, k. The costs that the operator incurs are from the
payments she pays to the sensors and from any verification that
she performs which is denoted by C. Thus, the instantaneous
payoff (or utility) of the operator at stage k is given by,

1

M = S(x) = Y (P + Cl{we = V), 3)
i=1

b v : V. We assume that both the

0 otherwise

sensors and the operator discount future payoffs with a factor §,

where 1{vy; =V} =
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so that their payoffs over the entire time horizon are given by,

K K
Ui £ 8 U T2 640, )
k=1 k=1

In this paper, we consider the design of the payment vectors Py,
P, ..., Pk and the verification decisions vy, vy, ..., vk by the
operator so that rational self-interested sensors will take actions
that lead to maximization of the operator’s utility I'1. We impose
two constraints on the problem.

1) Incentive compatibility (IC): IC is a standard constraint
imposed in a contract to align the effort by the sensor to
the effort desired by the operator. A contract is incentive
compatible if every sensor chooses to take the action
preferred by the operator. Note that the sensor is a rational
decision maker, and therefore chooses his effort level to
maximize his expected payoff E[U;]. Thus, we impose
that if x}; denotes the effort desired by the operator at
time k by agent i, then the compensation scheme should
be such that E[U;(x},)] > E[U;(xx;)], Vxi;. Note that the
expectation is with respect to the verification strategy of
the operator.

ii) Individual rationality (IR) or participation constraints:
Both the operator and the sensors should prefer partic-
ipation in the proposed scheme to opting out. In other
words, their expected continuation utility at each time
t (defined as the expected utility of the sensors and the
operator at each time # looking forward till time K') must be
greater than the utility achieved by opting out.? Formally,
assuming that the operator requires the participation by
all the sensors, we impose

K K

E [Z ak—’nk] >0, E [Z 6""U;{| >0, Vi,i.

k=t k=t
Note that the expectation in the first term (the continuation
utility of the operator) is with respect to the strategy of
reporting truthfully or not by the sensor.

The optimization problem for the operator that we seek to solve

is therefore given by

max E[IT]
D Vi v B PP

s.t. 1C and IR constraints.

Problem & is, in general, difficult to solve given the freedom
in choosing the payment function as a function of the entire
history of the actions of the sensors and the operator. Instead,
we simplify the problem by assuming that the history of the past
reported efforts of the sensors and the results of the verification
done by the operator are summarized through a reputation score,
that is then used to design the payment scheme.

Specifically, assume that the operator assigns a reputation
score Ry; to sensor i at beginning of stage k based on the history
of the sensor’s past reputation scores, as well as the reported

2Without loss of generality we assume that the utilities of the sensors and the
operator when they opt out are zero.
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effort z;; as known to the operator at stage k, i.e.,
Rii = fi(Rij, ..., Ru—vyis 2ui), k=1, ... K, ©)

where Ry; = 0 and the function f;(-) is the reputation function
selected by the operator at stage k. The operator then uses these
reputation scores to offer monetary compensations P; := P(Ry;)
to the sensors based on a payment function P(-) that is a design
choice of the operator. In this paper, we focus on the class of
weighted reputation of the following format:

Ry = R(z1)),

(6)
Rii = oR(zii) + (1 — a))R(k,l)i, k=2,...,.K

where by an abuse of notation, we once again use R(-) to
denote the (instantaneous) reputation function, w € [0, 1] is the
reputation weight, and z;; is given by (1).
A few comments about this reputation function are in order:
® By adjusting the value of w, the operator can place varying
importance on the history of past behavior of the sensor in
assessing the current payment. For instance, when w = 1,
the compensation is based solely on the (reported or veri-
fied) effort expended at the current stage. We refer to this
special case of compensation scheme as instant payments.
® By the definition of z;; in (1), if the sensor is not verified,
R(-) is evaluated based on the output %; reported by the
sensor at that stage. If the sensor is verified, he is assigned
a reputation based on his verified output xy;.
¢ The form of the reputation function implies that there is no
cross-verification done among sensors. Cross-verification
increases the problem complexity significantly and is left
for future work.
Further, R(.) is assumed to be concave. Further, we let the
minimum and maximum of reputation function be R(0) = / and
R(X) = h, where {l, h} > 0 are designer specified parameters.
We propose the payment at each stage k for sensor i to be
equal to the reputation of the sensor at that stage, i.e., P; = Ry;.
Thus, the instantaneous utility of sensor i at stage k is now given
by

Ui = Ry — g(xxi)s @)

while that of the operator is

I
M = S(xi) = ) (Ru + Cl{y = V). ®)
i=1

As before, participants discount the future by a factor 8, and their
long-run utilities U; and IT can be defined as in (4).

Remark 1: Note that the use of verification is indispensable:
if a sensor is not verified, he will always exert effort x;; = 0,
and falsify his effort as X;; = X;. Nevertheless, since verification
is costly, the goal of introducing a reputation-based payment
scheme is to reduce the verification frequency.

III. MAIN RESULTS

We now consider the K-stage game between the sensors and
the operator by solving problem & with payments given by (6).
In this section, we proceed under the following assumptions; we
will relax Assumption 2 in Section IV-C.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 05,2020 at 14:08:30 UTC from IEEE Xplore. Restrictions apply.



6096

TABLE I
INSTANTANEOUS PAYOFFS OF THE SENSOR (ROW PLAYER) AND THE OPERATOR
(COLUMN PLAYER) AT EACH STAGE k

\'% NV
—g(x), SC) —R(q) —C | ROx) — g(x), SCu) — R(xi)
NT [R(0). SV _R(0)_C R(D. 50 R

Assumption 2: Throughout this section, we assume no bud-
get constraint for the operator, i.e., Zle P,; can be chosen
arbitrarily.

Assumption 3: We assume that sensors inputs are equiv-
alent from the operator’s perspective in the sense that S(-)
is independent of the permutation of sensors’ indices for
zero and maximum effort. Formally, let S,?l. be the oper-
ator’s benefit at stage k when sensor i exerts zero effort
Sl(c)i £ S(xkl, cos Xk(i—1)5 0, Xk(i+1)s «+» ku). Similarly, define Ski £
S(Xk1, - Xk(i=1) X, Xk(i+1)s --» Xer ). We assume that value of S,?i
and Sy; are independent of i and constant for a given k, i.e.,
SY, = S? and Sy; = Sy, for any .

Under Assumptions 2 and 3 and in the absence of cross-
verification, the payments to various sensors as well as the
benefit of the operator from measurements are effectively de-
coupled. Thus, we first restrict attention to studying the contract
design problem for a single sensor without loss of generality.
For notational ease, we drop the subscripts i.

A. The Payoff Matrix

To find the payoffs of the sensor and the operator, note that
we have assumed no falsification cost for the sensor. We have
also assumed that the reduction in reputation due to any detected
falsification is independent of the amount of falsification. As a
result, for the stage game, if the sensor behaves strategically
at stage k, he does not exert any effort and realizes x; = 0,
but reports the maximum effort X, = X, to gain the maximum
reputation/payment if not verified. The payoft matrix of the stage
game is thus specified in Table I. For the game in Table I, the
operator designs the parameters of the compensation scheme, to
satisfy the IC and IR constraints, and maximize her profit.

We now proceed to the analysis of the K-stage game with
stage games specified in Table I.

B. Nash Equilibria and Optimal Choice of Effort

We start with the pure strategy Nash Equilibrium (NE) of the
game.

Proposition 1: The only pure strategy Nash equilibrium of
the K-stage game with stage games specified in Table I is
repeated play of the strategy (NT, NV).

Proof: See Appendix. |

The pure strategy equilibrium identified in Proposition 1 is
such that the operator offers no payment to the sensor, and the
sensor exerts no effort. This is equivalent to the outside option
for the operator. We, therefore, consider the mixed strategy
equilibria of the game. The following theorem characterizes the
mixed strategy NE of the game in Table I.

Theorem 1: Under the weighted reputation scheme in (6),

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

i) the mixed strategy equilibrium of the game at each stage k
(if exist) in Table I is unique and as follows. The operator
verifies the sensor with probability

h— R(xy) + 80x)

_ I'(k)
Pk = P :
and the sensor reveals the truth at stage k£ with probability
c
o = h—1— 55
KE T

YIS —wy Tt k=1
DT (O U SR
ii) The sensor chooses X; such that
OR(x)  9g(xx)
Bxk axk

where I'(k) =

I'(w)

xk=)~ck
Proof: See Appendix. |

Remark 2: For these mixed strategy equilibria to exist, the
operator should select %, w, and [ such that, at each &,

8(x) L}
RO — 1 h—1]

The operator has to take this condition into account in the
contract design. Otherwise, the only possible outcome will be
the pure strategy Nash equilibrium (N7, NV).

Note that I'(k 4+ 1) < I'(k). As a result, when the game ap-
proaches the latter stages, the sensor chooses lower g, i.e., the
sensor is truthful with a lower probability. The operator on the
other hand, even for the same effort level x;, verifies the sensor
with higher probability p; as the game progresses. This can be
intuitively interpreted as the fact that maintaining high reputation
scores become less attractive near the contract’s terminal stages.
Similarly, for a fixed k, as K increases, I" increases. As a result,
falsification and verification probabilities are higher at a fixed
time with shorter interactions (smaller K).

(k) > max { 9

C. Optimal Choice of Payment Parameters

In order to further solve for the optimal choices of the contract
parameters, we proceed with the analysis under the following
two assumptions. First, we assume a linear model on both the
cost function of the sensor and the reputation function.

Assumption 4: The reputation and cost functions are linear.
Specifically,

o the reputation function is given by R(x) = %x + 1, and

o the cost of effort is g(x;) = bxy.

The second assumption introduces an upper bound on the
value of Sy, the attainable benefit of the operator from the sensor
maximum effort.

Assumption 5: We assume that 0 < C(S; — S7) < (bx)?* for
each stage k.

Remark 3: Note that the above inequality can be re-written

bx C

as z—/a > =, For a normalized C = 1, we obtain, bx >
k%

bx
Sy — S]?). Assumption 5 therefore imposes that the cost of

effort to realize the maximum accuracy is more than benefit of
the operator due to that accuracy.
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Note that under Assumption 4, the operator chooses #, [, and
o to maximize E[IT], subject to the (IC) and (IR) constraints of
the sensor as stated in Problem 7. We start by optimizing the
choice of [ and 4 given a fixed reputation weight w.
Theorem 2: Under Assumption 4 and for a given w,
i) the individual rationality constraint for the sensor is al-
ways satisfied at each stage k, and
ii) the optimal value of the lowest reputation score is [*
Proof: See Appendix.
Theorem 3: Under Assumptions 4 and 5,
i) the optimal value of 4 is given by h* = %‘ and
ii) for w # 1, the operator will incentivize effort level x at
%?E})l stage k # K, and the effort x* at the last stage, where
F xx lx=r = b.
iii) Tdhe verification probabilities for the operator p; and the
probabilities g for the sensor to be truthful are given by

X+ xi (%llf)) — )
Pk = T > Yk bic

Proof: See Appendix. |

Next, we study the role of reputation weight i.e., importance
of history in the proposed contract. Intuitively, the reputation
weight w determines the importance of inter-temporal incentives
(i.e., conditioning future payments on the history of past efforts).
In particular, @ = 1 yields an instant payment scheme, in which
no inter-temporal incentives are present. For this case, the actions
of the operator and the sensor are as follows.

Corollary 1: If w = 1, the sensor realizes the effort profile
(x*,...,x*) where agi") |x=x+ = b, the operator verifies the sen-
sor with probability p = 1 at each stage, and the sensor is only
truthful with probability g = 1 — & < 1.

Proof: The proof is similar to Theorem 3 for v = 1 and is
omitted. |

By comparing Theorem 3 and Corollary 1, we observe that
while the verification frequency, falsification probabilities, and
the effort level of the sensor, with and without the use of repu-
tation, remain the same at the last stage, the values at the other
stages differ due to the introduction of inter-temporal incentives.
In particular, when history-dependent reputations are used, the
operator needs to verify the sensor with a lower probability, and
the sensor is truthful with a higher probability. Furthermore, the
sensor exerts higher effort in the non-terminal stages.

We next consider the optimal choice of w, under which
expected payoff of the operator is maximized.

Theorem 4: Under Assumption 4 and 5, a choice of v = 1
maximizes the operator’s payoff. That is, instant payments
yield higher payoffs than payments based on linearly weighted
reputations.

Proof: See Appendix. |

We observe that while using inter-temporal incentives through
linearly weighted reputation functions can benefit the operator
by reducing the required verification frequency, increasing the
effort level of the sensor, and increasing the probability of
truthfulness, it will nevertheless reduce the overall payoff of the
operator. This is because the operator has to now offer a higher
compensation to the sensor under reputation-based payments.

=0.
|

= C
_bx—%

*
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TABLE II
PAYOFFS OF THE MALICIOUS SENSOR (ROW PLAYER) AND THE OPERATOR
(COLUMN PLAYER) AT EACH STAGE k FOR THE GAME IN SECTION IV-B

NV
R(x) — by, S(x) — R(x)
R(X)+a, —R(X) —a

\%
T [ Ru)—bxg, SCu) —R0y) —C
NT [R(0), —R(0)—C

IV. EXTENSIONS

In this section, we consider several generalizations of the
model. In particular, we study the behavior of the sensors when
the number of stages grows, when a sensor is malicious, when
the operator has a budget constraint, and when verification
by the operator is imperfect. For ease of notation, we will set
[ =0and S,? = 0 for this section and in subsection IV-B, IV-C,
and IV-D, we assume K = 2.

A. The Infinite-Stage Game

We first consider the role of inter-temporal incentives in an
infinitely repeated interaction.
Corollary 2: In the infinite-stage game as K — 00,
i) the probabilities of verification p; and truthtelling g; are

given by
h — R(x) + &2 h—LC
= T g=—TL 10
Dk p G A (10)
where I = 17(1w—7w)5

ii) At each stage, the sensor chooses ¥ such that

FaR(xk) _ 0g(xr)

3)Ck 8xk =%

iii) Under Assumption 4, the sensor chooses X at each stage,
iv) under Assumption 5, the optimal value of hish = be and
the operator is indifferent among all choices of w.

Proof: See Appendix. |

The above proposition shows that as K — oo, the sensor
behaves consistently and puts in the maximum effort at each
stage. Further, the utility of the operator is independent of the
choice of w. In other words, the operator tends to be indifferent
about employing reputation-based payments.

B. Malicious Sensors

In this section, we analyze the behavior of a malicious sensor
under the proposed contract scheme. For simplicity, we focus
on the two-stage problem with a linear cost function for the
sensor. We define a malicious sensor as a sensor who gains an
extra benefit, denoted by «, when he falsifies the transmitted
data and this is gone undetected. In particular, when untruthful,
this malicious sensor falsifies both the reported measurement
and its accuracy, claiming maximum accuracy for the falsified
measurement. By doing both types of falsification, the sensor can
maximally misguide the estimation at the operator. The payoff
matrix of the stage game is thus specified in Table II.

We observe the following behavior by the sensor and the
operator at the mixed strategy Nash equilibrium of this game.

Proposition 2: Under the weighted reputation scheme, the
mixed strategy equilibrium of the game in Table I1 is as follows.
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The operator verifies the sensor with probabilities

h+a — R(xy) + &2
P2 =

’

h+o
(x1)
b h+o — RO + 552505
: h+a ’
and the sensor reveals the truth with probabilities
h+o—L1C h+a = 775 C

L=—FT"T"" 1=

h+« h+«o

If b¥ > /C(S(X) — Sp, + 8“a) and Assumption 4 holds
i) the optimal reputation parameter is given by h = %’_‘ —a,
ii) the operator will incentivize effort level x at the first stage,
and the effort 0 at the second stage, and
iii) the optimal value of w is given by the solution to the
following

—b)‘c—af(w) <1 _ ! S({)C> -« <8 + £_> =0,
ow f*(w) (bx)? bx
where f(w) := %

Proof: The proof is similar to those for contract design with
a strategic sensor and is omitted. |

The above proposition shows that in the presence of a
malicious sensor, both the verification probabilities and the
truthtelling probabilities increase compared to the case with a
non-malicious sensor. While the former is to be expected, the
latter may be non-intuitive. However, one interpretation is as fol-
lows: by maintaining a high enough probability of truthtelling,
the malicious sensor can reduce the verification probability, and
instead gain o whenever verification is not invoked.

Further, we can observe that at equilibrium in the first stage,
both malicious and strategic sensors behave similarly in terms of
the actions they take; however, the malicious sensor takes zero
action in the second stage. Note that to incentivize effort level x
at the first stage, the operator has to verify the malicious sensor
with a higher probability in both stages. In other words, the
operator will incur higher monitoring costs when dealing with
a malicious sensor; nevertheless, the added expenditure allows
her to recover the same accuracy of measurements as with a
non-malicious sensor.

C. Budget Constraint at the Operator

Consider two sensors participating in the crowdsensing mech-
anism, and suppose that the operator has a limited budget to
compensate the sensors.> In this case, in addition to seeking
compensation by providing accurate measurements, the sensors
are in competition with each other. Thus, we consider the com-
pensation of sensor i to be a function of not only his own report,
but also the accuracy reported by the other sensor. Denote the
payment to the first and second sensors at stage k by Ry (zx1, zx2)
and Ry (z1, zx2), respectively. The payoff matrix of the stage
game is specified in Table III.

3The generalization to the case of I sensors is straightforward.
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TABLE III
PAYOFFS OF THE SENSOR i (ROW PLAYER) AND THE OPERATOR (COLUMN
PLAYER) AT EACH STAGE k FOR THE GAME IN SECTION IV-C

A\ NV
T Ri(xx) — bxgi, SOx) —Ri(x) —C [ Ri(Xy) — b, S(xi) — Ri(x)
NT [ Ri(O.x ), —Ri(Ox ) —C | RilXxy)), —Ril%x ()

We assume that the operator’s budget is given by c, so that
she is constrained to R;(zxi, zx2) + Ra(zx1, 2x2) = c. Further,
following the classical Cournot game setup, we propose the
payments of the following form to each sensor i at stage k

2
Ri(zxt, zk2) = i | A — Zij (11)
=1

The proposed payment/reputation captures the budget con-
straint at the operator. To see this, note that the payment is
increasing in the separated effort for small value of the efforts,
but decreasing for larger values. The operator is therefore dis-
couraging large collective effort, as she faces a budget constraint
and cannot compensate the sensors if both exert high effort.
Note also that the proposed payment indicates that when the
overall level of accuracy reported by sensors exceeds the budget
threshold A, the sensors will be penalized by the operator.* The
reputation function is assumed to be given by

Rii = Ri(z11, 212),
, (12)
Ryi = wR(221, 220) + (1 — w)Ry;

where the reputation weight o € [0, 1].

Proposition 3: Under the weighted reputation scheme (12)
and linear cost functions for the sensors, the unique mixed
strategy equilibria of the game in Table III are as follows.

i) The operator verifies sensor i with probabilities

R i) — Ri(xi) + %bxz

P2i = - s
' R; (X, xp(—i))

» Ri(X, xp(—iy) — Ri(xi) + 35bx1
i = — .
l Ri(x, xx(—iy)

and the sensors reveal the truth with probabilities
‘ Ri(®, xy—i)—1C g Ri(%, x(-i))— 35C
= q1i= -
l R (%, xp—iy) l Ri(%, xp(—iy)
where §° = 1 + (1 — w)é and X = (X1, Xx2)-

ii) At each stage, the optimal effort level chosen by the sen-
b

i A
= andxy; = —5

9

sors are equal, and are givenby xj; = —

respectively.
iii) The optimal value of w is w* = 1.
Proof: The proof follows steps similar to that of Theorem 1
and 4, with Table III instead of Table I as the stage game and is
omitted. |

“Note that Ry(zk1, zk2) + Ro(zk1, 2k2) = (Z%:l k) (A — Z§=1 2kj), with
the maximum happening at Zﬁ:l U = % which yields % =c.

SHere we have borrowed notation from game theory literature and used xx(—)
to represent the effort by every sensor at stage k except for sensor i.
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TABLE IV
PAYOFFS OF THE SENSOR (ROW PLAYER) AND THE OPERATOR (COLUMN
PLAYER) AT STAGE k FOR IMPERFECT VERIFICATION WITH PROBABILITY 1 FOR
THE GAME IN SECTION IV-D

\% NV
T [Relx) —80a), Shu) —Ri ) —C [ RiCaa) — 80a), SCaa) —Rie() |
NT [CpR(0) + (T = )R (3), —pR(0) — (T—)R(F) —C [ Ri(3), —Re(X) |

We observe that similar to the case without a budget constraint,
the optimal effort in the last stage is lower compared to the
previous stage. In addition, we observe that due to the budget
constraint, the sensors end up exerting lower effort compared
to the case without budget constraints. Calculating the expected
utility of the operator as a function of A, we also observe that as
the value of X increases, i.e., as we relax the budget constraint, the
expected utility of the operator decreases. In other words, as
the budget constraint for the operator becomes less constraining,
the compensation to the sensors increases and the expected
utility of the operator declines.

D. Imperfect Verification by the Operator

So far we have assumed the verification of efforts of the
sensors by the operator is perfect, in the sense that the operator
can accurately detect any falsification by a sensor. In this section,
we analyze the case when this verification is not perfect. In
particular, consider a set-up in which the verification done by the
operator has accuracy . That is, there is a probability 1 — u that
an operator cannot detect falsification during verification. Under
this definition, the game in Table I will be modified to Table IV;
note that the utility of the operator and the sensor changes only
for (NT,V), while all other utilities remain the same. In the
following proposition, we present the Nash Equilibrium attained
under imperfect verification.

Proposition 4: When imperfect verification is implemented
by the operator, mixed strategy equilibrium of the game in
Table IV at each time is unique and as follows. The operator
verifies the sensor with probabilities

h—R(x) + 22
pp=——"—" p1=
wh

=R +

wh

and the sensor reveals the truth with probabilities

C C

- g =1- .
P who' D wh(1+ (1 — w)d)

Proof: The proof follows steps similar to that of Theorem
1, with Table IV instead of Table I as the stage game and
is omitted. |

We can observe that compared to the case with perfect ver-
ification, imperfect verification leads to higher probability of
verification and lower probability of truthful behavior by the
sensor. Further, calculating utilities of the sensor and operator,
we observe that while the utility of the sensor remains the same,
the utility of the operator is lower under imperfect verification.
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V. CONCLUSION

In this paper, we studied the problem of contract design
between a system operator and strategic sensors in a repeated
setting. The sensors are asked to exert costly effort to collect
sufficiently accurate observations for the operator. As the effort
invested and the accuracy of the resulting outcome are both
private information of the sensors, the operator needs to design
a compensation scheme that mitigates moral hazard followed
by adverse selection. We proposed a reputation-based payment
scheme coupled with stochastic verification. We showed that
by increasing the importance of past behavior in our proposed
linearly weighted reputation-based payments, the sensors exert
higher effort, and have a higher probability of being truthful.
The operator, on the other hand, can invoke verification less
frequently. However, the operator offers higher payments to the
sensors, which leads to a lower overall profit.

We have so far considered inter-temporal incentives that are
based on a linearly weighted reputation function. Considering
other functional forms for evaluating reputations, and its impact
on the operator and sensors strategies and payoffs, is an impor-
tant direction of future work. In addition, we have considered
the design of individual contracts for each sensor, due to our
assumption of independent measurements by the sensors. As
an interesting direction of future work, we are interested in
analyzing the contract design problem for multiple sensors when
the outcomes of the estimate at the sensors are coupled. Such
coupling may enable the operator to further cross-verify the
outcomes of the sensors as part of the payment scheme.

APPENDIX

Proof of Proposition 1: We start with the potential pure Nash
equilibrium (7', V'), and analyze the payoff of the operator. By
playing V over NV at the first stage, the operator decreases
her utility by C at the subsequent stage. Therefore, (T, NV)
dominates (7', V). Similarly, by analyzing the payoff of the
sensor, we can see that (NT, NV') dominates (7, NV'). We have
therefore discarded (7', V) and (T, NV) as pure Nash equilibria
of the stage games. Therefore, if a pure strategy NE exists, the
sensor will be playing NT. However, given that the sensor is
always playing NT, the operator’s optimal choice is to set iz = 0,
and play NV. Therefore, the only possible pure strategy NE of
the game is (NT, NV), i.e., the operator offers no payment to
the sensor which is in fact the operator’s outside option. ]

Proof of Theorem 1: (i) We use backward induction to find
the operator and sensor’s strategies. Further, denote by U the
expected continuation utility of the sensor from time k looking
forward, i.e.,

K
Ui =E| Y 8
j=k

Prior to presenting the mixed strategy equilibrium at each
stage k, we first prove the following lemma on the utility of
the sensor. ]
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Lemma 1: The expected continuation payoff of the sensor at
stage k in the mixed strategy equilibrium is given by

K
Us=3 8" ((1 — ) Ry + T()HRGy) — g(xj>>.
=k
(13)
Further, the total expected utility of the sensor over the entire
K stages is given by

K

E[U] =) 8" (TIORM) — g0x))-

k=1

(14)

where
o oY 8T -0yt k£
B Dy (RS Gl S

Proof: We use backward induction to prove that the expected
continuation payoff of the sensor follows (13). First note that
since we assume linear payment functions based on the sensor’s
reputation, the (expected continuation) utility of the sensor at
stage k is given by

Ui = (1 — 0)R—1 + oR(x) — glxy) + 8U, ;- (15)
The sensor’s utility at the last stage stage K is then as follows

Ug = (1 — w)Rx—1 + wR(xg) — g(xk).
The utility of the sensor at stage K — 1 is therefore given by,

Ug_y = (1 —0)Rx 2 + wR(xk 1) — glxg—1) + 8Ug
= (I — w)Rg—2 + wR(xg—1) — glxn—1) + SwR(xk)

— 8g(xx) +6(1 — w)Rg 1.

Given (6) on the reputation score update, note that
Rx—1 = wR(xk-1) + (1 — w)Rg .
Thus, Ug_, can be written as
Ui_1 = ((1 — @)+ 8(1 — w)*)Rg—»
+ (& + @8(1 — ))R(xk—1) — g(xg—1)
+ 8(wR(xk) — g(xx)),

which yields

K
c _ Jj—K+1
Up | = E 8
Jj=K-1

x ((1 — o) Ry, + T(j)R(x;) — g<xj->>'

which follows (13), forming the induction basis. Next, we as-
sume that Uy follows (13) and then prove U;_, also follows (13).
Assume the utility of the sensor at stage k is given by

K

Ui =380t ((1 — ) R+ THRG) — g(xj')>-

J=k

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

Based on (15), U¢_, is derived as
Ui, = (1 = 0)Ry—2 + wR(x3—1) — g(xx—1) + 8U{.
Replacing Uy with its expansion yields,
Uiy = (1 = 0)Rx—» + wR(xx—1) — gxx—1)

K
+ Z 6j7k+1 ((1 _ w)j7k+1Rk_1

j=k
+T()R(x)) — g(xj))-
Given R;,_| = wR(x;_1) + (1 — w)Ry_,, we can write

Ui = (1 — )Rk + wR(xk—1) — g(xx—1)

K
+ D _(I—w) s (wR(xk_l )+(1 - w)Rk_z>

j=k
K
+ Y 8T ()R()) — g(x))). (16)
J=k
Note that
K
@R(-) + ) (1= oY 8 wRg )
J=k

K
= Y (1= ) 8 wR 1) = Tk — DR(x-1).
j=k—1

Thus, if we update (16), U;_, is given by

K

Ui =Y 8k ((1 —w)-"-"“Rk2+F(j)R(x,»)—g(x,»>),
J=k—1

which is consistent with (13). This completes the proof of the
first part of the Lemma 1. For the second part, note that the
long-run utility of the sensor over the entire horizon is calculated
by substituting k with 1, and noting that Ry = 0, leading to,

K
E[U] =) 8" (R (k) — g(x0)).
k=1
|
Assume that the operator verifies the sensor with probability
pr- If the sensor reports truthfully, i.e., chooses 7', at stage k, his
expected utility is given by

Ui (Re—1, R(x), .., R(xk)). (17)

We next consider the payoff from falsification by the sensor,
i.e., playing NT. Recall that when the sensor plays N7, he also
exerts no effort, i.e., x; = 0. Therefore, the expected utility from
non-truthful behavior is given by

U R, 1 - RO+ = pi)U (Ric s b, - .., R(xk).
(18)
In the mixed strategy Nash Equilibrium, the sensor is indifferent
between playing 7 and NT, i.e., (17) equals (18). Equating (17)
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and (18) yields
UkC(Rk—la R(.Xk), [E3} R(.X]()) - U](C(Rk—l’ hv LR} R(}C[())
= pk[Ukc(kah lv X R(XK)) - Ukc(kalﬂ h7 oo R(-XK))]

Note that when the sensor plays NT', he realizes action x; = 0,
therefore, no cost of action is incurred in that case. Based on
(13), the equality leads to

P()(R(x) — h) — g(x) = pe (k)L = h).

To make the sensor indifferent between the two actions 7 and

h—R(x)+ ﬁfj}f

NT, the verification probability should be p; = - .

Now, assume the sensor is mixing between 7 and NT at
stage k with probability g;. Denote the continuation utility of
the operator at stage k by ®,

K
O,=E Zéj_kl'lj > 0.
j=k

19)

If the operator plays NV at stage k, we denote her continuation
utility is by OV, and if she plays V, by ©} . Similar to the sen-
sor’s analysis, we start with the last stage. Given Assumption 3,
the expected utility of the operator at stage K when she plays V
is

O = qr(SGxx) — (1 — @)Rxk—1 — wR(xg) — C)
+ (1 —gx)(Sy — (1 —@)Rg_ — o)
= qgxS(xXg) — (1 — w)Rg_1 — ggwR(xk)

+ (1 — gx)Sg — (1 — gg)l — C. (20)

The expected utility of the operator at stage K when she plays
NV is given by

% = qn(S(xx) — (1 — w)Rk—1 — wR(xx))
+ (1= gx)(Sg — (1 — @)Rg—; — wh)
= qxS(xg) — (1 — ®)Rg—1 — qx@R(xg)

+ (1= gx)Sg — (1 — gg)h.

To make the operator indifferent between the two verification
decisions, gk is given by equating ®}, and ®F", which yields

h—1-5<

—o(l —gg)l = C = —w(l —gx)h = gx = =1

For stage K — 1, the expected continuation utility of the operator
when playing V' is given by

Op_; = qr-1 <S(x,<1> — (1 — @)Rg—> — wR(xg—1)
+ 8Ok (R(xk_1), R(xg)) — C)

+(1 —QK—l)(SoKl —(1—w)Rk 2 —wl +8O%(, R(XK))>,
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the expected continuation utility of the operator when playing
NV is given by

Or’ | = qk-1 <S(XK1) — (1 —w)Rg 2 — wR(xy-1)
+ 8Ok (R(xg—_1), R(xg)) — C)

+ (I—gg-1) (Sok, —(1—w)Rg 2 —wh+8O (h, R(XK))>~

By equating ®)_; and OV, gx_; can be derived as
~o(1 = gx-1) [l = 8Ok (I, R(xx)] = C
= —o(l — gx-1) [h — 8Ok (h. R(xx))]
Given the expression for ®,‘§, we have
O (h, R(xk)) — Ok (I, R(xg)) = —(1 — w)(h = 1).
Thus, gx— can be obtained as
C
h—1— o(1+8(1-w))
h—1
Similar to derivation of py, using backward induction, and given
(6) on the reputation score update, we can see that to make
the operator indifferent between V and NV, the truthtelling
probability by the sensor, g, will be
1
h — l - wa:k (Sffk(l—a))jfk
h—1
One can see that the derived mixed strategy NE (py, gx) is
unique. Note that for the above mixed strategy to exist, we
need to verify that the derived p; and g; are valid probabilities.
First, note that g, < 1 always holds; thus, for g to be valid, we
require that I'(k)(h — [) > C in order to ensure that ¢; > 0. If
I'(k)(h — 1) < C, the sensor will always play NT', in which case
the operator should play NV, leading to the operator’s outside
option. For the operator’s side, it is easy to see that py > 0
always holds. Thus, for p; <1 to hold it is required that for

each k, g(x;) < I'(k)(R(xx) — I). Thus, we can summarize the
feasibility constraint as

qKk—-1 =

9k =

8x) = T(k)(R(xi) — 1), and I'(k)(h — 1) = C. 1)
which yields
8(xe) c
I'(k) > max {m, m} .

For these mixed strategies to exist, the operator should select
h, [, w such that at each k (21) is satisfied.

(ii) We first find the optimal strategy chosen by the sensor at
stage k, X;. Note that the sensor is a rational decision maker,
and therefore chooses his effort level to maximize his expected
utility U in (14). Thus, the optimal strategy X is given by

IE[U] _ dR(x)
Bxk -

0g(xr) _
8Xk

0.

0xy i) =

Note that concavity of R(.) guarantees the optimality of ;. W
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Proof of Theorem 2: We consider the linear reputations of
the form R(x) = “=Lx + [. First, using Theorem 1, we conclude
that the optimal strategy X of the sensor in each stage k is as
follows:

any x € [0,x] if =L =

(k)

X =10 if =l < s,
- ce h—l b

X lf?>m

which means

k)l if izl < b
I'(k)R(xy) — bxy = X r(k). 22
Note that When u = W at any stage 1 < j < k we have
hl — b thus the sensor will exert effort X and receive

T T T r(;)’
repuation score 4, he will be indifferent about the level of effort
in stage k, and exert effort O in any stage k < j < K since we
have 1=t — b _b_
X T Tk roy”
Note also when % > %.), we have I'(j)h — bx > T'(j)I.
Given (22) the minimum value of the utility of the sensor at

stage k given in (13) will update to

min{l, h} A+ 877FT ()l
min{l, R} A+ Y5, 87 min{T(j)h — b%, 1},

=

I _ b
<5
I b
T~ o

=
. a|
=

where A = Y7 (1 — @) ~F+1577K,

As a result, given the last equation, the IR constraint which
dictates that U > 01is satisfied regardless of the choice of 4, [ >
0. The operator should determine the optimal choice of [ to
maximize E[IT], subject to the IC constraints of the sensor in
each stage, as well as the IR constraint. The operator will thus
choose ! = 0to provide less payment to the sensor and maximize
her own utility. n

Proof of Theorem 3: We should determine the optimal
choice of /1, w to maximize E[I1], subject to the IC constraints
of the sensor in each stage, as well as the IR constraint U > 0.
We therefore substitute for / = 0, and rewrite the optimization
problem as follows:

max
{0<h, 0<w=<l}

E[IT] s.t. IC.

Recall the feasibility constraint for the mixed strategy equilib-
rium in (21), and replace R(x;) = f:;xk, g(xx) = bx; to obtain

h
b <T(k)=, and T(k)h > C,
X

which yields h> r’g), and h > F(k) Given that Tk + 1) <
k), =—=— I‘(k+1) > F(k) , we have the following condition on /& chosen
by the operator

> _x h> ——.

- I'(K) - I'(K)
Note that I'(K') = w. Therefore, for the feasibility constraiht to
hold, we restrict attention to & > % Note that when i > %" the
operator will incentivize effort level X at the stage j # K, and the

effort x at the last stage. (Since & > b—j, the sensor is indifferent
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about the effort at stage K and we assume he exerts the desired
effort by the operator.).

In the following we use backward induction to prove that
utility of the operator is decreasing with respect to 4 when
h > }’—a’f We prove this for ®; at any k; the proof holds for the
total utility by setting k = 1. We first consider the utility of the
operator at stage K

_c
OF = —(1 — w)Rx—1 + —2 [S(xk) + ©(h — R(xk))]
C
+%S,O( — wh.
First note that since 2 @ > =2 we have x; = xforany k, Rx_; =

T(K)’
h and R(x;) = h. Thus we can write

C
_5_ C
o = -1 -wh+ - S,(—wh+%s,°(
h—<_ C
= —h © S + —S9.
T KT oK

Now we verify that ®F" is decreasing in h. The derivative of
OFY with respect to / is then given by

0y +C§K CSK
oh o2 R

If Assumption 5 holds, i.e., ,/C(S’K — S,(z) < bx, we conclude

— NV
that C(Sx — S%) < wh? and consequently 8(;2 < 0. Tosee this,
note that given bx < wh and 0 < w < 1, we can write

C(Sk — S%) < (bx)* < (wh)* < wh?.

Next, we verify that @%K | s also decreasing in h. Recall that
@RV | can be written as

0%’ = — (I — @)Rk2 + gk (SCxk 1)
+ (K — 1)(h — R(xg_1))
+ (1 —qx_1)SY_| + 80N (h, xg_1) — wh.

Similarly, when / > %—‘, the derivative of ®’,\<’Kl with respect to
h is given by
Ol CSk1

on R2T

csY el
2T oh

Given that ©}" is decreasing in h, it is easy to check that 2
is negative and OFY | is also decreasing in h.

We next consider an arbitrary stage k and we prove O is
decreasing in h given that ®}, 11 is a decreasing function of A.
The expected continuation utility of the sensor at stage k is given
by

dh

0y = — (1 — 0)Re—1 + q[S(xe—1)
+ (h — ROy DI (k — 1)]
C
— wh + 5®k+1(h , X)) + ES,(.
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When i > 2 the derivative of ©Y" with respect to / is calcu-
lated as

oh h2T hr oh
Note that C(S; — S) < I'(k)h?, since

C(Sp—8Y) < (b%)* < (wh)* < T(K—1Dh* <---<T(k)h’.

Thus, assuming ©} {1 isadecreasing function of /2 in conjunction

with C(S; — SY) < F(k)h2 leads to a%gv < 0. In other words,
we proved that if @Y 1 1s a decreasing function of 7, @kN Vis also
decreasing in h. Note that the concavity of ®§(V V" at each stage k
can be similarly shown using backward induction and the fact
that C(S; — S,?) > 0. Thus, using induction, we conclude that

ON is decreasing in h for h > bf and any k. Therefore, it is

optimal for the operator to choose h = %.

The payment at each stage k is thus given by R(x;) = gxk
Note that at stage K the operator will therefore incentivize output
level x* which maximizes her own utility at the last stag. Given
utility of the operator at the last stage in (20) x* is given by
% .+ = b. Finally, given the participation constraint of the
operator, the sensor will be offered a payment in return for
his effort if and only if E[Zle §/71T1;] > 0. Otherwise, the
operator prefers the outside option of not requesting input from
the sensor. Part (iii) is proved by substituting the optimal value
of the parameters in p; and g; in Theorem 1. |

Proof of Theorem 4: We now analyze the optimal choice of
o given the optimal choice of & identified in Theorem 3. We
need to solve the following optimization problem:

Za/ ',

The total utility of the operator over the entire horizon is calcu-
lated similar to that of sensor in Lemma 1 and given by

maXE [IT] = >0 st.0<w<l.

K
B[] = 8" [qi(Sx0) =S —T(R(x)) +(S¢ — O]
k=1

If we substitute optimal parameters of the contract, i.e., [ =0
and h = %, we can write

K Cw

_ k—1 _ < _¢0_ b_)_C 0__
E[M]=) 3 [( bxr(k))(s" s F(k)w>+Sk c}

k=1

k=1

K
+Y sy - o).

k=1

_ Co - bx
SIS —8Y — —— (5, -8+ C — T'(k)—
|: «—Sk b)‘c[‘(k)( «—S;) + ( )a)

Define f = % We take the derivative of the objective func-
tion with respect to .

EM] _ N i, 0f (@) 1 (5 —SoC
dw 28 . Cdw |:1 2 i|

P (bx)?
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With the assumption ,/C(S; — S,?) < bx,and noting that f(w) >
1 and % < 0, we conclude that % > 0. Thus, E[IT] is an
increasing function of w and the optimal choice is to set w = 1.
|

Proof of Corollary 2: First note that for infinitely repeated
games, i.e., when K — oo, we have

o0 o0 1
FHF1 -0y =Y —w)y = ————.
D Y=y =) 60 —w) ETR—r
J=k J'=0
Let I' denote I = m Note that I" is not a function of k.

In this case, p; and g; would be updated as

80x)

h— R(xy) + =
h b
Thus, the behavior of the sensor becomes more consistent

over each stage. Recall that the total utility of the sensor over
the entire K stage is given by

Pk = gk

K
=Y N (PRORG) — gxw).

k=1

E[U]

We now find the expected payoff of the sensor, and then his
optimal action. The total utility of the sensor at stage i is given
by

Ui = (1 — w)Re—1 + wR(xy) — g(x) + UL, (Re, Xier1).

Notice that

oo
(SUkC+l(Rkaxk+l) = R(xz) Z w8 R (1 — w) ™k 4 A,
Jj=k+1

where the terms in A do not include the term R(x;). Therefore,
we can write total utility of the sensor at time i as follows

Ui = — )R- — glxx) + R(x)I + A
Thus, at each stage, the sensor chooses % such that

F3R(Xk) _0g(xy)
E)xk - Bxk

X=X
Next we consider linear payment and effort cost in Assump-
tion 4. Recall the feasibility constraint for the mixed strategy
equilibrium and replace R(x;) = %xk, g(xz) = bx; to obtain
h
b < FE’ and Th>C.
Hence, the operator sets & > be which leads to x; = X for any
k. Consider the operator’s expected continuation utility, when
the current reputation of the sensor is R and denote that by ITF.
The expected payoff from verifying and not verifying is the
same for the operator at NE, so her expected payoff is equal to
her expected payoff from verifying.
At the beginning of the time horizon, we have:

% = ¢(S — wR(X) + IR _ )
+ (1 = ¢)(So, +8T1° = C)
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Given total utility of the operator, we can write

o0
k=1

So the utility of the operator can be re-written as

H°=S—C+£(S0 —S)
Ch
c . c
— (1= =) [wR®) — sTI°F®] + —511°,
( Fh>[w *) I+

which simplifies to

o =s—ct S5 —v—(1- E\rriz
(1= =8 = C+ (S, =) (1 Fh)l"R(x).

So we have

m-_1 S—C+£(S —S)—-Th+C
T1-3 rh '

We can see that 1° is decreasing with respect to 4 if bx >

VC(S(X) — Sp,) since

VCSX) —So,) < bx <Th.

Thus, the optimal value of h = be. Thus,

nO—L S—C+£(S —8)—bx+C
T1-s S '

We can see that I1° is independent of w and therefore, the
operator is indifferent among all choices of w. ]
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